509 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			509 lines
		
	
	
	
		
			12 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/kernel/process.c
 | |
|  *
 | |
|  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
 | |
|  *  Original Copyright (C) 1995  Linus Torvalds
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <stdarg.h>
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| #include <linux/cpuidle.h>
 | |
| #include <linux/leds.h>
 | |
| #include <linux/reboot.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/idmap.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/thread_notify.h>
 | |
| #include <asm/stacktrace.h>
 | |
| #include <asm/mach/time.h>
 | |
| #include <asm/tls.h>
 | |
| 
 | |
| #ifdef CONFIG_CC_STACKPROTECTOR
 | |
| #include <linux/stackprotector.h>
 | |
| unsigned long __stack_chk_guard __read_mostly;
 | |
| EXPORT_SYMBOL(__stack_chk_guard);
 | |
| #endif
 | |
| 
 | |
| static const char *processor_modes[] = {
 | |
|   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
 | |
|   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
 | |
|   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
 | |
|   "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
 | |
| };
 | |
| 
 | |
| static const char *isa_modes[] = {
 | |
|   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
 | |
| };
 | |
| 
 | |
| extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
 | |
| typedef void (*phys_reset_t)(unsigned long);
 | |
| 
 | |
| /*
 | |
|  * A temporary stack to use for CPU reset. This is static so that we
 | |
|  * don't clobber it with the identity mapping. When running with this
 | |
|  * stack, any references to the current task *will not work* so you
 | |
|  * should really do as little as possible before jumping to your reset
 | |
|  * code.
 | |
|  */
 | |
| static u64 soft_restart_stack[16];
 | |
| 
 | |
| static void __soft_restart(void *addr)
 | |
| {
 | |
| 	phys_reset_t phys_reset;
 | |
| 
 | |
| 	/* Take out a flat memory mapping. */
 | |
| 	setup_mm_for_reboot();
 | |
| 
 | |
| 	/* Clean and invalidate caches */
 | |
| 	flush_cache_all();
 | |
| 
 | |
| 	/* Turn off caching */
 | |
| 	cpu_proc_fin();
 | |
| 
 | |
| 	/* Push out any further dirty data, and ensure cache is empty */
 | |
| 	flush_cache_all();
 | |
| 
 | |
| 	/* Switch to the identity mapping. */
 | |
| 	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
 | |
| 	phys_reset((unsigned long)addr);
 | |
| 
 | |
| 	/* Should never get here. */
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| void soft_restart(unsigned long addr)
 | |
| {
 | |
| 	u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
 | |
| 
 | |
| 	/* Disable interrupts first */
 | |
| 	local_irq_disable();
 | |
| 	local_fiq_disable();
 | |
| 
 | |
| 	/* Disable the L2 if we're the last man standing. */
 | |
| 	if (num_online_cpus() == 1)
 | |
| 		outer_disable();
 | |
| 
 | |
| 	/* Change to the new stack and continue with the reset. */
 | |
| 	call_with_stack(__soft_restart, (void *)addr, (void *)stack);
 | |
| 
 | |
| 	/* Should never get here. */
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static void null_restart(enum reboot_mode reboot_mode, const char *cmd)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function pointers to optional machine specific functions
 | |
|  */
 | |
| void (*pm_power_off)(void);
 | |
| EXPORT_SYMBOL(pm_power_off);
 | |
| 
 | |
| void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd) = null_restart;
 | |
| EXPORT_SYMBOL_GPL(arm_pm_restart);
 | |
| 
 | |
| /*
 | |
|  * This is our default idle handler.
 | |
|  */
 | |
| 
 | |
| void (*arm_pm_idle)(void);
 | |
| 
 | |
| static void default_idle(void)
 | |
| {
 | |
| 	if (arm_pm_idle)
 | |
| 		arm_pm_idle();
 | |
| 	else
 | |
| 		cpu_do_idle();
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| void arch_cpu_idle_prepare(void)
 | |
| {
 | |
| 	local_fiq_enable();
 | |
| }
 | |
| 
 | |
| void arch_cpu_idle_enter(void)
 | |
| {
 | |
| 	ledtrig_cpu(CPU_LED_IDLE_START);
 | |
| #ifdef CONFIG_PL310_ERRATA_769419
 | |
| 	wmb();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void arch_cpu_idle_exit(void)
 | |
| {
 | |
| 	ledtrig_cpu(CPU_LED_IDLE_END);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| void arch_cpu_idle_dead(void)
 | |
| {
 | |
| 	cpu_die();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Called from the core idle loop.
 | |
|  */
 | |
| void arch_cpu_idle(void)
 | |
| {
 | |
| 	if (cpuidle_idle_call())
 | |
| 		default_idle();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by kexec, immediately prior to machine_kexec().
 | |
|  *
 | |
|  * This must completely disable all secondary CPUs; simply causing those CPUs
 | |
|  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 | |
|  * kexec'd kernel to use any and all RAM as it sees fit, without having to
 | |
|  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 | |
|  * functionality embodied in disable_nonboot_cpus() to achieve this.
 | |
|  */
 | |
| void machine_shutdown(void)
 | |
| {
 | |
| 	disable_nonboot_cpus();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Halting simply requires that the secondary CPUs stop performing any
 | |
|  * activity (executing tasks, handling interrupts). smp_send_stop()
 | |
|  * achieves this.
 | |
|  */
 | |
| void machine_halt(void)
 | |
| {
 | |
| 	local_irq_disable();
 | |
| 	smp_send_stop();
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	while (1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Power-off simply requires that the secondary CPUs stop performing any
 | |
|  * activity (executing tasks, handling interrupts). smp_send_stop()
 | |
|  * achieves this. When the system power is turned off, it will take all CPUs
 | |
|  * with it.
 | |
|  */
 | |
| void machine_power_off(void)
 | |
| {
 | |
| 	local_irq_disable();
 | |
| 	smp_send_stop();
 | |
| 
 | |
| 	if (pm_power_off)
 | |
| 		pm_power_off();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restart requires that the secondary CPUs stop performing any activity
 | |
|  * while the primary CPU resets the system. Systems with a single CPU can
 | |
|  * use soft_restart() as their machine descriptor's .restart hook, since that
 | |
|  * will cause the only available CPU to reset. Systems with multiple CPUs must
 | |
|  * provide a HW restart implementation, to ensure that all CPUs reset at once.
 | |
|  * This is required so that any code running after reset on the primary CPU
 | |
|  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 | |
|  * executing pre-reset code, and using RAM that the primary CPU's code wishes
 | |
|  * to use. Implementing such co-ordination would be essentially impossible.
 | |
|  */
 | |
| void machine_restart(char *cmd)
 | |
| {
 | |
| 	local_irq_disable();
 | |
| 	smp_send_stop();
 | |
| 
 | |
| 	arm_pm_restart(reboot_mode, cmd);
 | |
| 
 | |
| 	/* Give a grace period for failure to restart of 1s */
 | |
| 	mdelay(1000);
 | |
| 
 | |
| 	/* Whoops - the platform was unable to reboot. Tell the user! */
 | |
| 	printk("Reboot failed -- System halted\n");
 | |
| 	local_irq_disable();
 | |
| 	while (1);
 | |
| }
 | |
| 
 | |
| void __show_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	char buf[64];
 | |
| 
 | |
| 	show_regs_print_info(KERN_DEFAULT);
 | |
| 
 | |
| 	print_symbol("PC is at %s\n", instruction_pointer(regs));
 | |
| 	print_symbol("LR is at %s\n", regs->ARM_lr);
 | |
| 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
 | |
| 	       "sp : %08lx  ip : %08lx  fp : %08lx\n",
 | |
| 		regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
 | |
| 		regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
 | |
| 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
 | |
| 		regs->ARM_r10, regs->ARM_r9,
 | |
| 		regs->ARM_r8);
 | |
| 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
 | |
| 		regs->ARM_r7, regs->ARM_r6,
 | |
| 		regs->ARM_r5, regs->ARM_r4);
 | |
| 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
 | |
| 		regs->ARM_r3, regs->ARM_r2,
 | |
| 		regs->ARM_r1, regs->ARM_r0);
 | |
| 
 | |
| 	flags = regs->ARM_cpsr;
 | |
| 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
 | |
| 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
 | |
| 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
 | |
| 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
 | |
| 	buf[4] = '\0';
 | |
| 
 | |
| 	printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
 | |
| 		buf, interrupts_enabled(regs) ? "n" : "ff",
 | |
| 		fast_interrupts_enabled(regs) ? "n" : "ff",
 | |
| 		processor_modes[processor_mode(regs)],
 | |
| 		isa_modes[isa_mode(regs)],
 | |
| 		get_fs() == get_ds() ? "kernel" : "user");
 | |
| #ifdef CONFIG_CPU_CP15
 | |
| 	{
 | |
| 		unsigned int ctrl;
 | |
| 
 | |
| 		buf[0] = '\0';
 | |
| #ifdef CONFIG_CPU_CP15_MMU
 | |
| 		{
 | |
| 			unsigned int transbase, dac;
 | |
| 			asm("mrc p15, 0, %0, c2, c0\n\t"
 | |
| 			    "mrc p15, 0, %1, c3, c0\n"
 | |
| 			    : "=r" (transbase), "=r" (dac));
 | |
| 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
 | |
| 			  	transbase, dac);
 | |
| 		}
 | |
| #endif
 | |
| 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
 | |
| 
 | |
| 		printk("Control: %08x%s\n", ctrl, buf);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void show_regs(struct pt_regs * regs)
 | |
| {
 | |
| 	printk("\n");
 | |
| 	__show_regs(regs);
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| ATOMIC_NOTIFIER_HEAD(thread_notify_head);
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(thread_notify_head);
 | |
| 
 | |
| /*
 | |
|  * Free current thread data structures etc..
 | |
|  */
 | |
| void exit_thread(void)
 | |
| {
 | |
| 	thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
 | |
| }
 | |
| 
 | |
| void flush_thread(void)
 | |
| {
 | |
| 	struct thread_info *thread = current_thread_info();
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	flush_ptrace_hw_breakpoint(tsk);
 | |
| 
 | |
| 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
 | |
| 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
 | |
| 	memset(&thread->fpstate, 0, sizeof(union fp_state));
 | |
| 
 | |
| 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
 | |
| }
 | |
| 
 | |
| void release_thread(struct task_struct *dead_task)
 | |
| {
 | |
| }
 | |
| 
 | |
| asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
 | |
| 
 | |
| int
 | |
| copy_thread(unsigned long clone_flags, unsigned long stack_start,
 | |
| 	    unsigned long stk_sz, struct task_struct *p)
 | |
| {
 | |
| 	struct thread_info *thread = task_thread_info(p);
 | |
| 	struct pt_regs *childregs = task_pt_regs(p);
 | |
| 
 | |
| 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
 | |
| 
 | |
| 	if (likely(!(p->flags & PF_KTHREAD))) {
 | |
| 		*childregs = *current_pt_regs();
 | |
| 		childregs->ARM_r0 = 0;
 | |
| 		if (stack_start)
 | |
| 			childregs->ARM_sp = stack_start;
 | |
| 	} else {
 | |
| 		memset(childregs, 0, sizeof(struct pt_regs));
 | |
| 		thread->cpu_context.r4 = stk_sz;
 | |
| 		thread->cpu_context.r5 = stack_start;
 | |
| 		childregs->ARM_cpsr = SVC_MODE;
 | |
| 	}
 | |
| 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
 | |
| 	thread->cpu_context.sp = (unsigned long)childregs;
 | |
| 
 | |
| 	clear_ptrace_hw_breakpoint(p);
 | |
| 
 | |
| 	if (clone_flags & CLONE_SETTLS)
 | |
| 		thread->tp_value[0] = childregs->ARM_r3;
 | |
| 	thread->tp_value[1] = get_tpuser();
 | |
| 
 | |
| 	thread_notify(THREAD_NOTIFY_COPY, thread);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill in the task's elfregs structure for a core dump.
 | |
|  */
 | |
| int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
 | |
| {
 | |
| 	elf_core_copy_regs(elfregs, task_pt_regs(t));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fill in the fpe structure for a core dump...
 | |
|  */
 | |
| int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
 | |
| {
 | |
| 	struct thread_info *thread = current_thread_info();
 | |
| 	int used_math = thread->used_cp[1] | thread->used_cp[2];
 | |
| 
 | |
| 	if (used_math)
 | |
| 		memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
 | |
| 
 | |
| 	return used_math != 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dump_fpu);
 | |
| 
 | |
| unsigned long get_wchan(struct task_struct *p)
 | |
| {
 | |
| 	struct stackframe frame;
 | |
| 	int count = 0;
 | |
| 	if (!p || p == current || p->state == TASK_RUNNING)
 | |
| 		return 0;
 | |
| 
 | |
| 	frame.fp = thread_saved_fp(p);
 | |
| 	frame.sp = thread_saved_sp(p);
 | |
| 	frame.lr = 0;			/* recovered from the stack */
 | |
| 	frame.pc = thread_saved_pc(p);
 | |
| 	do {
 | |
| 		int ret = unwind_frame(&frame);
 | |
| 		if (ret < 0)
 | |
| 			return 0;
 | |
| 		if (!in_sched_functions(frame.pc))
 | |
| 			return frame.pc;
 | |
| 	} while (count ++ < 16);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long arch_randomize_brk(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long range_end = mm->brk + 0x02000000;
 | |
| 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #ifdef CONFIG_KUSER_HELPERS
 | |
| /*
 | |
|  * The vectors page is always readable from user space for the
 | |
|  * atomic helpers. Insert it into the gate_vma so that it is visible
 | |
|  * through ptrace and /proc/<pid>/mem.
 | |
|  */
 | |
| static struct vm_area_struct gate_vma = {
 | |
| 	.vm_start	= 0xffff0000,
 | |
| 	.vm_end		= 0xffff0000 + PAGE_SIZE,
 | |
| 	.vm_flags	= VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
 | |
| };
 | |
| 
 | |
| static int __init gate_vma_init(void)
 | |
| {
 | |
| 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
 | |
| 	return 0;
 | |
| }
 | |
| arch_initcall(gate_vma_init);
 | |
| 
 | |
| struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 | |
| {
 | |
| 	return &gate_vma;
 | |
| }
 | |
| 
 | |
| int in_gate_area(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
 | |
| }
 | |
| 
 | |
| int in_gate_area_no_mm(unsigned long addr)
 | |
| {
 | |
| 	return in_gate_area(NULL, addr);
 | |
| }
 | |
| #define is_gate_vma(vma)	((vma) == &gate_vma)
 | |
| #else
 | |
| #define is_gate_vma(vma)	0
 | |
| #endif
 | |
| 
 | |
| const char *arch_vma_name(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return is_gate_vma(vma) ? "[vectors]" :
 | |
| 		(vma->vm_mm && vma->vm_start == vma->vm_mm->context.sigpage) ?
 | |
| 		 "[sigpage]" : NULL;
 | |
| }
 | |
| 
 | |
| static struct page *signal_page;
 | |
| extern struct page *get_signal_page(void);
 | |
| 
 | |
| int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!signal_page)
 | |
| 		signal_page = get_signal_page();
 | |
| 	if (!signal_page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	addr = get_unmapped_area(NULL, 0, PAGE_SIZE, 0, 0);
 | |
| 	if (IS_ERR_VALUE(addr)) {
 | |
| 		ret = addr;
 | |
| 		goto up_fail;
 | |
| 	}
 | |
| 
 | |
| 	ret = install_special_mapping(mm, addr, PAGE_SIZE,
 | |
| 		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
 | |
| 		&signal_page);
 | |
| 
 | |
| 	if (ret == 0)
 | |
| 		mm->context.sigpage = addr;
 | |
| 
 | |
|  up_fail:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | 
