3534 lines
		
	
	
	
		
			95 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3534 lines
		
	
	
	
		
			95 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include <linux/log2.h>
 | |
| 
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_da_format.h"
 | |
| #include "xfs_da_btree.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_attr_sf.h"
 | |
| #include "xfs_attr.h"
 | |
| #include "xfs_trans_space.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_buf_item.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_bmap_util.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_filestream.h"
 | |
| #include "xfs_cksum.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_symlink.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| 
 | |
| kmem_zone_t *xfs_inode_zone;
 | |
| 
 | |
| /*
 | |
|  * Used in xfs_itruncate_extents().  This is the maximum number of extents
 | |
|  * freed from a file in a single transaction.
 | |
|  */
 | |
| #define	XFS_ITRUNC_MAX_EXTENTS	2
 | |
| 
 | |
| STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
 | |
| 
 | |
| STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
 | |
| 
 | |
| /*
 | |
|  * helper function to extract extent size hint from inode
 | |
|  */
 | |
| xfs_extlen_t
 | |
| xfs_get_extsz_hint(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
 | |
| 		return ip->i_d.di_extsize;
 | |
| 	if (XFS_IS_REALTIME_INODE(ip))
 | |
| 		return ip->i_mount->m_sb.sb_rextsize;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These two are wrapper routines around the xfs_ilock() routine used to
 | |
|  * centralize some grungy code.  They are used in places that wish to lock the
 | |
|  * inode solely for reading the extents.  The reason these places can't just
 | |
|  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
 | |
|  * bringing in of the extents from disk for a file in b-tree format.  If the
 | |
|  * inode is in b-tree format, then we need to lock the inode exclusively until
 | |
|  * the extents are read in.  Locking it exclusively all the time would limit
 | |
|  * our parallelism unnecessarily, though.  What we do instead is check to see
 | |
|  * if the extents have been read in yet, and only lock the inode exclusively
 | |
|  * if they have not.
 | |
|  *
 | |
|  * The functions return a value which should be given to the corresponding
 | |
|  * xfs_iunlock() call.
 | |
|  */
 | |
| uint
 | |
| xfs_ilock_data_map_shared(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	uint			lock_mode = XFS_ILOCK_SHARED;
 | |
| 
 | |
| 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 | |
| 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 | |
| 		lock_mode = XFS_ILOCK_EXCL;
 | |
| 	xfs_ilock(ip, lock_mode);
 | |
| 	return lock_mode;
 | |
| }
 | |
| 
 | |
| uint
 | |
| xfs_ilock_attr_map_shared(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	uint			lock_mode = XFS_ILOCK_SHARED;
 | |
| 
 | |
| 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 | |
| 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 | |
| 		lock_mode = XFS_ILOCK_EXCL;
 | |
| 	xfs_ilock(ip, lock_mode);
 | |
| 	return lock_mode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 | |
|  * the i_lock.  This routine allows various combinations of the locks to be
 | |
|  * obtained.
 | |
|  *
 | |
|  * The 3 locks should always be ordered so that the IO lock is obtained first,
 | |
|  * the mmap lock second and the ilock last in order to prevent deadlock.
 | |
|  *
 | |
|  * Basic locking order:
 | |
|  *
 | |
|  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 | |
|  *
 | |
|  * mmap_sem locking order:
 | |
|  *
 | |
|  * i_iolock -> page lock -> mmap_sem
 | |
|  * mmap_sem -> i_mmap_lock -> page_lock
 | |
|  *
 | |
|  * The difference in mmap_sem locking order mean that we cannot hold the
 | |
|  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 | |
|  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 | |
|  * in get_user_pages() to map the user pages into the kernel address space for
 | |
|  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 | |
|  * page faults already hold the mmap_sem.
 | |
|  *
 | |
|  * Hence to serialise fully against both syscall and mmap based IO, we need to
 | |
|  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 | |
|  * taken in places where we need to invalidate the page cache in a race
 | |
|  * free manner (e.g. truncate, hole punch and other extent manipulation
 | |
|  * functions).
 | |
|  */
 | |
| void
 | |
| xfs_ilock(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 | |
| 
 | |
| 	/*
 | |
| 	 * You can't set both SHARED and EXCL for the same lock,
 | |
| 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 | |
| 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 | |
| 	 */
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 | |
| 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 | |
| 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 | |
| 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 | |
| 	else if (lock_flags & XFS_IOLOCK_SHARED)
 | |
| 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 | |
| 
 | |
| 	if (lock_flags & XFS_MMAPLOCK_EXCL)
 | |
| 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 | |
| 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 | |
| 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 | |
| 
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL)
 | |
| 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 | |
| 	else if (lock_flags & XFS_ILOCK_SHARED)
 | |
| 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is just like xfs_ilock(), except that the caller
 | |
|  * is guaranteed not to sleep.  It returns 1 if it gets
 | |
|  * the requested locks and 0 otherwise.  If the IO lock is
 | |
|  * obtained but the inode lock cannot be, then the IO lock
 | |
|  * is dropped before returning.
 | |
|  *
 | |
|  * ip -- the inode being locked
 | |
|  * lock_flags -- this parameter indicates the inode's locks to be
 | |
|  *       to be locked.  See the comment for xfs_ilock() for a list
 | |
|  *	 of valid values.
 | |
|  */
 | |
| int
 | |
| xfs_ilock_nowait(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 | |
| 
 | |
| 	/*
 | |
| 	 * You can't set both SHARED and EXCL for the same lock,
 | |
| 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 | |
| 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 | |
| 	 */
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 | |
| 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 | |
| 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 | |
| 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL) {
 | |
| 		if (!mrtryupdate(&ip->i_iolock))
 | |
| 			goto out;
 | |
| 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 | |
| 		if (!mrtryaccess(&ip->i_iolock))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 | |
| 		if (!mrtryupdate(&ip->i_mmaplock))
 | |
| 			goto out_undo_iolock;
 | |
| 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 | |
| 		if (!mrtryaccess(&ip->i_mmaplock))
 | |
| 			goto out_undo_iolock;
 | |
| 	}
 | |
| 
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL) {
 | |
| 		if (!mrtryupdate(&ip->i_lock))
 | |
| 			goto out_undo_mmaplock;
 | |
| 	} else if (lock_flags & XFS_ILOCK_SHARED) {
 | |
| 		if (!mrtryaccess(&ip->i_lock))
 | |
| 			goto out_undo_mmaplock;
 | |
| 	}
 | |
| 	return 1;
 | |
| 
 | |
| out_undo_mmaplock:
 | |
| 	if (lock_flags & XFS_MMAPLOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_mmaplock);
 | |
| 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_mmaplock);
 | |
| out_undo_iolock:
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_iolock);
 | |
| 	else if (lock_flags & XFS_IOLOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_iolock);
 | |
| out:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_iunlock() is used to drop the inode locks acquired with
 | |
|  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 | |
|  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 | |
|  * that we know which locks to drop.
 | |
|  *
 | |
|  * ip -- the inode being unlocked
 | |
|  * lock_flags -- this parameter indicates the inode's locks to be
 | |
|  *       to be unlocked.  See the comment for xfs_ilock() for a list
 | |
|  *	 of valid values for this parameter.
 | |
|  *
 | |
|  */
 | |
| void
 | |
| xfs_iunlock(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can't set both SHARED and EXCL for the same lock,
 | |
| 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 | |
| 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 | |
| 	 */
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 | |
| 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 | |
| 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 | |
| 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 | |
| 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 | |
| 	ASSERT(lock_flags != 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_iolock);
 | |
| 	else if (lock_flags & XFS_IOLOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_iolock);
 | |
| 
 | |
| 	if (lock_flags & XFS_MMAPLOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_mmaplock);
 | |
| 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_mmaplock);
 | |
| 
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL)
 | |
| 		mrunlock_excl(&ip->i_lock);
 | |
| 	else if (lock_flags & XFS_ILOCK_SHARED)
 | |
| 		mrunlock_shared(&ip->i_lock);
 | |
| 
 | |
| 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * give up write locks.  the i/o lock cannot be held nested
 | |
|  * if it is being demoted.
 | |
|  */
 | |
| void
 | |
| xfs_ilock_demote(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 | |
| 	ASSERT((lock_flags &
 | |
| 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 | |
| 
 | |
| 	if (lock_flags & XFS_ILOCK_EXCL)
 | |
| 		mrdemote(&ip->i_lock);
 | |
| 	if (lock_flags & XFS_MMAPLOCK_EXCL)
 | |
| 		mrdemote(&ip->i_mmaplock);
 | |
| 	if (lock_flags & XFS_IOLOCK_EXCL)
 | |
| 		mrdemote(&ip->i_iolock);
 | |
| 
 | |
| 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 | |
| }
 | |
| 
 | |
| #if defined(DEBUG) || defined(XFS_WARN)
 | |
| int
 | |
| xfs_isilocked(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			lock_flags)
 | |
| {
 | |
| 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 | |
| 		if (!(lock_flags & XFS_ILOCK_SHARED))
 | |
| 			return !!ip->i_lock.mr_writer;
 | |
| 		return rwsem_is_locked(&ip->i_lock.mr_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 | |
| 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 | |
| 			return !!ip->i_mmaplock.mr_writer;
 | |
| 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 | |
| 		if (!(lock_flags & XFS_IOLOCK_SHARED))
 | |
| 			return !!ip->i_iolock.mr_writer;
 | |
| 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(0);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG
 | |
| int xfs_locked_n;
 | |
| int xfs_small_retries;
 | |
| int xfs_middle_retries;
 | |
| int xfs_lots_retries;
 | |
| int xfs_lock_delays;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 | |
|  * value. This shouldn't be called for page fault locking, but we also need to
 | |
|  * ensure we don't overrun the number of lockdep subclasses for the iolock or
 | |
|  * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
 | |
|  */
 | |
| static inline int
 | |
| xfs_lock_inumorder(int lock_mode, int subclass)
 | |
| {
 | |
| 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 | |
| 		ASSERT(subclass + XFS_LOCK_INUMORDER <
 | |
| 			(1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
 | |
| 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 | |
| 		ASSERT(subclass + XFS_LOCK_INUMORDER <
 | |
| 			(1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
 | |
| 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
 | |
| 							XFS_MMAPLOCK_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
 | |
| 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
 | |
| 
 | |
| 	return lock_mode;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following routine will lock n inodes in exclusive mode.  We assume the
 | |
|  * caller calls us with the inodes in i_ino order.
 | |
|  *
 | |
|  * We need to detect deadlock where an inode that we lock is in the AIL and we
 | |
|  * start waiting for another inode that is locked by a thread in a long running
 | |
|  * transaction (such as truncate). This can result in deadlock since the long
 | |
|  * running trans might need to wait for the inode we just locked in order to
 | |
|  * push the tail and free space in the log.
 | |
|  */
 | |
| void
 | |
| xfs_lock_inodes(
 | |
| 	xfs_inode_t	**ips,
 | |
| 	int		inodes,
 | |
| 	uint		lock_mode)
 | |
| {
 | |
| 	int		attempts = 0, i, j, try_lock;
 | |
| 	xfs_log_item_t	*lp;
 | |
| 
 | |
| 	/* currently supports between 2 and 5 inodes */
 | |
| 	ASSERT(ips && inodes >= 2 && inodes <= 5);
 | |
| 
 | |
| 	try_lock = 0;
 | |
| 	i = 0;
 | |
| again:
 | |
| 	for (; i < inodes; i++) {
 | |
| 		ASSERT(ips[i]);
 | |
| 
 | |
| 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If try_lock is not set yet, make sure all locked inodes are
 | |
| 		 * not in the AIL.  If any are, set try_lock to be used later.
 | |
| 		 */
 | |
| 		if (!try_lock) {
 | |
| 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 | |
| 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
 | |
| 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 | |
| 					try_lock++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If any of the previous locks we have locked is in the AIL,
 | |
| 		 * we must TRY to get the second and subsequent locks. If
 | |
| 		 * we can't get any, we must release all we have
 | |
| 		 * and try again.
 | |
| 		 */
 | |
| 		if (!try_lock) {
 | |
| 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* try_lock means we have an inode locked that is in the AIL. */
 | |
| 		ASSERT(i != 0);
 | |
| 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Unlock all previous guys and try again.  xfs_iunlock will try
 | |
| 		 * to push the tail if the inode is in the AIL.
 | |
| 		 */
 | |
| 		attempts++;
 | |
| 		for (j = i - 1; j >= 0; j--) {
 | |
| 			/*
 | |
| 			 * Check to see if we've already unlocked this one.  Not
 | |
| 			 * the first one going back, and the inode ptr is the
 | |
| 			 * same.
 | |
| 			 */
 | |
| 			if (j != (i - 1) && ips[j] == ips[j + 1])
 | |
| 				continue;
 | |
| 
 | |
| 			xfs_iunlock(ips[j], lock_mode);
 | |
| 		}
 | |
| 
 | |
| 		if ((attempts % 5) == 0) {
 | |
| 			delay(1); /* Don't just spin the CPU */
 | |
| #ifdef DEBUG
 | |
| 			xfs_lock_delays++;
 | |
| #endif
 | |
| 		}
 | |
| 		i = 0;
 | |
| 		try_lock = 0;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	if (attempts) {
 | |
| 		if (attempts < 5) xfs_small_retries++;
 | |
| 		else if (attempts < 100) xfs_middle_retries++;
 | |
| 		else xfs_lots_retries++;
 | |
| 	} else {
 | |
| 		xfs_locked_n++;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 | |
|  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 | |
|  * lock more than one at a time, lockdep will report false positives saying we
 | |
|  * have violated locking orders.
 | |
|  */
 | |
| void
 | |
| xfs_lock_two_inodes(
 | |
| 	xfs_inode_t		*ip0,
 | |
| 	xfs_inode_t		*ip1,
 | |
| 	uint			lock_mode)
 | |
| {
 | |
| 	xfs_inode_t		*temp;
 | |
| 	int			attempts = 0;
 | |
| 	xfs_log_item_t		*lp;
 | |
| 
 | |
| 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 | |
| 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 | |
| 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 | |
| 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 | |
| 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 | |
| 
 | |
| 	ASSERT(ip0->i_ino != ip1->i_ino);
 | |
| 
 | |
| 	if (ip0->i_ino > ip1->i_ino) {
 | |
| 		temp = ip0;
 | |
| 		ip0 = ip1;
 | |
| 		ip1 = temp;
 | |
| 	}
 | |
| 
 | |
|  again:
 | |
| 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the first lock we have locked is in the AIL, we must TRY to get
 | |
| 	 * the second lock. If we can't get it, we must release the first one
 | |
| 	 * and try again.
 | |
| 	 */
 | |
| 	lp = (xfs_log_item_t *)ip0->i_itemp;
 | |
| 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 | |
| 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 | |
| 			xfs_iunlock(ip0, lock_mode);
 | |
| 			if ((++attempts % 5) == 0)
 | |
| 				delay(1); /* Don't just spin the CPU */
 | |
| 			goto again;
 | |
| 		}
 | |
| 	} else {
 | |
| 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| __xfs_iflock(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 | |
| 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 | |
| 
 | |
| 	do {
 | |
| 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 | |
| 		if (xfs_isiflocked(ip))
 | |
| 			io_schedule();
 | |
| 	} while (!xfs_iflock_nowait(ip));
 | |
| 
 | |
| 	finish_wait(wq, &wait.wait);
 | |
| }
 | |
| 
 | |
| STATIC uint
 | |
| _xfs_dic2xflags(
 | |
| 	__uint16_t		di_flags)
 | |
| {
 | |
| 	uint			flags = 0;
 | |
| 
 | |
| 	if (di_flags & XFS_DIFLAG_ANY) {
 | |
| 		if (di_flags & XFS_DIFLAG_REALTIME)
 | |
| 			flags |= XFS_XFLAG_REALTIME;
 | |
| 		if (di_flags & XFS_DIFLAG_PREALLOC)
 | |
| 			flags |= XFS_XFLAG_PREALLOC;
 | |
| 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 | |
| 			flags |= XFS_XFLAG_IMMUTABLE;
 | |
| 		if (di_flags & XFS_DIFLAG_APPEND)
 | |
| 			flags |= XFS_XFLAG_APPEND;
 | |
| 		if (di_flags & XFS_DIFLAG_SYNC)
 | |
| 			flags |= XFS_XFLAG_SYNC;
 | |
| 		if (di_flags & XFS_DIFLAG_NOATIME)
 | |
| 			flags |= XFS_XFLAG_NOATIME;
 | |
| 		if (di_flags & XFS_DIFLAG_NODUMP)
 | |
| 			flags |= XFS_XFLAG_NODUMP;
 | |
| 		if (di_flags & XFS_DIFLAG_RTINHERIT)
 | |
| 			flags |= XFS_XFLAG_RTINHERIT;
 | |
| 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 | |
| 			flags |= XFS_XFLAG_PROJINHERIT;
 | |
| 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 | |
| 			flags |= XFS_XFLAG_NOSYMLINKS;
 | |
| 		if (di_flags & XFS_DIFLAG_EXTSIZE)
 | |
| 			flags |= XFS_XFLAG_EXTSIZE;
 | |
| 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 | |
| 			flags |= XFS_XFLAG_EXTSZINHERIT;
 | |
| 		if (di_flags & XFS_DIFLAG_NODEFRAG)
 | |
| 			flags |= XFS_XFLAG_NODEFRAG;
 | |
| 		if (di_flags & XFS_DIFLAG_FILESTREAM)
 | |
| 			flags |= XFS_XFLAG_FILESTREAM;
 | |
| 	}
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| uint
 | |
| xfs_ip2xflags(
 | |
| 	xfs_inode_t		*ip)
 | |
| {
 | |
| 	xfs_icdinode_t		*dic = &ip->i_d;
 | |
| 
 | |
| 	return _xfs_dic2xflags(dic->di_flags) |
 | |
| 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 | |
| }
 | |
| 
 | |
| uint
 | |
| xfs_dic2xflags(
 | |
| 	xfs_dinode_t		*dip)
 | |
| {
 | |
| 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 | |
| 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 | |
|  * is allowed, otherwise it has to be an exact match. If a CI match is found,
 | |
|  * ci_name->name will point to a the actual name (caller must free) or
 | |
|  * will be set to NULL if an exact match is found.
 | |
|  */
 | |
| int
 | |
| xfs_lookup(
 | |
| 	xfs_inode_t		*dp,
 | |
| 	struct xfs_name		*name,
 | |
| 	xfs_inode_t		**ipp,
 | |
| 	struct xfs_name		*ci_name)
 | |
| {
 | |
| 	xfs_ino_t		inum;
 | |
| 	int			error;
 | |
| 	uint			lock_mode;
 | |
| 
 | |
| 	trace_xfs_lookup(dp, name);
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	lock_mode = xfs_ilock_data_map_shared(dp);
 | |
| 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 | |
| 	xfs_iunlock(dp, lock_mode);
 | |
| 
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 | |
| 	if (error)
 | |
| 		goto out_free_name;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_name:
 | |
| 	if (ci_name)
 | |
| 		kmem_free(ci_name->name);
 | |
| out:
 | |
| 	*ipp = NULL;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an inode on disk and return a copy of its in-core version.
 | |
|  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 | |
|  * appropriately within the inode.  The uid and gid for the inode are
 | |
|  * set according to the contents of the given cred structure.
 | |
|  *
 | |
|  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 | |
|  * has a free inode available, call xfs_iget() to obtain the in-core
 | |
|  * version of the allocated inode.  Finally, fill in the inode and
 | |
|  * log its initial contents.  In this case, ialloc_context would be
 | |
|  * set to NULL.
 | |
|  *
 | |
|  * If xfs_dialloc() does not have an available inode, it will replenish
 | |
|  * its supply by doing an allocation. Since we can only do one
 | |
|  * allocation within a transaction without deadlocks, we must commit
 | |
|  * the current transaction before returning the inode itself.
 | |
|  * In this case, therefore, we will set ialloc_context and return.
 | |
|  * The caller should then commit the current transaction, start a new
 | |
|  * transaction, and call xfs_ialloc() again to actually get the inode.
 | |
|  *
 | |
|  * To ensure that some other process does not grab the inode that
 | |
|  * was allocated during the first call to xfs_ialloc(), this routine
 | |
|  * also returns the [locked] bp pointing to the head of the freelist
 | |
|  * as ialloc_context.  The caller should hold this buffer across
 | |
|  * the commit and pass it back into this routine on the second call.
 | |
|  *
 | |
|  * If we are allocating quota inodes, we do not have a parent inode
 | |
|  * to attach to or associate with (i.e. pip == NULL) because they
 | |
|  * are not linked into the directory structure - they are attached
 | |
|  * directly to the superblock - and so have no parent.
 | |
|  */
 | |
| int
 | |
| xfs_ialloc(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*pip,
 | |
| 	umode_t		mode,
 | |
| 	xfs_nlink_t	nlink,
 | |
| 	xfs_dev_t	rdev,
 | |
| 	prid_t		prid,
 | |
| 	int		okalloc,
 | |
| 	xfs_buf_t	**ialloc_context,
 | |
| 	xfs_inode_t	**ipp)
 | |
| {
 | |
| 	struct xfs_mount *mp = tp->t_mountp;
 | |
| 	xfs_ino_t	ino;
 | |
| 	xfs_inode_t	*ip;
 | |
| 	uint		flags;
 | |
| 	int		error;
 | |
| 	struct timespec	tv;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call the space management code to pick
 | |
| 	 * the on-disk inode to be allocated.
 | |
| 	 */
 | |
| 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 | |
| 			    ialloc_context, &ino);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	if (*ialloc_context || ino == NULLFSINO) {
 | |
| 		*ipp = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ASSERT(*ialloc_context == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the in-core inode with the lock held exclusively.
 | |
| 	 * This is because we're setting fields here we need
 | |
| 	 * to prevent others from looking at until we're done.
 | |
| 	 */
 | |
| 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 | |
| 			 XFS_ILOCK_EXCL, &ip);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	ASSERT(ip != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * We always convert v1 inodes to v2 now - we only support filesystems
 | |
| 	 * with >= v2 inode capability, so there is no reason for ever leaving
 | |
| 	 * an inode in v1 format.
 | |
| 	 */
 | |
| 	if (ip->i_d.di_version == 1)
 | |
| 		ip->i_d.di_version = 2;
 | |
| 
 | |
| 	ip->i_d.di_mode = mode;
 | |
| 	ip->i_d.di_onlink = 0;
 | |
| 	ip->i_d.di_nlink = nlink;
 | |
| 	ASSERT(ip->i_d.di_nlink == nlink);
 | |
| 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 | |
| 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 | |
| 	xfs_set_projid(ip, prid);
 | |
| 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 | |
| 
 | |
| 	if (pip && XFS_INHERIT_GID(pip)) {
 | |
| 		ip->i_d.di_gid = pip->i_d.di_gid;
 | |
| 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
 | |
| 			ip->i_d.di_mode |= S_ISGID;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the group ID of the new file does not match the effective group
 | |
| 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 | |
| 	 * (and only if the irix_sgid_inherit compatibility variable is set).
 | |
| 	 */
 | |
| 	if ((irix_sgid_inherit) &&
 | |
| 	    (ip->i_d.di_mode & S_ISGID) &&
 | |
| 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
 | |
| 		ip->i_d.di_mode &= ~S_ISGID;
 | |
| 	}
 | |
| 
 | |
| 	ip->i_d.di_size = 0;
 | |
| 	ip->i_d.di_nextents = 0;
 | |
| 	ASSERT(ip->i_d.di_nblocks == 0);
 | |
| 
 | |
| 	tv = current_fs_time(mp->m_super);
 | |
| 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
 | |
| 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
 | |
| 	ip->i_d.di_atime = ip->i_d.di_mtime;
 | |
| 	ip->i_d.di_ctime = ip->i_d.di_mtime;
 | |
| 
 | |
| 	/*
 | |
| 	 * di_gen will have been taken care of in xfs_iread.
 | |
| 	 */
 | |
| 	ip->i_d.di_extsize = 0;
 | |
| 	ip->i_d.di_dmevmask = 0;
 | |
| 	ip->i_d.di_dmstate = 0;
 | |
| 	ip->i_d.di_flags = 0;
 | |
| 
 | |
| 	if (ip->i_d.di_version == 3) {
 | |
| 		ASSERT(ip->i_d.di_ino == ino);
 | |
| 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
 | |
| 		ip->i_d.di_crc = 0;
 | |
| 		ip->i_d.di_changecount = 1;
 | |
| 		ip->i_d.di_lsn = 0;
 | |
| 		ip->i_d.di_flags2 = 0;
 | |
| 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
 | |
| 		ip->i_d.di_crtime = ip->i_d.di_mtime;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	flags = XFS_ILOG_CORE;
 | |
| 	switch (mode & S_IFMT) {
 | |
| 	case S_IFIFO:
 | |
| 	case S_IFCHR:
 | |
| 	case S_IFBLK:
 | |
| 	case S_IFSOCK:
 | |
| 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 | |
| 		ip->i_df.if_u2.if_rdev = rdev;
 | |
| 		ip->i_df.if_flags = 0;
 | |
| 		flags |= XFS_ILOG_DEV;
 | |
| 		break;
 | |
| 	case S_IFREG:
 | |
| 	case S_IFDIR:
 | |
| 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 | |
| 			uint	di_flags = 0;
 | |
| 
 | |
| 			if (S_ISDIR(mode)) {
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 | |
| 					di_flags |= XFS_DIFLAG_RTINHERIT;
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 | |
| 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 | |
| 					ip->i_d.di_extsize = pip->i_d.di_extsize;
 | |
| 				}
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 | |
| 					di_flags |= XFS_DIFLAG_PROJINHERIT;
 | |
| 			} else if (S_ISREG(mode)) {
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 | |
| 					di_flags |= XFS_DIFLAG_REALTIME;
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 | |
| 					di_flags |= XFS_DIFLAG_EXTSIZE;
 | |
| 					ip->i_d.di_extsize = pip->i_d.di_extsize;
 | |
| 				}
 | |
| 			}
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 | |
| 			    xfs_inherit_noatime)
 | |
| 				di_flags |= XFS_DIFLAG_NOATIME;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 | |
| 			    xfs_inherit_nodump)
 | |
| 				di_flags |= XFS_DIFLAG_NODUMP;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 | |
| 			    xfs_inherit_sync)
 | |
| 				di_flags |= XFS_DIFLAG_SYNC;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 | |
| 			    xfs_inherit_nosymlinks)
 | |
| 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 | |
| 			    xfs_inherit_nodefrag)
 | |
| 				di_flags |= XFS_DIFLAG_NODEFRAG;
 | |
| 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 | |
| 				di_flags |= XFS_DIFLAG_FILESTREAM;
 | |
| 			ip->i_d.di_flags |= di_flags;
 | |
| 		}
 | |
| 		/* FALLTHROUGH */
 | |
| 	case S_IFLNK:
 | |
| 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 | |
| 		ip->i_df.if_flags = XFS_IFEXTENTS;
 | |
| 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 | |
| 		ip->i_df.if_u1.if_extents = NULL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Attribute fork settings for new inode.
 | |
| 	 */
 | |
| 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 | |
| 	ip->i_d.di_anextents = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Log the new values stuffed into the inode.
 | |
| 	 */
 | |
| 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_log_inode(tp, ip, flags);
 | |
| 
 | |
| 	/* now that we have an i_mode we can setup the inode structure */
 | |
| 	xfs_setup_inode(ip);
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates a new inode from disk and return a pointer to the
 | |
|  * incore copy. This routine will internally commit the current
 | |
|  * transaction and allocate a new one if the Space Manager needed
 | |
|  * to do an allocation to replenish the inode free-list.
 | |
|  *
 | |
|  * This routine is designed to be called from xfs_create and
 | |
|  * xfs_create_dir.
 | |
|  *
 | |
|  */
 | |
| int
 | |
| xfs_dir_ialloc(
 | |
| 	xfs_trans_t	**tpp,		/* input: current transaction;
 | |
| 					   output: may be a new transaction. */
 | |
| 	xfs_inode_t	*dp,		/* directory within whose allocate
 | |
| 					   the inode. */
 | |
| 	umode_t		mode,
 | |
| 	xfs_nlink_t	nlink,
 | |
| 	xfs_dev_t	rdev,
 | |
| 	prid_t		prid,		/* project id */
 | |
| 	int		okalloc,	/* ok to allocate new space */
 | |
| 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
 | |
| 					   locked. */
 | |
| 	int		*committed)
 | |
| 
 | |
| {
 | |
| 	xfs_trans_t	*tp;
 | |
| 	xfs_inode_t	*ip;
 | |
| 	xfs_buf_t	*ialloc_context = NULL;
 | |
| 	int		code;
 | |
| 	void		*dqinfo;
 | |
| 	uint		tflags;
 | |
| 
 | |
| 	tp = *tpp;
 | |
| 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 | |
| 
 | |
| 	/*
 | |
| 	 * xfs_ialloc will return a pointer to an incore inode if
 | |
| 	 * the Space Manager has an available inode on the free
 | |
| 	 * list. Otherwise, it will do an allocation and replenish
 | |
| 	 * the freelist.  Since we can only do one allocation per
 | |
| 	 * transaction without deadlocks, we will need to commit the
 | |
| 	 * current transaction and start a new one.  We will then
 | |
| 	 * need to call xfs_ialloc again to get the inode.
 | |
| 	 *
 | |
| 	 * If xfs_ialloc did an allocation to replenish the freelist,
 | |
| 	 * it returns the bp containing the head of the freelist as
 | |
| 	 * ialloc_context. We will hold a lock on it across the
 | |
| 	 * transaction commit so that no other process can steal
 | |
| 	 * the inode(s) that we've just allocated.
 | |
| 	 */
 | |
| 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 | |
| 			  &ialloc_context, &ip);
 | |
| 
 | |
| 	/*
 | |
| 	 * Return an error if we were unable to allocate a new inode.
 | |
| 	 * This should only happen if we run out of space on disk or
 | |
| 	 * encounter a disk error.
 | |
| 	 */
 | |
| 	if (code) {
 | |
| 		*ipp = NULL;
 | |
| 		return code;
 | |
| 	}
 | |
| 	if (!ialloc_context && !ip) {
 | |
| 		*ipp = NULL;
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the AGI buffer is non-NULL, then we were unable to get an
 | |
| 	 * inode in one operation.  We need to commit the current
 | |
| 	 * transaction and call xfs_ialloc() again.  It is guaranteed
 | |
| 	 * to succeed the second time.
 | |
| 	 */
 | |
| 	if (ialloc_context) {
 | |
| 		/*
 | |
| 		 * Normally, xfs_trans_commit releases all the locks.
 | |
| 		 * We call bhold to hang on to the ialloc_context across
 | |
| 		 * the commit.  Holding this buffer prevents any other
 | |
| 		 * processes from doing any allocations in this
 | |
| 		 * allocation group.
 | |
| 		 */
 | |
| 		xfs_trans_bhold(tp, ialloc_context);
 | |
| 
 | |
| 		/*
 | |
| 		 * We want the quota changes to be associated with the next
 | |
| 		 * transaction, NOT this one. So, detach the dqinfo from this
 | |
| 		 * and attach it to the next transaction.
 | |
| 		 */
 | |
| 		dqinfo = NULL;
 | |
| 		tflags = 0;
 | |
| 		if (tp->t_dqinfo) {
 | |
| 			dqinfo = (void *)tp->t_dqinfo;
 | |
| 			tp->t_dqinfo = NULL;
 | |
| 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
 | |
| 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
 | |
| 		}
 | |
| 
 | |
| 		code = xfs_trans_roll(&tp, 0);
 | |
| 		if (committed != NULL)
 | |
| 			*committed = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Re-attach the quota info that we detached from prev trx.
 | |
| 		 */
 | |
| 		if (dqinfo) {
 | |
| 			tp->t_dqinfo = dqinfo;
 | |
| 			tp->t_flags |= tflags;
 | |
| 		}
 | |
| 
 | |
| 		if (code) {
 | |
| 			xfs_buf_relse(ialloc_context);
 | |
| 			*tpp = tp;
 | |
| 			*ipp = NULL;
 | |
| 			return code;
 | |
| 		}
 | |
| 		xfs_trans_bjoin(tp, ialloc_context);
 | |
| 
 | |
| 		/*
 | |
| 		 * Call ialloc again. Since we've locked out all
 | |
| 		 * other allocations in this allocation group,
 | |
| 		 * this call should always succeed.
 | |
| 		 */
 | |
| 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
 | |
| 				  okalloc, &ialloc_context, &ip);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we get an error at this point, return to the caller
 | |
| 		 * so that the current transaction can be aborted.
 | |
| 		 */
 | |
| 		if (code) {
 | |
| 			*tpp = tp;
 | |
| 			*ipp = NULL;
 | |
| 			return code;
 | |
| 		}
 | |
| 		ASSERT(!ialloc_context && ip);
 | |
| 
 | |
| 	} else {
 | |
| 		if (committed != NULL)
 | |
| 			*committed = 0;
 | |
| 	}
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	*tpp = tp;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement the link count on an inode & log the change.
 | |
|  * If this causes the link count to go to zero, initiate the
 | |
|  * logging activity required to truncate a file.
 | |
|  */
 | |
| int				/* error */
 | |
| xfs_droplink(
 | |
| 	xfs_trans_t *tp,
 | |
| 	xfs_inode_t *ip)
 | |
| {
 | |
| 	int	error;
 | |
| 
 | |
| 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 | |
| 
 | |
| 	ASSERT (ip->i_d.di_nlink > 0);
 | |
| 	ip->i_d.di_nlink--;
 | |
| 	drop_nlink(VFS_I(ip));
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	error = 0;
 | |
| 	if (ip->i_d.di_nlink == 0) {
 | |
| 		/*
 | |
| 		 * We're dropping the last link to this file.
 | |
| 		 * Move the on-disk inode to the AGI unlinked list.
 | |
| 		 * From xfs_inactive() we will pull the inode from
 | |
| 		 * the list and free it.
 | |
| 		 */
 | |
| 		error = xfs_iunlink(tp, ip);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment the link count on an inode & log the change.
 | |
|  */
 | |
| int
 | |
| xfs_bumplink(
 | |
| 	xfs_trans_t *tp,
 | |
| 	xfs_inode_t *ip)
 | |
| {
 | |
| 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 | |
| 
 | |
| 	ASSERT(ip->i_d.di_version > 1);
 | |
| 	ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
 | |
| 	ip->i_d.di_nlink++;
 | |
| 	inc_nlink(VFS_I(ip));
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_create(
 | |
| 	xfs_inode_t		*dp,
 | |
| 	struct xfs_name		*name,
 | |
| 	umode_t			mode,
 | |
| 	xfs_dev_t		rdev,
 | |
| 	xfs_inode_t		**ipp)
 | |
| {
 | |
| 	int			is_dir = S_ISDIR(mode);
 | |
| 	struct xfs_mount	*mp = dp->i_mount;
 | |
| 	struct xfs_inode	*ip = NULL;
 | |
| 	struct xfs_trans	*tp = NULL;
 | |
| 	int			error;
 | |
| 	xfs_bmap_free_t		free_list;
 | |
| 	xfs_fsblock_t		first_block;
 | |
| 	bool                    unlock_dp_on_error = false;
 | |
| 	int			committed;
 | |
| 	prid_t			prid;
 | |
| 	struct xfs_dquot	*udqp = NULL;
 | |
| 	struct xfs_dquot	*gdqp = NULL;
 | |
| 	struct xfs_dquot	*pdqp = NULL;
 | |
| 	struct xfs_trans_res	*tres;
 | |
| 	uint			resblks;
 | |
| 
 | |
| 	trace_xfs_create(dp, name);
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	prid = xfs_get_initial_prid(dp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that we have allocated dquot(s) on disk.
 | |
| 	 */
 | |
| 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
 | |
| 					xfs_kgid_to_gid(current_fsgid()), prid,
 | |
| 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 | |
| 					&udqp, &gdqp, &pdqp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (is_dir) {
 | |
| 		rdev = 0;
 | |
| 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 | |
| 		tres = &M_RES(mp)->tr_mkdir;
 | |
| 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
 | |
| 	} else {
 | |
| 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 | |
| 		tres = &M_RES(mp)->tr_create;
 | |
| 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initially assume that the file does not exist and
 | |
| 	 * reserve the resources for that case.  If that is not
 | |
| 	 * the case we'll drop the one we have and get a more
 | |
| 	 * appropriate transaction later.
 | |
| 	 */
 | |
| 	error = xfs_trans_reserve(tp, tres, resblks, 0);
 | |
| 	if (error == -ENOSPC) {
 | |
| 		/* flush outstanding delalloc blocks and retry */
 | |
| 		xfs_flush_inodes(mp);
 | |
| 		error = xfs_trans_reserve(tp, tres, resblks, 0);
 | |
| 	}
 | |
| 	if (error == -ENOSPC) {
 | |
| 		/* No space at all so try a "no-allocation" reservation */
 | |
| 		resblks = 0;
 | |
| 		error = xfs_trans_reserve(tp, tres, 0, 0);
 | |
| 	}
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 
 | |
| 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
 | |
| 	unlock_dp_on_error = true;
 | |
| 
 | |
| 	xfs_bmap_init(&free_list, &first_block);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve disk quota and the inode.
 | |
| 	 */
 | |
| 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
 | |
| 						pdqp, resblks, 1, 0);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	if (!resblks) {
 | |
| 		error = xfs_dir_canenter(tp, dp, name);
 | |
| 		if (error)
 | |
| 			goto out_trans_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A newly created regular or special file just has one directory
 | |
| 	 * entry pointing to them, but a directory also the "." entry
 | |
| 	 * pointing to itself.
 | |
| 	 */
 | |
| 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
 | |
| 			       prid, resblks > 0, &ip, &committed);
 | |
| 	if (error) {
 | |
| 		if (error == -ENOSPC)
 | |
| 			goto out_trans_cancel;
 | |
| 		goto out_trans_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we join the directory inode to the transaction.  We do not do it
 | |
| 	 * earlier because xfs_dir_ialloc might commit the previous transaction
 | |
| 	 * (and release all the locks).  An error from here on will result in
 | |
| 	 * the transaction cancel unlocking dp so don't do it explicitly in the
 | |
| 	 * error path.
 | |
| 	 */
 | |
| 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
 | |
| 	unlock_dp_on_error = false;
 | |
| 
 | |
| 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
 | |
| 					&first_block, &free_list, resblks ?
 | |
| 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
 | |
| 	if (error) {
 | |
| 		ASSERT(error != -ENOSPC);
 | |
| 		goto out_trans_cancel;
 | |
| 	}
 | |
| 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
 | |
| 
 | |
| 	if (is_dir) {
 | |
| 		error = xfs_dir_init(tp, ip, dp);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 
 | |
| 		error = xfs_bumplink(tp, dp);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a synchronous mount, make sure that the
 | |
| 	 * create transaction goes to disk before returning to
 | |
| 	 * the user.
 | |
| 	 */
 | |
| 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
 | |
| 		xfs_trans_set_sync(tp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Attach the dquot(s) to the inodes and modify them incore.
 | |
| 	 * These ids of the inode couldn't have changed since the new
 | |
| 	 * inode has been locked ever since it was created.
 | |
| 	 */
 | |
| 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
 | |
| 
 | |
| 	error = xfs_bmap_finish(&tp, &free_list, &committed);
 | |
| 	if (error)
 | |
| 		goto out_bmap_cancel;
 | |
| 
 | |
| 	error = xfs_trans_commit(tp);
 | |
| 	if (error)
 | |
| 		goto out_release_inode;
 | |
| 
 | |
| 	xfs_qm_dqrele(udqp);
 | |
| 	xfs_qm_dqrele(gdqp);
 | |
| 	xfs_qm_dqrele(pdqp);
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| 
 | |
|  out_bmap_cancel:
 | |
| 	xfs_bmap_cancel(&free_list);
 | |
|  out_trans_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
|  out_release_inode:
 | |
| 	/*
 | |
| 	 * Wait until after the current transaction is aborted to finish the
 | |
| 	 * setup of the inode and release the inode.  This prevents recursive
 | |
| 	 * transactions and deadlocks from xfs_inactive.
 | |
| 	 */
 | |
| 	if (ip) {
 | |
| 		xfs_finish_inode_setup(ip);
 | |
| 		IRELE(ip);
 | |
| 	}
 | |
| 
 | |
| 	xfs_qm_dqrele(udqp);
 | |
| 	xfs_qm_dqrele(gdqp);
 | |
| 	xfs_qm_dqrele(pdqp);
 | |
| 
 | |
| 	if (unlock_dp_on_error)
 | |
| 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_create_tmpfile(
 | |
| 	struct xfs_inode	*dp,
 | |
| 	struct dentry		*dentry,
 | |
| 	umode_t			mode,
 | |
| 	struct xfs_inode	**ipp)
 | |
| {
 | |
| 	struct xfs_mount	*mp = dp->i_mount;
 | |
| 	struct xfs_inode	*ip = NULL;
 | |
| 	struct xfs_trans	*tp = NULL;
 | |
| 	int			error;
 | |
| 	prid_t                  prid;
 | |
| 	struct xfs_dquot	*udqp = NULL;
 | |
| 	struct xfs_dquot	*gdqp = NULL;
 | |
| 	struct xfs_dquot	*pdqp = NULL;
 | |
| 	struct xfs_trans_res	*tres;
 | |
| 	uint			resblks;
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	prid = xfs_get_initial_prid(dp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that we have allocated dquot(s) on disk.
 | |
| 	 */
 | |
| 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
 | |
| 				xfs_kgid_to_gid(current_fsgid()), prid,
 | |
| 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 | |
| 				&udqp, &gdqp, &pdqp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	resblks = XFS_IALLOC_SPACE_RES(mp);
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
 | |
| 
 | |
| 	tres = &M_RES(mp)->tr_create_tmpfile;
 | |
| 	error = xfs_trans_reserve(tp, tres, resblks, 0);
 | |
| 	if (error == -ENOSPC) {
 | |
| 		/* No space at all so try a "no-allocation" reservation */
 | |
| 		resblks = 0;
 | |
| 		error = xfs_trans_reserve(tp, tres, 0, 0);
 | |
| 	}
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
 | |
| 						pdqp, resblks, 1, 0);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
 | |
| 				prid, resblks > 0, &ip, NULL);
 | |
| 	if (error) {
 | |
| 		if (error == -ENOSPC)
 | |
| 			goto out_trans_cancel;
 | |
| 		goto out_trans_cancel;
 | |
| 	}
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_WSYNC)
 | |
| 		xfs_trans_set_sync(tp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Attach the dquot(s) to the inodes and modify them incore.
 | |
| 	 * These ids of the inode couldn't have changed since the new
 | |
| 	 * inode has been locked ever since it was created.
 | |
| 	 */
 | |
| 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
 | |
| 
 | |
| 	ip->i_d.di_nlink--;
 | |
| 	error = xfs_iunlink(tp, ip);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	error = xfs_trans_commit(tp);
 | |
| 	if (error)
 | |
| 		goto out_release_inode;
 | |
| 
 | |
| 	xfs_qm_dqrele(udqp);
 | |
| 	xfs_qm_dqrele(gdqp);
 | |
| 	xfs_qm_dqrele(pdqp);
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| 
 | |
|  out_trans_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
|  out_release_inode:
 | |
| 	/*
 | |
| 	 * Wait until after the current transaction is aborted to finish the
 | |
| 	 * setup of the inode and release the inode.  This prevents recursive
 | |
| 	 * transactions and deadlocks from xfs_inactive.
 | |
| 	 */
 | |
| 	if (ip) {
 | |
| 		xfs_finish_inode_setup(ip);
 | |
| 		IRELE(ip);
 | |
| 	}
 | |
| 
 | |
| 	xfs_qm_dqrele(udqp);
 | |
| 	xfs_qm_dqrele(gdqp);
 | |
| 	xfs_qm_dqrele(pdqp);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_link(
 | |
| 	xfs_inode_t		*tdp,
 | |
| 	xfs_inode_t		*sip,
 | |
| 	struct xfs_name		*target_name)
 | |
| {
 | |
| 	xfs_mount_t		*mp = tdp->i_mount;
 | |
| 	xfs_trans_t		*tp;
 | |
| 	int			error;
 | |
| 	xfs_bmap_free_t         free_list;
 | |
| 	xfs_fsblock_t           first_block;
 | |
| 	int			committed;
 | |
| 	int			resblks;
 | |
| 
 | |
| 	trace_xfs_link(tdp, target_name);
 | |
| 
 | |
| 	ASSERT(!S_ISDIR(sip->i_d.di_mode));
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	error = xfs_qm_dqattach(sip, 0);
 | |
| 	if (error)
 | |
| 		goto std_return;
 | |
| 
 | |
| 	error = xfs_qm_dqattach(tdp, 0);
 | |
| 	if (error)
 | |
| 		goto std_return;
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
 | |
| 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
 | |
| 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
 | |
| 	if (error == -ENOSPC) {
 | |
| 		resblks = 0;
 | |
| 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
 | |
| 	}
 | |
| 	if (error)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using project inheritance, we only allow hard link
 | |
| 	 * creation in our tree when the project IDs are the same; else
 | |
| 	 * the tree quota mechanism could be circumvented.
 | |
| 	 */
 | |
| 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
 | |
| 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
 | |
| 		error = -EXDEV;
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	if (!resblks) {
 | |
| 		error = xfs_dir_canenter(tp, tdp, target_name);
 | |
| 		if (error)
 | |
| 			goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	xfs_bmap_init(&free_list, &first_block);
 | |
| 
 | |
| 	if (sip->i_d.di_nlink == 0) {
 | |
| 		error = xfs_iunlink_remove(tp, sip);
 | |
| 		if (error)
 | |
| 			goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
 | |
| 					&first_block, &free_list, resblks);
 | |
| 	if (error)
 | |
| 		goto error_return;
 | |
| 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
 | |
| 
 | |
| 	error = xfs_bumplink(tp, sip);
 | |
| 	if (error)
 | |
| 		goto error_return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a synchronous mount, make sure that the
 | |
| 	 * link transaction goes to disk before returning to
 | |
| 	 * the user.
 | |
| 	 */
 | |
| 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
 | |
| 		xfs_trans_set_sync(tp);
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_bmap_finish (&tp, &free_list, &committed);
 | |
| 	if (error) {
 | |
| 		xfs_bmap_cancel(&free_list);
 | |
| 		goto error_return;
 | |
| 	}
 | |
| 
 | |
| 	return xfs_trans_commit(tp);
 | |
| 
 | |
|  error_return:
 | |
| 	xfs_trans_cancel(tp);
 | |
|  std_return:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free up the underlying blocks past new_size.  The new size must be smaller
 | |
|  * than the current size.  This routine can be used both for the attribute and
 | |
|  * data fork, and does not modify the inode size, which is left to the caller.
 | |
|  *
 | |
|  * The transaction passed to this routine must have made a permanent log
 | |
|  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
 | |
|  * given transaction and start new ones, so make sure everything involved in
 | |
|  * the transaction is tidy before calling here.  Some transaction will be
 | |
|  * returned to the caller to be committed.  The incoming transaction must
 | |
|  * already include the inode, and both inode locks must be held exclusively.
 | |
|  * The inode must also be "held" within the transaction.  On return the inode
 | |
|  * will be "held" within the returned transaction.  This routine does NOT
 | |
|  * require any disk space to be reserved for it within the transaction.
 | |
|  *
 | |
|  * If we get an error, we must return with the inode locked and linked into the
 | |
|  * current transaction. This keeps things simple for the higher level code,
 | |
|  * because it always knows that the inode is locked and held in the transaction
 | |
|  * that returns to it whether errors occur or not.  We don't mark the inode
 | |
|  * dirty on error so that transactions can be easily aborted if possible.
 | |
|  */
 | |
| int
 | |
| xfs_itruncate_extents(
 | |
| 	struct xfs_trans	**tpp,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	int			whichfork,
 | |
| 	xfs_fsize_t		new_size)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_trans	*tp = *tpp;
 | |
| 	xfs_bmap_free_t		free_list;
 | |
| 	xfs_fsblock_t		first_block;
 | |
| 	xfs_fileoff_t		first_unmap_block;
 | |
| 	xfs_fileoff_t		last_block;
 | |
| 	xfs_filblks_t		unmap_len;
 | |
| 	int			committed;
 | |
| 	int			error = 0;
 | |
| 	int			done = 0;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 | |
| 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
 | |
| 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 | |
| 	ASSERT(new_size <= XFS_ISIZE(ip));
 | |
| 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 | |
| 	ASSERT(ip->i_itemp != NULL);
 | |
| 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
 | |
| 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
 | |
| 
 | |
| 	trace_xfs_itruncate_extents_start(ip, new_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since it is possible for space to become allocated beyond
 | |
| 	 * the end of the file (in a crash where the space is allocated
 | |
| 	 * but the inode size is not yet updated), simply remove any
 | |
| 	 * blocks which show up between the new EOF and the maximum
 | |
| 	 * possible file size.  If the first block to be removed is
 | |
| 	 * beyond the maximum file size (ie it is the same as last_block),
 | |
| 	 * then there is nothing to do.
 | |
| 	 */
 | |
| 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
 | |
| 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
 | |
| 	if (first_unmap_block == last_block)
 | |
| 		return 0;
 | |
| 
 | |
| 	ASSERT(first_unmap_block < last_block);
 | |
| 	unmap_len = last_block - first_unmap_block + 1;
 | |
| 	while (!done) {
 | |
| 		xfs_bmap_init(&free_list, &first_block);
 | |
| 		error = xfs_bunmapi(tp, ip,
 | |
| 				    first_unmap_block, unmap_len,
 | |
| 				    xfs_bmapi_aflag(whichfork),
 | |
| 				    XFS_ITRUNC_MAX_EXTENTS,
 | |
| 				    &first_block, &free_list,
 | |
| 				    &done);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 
 | |
| 		/*
 | |
| 		 * Duplicate the transaction that has the permanent
 | |
| 		 * reservation and commit the old transaction.
 | |
| 		 */
 | |
| 		error = xfs_bmap_finish(&tp, &free_list, &committed);
 | |
| 		if (committed)
 | |
| 			xfs_trans_ijoin(tp, ip, 0);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 
 | |
| 		error = xfs_trans_roll(&tp, ip);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Always re-log the inode so that our permanent transaction can keep
 | |
| 	 * on rolling it forward in the log.
 | |
| 	 */
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	trace_xfs_itruncate_extents_end(ip, new_size);
 | |
| 
 | |
| out:
 | |
| 	*tpp = tp;
 | |
| 	return error;
 | |
| out_bmap_cancel:
 | |
| 	/*
 | |
| 	 * If the bunmapi call encounters an error, return to the caller where
 | |
| 	 * the transaction can be properly aborted.  We just need to make sure
 | |
| 	 * we're not holding any resources that we were not when we came in.
 | |
| 	 */
 | |
| 	xfs_bmap_cancel(&free_list);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_release(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	xfs_mount_t	*mp = ip->i_mount;
 | |
| 	int		error;
 | |
| 
 | |
| 	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If this is a read-only mount, don't do this (would generate I/O) */
 | |
| 	if (mp->m_flags & XFS_MOUNT_RDONLY)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!XFS_FORCED_SHUTDOWN(mp)) {
 | |
| 		int truncated;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we previously truncated this file and removed old data
 | |
| 		 * in the process, we want to initiate "early" writeout on
 | |
| 		 * the last close.  This is an attempt to combat the notorious
 | |
| 		 * NULL files problem which is particularly noticeable from a
 | |
| 		 * truncate down, buffered (re-)write (delalloc), followed by
 | |
| 		 * a crash.  What we are effectively doing here is
 | |
| 		 * significantly reducing the time window where we'd otherwise
 | |
| 		 * be exposed to that problem.
 | |
| 		 */
 | |
| 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
 | |
| 		if (truncated) {
 | |
| 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
 | |
| 			if (ip->i_delayed_blks > 0) {
 | |
| 				error = filemap_flush(VFS_I(ip)->i_mapping);
 | |
| 				if (error)
 | |
| 					return error;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ip->i_d.di_nlink == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (xfs_can_free_eofblocks(ip, false)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If we can't get the iolock just skip truncating the blocks
 | |
| 		 * past EOF because we could deadlock with the mmap_sem
 | |
| 		 * otherwise.  We'll get another chance to drop them once the
 | |
| 		 * last reference to the inode is dropped, so we'll never leak
 | |
| 		 * blocks permanently.
 | |
| 		 *
 | |
| 		 * Further, check if the inode is being opened, written and
 | |
| 		 * closed frequently and we have delayed allocation blocks
 | |
| 		 * outstanding (e.g. streaming writes from the NFS server),
 | |
| 		 * truncating the blocks past EOF will cause fragmentation to
 | |
| 		 * occur.
 | |
| 		 *
 | |
| 		 * In this case don't do the truncation, either, but we have to
 | |
| 		 * be careful how we detect this case. Blocks beyond EOF show
 | |
| 		 * up as i_delayed_blks even when the inode is clean, so we
 | |
| 		 * need to truncate them away first before checking for a dirty
 | |
| 		 * release. Hence on the first dirty close we will still remove
 | |
| 		 * the speculative allocation, but after that we will leave it
 | |
| 		 * in place.
 | |
| 		 */
 | |
| 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
 | |
| 			return 0;
 | |
| 
 | |
| 		error = xfs_free_eofblocks(mp, ip, true);
 | |
| 		if (error && error != -EAGAIN)
 | |
| 			return error;
 | |
| 
 | |
| 		/* delalloc blocks after truncation means it really is dirty */
 | |
| 		if (ip->i_delayed_blks)
 | |
| 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_inactive_truncate
 | |
|  *
 | |
|  * Called to perform a truncate when an inode becomes unlinked.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_inactive_truncate(
 | |
| 	struct xfs_inode *ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
 | |
| 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
 | |
| 	if (error) {
 | |
| 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, ip, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Log the inode size first to prevent stale data exposure in the event
 | |
| 	 * of a system crash before the truncate completes. See the related
 | |
| 	 * comment in xfs_setattr_size() for details.
 | |
| 	 */
 | |
| 	ip->i_d.di_size = 0;
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
 | |
| 	if (error)
 | |
| 		goto error_trans_cancel;
 | |
| 
 | |
| 	ASSERT(ip->i_d.di_nextents == 0);
 | |
| 
 | |
| 	error = xfs_trans_commit(tp);
 | |
| 	if (error)
 | |
| 		goto error_unlock;
 | |
| 
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	return 0;
 | |
| 
 | |
| error_trans_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
| error_unlock:
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_inactive_ifree()
 | |
|  *
 | |
|  * Perform the inode free when an inode is unlinked.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_inactive_ifree(
 | |
| 	struct xfs_inode *ip)
 | |
| {
 | |
| 	xfs_bmap_free_t		free_list;
 | |
| 	xfs_fsblock_t		first_block;
 | |
| 	int			committed;
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
 | |
| 
 | |
| 	/*
 | |
| 	 * The ifree transaction might need to allocate blocks for record
 | |
| 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
 | |
| 	 * allow ifree to dip into the reserved block pool if necessary.
 | |
| 	 *
 | |
| 	 * Freeing large sets of inodes generally means freeing inode chunks,
 | |
| 	 * directory and file data blocks, so this should be relatively safe.
 | |
| 	 * Only under severe circumstances should it be possible to free enough
 | |
| 	 * inodes to exhaust the reserve block pool via finobt expansion while
 | |
| 	 * at the same time not creating free space in the filesystem.
 | |
| 	 *
 | |
| 	 * Send a warning if the reservation does happen to fail, as the inode
 | |
| 	 * now remains allocated and sits on the unlinked list until the fs is
 | |
| 	 * repaired.
 | |
| 	 */
 | |
| 	tp->t_flags |= XFS_TRANS_RESERVE;
 | |
| 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
 | |
| 				  XFS_IFREE_SPACE_RES(mp), 0);
 | |
| 	if (error) {
 | |
| 		if (error == -ENOSPC) {
 | |
| 			xfs_warn_ratelimited(mp,
 | |
| 			"Failed to remove inode(s) from unlinked list. "
 | |
| 			"Please free space, unmount and run xfs_repair.");
 | |
| 		} else {
 | |
| 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
 | |
| 		}
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, ip, 0);
 | |
| 
 | |
| 	xfs_bmap_init(&free_list, &first_block);
 | |
| 	error = xfs_ifree(tp, ip, &free_list);
 | |
| 	if (error) {
 | |
| 		/*
 | |
| 		 * If we fail to free the inode, shut down.  The cancel
 | |
| 		 * might do that, we need to make sure.  Otherwise the
 | |
| 		 * inode might be lost for a long time or forever.
 | |
| 		 */
 | |
| 		if (!XFS_FORCED_SHUTDOWN(mp)) {
 | |
| 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
 | |
| 				__func__, error);
 | |
| 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
 | |
| 		}
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Credit the quota account(s). The inode is gone.
 | |
| 	 */
 | |
| 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Just ignore errors at this point.  There is nothing we can
 | |
| 	 * do except to try to keep going. Make sure it's not a silent
 | |
| 	 * error.
 | |
| 	 */
 | |
| 	error = xfs_bmap_finish(&tp,  &free_list, &committed);
 | |
| 	if (error)
 | |
| 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
 | |
| 			__func__, error);
 | |
| 	error = xfs_trans_commit(tp);
 | |
| 	if (error)
 | |
| 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
 | |
| 			__func__, error);
 | |
| 
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_inactive
 | |
|  *
 | |
|  * This is called when the vnode reference count for the vnode
 | |
|  * goes to zero.  If the file has been unlinked, then it must
 | |
|  * now be truncated.  Also, we clear all of the read-ahead state
 | |
|  * kept for the inode here since the file is now closed.
 | |
|  */
 | |
| void
 | |
| xfs_inactive(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp;
 | |
| 	int			error;
 | |
| 	int			truncate = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the inode is already free, then there can be nothing
 | |
| 	 * to clean up here.
 | |
| 	 */
 | |
| 	if (ip->i_d.di_mode == 0) {
 | |
| 		ASSERT(ip->i_df.if_real_bytes == 0);
 | |
| 		ASSERT(ip->i_df.if_broot_bytes == 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mp = ip->i_mount;
 | |
| 
 | |
| 	/* If this is a read-only mount, don't do this (would generate I/O) */
 | |
| 	if (mp->m_flags & XFS_MOUNT_RDONLY)
 | |
| 		return;
 | |
| 
 | |
| 	if (ip->i_d.di_nlink != 0) {
 | |
| 		/*
 | |
| 		 * force is true because we are evicting an inode from the
 | |
| 		 * cache. Post-eof blocks must be freed, lest we end up with
 | |
| 		 * broken free space accounting.
 | |
| 		 */
 | |
| 		if (xfs_can_free_eofblocks(ip, true))
 | |
| 			xfs_free_eofblocks(mp, ip, false);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (S_ISREG(ip->i_d.di_mode) &&
 | |
| 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
 | |
| 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
 | |
| 		truncate = 1;
 | |
| 
 | |
| 	error = xfs_qm_dqattach(ip, 0);
 | |
| 	if (error)
 | |
| 		return;
 | |
| 
 | |
| 	if (S_ISLNK(ip->i_d.di_mode))
 | |
| 		error = xfs_inactive_symlink(ip);
 | |
| 	else if (truncate)
 | |
| 		error = xfs_inactive_truncate(ip);
 | |
| 	if (error)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are attributes associated with the file then blow them away
 | |
| 	 * now.  The code calls a routine that recursively deconstructs the
 | |
| 	 * attribute fork. If also blows away the in-core attribute fork.
 | |
| 	 */
 | |
| 	if (XFS_IFORK_Q(ip)) {
 | |
| 		error = xfs_attr_inactive(ip);
 | |
| 		if (error)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(!ip->i_afp);
 | |
| 	ASSERT(ip->i_d.di_anextents == 0);
 | |
| 	ASSERT(ip->i_d.di_forkoff == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free the inode.
 | |
| 	 */
 | |
| 	error = xfs_inactive_ifree(ip);
 | |
| 	if (error)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Release the dquots held by inode, if any.
 | |
| 	 */
 | |
| 	xfs_qm_dqdetach(ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the inode's link count goes to 0.
 | |
|  * We place the on-disk inode on a list in the AGI.  It
 | |
|  * will be pulled from this list when the inode is freed.
 | |
|  */
 | |
| int
 | |
| xfs_iunlink(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_agi_t	*agi;
 | |
| 	xfs_dinode_t	*dip;
 | |
| 	xfs_buf_t	*agibp;
 | |
| 	xfs_buf_t	*ibp;
 | |
| 	xfs_agino_t	agino;
 | |
| 	short		bucket_index;
 | |
| 	int		offset;
 | |
| 	int		error;
 | |
| 
 | |
| 	ASSERT(ip->i_d.di_nlink == 0);
 | |
| 	ASSERT(ip->i_d.di_mode != 0);
 | |
| 
 | |
| 	mp = tp->t_mountp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the agi buffer first.  It ensures lock ordering
 | |
| 	 * on the list.
 | |
| 	 */
 | |
| 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	agi = XFS_BUF_TO_AGI(agibp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the index into the agi hash table for the
 | |
| 	 * list this inode will go on.
 | |
| 	 */
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
 | |
| 	ASSERT(agino != 0);
 | |
| 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
 | |
| 	ASSERT(agi->agi_unlinked[bucket_index]);
 | |
| 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
 | |
| 
 | |
| 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
 | |
| 		/*
 | |
| 		 * There is already another inode in the bucket we need
 | |
| 		 * to add ourselves to.  Add us at the front of the list.
 | |
| 		 * Here we put the head pointer into our next pointer,
 | |
| 		 * and then we fall through to point the head at us.
 | |
| 		 */
 | |
| 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
 | |
| 				       0, 0);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
 | |
| 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
 | |
| 		offset = ip->i_imap.im_boffset +
 | |
| 			offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 
 | |
| 		/* need to recalc the inode CRC if appropriate */
 | |
| 		xfs_dinode_calc_crc(mp, dip);
 | |
| 
 | |
| 		xfs_trans_inode_buf(tp, ibp);
 | |
| 		xfs_trans_log_buf(tp, ibp, offset,
 | |
| 				  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 		xfs_inobp_check(mp, ibp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Point the bucket head pointer at the inode being inserted.
 | |
| 	 */
 | |
| 	ASSERT(agino != 0);
 | |
| 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
 | |
| 	offset = offsetof(xfs_agi_t, agi_unlinked) +
 | |
| 		(sizeof(xfs_agino_t) * bucket_index);
 | |
| 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
 | |
| 	xfs_trans_log_buf(tp, agibp, offset,
 | |
| 			  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pull the on-disk inode from the AGI unlinked list.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_iunlink_remove(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	xfs_ino_t	next_ino;
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_agi_t	*agi;
 | |
| 	xfs_dinode_t	*dip;
 | |
| 	xfs_buf_t	*agibp;
 | |
| 	xfs_buf_t	*ibp;
 | |
| 	xfs_agnumber_t	agno;
 | |
| 	xfs_agino_t	agino;
 | |
| 	xfs_agino_t	next_agino;
 | |
| 	xfs_buf_t	*last_ibp;
 | |
| 	xfs_dinode_t	*last_dip = NULL;
 | |
| 	short		bucket_index;
 | |
| 	int		offset, last_offset = 0;
 | |
| 	int		error;
 | |
| 
 | |
| 	mp = tp->t_mountp;
 | |
| 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the agi buffer first.  It ensures lock ordering
 | |
| 	 * on the list.
 | |
| 	 */
 | |
| 	error = xfs_read_agi(mp, tp, agno, &agibp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	agi = XFS_BUF_TO_AGI(agibp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the index into the agi hash table for the
 | |
| 	 * list this inode will go on.
 | |
| 	 */
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
 | |
| 	ASSERT(agino != 0);
 | |
| 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
 | |
| 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
 | |
| 	ASSERT(agi->agi_unlinked[bucket_index]);
 | |
| 
 | |
| 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
 | |
| 		/*
 | |
| 		 * We're at the head of the list.  Get the inode's on-disk
 | |
| 		 * buffer to see if there is anyone after us on the list.
 | |
| 		 * Only modify our next pointer if it is not already NULLAGINO.
 | |
| 		 * This saves us the overhead of dealing with the buffer when
 | |
| 		 * there is no need to change it.
 | |
| 		 */
 | |
| 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
 | |
| 				       0, 0);
 | |
| 		if (error) {
 | |
| 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
 | |
| 				__func__, error);
 | |
| 			return error;
 | |
| 		}
 | |
| 		next_agino = be32_to_cpu(dip->di_next_unlinked);
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		if (next_agino != NULLAGINO) {
 | |
| 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
 | |
| 			offset = ip->i_imap.im_boffset +
 | |
| 				offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 
 | |
| 			/* need to recalc the inode CRC if appropriate */
 | |
| 			xfs_dinode_calc_crc(mp, dip);
 | |
| 
 | |
| 			xfs_trans_inode_buf(tp, ibp);
 | |
| 			xfs_trans_log_buf(tp, ibp, offset,
 | |
| 					  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 			xfs_inobp_check(mp, ibp);
 | |
| 		} else {
 | |
| 			xfs_trans_brelse(tp, ibp);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Point the bucket head pointer at the next inode.
 | |
| 		 */
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		ASSERT(next_agino != agino);
 | |
| 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
 | |
| 		offset = offsetof(xfs_agi_t, agi_unlinked) +
 | |
| 			(sizeof(xfs_agino_t) * bucket_index);
 | |
| 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
 | |
| 		xfs_trans_log_buf(tp, agibp, offset,
 | |
| 				  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We need to search the list for the inode being freed.
 | |
| 		 */
 | |
| 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
 | |
| 		last_ibp = NULL;
 | |
| 		while (next_agino != agino) {
 | |
| 			struct xfs_imap	imap;
 | |
| 
 | |
| 			if (last_ibp)
 | |
| 				xfs_trans_brelse(tp, last_ibp);
 | |
| 
 | |
| 			imap.im_blkno = 0;
 | |
| 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
 | |
| 
 | |
| 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
 | |
| 			if (error) {
 | |
| 				xfs_warn(mp,
 | |
| 	"%s: xfs_imap returned error %d.",
 | |
| 					 __func__, error);
 | |
| 				return error;
 | |
| 			}
 | |
| 
 | |
| 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
 | |
| 					       &last_ibp, 0, 0);
 | |
| 			if (error) {
 | |
| 				xfs_warn(mp,
 | |
| 	"%s: xfs_imap_to_bp returned error %d.",
 | |
| 					__func__, error);
 | |
| 				return error;
 | |
| 			}
 | |
| 
 | |
| 			last_offset = imap.im_boffset;
 | |
| 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
 | |
| 			ASSERT(next_agino != NULLAGINO);
 | |
| 			ASSERT(next_agino != 0);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now last_ibp points to the buffer previous to us on the
 | |
| 		 * unlinked list.  Pull us from the list.
 | |
| 		 */
 | |
| 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
 | |
| 				       0, 0);
 | |
| 		if (error) {
 | |
| 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
 | |
| 				__func__, error);
 | |
| 			return error;
 | |
| 		}
 | |
| 		next_agino = be32_to_cpu(dip->di_next_unlinked);
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		ASSERT(next_agino != agino);
 | |
| 		if (next_agino != NULLAGINO) {
 | |
| 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
 | |
| 			offset = ip->i_imap.im_boffset +
 | |
| 				offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 
 | |
| 			/* need to recalc the inode CRC if appropriate */
 | |
| 			xfs_dinode_calc_crc(mp, dip);
 | |
| 
 | |
| 			xfs_trans_inode_buf(tp, ibp);
 | |
| 			xfs_trans_log_buf(tp, ibp, offset,
 | |
| 					  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 			xfs_inobp_check(mp, ibp);
 | |
| 		} else {
 | |
| 			xfs_trans_brelse(tp, ibp);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Point the previous inode on the list to the next inode.
 | |
| 		 */
 | |
| 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 
 | |
| 		/* need to recalc the inode CRC if appropriate */
 | |
| 		xfs_dinode_calc_crc(mp, last_dip);
 | |
| 
 | |
| 		xfs_trans_inode_buf(tp, last_ibp);
 | |
| 		xfs_trans_log_buf(tp, last_ibp, offset,
 | |
| 				  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 		xfs_inobp_check(mp, last_ibp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A big issue when freeing the inode cluster is that we _cannot_ skip any
 | |
|  * inodes that are in memory - they all must be marked stale and attached to
 | |
|  * the cluster buffer.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_ifree_cluster(
 | |
| 	xfs_inode_t		*free_ip,
 | |
| 	xfs_trans_t		*tp,
 | |
| 	struct xfs_icluster	*xic)
 | |
| {
 | |
| 	xfs_mount_t		*mp = free_ip->i_mount;
 | |
| 	int			blks_per_cluster;
 | |
| 	int			inodes_per_cluster;
 | |
| 	int			nbufs;
 | |
| 	int			i, j;
 | |
| 	int			ioffset;
 | |
| 	xfs_daddr_t		blkno;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	xfs_inode_t		*ip;
 | |
| 	xfs_inode_log_item_t	*iip;
 | |
| 	xfs_log_item_t		*lip;
 | |
| 	struct xfs_perag	*pag;
 | |
| 	xfs_ino_t		inum;
 | |
| 
 | |
| 	inum = xic->first_ino;
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
 | |
| 	blks_per_cluster = xfs_icluster_size_fsb(mp);
 | |
| 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
 | |
| 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
 | |
| 
 | |
| 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
 | |
| 		/*
 | |
| 		 * The allocation bitmap tells us which inodes of the chunk were
 | |
| 		 * physically allocated. Skip the cluster if an inode falls into
 | |
| 		 * a sparse region.
 | |
| 		 */
 | |
| 		ioffset = inum - xic->first_ino;
 | |
| 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
 | |
| 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
 | |
| 					 XFS_INO_TO_AGBNO(mp, inum));
 | |
| 
 | |
| 		/*
 | |
| 		 * We obtain and lock the backing buffer first in the process
 | |
| 		 * here, as we have to ensure that any dirty inode that we
 | |
| 		 * can't get the flush lock on is attached to the buffer.
 | |
| 		 * If we scan the in-memory inodes first, then buffer IO can
 | |
| 		 * complete before we get a lock on it, and hence we may fail
 | |
| 		 * to mark all the active inodes on the buffer stale.
 | |
| 		 */
 | |
| 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
 | |
| 					mp->m_bsize * blks_per_cluster,
 | |
| 					XBF_UNMAPPED);
 | |
| 
 | |
| 		if (!bp)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		/*
 | |
| 		 * This buffer may not have been correctly initialised as we
 | |
| 		 * didn't read it from disk. That's not important because we are
 | |
| 		 * only using to mark the buffer as stale in the log, and to
 | |
| 		 * attach stale cached inodes on it. That means it will never be
 | |
| 		 * dispatched for IO. If it is, we want to know about it, and we
 | |
| 		 * want it to fail. We can acheive this by adding a write
 | |
| 		 * verifier to the buffer.
 | |
| 		 */
 | |
| 		 bp->b_ops = &xfs_inode_buf_ops;
 | |
| 
 | |
| 		/*
 | |
| 		 * Walk the inodes already attached to the buffer and mark them
 | |
| 		 * stale. These will all have the flush locks held, so an
 | |
| 		 * in-memory inode walk can't lock them. By marking them all
 | |
| 		 * stale first, we will not attempt to lock them in the loop
 | |
| 		 * below as the XFS_ISTALE flag will be set.
 | |
| 		 */
 | |
| 		lip = bp->b_fspriv;
 | |
| 		while (lip) {
 | |
| 			if (lip->li_type == XFS_LI_INODE) {
 | |
| 				iip = (xfs_inode_log_item_t *)lip;
 | |
| 				ASSERT(iip->ili_logged == 1);
 | |
| 				lip->li_cb = xfs_istale_done;
 | |
| 				xfs_trans_ail_copy_lsn(mp->m_ail,
 | |
| 							&iip->ili_flush_lsn,
 | |
| 							&iip->ili_item.li_lsn);
 | |
| 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
 | |
| 			}
 | |
| 			lip = lip->li_bio_list;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * For each inode in memory attempt to add it to the inode
 | |
| 		 * buffer and set it up for being staled on buffer IO
 | |
| 		 * completion.  This is safe as we've locked out tail pushing
 | |
| 		 * and flushing by locking the buffer.
 | |
| 		 *
 | |
| 		 * We have already marked every inode that was part of a
 | |
| 		 * transaction stale above, which means there is no point in
 | |
| 		 * even trying to lock them.
 | |
| 		 */
 | |
| 		for (i = 0; i < inodes_per_cluster; i++) {
 | |
| retry:
 | |
| 			rcu_read_lock();
 | |
| 			ip = radix_tree_lookup(&pag->pag_ici_root,
 | |
| 					XFS_INO_TO_AGINO(mp, (inum + i)));
 | |
| 
 | |
| 			/* Inode not in memory, nothing to do */
 | |
| 			if (!ip) {
 | |
| 				rcu_read_unlock();
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * because this is an RCU protected lookup, we could
 | |
| 			 * find a recently freed or even reallocated inode
 | |
| 			 * during the lookup. We need to check under the
 | |
| 			 * i_flags_lock for a valid inode here. Skip it if it
 | |
| 			 * is not valid, the wrong inode or stale.
 | |
| 			 */
 | |
| 			spin_lock(&ip->i_flags_lock);
 | |
| 			if (ip->i_ino != inum + i ||
 | |
| 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
 | |
| 				spin_unlock(&ip->i_flags_lock);
 | |
| 				rcu_read_unlock();
 | |
| 				continue;
 | |
| 			}
 | |
| 			spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 			/*
 | |
| 			 * Don't try to lock/unlock the current inode, but we
 | |
| 			 * _cannot_ skip the other inodes that we did not find
 | |
| 			 * in the list attached to the buffer and are not
 | |
| 			 * already marked stale. If we can't lock it, back off
 | |
| 			 * and retry.
 | |
| 			 */
 | |
| 			if (ip != free_ip &&
 | |
| 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
 | |
| 				rcu_read_unlock();
 | |
| 				delay(1);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			rcu_read_unlock();
 | |
| 
 | |
| 			xfs_iflock(ip);
 | |
| 			xfs_iflags_set(ip, XFS_ISTALE);
 | |
| 
 | |
| 			/*
 | |
| 			 * we don't need to attach clean inodes or those only
 | |
| 			 * with unlogged changes (which we throw away, anyway).
 | |
| 			 */
 | |
| 			iip = ip->i_itemp;
 | |
| 			if (!iip || xfs_inode_clean(ip)) {
 | |
| 				ASSERT(ip != free_ip);
 | |
| 				xfs_ifunlock(ip);
 | |
| 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			iip->ili_last_fields = iip->ili_fields;
 | |
| 			iip->ili_fields = 0;
 | |
| 			iip->ili_logged = 1;
 | |
| 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
 | |
| 						&iip->ili_item.li_lsn);
 | |
| 
 | |
| 			xfs_buf_attach_iodone(bp, xfs_istale_done,
 | |
| 						  &iip->ili_item);
 | |
| 
 | |
| 			if (ip != free_ip)
 | |
| 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 		}
 | |
| 
 | |
| 		xfs_trans_stale_inode_buf(tp, bp);
 | |
| 		xfs_trans_binval(tp, bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_perag_put(pag);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to return an inode to the inode free list.
 | |
|  * The inode should already be truncated to 0 length and have
 | |
|  * no pages associated with it.  This routine also assumes that
 | |
|  * the inode is already a part of the transaction.
 | |
|  *
 | |
|  * The on-disk copy of the inode will have been added to the list
 | |
|  * of unlinked inodes in the AGI. We need to remove the inode from
 | |
|  * that list atomically with respect to freeing it here.
 | |
|  */
 | |
| int
 | |
| xfs_ifree(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_bmap_free_t	*flist)
 | |
| {
 | |
| 	int			error;
 | |
| 	struct xfs_icluster	xic = { 0 };
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 | |
| 	ASSERT(ip->i_d.di_nlink == 0);
 | |
| 	ASSERT(ip->i_d.di_nextents == 0);
 | |
| 	ASSERT(ip->i_d.di_anextents == 0);
 | |
| 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
 | |
| 	ASSERT(ip->i_d.di_nblocks == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pull the on-disk inode from the AGI unlinked list.
 | |
| 	 */
 | |
| 	error = xfs_iunlink_remove(tp, ip);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_difree(tp, ip->i_ino, flist, &xic);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
 | |
| 	ip->i_d.di_flags = 0;
 | |
| 	ip->i_d.di_dmevmask = 0;
 | |
| 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
 | |
| 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 | |
| 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 | |
| 	/*
 | |
| 	 * Bump the generation count so no one will be confused
 | |
| 	 * by reincarnations of this inode.
 | |
| 	 */
 | |
| 	ip->i_d.di_gen++;
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	if (xic.deleted)
 | |
| 		error = xfs_ifree_cluster(ip, tp, &xic);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to unpin an inode.  The caller must have the inode locked
 | |
|  * in at least shared mode so that the buffer cannot be subsequently pinned
 | |
|  * once someone is waiting for it to be unpinned.
 | |
|  */
 | |
| static void
 | |
| xfs_iunpin(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
 | |
| 
 | |
| 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
 | |
| 
 | |
| 	/* Give the log a push to start the unpinning I/O */
 | |
| 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void
 | |
| __xfs_iunpin_wait(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
 | |
| 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
 | |
| 
 | |
| 	xfs_iunpin(ip);
 | |
| 
 | |
| 	do {
 | |
| 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 | |
| 		if (xfs_ipincount(ip))
 | |
| 			io_schedule();
 | |
| 	} while (xfs_ipincount(ip));
 | |
| 	finish_wait(wq, &wait.wait);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_iunpin_wait(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	if (xfs_ipincount(ip))
 | |
| 		__xfs_iunpin_wait(ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Removing an inode from the namespace involves removing the directory entry
 | |
|  * and dropping the link count on the inode. Removing the directory entry can
 | |
|  * result in locking an AGF (directory blocks were freed) and removing a link
 | |
|  * count can result in placing the inode on an unlinked list which results in
 | |
|  * locking an AGI.
 | |
|  *
 | |
|  * The big problem here is that we have an ordering constraint on AGF and AGI
 | |
|  * locking - inode allocation locks the AGI, then can allocate a new extent for
 | |
|  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
 | |
|  * removes the inode from the unlinked list, requiring that we lock the AGI
 | |
|  * first, and then freeing the inode can result in an inode chunk being freed
 | |
|  * and hence freeing disk space requiring that we lock an AGF.
 | |
|  *
 | |
|  * Hence the ordering that is imposed by other parts of the code is AGI before
 | |
|  * AGF. This means we cannot remove the directory entry before we drop the inode
 | |
|  * reference count and put it on the unlinked list as this results in a lock
 | |
|  * order of AGF then AGI, and this can deadlock against inode allocation and
 | |
|  * freeing. Therefore we must drop the link counts before we remove the
 | |
|  * directory entry.
 | |
|  *
 | |
|  * This is still safe from a transactional point of view - it is not until we
 | |
|  * get to xfs_bmap_finish() that we have the possibility of multiple
 | |
|  * transactions in this operation. Hence as long as we remove the directory
 | |
|  * entry and drop the link count in the first transaction of the remove
 | |
|  * operation, there are no transactional constraints on the ordering here.
 | |
|  */
 | |
| int
 | |
| xfs_remove(
 | |
| 	xfs_inode_t             *dp,
 | |
| 	struct xfs_name		*name,
 | |
| 	xfs_inode_t		*ip)
 | |
| {
 | |
| 	xfs_mount_t		*mp = dp->i_mount;
 | |
| 	xfs_trans_t             *tp = NULL;
 | |
| 	int			is_dir = S_ISDIR(ip->i_d.di_mode);
 | |
| 	int                     error = 0;
 | |
| 	xfs_bmap_free_t         free_list;
 | |
| 	xfs_fsblock_t           first_block;
 | |
| 	int			committed;
 | |
| 	uint			resblks;
 | |
| 
 | |
| 	trace_xfs_remove(dp, name);
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	error = xfs_qm_dqattach(dp, 0);
 | |
| 	if (error)
 | |
| 		goto std_return;
 | |
| 
 | |
| 	error = xfs_qm_dqattach(ip, 0);
 | |
| 	if (error)
 | |
| 		goto std_return;
 | |
| 
 | |
| 	if (is_dir)
 | |
| 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
 | |
| 	else
 | |
| 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
 | |
| 
 | |
| 	/*
 | |
| 	 * We try to get the real space reservation first,
 | |
| 	 * allowing for directory btree deletion(s) implying
 | |
| 	 * possible bmap insert(s).  If we can't get the space
 | |
| 	 * reservation then we use 0 instead, and avoid the bmap
 | |
| 	 * btree insert(s) in the directory code by, if the bmap
 | |
| 	 * insert tries to happen, instead trimming the LAST
 | |
| 	 * block from the directory.
 | |
| 	 */
 | |
| 	resblks = XFS_REMOVE_SPACE_RES(mp);
 | |
| 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
 | |
| 	if (error == -ENOSPC) {
 | |
| 		resblks = 0;
 | |
| 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
 | |
| 	}
 | |
| 	if (error) {
 | |
| 		ASSERT(error != -ENOSPC);
 | |
| 		goto out_trans_cancel;
 | |
| 	}
 | |
| 
 | |
| 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're removing a directory perform some additional validation.
 | |
| 	 */
 | |
| 	if (is_dir) {
 | |
| 		ASSERT(ip->i_d.di_nlink >= 2);
 | |
| 		if (ip->i_d.di_nlink != 2) {
 | |
| 			error = -ENOTEMPTY;
 | |
| 			goto out_trans_cancel;
 | |
| 		}
 | |
| 		if (!xfs_dir_isempty(ip)) {
 | |
| 			error = -ENOTEMPTY;
 | |
| 			goto out_trans_cancel;
 | |
| 		}
 | |
| 
 | |
| 		/* Drop the link from ip's "..".  */
 | |
| 		error = xfs_droplink(tp, dp);
 | |
| 		if (error)
 | |
| 			goto out_trans_cancel;
 | |
| 
 | |
| 		/* Drop the "." link from ip to self.  */
 | |
| 		error = xfs_droplink(tp, ip);
 | |
| 		if (error)
 | |
| 			goto out_trans_cancel;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * When removing a non-directory we need to log the parent
 | |
| 		 * inode here.  For a directory this is done implicitly
 | |
| 		 * by the xfs_droplink call for the ".." entry.
 | |
| 		 */
 | |
| 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
 | |
| 	}
 | |
| 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 
 | |
| 	/* Drop the link from dp to ip. */
 | |
| 	error = xfs_droplink(tp, ip);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	xfs_bmap_init(&free_list, &first_block);
 | |
| 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
 | |
| 					&first_block, &free_list, resblks);
 | |
| 	if (error) {
 | |
| 		ASSERT(error != -ENOENT);
 | |
| 		goto out_bmap_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a synchronous mount, make sure that the
 | |
| 	 * remove transaction goes to disk before returning to
 | |
| 	 * the user.
 | |
| 	 */
 | |
| 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
 | |
| 		xfs_trans_set_sync(tp);
 | |
| 
 | |
| 	error = xfs_bmap_finish(&tp, &free_list, &committed);
 | |
| 	if (error)
 | |
| 		goto out_bmap_cancel;
 | |
| 
 | |
| 	error = xfs_trans_commit(tp);
 | |
| 	if (error)
 | |
| 		goto std_return;
 | |
| 
 | |
| 	if (is_dir && xfs_inode_is_filestream(ip))
 | |
| 		xfs_filestream_deassociate(ip);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_bmap_cancel:
 | |
| 	xfs_bmap_cancel(&free_list);
 | |
|  out_trans_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
|  std_return:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enter all inodes for a rename transaction into a sorted array.
 | |
|  */
 | |
| #define __XFS_SORT_INODES	5
 | |
| STATIC void
 | |
| xfs_sort_for_rename(
 | |
| 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
 | |
| 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
 | |
| 	struct xfs_inode	*ip1,	/* in: inode of old entry */
 | |
| 	struct xfs_inode	*ip2,	/* in: inode of new entry */
 | |
| 	struct xfs_inode	*wip,	/* in: whiteout inode */
 | |
| 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
 | |
| 	int			*num_inodes)  /* in/out: inodes in array */
 | |
| {
 | |
| 	int			i, j;
 | |
| 
 | |
| 	ASSERT(*num_inodes == __XFS_SORT_INODES);
 | |
| 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
 | |
| 
 | |
| 	/*
 | |
| 	 * i_tab contains a list of pointers to inodes.  We initialize
 | |
| 	 * the table here & we'll sort it.  We will then use it to
 | |
| 	 * order the acquisition of the inode locks.
 | |
| 	 *
 | |
| 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
 | |
| 	 */
 | |
| 	i = 0;
 | |
| 	i_tab[i++] = dp1;
 | |
| 	i_tab[i++] = dp2;
 | |
| 	i_tab[i++] = ip1;
 | |
| 	if (ip2)
 | |
| 		i_tab[i++] = ip2;
 | |
| 	if (wip)
 | |
| 		i_tab[i++] = wip;
 | |
| 	*num_inodes = i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sort the elements via bubble sort.  (Remember, there are at
 | |
| 	 * most 5 elements to sort, so this is adequate.)
 | |
| 	 */
 | |
| 	for (i = 0; i < *num_inodes; i++) {
 | |
| 		for (j = 1; j < *num_inodes; j++) {
 | |
| 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
 | |
| 				struct xfs_inode *temp = i_tab[j];
 | |
| 				i_tab[j] = i_tab[j-1];
 | |
| 				i_tab[j-1] = temp;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_finish_rename(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_bmap_free	*free_list)
 | |
| {
 | |
| 	int			committed = 0;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a synchronous mount, make sure that the rename transaction
 | |
| 	 * goes to disk before returning to the user.
 | |
| 	 */
 | |
| 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
 | |
| 		xfs_trans_set_sync(tp);
 | |
| 
 | |
| 	error = xfs_bmap_finish(&tp, free_list, &committed);
 | |
| 	if (error) {
 | |
| 		xfs_bmap_cancel(free_list);
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	return xfs_trans_commit(tp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_cross_rename()
 | |
|  *
 | |
|  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
 | |
|  */
 | |
| STATIC int
 | |
| xfs_cross_rename(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_inode	*dp1,
 | |
| 	struct xfs_name		*name1,
 | |
| 	struct xfs_inode	*ip1,
 | |
| 	struct xfs_inode	*dp2,
 | |
| 	struct xfs_name		*name2,
 | |
| 	struct xfs_inode	*ip2,
 | |
| 	struct xfs_bmap_free	*free_list,
 | |
| 	xfs_fsblock_t		*first_block,
 | |
| 	int			spaceres)
 | |
| {
 | |
| 	int		error = 0;
 | |
| 	int		ip1_flags = 0;
 | |
| 	int		ip2_flags = 0;
 | |
| 	int		dp2_flags = 0;
 | |
| 
 | |
| 	/* Swap inode number for dirent in first parent */
 | |
| 	error = xfs_dir_replace(tp, dp1, name1,
 | |
| 				ip2->i_ino,
 | |
| 				first_block, free_list, spaceres);
 | |
| 	if (error)
 | |
| 		goto out_trans_abort;
 | |
| 
 | |
| 	/* Swap inode number for dirent in second parent */
 | |
| 	error = xfs_dir_replace(tp, dp2, name2,
 | |
| 				ip1->i_ino,
 | |
| 				first_block, free_list, spaceres);
 | |
| 	if (error)
 | |
| 		goto out_trans_abort;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're renaming one or more directories across different parents,
 | |
| 	 * update the respective ".." entries (and link counts) to match the new
 | |
| 	 * parents.
 | |
| 	 */
 | |
| 	if (dp1 != dp2) {
 | |
| 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
 | |
| 
 | |
| 		if (S_ISDIR(ip2->i_d.di_mode)) {
 | |
| 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
 | |
| 						dp1->i_ino, first_block,
 | |
| 						free_list, spaceres);
 | |
| 			if (error)
 | |
| 				goto out_trans_abort;
 | |
| 
 | |
| 			/* transfer ip2 ".." reference to dp1 */
 | |
| 			if (!S_ISDIR(ip1->i_d.di_mode)) {
 | |
| 				error = xfs_droplink(tp, dp2);
 | |
| 				if (error)
 | |
| 					goto out_trans_abort;
 | |
| 				error = xfs_bumplink(tp, dp1);
 | |
| 				if (error)
 | |
| 					goto out_trans_abort;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Although ip1 isn't changed here, userspace needs
 | |
| 			 * to be warned about the change, so that applications
 | |
| 			 * relying on it (like backup ones), will properly
 | |
| 			 * notify the change
 | |
| 			 */
 | |
| 			ip1_flags |= XFS_ICHGTIME_CHG;
 | |
| 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
 | |
| 		}
 | |
| 
 | |
| 		if (S_ISDIR(ip1->i_d.di_mode)) {
 | |
| 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
 | |
| 						dp2->i_ino, first_block,
 | |
| 						free_list, spaceres);
 | |
| 			if (error)
 | |
| 				goto out_trans_abort;
 | |
| 
 | |
| 			/* transfer ip1 ".." reference to dp2 */
 | |
| 			if (!S_ISDIR(ip2->i_d.di_mode)) {
 | |
| 				error = xfs_droplink(tp, dp1);
 | |
| 				if (error)
 | |
| 					goto out_trans_abort;
 | |
| 				error = xfs_bumplink(tp, dp2);
 | |
| 				if (error)
 | |
| 					goto out_trans_abort;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Although ip2 isn't changed here, userspace needs
 | |
| 			 * to be warned about the change, so that applications
 | |
| 			 * relying on it (like backup ones), will properly
 | |
| 			 * notify the change
 | |
| 			 */
 | |
| 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
 | |
| 			ip2_flags |= XFS_ICHGTIME_CHG;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ip1_flags) {
 | |
| 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
 | |
| 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
 | |
| 	}
 | |
| 	if (ip2_flags) {
 | |
| 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
 | |
| 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
 | |
| 	}
 | |
| 	if (dp2_flags) {
 | |
| 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
 | |
| 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
 | |
| 	}
 | |
| 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
 | |
| 	return xfs_finish_rename(tp, free_list);
 | |
| 
 | |
| out_trans_abort:
 | |
| 	xfs_bmap_cancel(free_list);
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_rename_alloc_whiteout()
 | |
|  *
 | |
|  * Return a referenced, unlinked, unlocked inode that that can be used as a
 | |
|  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
 | |
|  * crash between allocating the inode and linking it into the rename transaction
 | |
|  * recovery will free the inode and we won't leak it.
 | |
|  */
 | |
| static int
 | |
| xfs_rename_alloc_whiteout(
 | |
| 	struct xfs_inode	*dp,
 | |
| 	struct xfs_inode	**wip)
 | |
| {
 | |
| 	struct xfs_inode	*tmpfile;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare the tmpfile inode as if it were created through the VFS.
 | |
| 	 * Otherwise, the link increment paths will complain about nlink 0->1.
 | |
| 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
 | |
| 	 * and flag it as linkable.
 | |
| 	 */
 | |
| 	drop_nlink(VFS_I(tmpfile));
 | |
| 	xfs_finish_inode_setup(tmpfile);
 | |
| 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
 | |
| 
 | |
| 	*wip = tmpfile;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_rename
 | |
|  */
 | |
| int
 | |
| xfs_rename(
 | |
| 	struct xfs_inode	*src_dp,
 | |
| 	struct xfs_name		*src_name,
 | |
| 	struct xfs_inode	*src_ip,
 | |
| 	struct xfs_inode	*target_dp,
 | |
| 	struct xfs_name		*target_name,
 | |
| 	struct xfs_inode	*target_ip,
 | |
| 	unsigned int		flags)
 | |
| {
 | |
| 	struct xfs_mount	*mp = src_dp->i_mount;
 | |
| 	struct xfs_trans	*tp;
 | |
| 	struct xfs_bmap_free	free_list;
 | |
| 	xfs_fsblock_t		first_block;
 | |
| 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
 | |
| 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
 | |
| 	int			num_inodes = __XFS_SORT_INODES;
 | |
| 	bool			new_parent = (src_dp != target_dp);
 | |
| 	bool			src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
 | |
| 	int			spaceres;
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
 | |
| 
 | |
| 	if ((flags & RENAME_EXCHANGE) && !target_ip)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are doing a whiteout operation, allocate the whiteout inode
 | |
| 	 * we will be placing at the target and ensure the type is set
 | |
| 	 * appropriately.
 | |
| 	 */
 | |
| 	if (flags & RENAME_WHITEOUT) {
 | |
| 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
 | |
| 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		/* setup target dirent info as whiteout */
 | |
| 		src_name->type = XFS_DIR3_FT_CHRDEV;
 | |
| 	}
 | |
| 
 | |
| 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
 | |
| 				inodes, &num_inodes);
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
 | |
| 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
 | |
| 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
 | |
| 	if (error == -ENOSPC) {
 | |
| 		spaceres = 0;
 | |
| 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
 | |
| 	}
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	/*
 | |
| 	 * Attach the dquots to the inodes
 | |
| 	 */
 | |
| 	error = xfs_qm_vop_rename_dqattach(inodes);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock all the participating inodes. Depending upon whether
 | |
| 	 * the target_name exists in the target directory, and
 | |
| 	 * whether the target directory is the same as the source
 | |
| 	 * directory, we can lock from 2 to 4 inodes.
 | |
| 	 */
 | |
| 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Join all the inodes to the transaction. From this point on,
 | |
| 	 * we can rely on either trans_commit or trans_cancel to unlock
 | |
| 	 * them.
 | |
| 	 */
 | |
| 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
 | |
| 	if (new_parent)
 | |
| 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
 | |
| 	if (target_ip)
 | |
| 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
 | |
| 	if (wip)
 | |
| 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using project inheritance, we only allow renames
 | |
| 	 * into our tree when the project IDs are the same; else the
 | |
| 	 * tree quota mechanism would be circumvented.
 | |
| 	 */
 | |
| 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
 | |
| 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
 | |
| 		error = -EXDEV;
 | |
| 		goto out_trans_cancel;
 | |
| 	}
 | |
| 
 | |
| 	xfs_bmap_init(&free_list, &first_block);
 | |
| 
 | |
| 	/* RENAME_EXCHANGE is unique from here on. */
 | |
| 	if (flags & RENAME_EXCHANGE)
 | |
| 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
 | |
| 					target_dp, target_name, target_ip,
 | |
| 					&free_list, &first_block, spaceres);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the target.
 | |
| 	 */
 | |
| 	if (target_ip == NULL) {
 | |
| 		/*
 | |
| 		 * If there's no space reservation, check the entry will
 | |
| 		 * fit before actually inserting it.
 | |
| 		 */
 | |
| 		if (!spaceres) {
 | |
| 			error = xfs_dir_canenter(tp, target_dp, target_name);
 | |
| 			if (error)
 | |
| 				goto out_trans_cancel;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If target does not exist and the rename crosses
 | |
| 		 * directories, adjust the target directory link count
 | |
| 		 * to account for the ".." reference from the new entry.
 | |
| 		 */
 | |
| 		error = xfs_dir_createname(tp, target_dp, target_name,
 | |
| 						src_ip->i_ino, &first_block,
 | |
| 						&free_list, spaceres);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 
 | |
| 		xfs_trans_ichgtime(tp, target_dp,
 | |
| 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 
 | |
| 		if (new_parent && src_is_directory) {
 | |
| 			error = xfs_bumplink(tp, target_dp);
 | |
| 			if (error)
 | |
| 				goto out_bmap_cancel;
 | |
| 		}
 | |
| 	} else { /* target_ip != NULL */
 | |
| 		/*
 | |
| 		 * If target exists and it's a directory, check that both
 | |
| 		 * target and source are directories and that target can be
 | |
| 		 * destroyed, or that neither is a directory.
 | |
| 		 */
 | |
| 		if (S_ISDIR(target_ip->i_d.di_mode)) {
 | |
| 			/*
 | |
| 			 * Make sure target dir is empty.
 | |
| 			 */
 | |
| 			if (!(xfs_dir_isempty(target_ip)) ||
 | |
| 			    (target_ip->i_d.di_nlink > 2)) {
 | |
| 				error = -EEXIST;
 | |
| 				goto out_trans_cancel;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Link the source inode under the target name.
 | |
| 		 * If the source inode is a directory and we are moving
 | |
| 		 * it across directories, its ".." entry will be
 | |
| 		 * inconsistent until we replace that down below.
 | |
| 		 *
 | |
| 		 * In case there is already an entry with the same
 | |
| 		 * name at the destination directory, remove it first.
 | |
| 		 */
 | |
| 		error = xfs_dir_replace(tp, target_dp, target_name,
 | |
| 					src_ip->i_ino,
 | |
| 					&first_block, &free_list, spaceres);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 
 | |
| 		xfs_trans_ichgtime(tp, target_dp,
 | |
| 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 
 | |
| 		/*
 | |
| 		 * Decrement the link count on the target since the target
 | |
| 		 * dir no longer points to it.
 | |
| 		 */
 | |
| 		error = xfs_droplink(tp, target_ip);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 
 | |
| 		if (src_is_directory) {
 | |
| 			/*
 | |
| 			 * Drop the link from the old "." entry.
 | |
| 			 */
 | |
| 			error = xfs_droplink(tp, target_ip);
 | |
| 			if (error)
 | |
| 				goto out_bmap_cancel;
 | |
| 		}
 | |
| 	} /* target_ip != NULL */
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove the source.
 | |
| 	 */
 | |
| 	if (new_parent && src_is_directory) {
 | |
| 		/*
 | |
| 		 * Rewrite the ".." entry to point to the new
 | |
| 		 * directory.
 | |
| 		 */
 | |
| 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
 | |
| 					target_dp->i_ino,
 | |
| 					&first_block, &free_list, spaceres);
 | |
| 		ASSERT(error != -EEXIST);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We always want to hit the ctime on the source inode.
 | |
| 	 *
 | |
| 	 * This isn't strictly required by the standards since the source
 | |
| 	 * inode isn't really being changed, but old unix file systems did
 | |
| 	 * it and some incremental backup programs won't work without it.
 | |
| 	 */
 | |
| 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
 | |
| 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the link count on src_dp.  This is necessary when
 | |
| 	 * renaming a directory, either within one parent when
 | |
| 	 * the target existed, or across two parent directories.
 | |
| 	 */
 | |
| 	if (src_is_directory && (new_parent || target_ip != NULL)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Decrement link count on src_directory since the
 | |
| 		 * entry that's moved no longer points to it.
 | |
| 		 */
 | |
| 		error = xfs_droplink(tp, src_dp);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For whiteouts, we only need to update the source dirent with the
 | |
| 	 * inode number of the whiteout inode rather than removing it
 | |
| 	 * altogether.
 | |
| 	 */
 | |
| 	if (wip) {
 | |
| 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
 | |
| 					&first_block, &free_list, spaceres);
 | |
| 	} else
 | |
| 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
 | |
| 					   &first_block, &free_list, spaceres);
 | |
| 	if (error)
 | |
| 		goto out_bmap_cancel;
 | |
| 
 | |
| 	/*
 | |
| 	 * For whiteouts, we need to bump the link count on the whiteout inode.
 | |
| 	 * This means that failures all the way up to this point leave the inode
 | |
| 	 * on the unlinked list and so cleanup is a simple matter of dropping
 | |
| 	 * the remaining reference to it. If we fail here after bumping the link
 | |
| 	 * count, we're shutting down the filesystem so we'll never see the
 | |
| 	 * intermediate state on disk.
 | |
| 	 */
 | |
| 	if (wip) {
 | |
| 		ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
 | |
| 		error = xfs_bumplink(tp, wip);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 		error = xfs_iunlink_remove(tp, wip);
 | |
| 		if (error)
 | |
| 			goto out_bmap_cancel;
 | |
| 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we have a real link, clear the "I'm a tmpfile" state
 | |
| 		 * flag from the inode so it doesn't accidentally get misused in
 | |
| 		 * future.
 | |
| 		 */
 | |
| 		VFS_I(wip)->i_state &= ~I_LINKABLE;
 | |
| 	}
 | |
| 
 | |
| 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 | |
| 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
 | |
| 	if (new_parent)
 | |
| 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
 | |
| 
 | |
| 	error = xfs_finish_rename(tp, &free_list);
 | |
| 	if (wip)
 | |
| 		IRELE(wip);
 | |
| 	return error;
 | |
| 
 | |
| out_bmap_cancel:
 | |
| 	xfs_bmap_cancel(&free_list);
 | |
| out_trans_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	if (wip)
 | |
| 		IRELE(wip);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_iflush_cluster(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	xfs_mount_t		*mp = ip->i_mount;
 | |
| 	struct xfs_perag	*pag;
 | |
| 	unsigned long		first_index, mask;
 | |
| 	unsigned long		inodes_per_cluster;
 | |
| 	int			ilist_size;
 | |
| 	xfs_inode_t		**ilist;
 | |
| 	xfs_inode_t		*iq;
 | |
| 	int			nr_found;
 | |
| 	int			clcount = 0;
 | |
| 	int			bufwasdelwri;
 | |
| 	int			i;
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 | |
| 
 | |
| 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 | |
| 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
 | |
| 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
 | |
| 	if (!ilist)
 | |
| 		goto out_put;
 | |
| 
 | |
| 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
 | |
| 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
 | |
| 	rcu_read_lock();
 | |
| 	/* really need a gang lookup range call here */
 | |
| 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
 | |
| 					first_index, inodes_per_cluster);
 | |
| 	if (nr_found == 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	for (i = 0; i < nr_found; i++) {
 | |
| 		iq = ilist[i];
 | |
| 		if (iq == ip)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * because this is an RCU protected lookup, we could find a
 | |
| 		 * recently freed or even reallocated inode during the lookup.
 | |
| 		 * We need to check under the i_flags_lock for a valid inode
 | |
| 		 * here. Skip it if it is not valid or the wrong inode.
 | |
| 		 */
 | |
| 		spin_lock(&ip->i_flags_lock);
 | |
| 		if (!ip->i_ino ||
 | |
| 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
 | |
| 			spin_unlock(&ip->i_flags_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do an un-protected check to see if the inode is dirty and
 | |
| 		 * is a candidate for flushing.  These checks will be repeated
 | |
| 		 * later after the appropriate locks are acquired.
 | |
| 		 */
 | |
| 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to get locks.  If any are unavailable or it is pinned,
 | |
| 		 * then this inode cannot be flushed and is skipped.
 | |
| 		 */
 | |
| 
 | |
| 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
 | |
| 			continue;
 | |
| 		if (!xfs_iflock_nowait(iq)) {
 | |
| 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (xfs_ipincount(iq)) {
 | |
| 			xfs_ifunlock(iq);
 | |
| 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * arriving here means that this inode can be flushed.  First
 | |
| 		 * re-check that it's dirty before flushing.
 | |
| 		 */
 | |
| 		if (!xfs_inode_clean(iq)) {
 | |
| 			int	error;
 | |
| 			error = xfs_iflush_int(iq, bp);
 | |
| 			if (error) {
 | |
| 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 				goto cluster_corrupt_out;
 | |
| 			}
 | |
| 			clcount++;
 | |
| 		} else {
 | |
| 			xfs_ifunlock(iq);
 | |
| 		}
 | |
| 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 	}
 | |
| 
 | |
| 	if (clcount) {
 | |
| 		XFS_STATS_INC(xs_icluster_flushcnt);
 | |
| 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
 | |
| 	}
 | |
| 
 | |
| out_free:
 | |
| 	rcu_read_unlock();
 | |
| 	kmem_free(ilist);
 | |
| out_put:
 | |
| 	xfs_perag_put(pag);
 | |
| 	return 0;
 | |
| 
 | |
| 
 | |
| cluster_corrupt_out:
 | |
| 	/*
 | |
| 	 * Corruption detected in the clustering loop.  Invalidate the
 | |
| 	 * inode buffer and shut down the filesystem.
 | |
| 	 */
 | |
| 	rcu_read_unlock();
 | |
| 	/*
 | |
| 	 * Clean up the buffer.  If it was delwri, just release it --
 | |
| 	 * brelse can handle it with no problems.  If not, shut down the
 | |
| 	 * filesystem before releasing the buffer.
 | |
| 	 */
 | |
| 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
 | |
| 	if (bufwasdelwri)
 | |
| 		xfs_buf_relse(bp);
 | |
| 
 | |
| 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| 
 | |
| 	if (!bufwasdelwri) {
 | |
| 		/*
 | |
| 		 * Just like incore_relse: if we have b_iodone functions,
 | |
| 		 * mark the buffer as an error and call them.  Otherwise
 | |
| 		 * mark it as stale and brelse.
 | |
| 		 */
 | |
| 		if (bp->b_iodone) {
 | |
| 			XFS_BUF_UNDONE(bp);
 | |
| 			xfs_buf_stale(bp);
 | |
| 			xfs_buf_ioerror(bp, -EIO);
 | |
| 			xfs_buf_ioend(bp);
 | |
| 		} else {
 | |
| 			xfs_buf_stale(bp);
 | |
| 			xfs_buf_relse(bp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlocks the flush lock
 | |
| 	 */
 | |
| 	xfs_iflush_abort(iq, false);
 | |
| 	kmem_free(ilist);
 | |
| 	xfs_perag_put(pag);
 | |
| 	return -EFSCORRUPTED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush dirty inode metadata into the backing buffer.
 | |
|  *
 | |
|  * The caller must have the inode lock and the inode flush lock held.  The
 | |
|  * inode lock will still be held upon return to the caller, and the inode
 | |
|  * flush lock will be released after the inode has reached the disk.
 | |
|  *
 | |
|  * The caller must write out the buffer returned in *bpp and release it.
 | |
|  */
 | |
| int
 | |
| xfs_iflush(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_buf		**bpp)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_buf		*bp;
 | |
| 	struct xfs_dinode	*dip;
 | |
| 	int			error;
 | |
| 
 | |
| 	XFS_STATS_INC(xs_iflush_count);
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
 | |
| 	ASSERT(xfs_isiflocked(ip));
 | |
| 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 | |
| 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 | |
| 
 | |
| 	*bpp = NULL;
 | |
| 
 | |
| 	xfs_iunpin_wait(ip);
 | |
| 
 | |
| 	/*
 | |
| 	 * For stale inodes we cannot rely on the backing buffer remaining
 | |
| 	 * stale in cache for the remaining life of the stale inode and so
 | |
| 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
 | |
| 	 * inodes below. We have to check this after ensuring the inode is
 | |
| 	 * unpinned so that it is safe to reclaim the stale inode after the
 | |
| 	 * flush call.
 | |
| 	 */
 | |
| 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 | |
| 		xfs_ifunlock(ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This may have been unpinned because the filesystem is shutting
 | |
| 	 * down forcibly. If that's the case we must not write this inode
 | |
| 	 * to disk, because the log record didn't make it to disk.
 | |
| 	 *
 | |
| 	 * We also have to remove the log item from the AIL in this case,
 | |
| 	 * as we wait for an empty AIL as part of the unmount process.
 | |
| 	 */
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp)) {
 | |
| 		error = -EIO;
 | |
| 		goto abort_out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the buffer containing the on-disk inode.
 | |
| 	 */
 | |
| 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
 | |
| 			       0);
 | |
| 	if (error || !bp) {
 | |
| 		xfs_ifunlock(ip);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First flush out the inode that xfs_iflush was called with.
 | |
| 	 */
 | |
| 	error = xfs_iflush_int(ip, bp);
 | |
| 	if (error)
 | |
| 		goto corrupt_out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the buffer is pinned then push on the log now so we won't
 | |
| 	 * get stuck waiting in the write for too long.
 | |
| 	 */
 | |
| 	if (xfs_buf_ispinned(bp))
 | |
| 		xfs_log_force(mp, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * inode clustering:
 | |
| 	 * see if other inodes can be gathered into this write
 | |
| 	 */
 | |
| 	error = xfs_iflush_cluster(ip, bp);
 | |
| 	if (error)
 | |
| 		goto cluster_corrupt_out;
 | |
| 
 | |
| 	*bpp = bp;
 | |
| 	return 0;
 | |
| 
 | |
| corrupt_out:
 | |
| 	xfs_buf_relse(bp);
 | |
| 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| cluster_corrupt_out:
 | |
| 	error = -EFSCORRUPTED;
 | |
| abort_out:
 | |
| 	/*
 | |
| 	 * Unlocks the flush lock
 | |
| 	 */
 | |
| 	xfs_iflush_abort(ip, false);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_iflush_int(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	struct xfs_inode_log_item *iip = ip->i_itemp;
 | |
| 	struct xfs_dinode	*dip;
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
 | |
| 	ASSERT(xfs_isiflocked(ip));
 | |
| 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 | |
| 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 | |
| 	ASSERT(iip != NULL && iip->ili_fields != 0);
 | |
| 	ASSERT(ip->i_d.di_version > 1);
 | |
| 
 | |
| 	/* set *dip = inode's place in the buffer */
 | |
| 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 | |
| 
 | |
| 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
 | |
| 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
 | |
| 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
 | |
| 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
 | |
| 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
 | |
| 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
 | |
| 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
 | |
| 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
 | |
| 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 	if (S_ISREG(ip->i_d.di_mode)) {
 | |
| 		if (XFS_TEST_ERROR(
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
 | |
| 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
 | |
| 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
 | |
| 				"%s: Bad regular inode %Lu, ptr 0x%p",
 | |
| 				__func__, ip->i_ino, ip);
 | |
| 			goto corrupt_out;
 | |
| 		}
 | |
| 	} else if (S_ISDIR(ip->i_d.di_mode)) {
 | |
| 		if (XFS_TEST_ERROR(
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
 | |
| 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
 | |
| 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
 | |
| 				"%s: Bad directory inode %Lu, ptr 0x%p",
 | |
| 				__func__, ip->i_ino, ip);
 | |
| 			goto corrupt_out;
 | |
| 		}
 | |
| 	}
 | |
| 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
 | |
| 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
 | |
| 				XFS_RANDOM_IFLUSH_5)) {
 | |
| 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
 | |
| 			"%s: detected corrupt incore inode %Lu, "
 | |
| 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
 | |
| 			__func__, ip->i_ino,
 | |
| 			ip->i_d.di_nextents + ip->i_d.di_anextents,
 | |
| 			ip->i_d.di_nblocks, ip);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
 | |
| 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
 | |
| 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
 | |
| 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
 | |
| 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Inode item log recovery for v2 inodes are dependent on the
 | |
| 	 * di_flushiter count for correct sequencing. We bump the flush
 | |
| 	 * iteration count so we can detect flushes which postdate a log record
 | |
| 	 * during recovery. This is redundant as we now log every change and
 | |
| 	 * hence this can't happen but we need to still do it to ensure
 | |
| 	 * backwards compatibility with old kernels that predate logging all
 | |
| 	 * inode changes.
 | |
| 	 */
 | |
| 	if (ip->i_d.di_version < 3)
 | |
| 		ip->i_d.di_flushiter++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the dirty parts of the inode into the on-disk
 | |
| 	 * inode.  We always copy out the core of the inode,
 | |
| 	 * because if the inode is dirty at all the core must
 | |
| 	 * be.
 | |
| 	 */
 | |
| 	xfs_dinode_to_disk(dip, &ip->i_d);
 | |
| 
 | |
| 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
 | |
| 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
 | |
| 		ip->i_d.di_flushiter = 0;
 | |
| 
 | |
| 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
 | |
| 	if (XFS_IFORK_Q(ip))
 | |
| 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 | |
| 	xfs_inobp_check(mp, bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * We've recorded everything logged in the inode, so we'd like to clear
 | |
| 	 * the ili_fields bits so we don't log and flush things unnecessarily.
 | |
| 	 * However, we can't stop logging all this information until the data
 | |
| 	 * we've copied into the disk buffer is written to disk.  If we did we
 | |
| 	 * might overwrite the copy of the inode in the log with all the data
 | |
| 	 * after re-logging only part of it, and in the face of a crash we
 | |
| 	 * wouldn't have all the data we need to recover.
 | |
| 	 *
 | |
| 	 * What we do is move the bits to the ili_last_fields field.  When
 | |
| 	 * logging the inode, these bits are moved back to the ili_fields field.
 | |
| 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
 | |
| 	 * know that the information those bits represent is permanently on
 | |
| 	 * disk.  As long as the flush completes before the inode is logged
 | |
| 	 * again, then both ili_fields and ili_last_fields will be cleared.
 | |
| 	 *
 | |
| 	 * We can play with the ili_fields bits here, because the inode lock
 | |
| 	 * must be held exclusively in order to set bits there and the flush
 | |
| 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
 | |
| 	 * done routine can tell whether or not to look in the AIL.  Also, store
 | |
| 	 * the current LSN of the inode so that we can tell whether the item has
 | |
| 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
 | |
| 	 * need the AIL lock, because it is a 64 bit value that cannot be read
 | |
| 	 * atomically.
 | |
| 	 */
 | |
| 	iip->ili_last_fields = iip->ili_fields;
 | |
| 	iip->ili_fields = 0;
 | |
| 	iip->ili_logged = 1;
 | |
| 
 | |
| 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
 | |
| 				&iip->ili_item.li_lsn);
 | |
| 
 | |
| 	/*
 | |
| 	 * Attach the function xfs_iflush_done to the inode's
 | |
| 	 * buffer.  This will remove the inode from the AIL
 | |
| 	 * and unlock the inode's flush lock when the inode is
 | |
| 	 * completely written to disk.
 | |
| 	 */
 | |
| 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
 | |
| 
 | |
| 	/* update the lsn in the on disk inode if required */
 | |
| 	if (ip->i_d.di_version == 3)
 | |
| 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
 | |
| 
 | |
| 	/* generate the checksum. */
 | |
| 	xfs_dinode_calc_crc(mp, dip);
 | |
| 
 | |
| 	ASSERT(bp->b_fspriv != NULL);
 | |
| 	ASSERT(bp->b_iodone != NULL);
 | |
| 	return 0;
 | |
| 
 | |
| corrupt_out:
 | |
| 	return -EFSCORRUPTED;
 | |
| }
 | 
