 88ee2df7f2
			
		
	
	
	88ee2df7f2
	
	
	
		
			
			This avoids all kinds of unessecary casts in an envrionment like Linux where we can assume that pointer arithmetics are support on void pointers. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
		
			
				
	
	
		
			1901 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1901 lines
		
	
	
	
		
			43 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/freezer.h>
 | |
| 
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_log.h"
 | |
| 
 | |
| static kmem_zone_t *xfs_buf_zone;
 | |
| 
 | |
| #ifdef XFS_BUF_LOCK_TRACKING
 | |
| # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
 | |
| # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
 | |
| # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
 | |
| #else
 | |
| # define XB_SET_OWNER(bp)	do { } while (0)
 | |
| # define XB_CLEAR_OWNER(bp)	do { } while (0)
 | |
| # define XB_GET_OWNER(bp)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define xb_to_gfp(flags) \
 | |
| 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
 | |
| 
 | |
| 
 | |
| static inline int
 | |
| xfs_buf_is_vmapped(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Return true if the buffer is vmapped.
 | |
| 	 *
 | |
| 	 * b_addr is null if the buffer is not mapped, but the code is clever
 | |
| 	 * enough to know it doesn't have to map a single page, so the check has
 | |
| 	 * to be both for b_addr and bp->b_page_count > 1.
 | |
| 	 */
 | |
| 	return bp->b_addr && bp->b_page_count > 1;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| xfs_buf_vmap_len(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 | |
|  * b_lru_ref count so that the buffer is freed immediately when the buffer
 | |
|  * reference count falls to zero. If the buffer is already on the LRU, we need
 | |
|  * to remove the reference that LRU holds on the buffer.
 | |
|  *
 | |
|  * This prevents build-up of stale buffers on the LRU.
 | |
|  */
 | |
| void
 | |
| xfs_buf_stale(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	ASSERT(xfs_buf_islocked(bp));
 | |
| 
 | |
| 	bp->b_flags |= XBF_STALE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the delwri status so that a delwri queue walker will not
 | |
| 	 * flush this buffer to disk now that it is stale. The delwri queue has
 | |
| 	 * a reference to the buffer, so this is safe to do.
 | |
| 	 */
 | |
| 	bp->b_flags &= ~_XBF_DELWRI_Q;
 | |
| 
 | |
| 	spin_lock(&bp->b_lock);
 | |
| 	atomic_set(&bp->b_lru_ref, 0);
 | |
| 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 | |
| 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 | |
| 		atomic_dec(&bp->b_hold);
 | |
| 
 | |
| 	ASSERT(atomic_read(&bp->b_hold) >= 1);
 | |
| 	spin_unlock(&bp->b_lock);
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_buf_get_maps(
 | |
| 	struct xfs_buf		*bp,
 | |
| 	int			map_count)
 | |
| {
 | |
| 	ASSERT(bp->b_maps == NULL);
 | |
| 	bp->b_map_count = map_count;
 | |
| 
 | |
| 	if (map_count == 1) {
 | |
| 		bp->b_maps = &bp->__b_map;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 | |
| 				KM_NOFS);
 | |
| 	if (!bp->b_maps)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Frees b_pages if it was allocated.
 | |
|  */
 | |
| static void
 | |
| xfs_buf_free_maps(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	if (bp->b_maps != &bp->__b_map) {
 | |
| 		kmem_free(bp->b_maps);
 | |
| 		bp->b_maps = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct xfs_buf *
 | |
| _xfs_buf_alloc(
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	struct xfs_buf_map	*map,
 | |
| 	int			nmaps,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	struct xfs_buf		*bp;
 | |
| 	int			error;
 | |
| 	int			i;
 | |
| 
 | |
| 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 | |
| 	if (unlikely(!bp))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want certain flags to appear in b_flags unless they are
 | |
| 	 * specifically set by later operations on the buffer.
 | |
| 	 */
 | |
| 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 | |
| 
 | |
| 	atomic_set(&bp->b_hold, 1);
 | |
| 	atomic_set(&bp->b_lru_ref, 1);
 | |
| 	init_completion(&bp->b_iowait);
 | |
| 	INIT_LIST_HEAD(&bp->b_lru);
 | |
| 	INIT_LIST_HEAD(&bp->b_list);
 | |
| 	RB_CLEAR_NODE(&bp->b_rbnode);
 | |
| 	sema_init(&bp->b_sema, 0); /* held, no waiters */
 | |
| 	spin_lock_init(&bp->b_lock);
 | |
| 	XB_SET_OWNER(bp);
 | |
| 	bp->b_target = target;
 | |
| 	bp->b_flags = flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set length and io_length to the same value initially.
 | |
| 	 * I/O routines should use io_length, which will be the same in
 | |
| 	 * most cases but may be reset (e.g. XFS recovery).
 | |
| 	 */
 | |
| 	error = xfs_buf_get_maps(bp, nmaps);
 | |
| 	if (error)  {
 | |
| 		kmem_zone_free(xfs_buf_zone, bp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	bp->b_bn = map[0].bm_bn;
 | |
| 	bp->b_length = 0;
 | |
| 	for (i = 0; i < nmaps; i++) {
 | |
| 		bp->b_maps[i].bm_bn = map[i].bm_bn;
 | |
| 		bp->b_maps[i].bm_len = map[i].bm_len;
 | |
| 		bp->b_length += map[i].bm_len;
 | |
| 	}
 | |
| 	bp->b_io_length = bp->b_length;
 | |
| 
 | |
| 	atomic_set(&bp->b_pin_count, 0);
 | |
| 	init_waitqueue_head(&bp->b_waiters);
 | |
| 
 | |
| 	XFS_STATS_INC(xb_create);
 | |
| 	trace_xfs_buf_init(bp, _RET_IP_);
 | |
| 
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Allocate a page array capable of holding a specified number
 | |
|  *	of pages, and point the page buf at it.
 | |
|  */
 | |
| STATIC int
 | |
| _xfs_buf_get_pages(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			page_count)
 | |
| {
 | |
| 	/* Make sure that we have a page list */
 | |
| 	if (bp->b_pages == NULL) {
 | |
| 		bp->b_page_count = page_count;
 | |
| 		if (page_count <= XB_PAGES) {
 | |
| 			bp->b_pages = bp->b_page_array;
 | |
| 		} else {
 | |
| 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 | |
| 						 page_count, KM_NOFS);
 | |
| 			if (bp->b_pages == NULL)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Frees b_pages if it was allocated.
 | |
|  */
 | |
| STATIC void
 | |
| _xfs_buf_free_pages(
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	if (bp->b_pages != bp->b_page_array) {
 | |
| 		kmem_free(bp->b_pages);
 | |
| 		bp->b_pages = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases the specified buffer.
 | |
|  *
 | |
|  * 	The modification state of any associated pages is left unchanged.
 | |
|  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
 | |
|  * 	hashed and refcounted buffers
 | |
|  */
 | |
| void
 | |
| xfs_buf_free(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_free(bp, _RET_IP_);
 | |
| 
 | |
| 	ASSERT(list_empty(&bp->b_lru));
 | |
| 
 | |
| 	if (bp->b_flags & _XBF_PAGES) {
 | |
| 		uint		i;
 | |
| 
 | |
| 		if (xfs_buf_is_vmapped(bp))
 | |
| 			vm_unmap_ram(bp->b_addr - bp->b_offset,
 | |
| 					bp->b_page_count);
 | |
| 
 | |
| 		for (i = 0; i < bp->b_page_count; i++) {
 | |
| 			struct page	*page = bp->b_pages[i];
 | |
| 
 | |
| 			__free_page(page);
 | |
| 		}
 | |
| 	} else if (bp->b_flags & _XBF_KMEM)
 | |
| 		kmem_free(bp->b_addr);
 | |
| 	_xfs_buf_free_pages(bp);
 | |
| 	xfs_buf_free_maps(bp);
 | |
| 	kmem_zone_free(xfs_buf_zone, bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates all the pages for buffer in question and builds it's page list.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_buf_allocate_memory(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	uint			flags)
 | |
| {
 | |
| 	size_t			size;
 | |
| 	size_t			nbytes, offset;
 | |
| 	gfp_t			gfp_mask = xb_to_gfp(flags);
 | |
| 	unsigned short		page_count, i;
 | |
| 	xfs_off_t		start, end;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * for buffers that are contained within a single page, just allocate
 | |
| 	 * the memory from the heap - there's no need for the complexity of
 | |
| 	 * page arrays to keep allocation down to order 0.
 | |
| 	 */
 | |
| 	size = BBTOB(bp->b_length);
 | |
| 	if (size < PAGE_SIZE) {
 | |
| 		bp->b_addr = kmem_alloc(size, KM_NOFS);
 | |
| 		if (!bp->b_addr) {
 | |
| 			/* low memory - use alloc_page loop instead */
 | |
| 			goto use_alloc_page;
 | |
| 		}
 | |
| 
 | |
| 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 | |
| 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 | |
| 			/* b_addr spans two pages - use alloc_page instead */
 | |
| 			kmem_free(bp->b_addr);
 | |
| 			bp->b_addr = NULL;
 | |
| 			goto use_alloc_page;
 | |
| 		}
 | |
| 		bp->b_offset = offset_in_page(bp->b_addr);
 | |
| 		bp->b_pages = bp->b_page_array;
 | |
| 		bp->b_pages[0] = virt_to_page(bp->b_addr);
 | |
| 		bp->b_page_count = 1;
 | |
| 		bp->b_flags |= _XBF_KMEM;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| use_alloc_page:
 | |
| 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 | |
| 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 | |
| 								>> PAGE_SHIFT;
 | |
| 	page_count = end - start;
 | |
| 	error = _xfs_buf_get_pages(bp, page_count);
 | |
| 	if (unlikely(error))
 | |
| 		return error;
 | |
| 
 | |
| 	offset = bp->b_offset;
 | |
| 	bp->b_flags |= _XBF_PAGES;
 | |
| 
 | |
| 	for (i = 0; i < bp->b_page_count; i++) {
 | |
| 		struct page	*page;
 | |
| 		uint		retries = 0;
 | |
| retry:
 | |
| 		page = alloc_page(gfp_mask);
 | |
| 		if (unlikely(page == NULL)) {
 | |
| 			if (flags & XBF_READ_AHEAD) {
 | |
| 				bp->b_page_count = i;
 | |
| 				error = -ENOMEM;
 | |
| 				goto out_free_pages;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * This could deadlock.
 | |
| 			 *
 | |
| 			 * But until all the XFS lowlevel code is revamped to
 | |
| 			 * handle buffer allocation failures we can't do much.
 | |
| 			 */
 | |
| 			if (!(++retries % 100))
 | |
| 				xfs_err(NULL,
 | |
| 		"possible memory allocation deadlock in %s (mode:0x%x)",
 | |
| 					__func__, gfp_mask);
 | |
| 
 | |
| 			XFS_STATS_INC(xb_page_retries);
 | |
| 			congestion_wait(BLK_RW_ASYNC, HZ/50);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		XFS_STATS_INC(xb_page_found);
 | |
| 
 | |
| 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 | |
| 		size -= nbytes;
 | |
| 		bp->b_pages[i] = page;
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| out_free_pages:
 | |
| 	for (i = 0; i < bp->b_page_count; i++)
 | |
| 		__free_page(bp->b_pages[i]);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Map buffer into kernel address-space if necessary.
 | |
|  */
 | |
| STATIC int
 | |
| _xfs_buf_map_pages(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	uint			flags)
 | |
| {
 | |
| 	ASSERT(bp->b_flags & _XBF_PAGES);
 | |
| 	if (bp->b_page_count == 1) {
 | |
| 		/* A single page buffer is always mappable */
 | |
| 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 | |
| 	} else if (flags & XBF_UNMAPPED) {
 | |
| 		bp->b_addr = NULL;
 | |
| 	} else {
 | |
| 		int retried = 0;
 | |
| 		unsigned noio_flag;
 | |
| 
 | |
| 		/*
 | |
| 		 * vm_map_ram() will allocate auxillary structures (e.g.
 | |
| 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
 | |
| 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
 | |
| 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
 | |
| 		 * memory reclaim re-entering the filesystem here and
 | |
| 		 * potentially deadlocking.
 | |
| 		 */
 | |
| 		noio_flag = memalloc_noio_save();
 | |
| 		do {
 | |
| 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 | |
| 						-1, PAGE_KERNEL);
 | |
| 			if (bp->b_addr)
 | |
| 				break;
 | |
| 			vm_unmap_aliases();
 | |
| 		} while (retried++ <= 1);
 | |
| 		memalloc_noio_restore(noio_flag);
 | |
| 
 | |
| 		if (!bp->b_addr)
 | |
| 			return -ENOMEM;
 | |
| 		bp->b_addr += bp->b_offset;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Finding and Reading Buffers
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *	Look up, and creates if absent, a lockable buffer for
 | |
|  *	a given range of an inode.  The buffer is returned
 | |
|  *	locked.	No I/O is implied by this call.
 | |
|  */
 | |
| xfs_buf_t *
 | |
| _xfs_buf_find(
 | |
| 	struct xfs_buftarg	*btp,
 | |
| 	struct xfs_buf_map	*map,
 | |
| 	int			nmaps,
 | |
| 	xfs_buf_flags_t		flags,
 | |
| 	xfs_buf_t		*new_bp)
 | |
| {
 | |
| 	size_t			numbytes;
 | |
| 	struct xfs_perag	*pag;
 | |
| 	struct rb_node		**rbp;
 | |
| 	struct rb_node		*parent;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	xfs_daddr_t		blkno = map[0].bm_bn;
 | |
| 	xfs_daddr_t		eofs;
 | |
| 	int			numblks = 0;
 | |
| 	int			i;
 | |
| 
 | |
| 	for (i = 0; i < nmaps; i++)
 | |
| 		numblks += map[i].bm_len;
 | |
| 	numbytes = BBTOB(numblks);
 | |
| 
 | |
| 	/* Check for IOs smaller than the sector size / not sector aligned */
 | |
| 	ASSERT(!(numbytes < btp->bt_meta_sectorsize));
 | |
| 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
 | |
| 
 | |
| 	/*
 | |
| 	 * Corrupted block numbers can get through to here, unfortunately, so we
 | |
| 	 * have to check that the buffer falls within the filesystem bounds.
 | |
| 	 */
 | |
| 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 | |
| 	if (blkno < 0 || blkno >= eofs) {
 | |
| 		/*
 | |
| 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
 | |
| 		 * but none of the higher level infrastructure supports
 | |
| 		 * returning a specific error on buffer lookup failures.
 | |
| 		 */
 | |
| 		xfs_alert(btp->bt_mount,
 | |
| 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
 | |
| 			  __func__, blkno, eofs);
 | |
| 		WARN_ON(1);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* get tree root */
 | |
| 	pag = xfs_perag_get(btp->bt_mount,
 | |
| 				xfs_daddr_to_agno(btp->bt_mount, blkno));
 | |
| 
 | |
| 	/* walk tree */
 | |
| 	spin_lock(&pag->pag_buf_lock);
 | |
| 	rbp = &pag->pag_buf_tree.rb_node;
 | |
| 	parent = NULL;
 | |
| 	bp = NULL;
 | |
| 	while (*rbp) {
 | |
| 		parent = *rbp;
 | |
| 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 | |
| 
 | |
| 		if (blkno < bp->b_bn)
 | |
| 			rbp = &(*rbp)->rb_left;
 | |
| 		else if (blkno > bp->b_bn)
 | |
| 			rbp = &(*rbp)->rb_right;
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * found a block number match. If the range doesn't
 | |
| 			 * match, the only way this is allowed is if the buffer
 | |
| 			 * in the cache is stale and the transaction that made
 | |
| 			 * it stale has not yet committed. i.e. we are
 | |
| 			 * reallocating a busy extent. Skip this buffer and
 | |
| 			 * continue searching to the right for an exact match.
 | |
| 			 */
 | |
| 			if (bp->b_length != numblks) {
 | |
| 				ASSERT(bp->b_flags & XBF_STALE);
 | |
| 				rbp = &(*rbp)->rb_right;
 | |
| 				continue;
 | |
| 			}
 | |
| 			atomic_inc(&bp->b_hold);
 | |
| 			goto found;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No match found */
 | |
| 	if (new_bp) {
 | |
| 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
 | |
| 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 | |
| 		/* the buffer keeps the perag reference until it is freed */
 | |
| 		new_bp->b_pag = pag;
 | |
| 		spin_unlock(&pag->pag_buf_lock);
 | |
| 	} else {
 | |
| 		XFS_STATS_INC(xb_miss_locked);
 | |
| 		spin_unlock(&pag->pag_buf_lock);
 | |
| 		xfs_perag_put(pag);
 | |
| 	}
 | |
| 	return new_bp;
 | |
| 
 | |
| found:
 | |
| 	spin_unlock(&pag->pag_buf_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| 
 | |
| 	if (!xfs_buf_trylock(bp)) {
 | |
| 		if (flags & XBF_TRYLOCK) {
 | |
| 			xfs_buf_rele(bp);
 | |
| 			XFS_STATS_INC(xb_busy_locked);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		xfs_buf_lock(bp);
 | |
| 		XFS_STATS_INC(xb_get_locked_waited);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if the buffer is stale, clear all the external state associated with
 | |
| 	 * it. We need to keep flags such as how we allocated the buffer memory
 | |
| 	 * intact here.
 | |
| 	 */
 | |
| 	if (bp->b_flags & XBF_STALE) {
 | |
| 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 | |
| 		ASSERT(bp->b_iodone == NULL);
 | |
| 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 | |
| 		bp->b_ops = NULL;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_buf_find(bp, flags, _RET_IP_);
 | |
| 	XFS_STATS_INC(xb_get_locked);
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Assembles a buffer covering the specified range. The code is optimised for
 | |
|  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 | |
|  * more hits than misses.
 | |
|  */
 | |
| struct xfs_buf *
 | |
| xfs_buf_get_map(
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	struct xfs_buf_map	*map,
 | |
| 	int			nmaps,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	struct xfs_buf		*bp;
 | |
| 	struct xfs_buf		*new_bp;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
 | |
| 	if (likely(bp))
 | |
| 		goto found;
 | |
| 
 | |
| 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 | |
| 	if (unlikely(!new_bp))
 | |
| 		return NULL;
 | |
| 
 | |
| 	error = xfs_buf_allocate_memory(new_bp, flags);
 | |
| 	if (error) {
 | |
| 		xfs_buf_free(new_bp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
 | |
| 	if (!bp) {
 | |
| 		xfs_buf_free(new_bp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (bp != new_bp)
 | |
| 		xfs_buf_free(new_bp);
 | |
| 
 | |
| found:
 | |
| 	if (!bp->b_addr) {
 | |
| 		error = _xfs_buf_map_pages(bp, flags);
 | |
| 		if (unlikely(error)) {
 | |
| 			xfs_warn(target->bt_mount,
 | |
| 				"%s: failed to map pagesn", __func__);
 | |
| 			xfs_buf_relse(bp);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	XFS_STATS_INC(xb_get);
 | |
| 	trace_xfs_buf_get(bp, flags, _RET_IP_);
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| _xfs_buf_read(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	ASSERT(!(flags & XBF_WRITE));
 | |
| 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 | |
| 
 | |
| 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 | |
| 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 | |
| 
 | |
| 	if (flags & XBF_ASYNC) {
 | |
| 		xfs_buf_submit(bp);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return xfs_buf_submit_wait(bp);
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_read_map(
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	struct xfs_buf_map	*map,
 | |
| 	int			nmaps,
 | |
| 	xfs_buf_flags_t		flags,
 | |
| 	const struct xfs_buf_ops *ops)
 | |
| {
 | |
| 	struct xfs_buf		*bp;
 | |
| 
 | |
| 	flags |= XBF_READ;
 | |
| 
 | |
| 	bp = xfs_buf_get_map(target, map, nmaps, flags);
 | |
| 	if (bp) {
 | |
| 		trace_xfs_buf_read(bp, flags, _RET_IP_);
 | |
| 
 | |
| 		if (!XFS_BUF_ISDONE(bp)) {
 | |
| 			XFS_STATS_INC(xb_get_read);
 | |
| 			bp->b_ops = ops;
 | |
| 			_xfs_buf_read(bp, flags);
 | |
| 		} else if (flags & XBF_ASYNC) {
 | |
| 			/*
 | |
| 			 * Read ahead call which is already satisfied,
 | |
| 			 * drop the buffer
 | |
| 			 */
 | |
| 			xfs_buf_relse(bp);
 | |
| 			return NULL;
 | |
| 		} else {
 | |
| 			/* We do not want read in the flags */
 | |
| 			bp->b_flags &= ~XBF_READ;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	If we are not low on memory then do the readahead in a deadlock
 | |
|  *	safe manner.
 | |
|  */
 | |
| void
 | |
| xfs_buf_readahead_map(
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	struct xfs_buf_map	*map,
 | |
| 	int			nmaps,
 | |
| 	const struct xfs_buf_ops *ops)
 | |
| {
 | |
| 	if (bdi_read_congested(target->bt_bdi))
 | |
| 		return;
 | |
| 
 | |
| 	xfs_buf_read_map(target, map, nmaps,
 | |
| 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read an uncached buffer from disk. Allocates and returns a locked
 | |
|  * buffer containing the disk contents or nothing.
 | |
|  */
 | |
| int
 | |
| xfs_buf_read_uncached(
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	xfs_daddr_t		daddr,
 | |
| 	size_t			numblks,
 | |
| 	int			flags,
 | |
| 	struct xfs_buf		**bpp,
 | |
| 	const struct xfs_buf_ops *ops)
 | |
| {
 | |
| 	struct xfs_buf		*bp;
 | |
| 
 | |
| 	*bpp = NULL;
 | |
| 
 | |
| 	bp = xfs_buf_get_uncached(target, numblks, flags);
 | |
| 	if (!bp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* set up the buffer for a read IO */
 | |
| 	ASSERT(bp->b_map_count == 1);
 | |
| 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 | |
| 	bp->b_maps[0].bm_bn = daddr;
 | |
| 	bp->b_flags |= XBF_READ;
 | |
| 	bp->b_ops = ops;
 | |
| 
 | |
| 	xfs_buf_submit_wait(bp);
 | |
| 	if (bp->b_error) {
 | |
| 		int	error = bp->b_error;
 | |
| 		xfs_buf_relse(bp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	*bpp = bp;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a buffer allocated as an empty buffer and associated to external
 | |
|  * memory via xfs_buf_associate_memory() back to it's empty state.
 | |
|  */
 | |
| void
 | |
| xfs_buf_set_empty(
 | |
| 	struct xfs_buf		*bp,
 | |
| 	size_t			numblks)
 | |
| {
 | |
| 	if (bp->b_pages)
 | |
| 		_xfs_buf_free_pages(bp);
 | |
| 
 | |
| 	bp->b_pages = NULL;
 | |
| 	bp->b_page_count = 0;
 | |
| 	bp->b_addr = NULL;
 | |
| 	bp->b_length = numblks;
 | |
| 	bp->b_io_length = numblks;
 | |
| 
 | |
| 	ASSERT(bp->b_map_count == 1);
 | |
| 	bp->b_bn = XFS_BUF_DADDR_NULL;
 | |
| 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
 | |
| 	bp->b_maps[0].bm_len = bp->b_length;
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| mem_to_page(
 | |
| 	void			*addr)
 | |
| {
 | |
| 	if ((!is_vmalloc_addr(addr))) {
 | |
| 		return virt_to_page(addr);
 | |
| 	} else {
 | |
| 		return vmalloc_to_page(addr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buf_associate_memory(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	void			*mem,
 | |
| 	size_t			len)
 | |
| {
 | |
| 	int			rval;
 | |
| 	int			i = 0;
 | |
| 	unsigned long		pageaddr;
 | |
| 	unsigned long		offset;
 | |
| 	size_t			buflen;
 | |
| 	int			page_count;
 | |
| 
 | |
| 	pageaddr = (unsigned long)mem & PAGE_MASK;
 | |
| 	offset = (unsigned long)mem - pageaddr;
 | |
| 	buflen = PAGE_ALIGN(len + offset);
 | |
| 	page_count = buflen >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Free any previous set of page pointers */
 | |
| 	if (bp->b_pages)
 | |
| 		_xfs_buf_free_pages(bp);
 | |
| 
 | |
| 	bp->b_pages = NULL;
 | |
| 	bp->b_addr = mem;
 | |
| 
 | |
| 	rval = _xfs_buf_get_pages(bp, page_count);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	bp->b_offset = offset;
 | |
| 
 | |
| 	for (i = 0; i < bp->b_page_count; i++) {
 | |
| 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
 | |
| 		pageaddr += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	bp->b_io_length = BTOBB(len);
 | |
| 	bp->b_length = BTOBB(buflen);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_get_uncached(
 | |
| 	struct xfs_buftarg	*target,
 | |
| 	size_t			numblks,
 | |
| 	int			flags)
 | |
| {
 | |
| 	unsigned long		page_count;
 | |
| 	int			error, i;
 | |
| 	struct xfs_buf		*bp;
 | |
| 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 | |
| 
 | |
| 	bp = _xfs_buf_alloc(target, &map, 1, 0);
 | |
| 	if (unlikely(bp == NULL))
 | |
| 		goto fail;
 | |
| 
 | |
| 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 | |
| 	error = _xfs_buf_get_pages(bp, page_count);
 | |
| 	if (error)
 | |
| 		goto fail_free_buf;
 | |
| 
 | |
| 	for (i = 0; i < page_count; i++) {
 | |
| 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 | |
| 		if (!bp->b_pages[i])
 | |
| 			goto fail_free_mem;
 | |
| 	}
 | |
| 	bp->b_flags |= _XBF_PAGES;
 | |
| 
 | |
| 	error = _xfs_buf_map_pages(bp, 0);
 | |
| 	if (unlikely(error)) {
 | |
| 		xfs_warn(target->bt_mount,
 | |
| 			"%s: failed to map pages", __func__);
 | |
| 		goto fail_free_mem;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
 | |
| 	return bp;
 | |
| 
 | |
|  fail_free_mem:
 | |
| 	while (--i >= 0)
 | |
| 		__free_page(bp->b_pages[i]);
 | |
| 	_xfs_buf_free_pages(bp);
 | |
|  fail_free_buf:
 | |
| 	xfs_buf_free_maps(bp);
 | |
| 	kmem_zone_free(xfs_buf_zone, bp);
 | |
|  fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Increment reference count on buffer, to hold the buffer concurrently
 | |
|  *	with another thread which may release (free) the buffer asynchronously.
 | |
|  *	Must hold the buffer already to call this function.
 | |
|  */
 | |
| void
 | |
| xfs_buf_hold(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_hold(bp, _RET_IP_);
 | |
| 	atomic_inc(&bp->b_hold);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases a hold on the specified buffer.  If the
 | |
|  *	the hold count is 1, calls xfs_buf_free.
 | |
|  */
 | |
| void
 | |
| xfs_buf_rele(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	struct xfs_perag	*pag = bp->b_pag;
 | |
| 
 | |
| 	trace_xfs_buf_rele(bp, _RET_IP_);
 | |
| 
 | |
| 	if (!pag) {
 | |
| 		ASSERT(list_empty(&bp->b_lru));
 | |
| 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 | |
| 		if (atomic_dec_and_test(&bp->b_hold))
 | |
| 			xfs_buf_free(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 | |
| 
 | |
| 	ASSERT(atomic_read(&bp->b_hold) > 0);
 | |
| 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 | |
| 		spin_lock(&bp->b_lock);
 | |
| 		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
 | |
| 			/*
 | |
| 			 * If the buffer is added to the LRU take a new
 | |
| 			 * reference to the buffer for the LRU and clear the
 | |
| 			 * (now stale) dispose list state flag
 | |
| 			 */
 | |
| 			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
 | |
| 				bp->b_state &= ~XFS_BSTATE_DISPOSE;
 | |
| 				atomic_inc(&bp->b_hold);
 | |
| 			}
 | |
| 			spin_unlock(&bp->b_lock);
 | |
| 			spin_unlock(&pag->pag_buf_lock);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * most of the time buffers will already be removed from
 | |
| 			 * the LRU, so optimise that case by checking for the
 | |
| 			 * XFS_BSTATE_DISPOSE flag indicating the last list the
 | |
| 			 * buffer was on was the disposal list
 | |
| 			 */
 | |
| 			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
 | |
| 				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
 | |
| 			} else {
 | |
| 				ASSERT(list_empty(&bp->b_lru));
 | |
| 			}
 | |
| 			spin_unlock(&bp->b_lock);
 | |
| 
 | |
| 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 | |
| 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 | |
| 			spin_unlock(&pag->pag_buf_lock);
 | |
| 			xfs_perag_put(pag);
 | |
| 			xfs_buf_free(bp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Lock a buffer object, if it is not already locked.
 | |
|  *
 | |
|  *	If we come across a stale, pinned, locked buffer, we know that we are
 | |
|  *	being asked to lock a buffer that has been reallocated. Because it is
 | |
|  *	pinned, we know that the log has not been pushed to disk and hence it
 | |
|  *	will still be locked.  Rather than continuing to have trylock attempts
 | |
|  *	fail until someone else pushes the log, push it ourselves before
 | |
|  *	returning.  This means that the xfsaild will not get stuck trying
 | |
|  *	to push on stale inode buffers.
 | |
|  */
 | |
| int
 | |
| xfs_buf_trylock(
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	int			locked;
 | |
| 
 | |
| 	locked = down_trylock(&bp->b_sema) == 0;
 | |
| 	if (locked)
 | |
| 		XB_SET_OWNER(bp);
 | |
| 
 | |
| 	trace_xfs_buf_trylock(bp, _RET_IP_);
 | |
| 	return locked;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Lock a buffer object.
 | |
|  *
 | |
|  *	If we come across a stale, pinned, locked buffer, we know that we
 | |
|  *	are being asked to lock a buffer that has been reallocated. Because
 | |
|  *	it is pinned, we know that the log has not been pushed to disk and
 | |
|  *	hence it will still be locked. Rather than sleeping until someone
 | |
|  *	else pushes the log, push it ourselves before trying to get the lock.
 | |
|  */
 | |
| void
 | |
| xfs_buf_lock(
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	trace_xfs_buf_lock(bp, _RET_IP_);
 | |
| 
 | |
| 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 | |
| 		xfs_log_force(bp->b_target->bt_mount, 0);
 | |
| 	down(&bp->b_sema);
 | |
| 	XB_SET_OWNER(bp);
 | |
| 
 | |
| 	trace_xfs_buf_lock_done(bp, _RET_IP_);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_unlock(
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	XB_CLEAR_OWNER(bp);
 | |
| 	up(&bp->b_sema);
 | |
| 
 | |
| 	trace_xfs_buf_unlock(bp, _RET_IP_);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_wait_unpin(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	DECLARE_WAITQUEUE	(wait, current);
 | |
| 
 | |
| 	if (atomic_read(&bp->b_pin_count) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	add_wait_queue(&bp->b_waiters, &wait);
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		if (atomic_read(&bp->b_pin_count) == 0)
 | |
| 			break;
 | |
| 		io_schedule();
 | |
| 	}
 | |
| 	remove_wait_queue(&bp->b_waiters, &wait);
 | |
| 	set_current_state(TASK_RUNNING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Buffer Utility Routines
 | |
|  */
 | |
| 
 | |
| void
 | |
| xfs_buf_ioend(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	bool		read = bp->b_flags & XBF_READ;
 | |
| 
 | |
| 	trace_xfs_buf_iodone(bp, _RET_IP_);
 | |
| 
 | |
| 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pull in IO completion errors now. We are guaranteed to be running
 | |
| 	 * single threaded, so we don't need the lock to read b_io_error.
 | |
| 	 */
 | |
| 	if (!bp->b_error && bp->b_io_error)
 | |
| 		xfs_buf_ioerror(bp, bp->b_io_error);
 | |
| 
 | |
| 	/* Only validate buffers that were read without errors */
 | |
| 	if (read && !bp->b_error && bp->b_ops) {
 | |
| 		ASSERT(!bp->b_iodone);
 | |
| 		bp->b_ops->verify_read(bp);
 | |
| 	}
 | |
| 
 | |
| 	if (!bp->b_error)
 | |
| 		bp->b_flags |= XBF_DONE;
 | |
| 
 | |
| 	if (bp->b_iodone)
 | |
| 		(*(bp->b_iodone))(bp);
 | |
| 	else if (bp->b_flags & XBF_ASYNC)
 | |
| 		xfs_buf_relse(bp);
 | |
| 	else
 | |
| 		complete(&bp->b_iowait);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_buf_ioend_work(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	struct xfs_buf		*bp =
 | |
| 		container_of(work, xfs_buf_t, b_ioend_work);
 | |
| 
 | |
| 	xfs_buf_ioend(bp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_ioend_async(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
 | |
| 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_ioerror(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			error)
 | |
| {
 | |
| 	ASSERT(error <= 0 && error >= -1000);
 | |
| 	bp->b_error = error;
 | |
| 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_ioerror_alert(
 | |
| 	struct xfs_buf		*bp,
 | |
| 	const char		*func)
 | |
| {
 | |
| 	xfs_alert(bp->b_target->bt_mount,
 | |
| "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
 | |
| 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_bwrite(
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	int			error;
 | |
| 
 | |
| 	ASSERT(xfs_buf_islocked(bp));
 | |
| 
 | |
| 	bp->b_flags |= XBF_WRITE;
 | |
| 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
 | |
| 			 XBF_WRITE_FAIL | XBF_DONE);
 | |
| 
 | |
| 	error = xfs_buf_submit_wait(bp);
 | |
| 	if (error) {
 | |
| 		xfs_force_shutdown(bp->b_target->bt_mount,
 | |
| 				   SHUTDOWN_META_IO_ERROR);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_bio_end_io(
 | |
| 	struct bio		*bio,
 | |
| 	int			error)
 | |
| {
 | |
| 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
 | |
| 
 | |
| 	/*
 | |
| 	 * don't overwrite existing errors - otherwise we can lose errors on
 | |
| 	 * buffers that require multiple bios to complete.
 | |
| 	 */
 | |
| 	if (error) {
 | |
| 		spin_lock(&bp->b_lock);
 | |
| 		if (!bp->b_io_error)
 | |
| 			bp->b_io_error = error;
 | |
| 		spin_unlock(&bp->b_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
 | |
| 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
 | |
| 
 | |
| 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
 | |
| 		xfs_buf_ioend_async(bp);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_buf_ioapply_map(
 | |
| 	struct xfs_buf	*bp,
 | |
| 	int		map,
 | |
| 	int		*buf_offset,
 | |
| 	int		*count,
 | |
| 	int		rw)
 | |
| {
 | |
| 	int		page_index;
 | |
| 	int		total_nr_pages = bp->b_page_count;
 | |
| 	int		nr_pages;
 | |
| 	struct bio	*bio;
 | |
| 	sector_t	sector =  bp->b_maps[map].bm_bn;
 | |
| 	int		size;
 | |
| 	int		offset;
 | |
| 
 | |
| 	total_nr_pages = bp->b_page_count;
 | |
| 
 | |
| 	/* skip the pages in the buffer before the start offset */
 | |
| 	page_index = 0;
 | |
| 	offset = *buf_offset;
 | |
| 	while (offset >= PAGE_SIZE) {
 | |
| 		page_index++;
 | |
| 		offset -= PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Limit the IO size to the length of the current vector, and update the
 | |
| 	 * remaining IO count for the next time around.
 | |
| 	 */
 | |
| 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
 | |
| 	*count -= size;
 | |
| 	*buf_offset += size;
 | |
| 
 | |
| next_chunk:
 | |
| 	atomic_inc(&bp->b_io_remaining);
 | |
| 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
 | |
| 	if (nr_pages > total_nr_pages)
 | |
| 		nr_pages = total_nr_pages;
 | |
| 
 | |
| 	bio = bio_alloc(GFP_NOIO, nr_pages);
 | |
| 	bio->bi_bdev = bp->b_target->bt_bdev;
 | |
| 	bio->bi_iter.bi_sector = sector;
 | |
| 	bio->bi_end_io = xfs_buf_bio_end_io;
 | |
| 	bio->bi_private = bp;
 | |
| 
 | |
| 
 | |
| 	for (; size && nr_pages; nr_pages--, page_index++) {
 | |
| 		int	rbytes, nbytes = PAGE_SIZE - offset;
 | |
| 
 | |
| 		if (nbytes > size)
 | |
| 			nbytes = size;
 | |
| 
 | |
| 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
 | |
| 				      offset);
 | |
| 		if (rbytes < nbytes)
 | |
| 			break;
 | |
| 
 | |
| 		offset = 0;
 | |
| 		sector += BTOBB(nbytes);
 | |
| 		size -= nbytes;
 | |
| 		total_nr_pages--;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(bio->bi_iter.bi_size)) {
 | |
| 		if (xfs_buf_is_vmapped(bp)) {
 | |
| 			flush_kernel_vmap_range(bp->b_addr,
 | |
| 						xfs_buf_vmap_len(bp));
 | |
| 		}
 | |
| 		submit_bio(rw, bio);
 | |
| 		if (size)
 | |
| 			goto next_chunk;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * This is guaranteed not to be the last io reference count
 | |
| 		 * because the caller (xfs_buf_submit) holds a count itself.
 | |
| 		 */
 | |
| 		atomic_dec(&bp->b_io_remaining);
 | |
| 		xfs_buf_ioerror(bp, -EIO);
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| _xfs_buf_ioapply(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	struct blk_plug	plug;
 | |
| 	int		rw;
 | |
| 	int		offset;
 | |
| 	int		size;
 | |
| 	int		i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we capture only current IO errors rather than stale errors
 | |
| 	 * left over from previous use of the buffer (e.g. failed readahead).
 | |
| 	 */
 | |
| 	bp->b_error = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the I/O completion workqueue if we haven't yet or the
 | |
| 	 * submitter has not opted to specify a custom one.
 | |
| 	 */
 | |
| 	if (!bp->b_ioend_wq)
 | |
| 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
 | |
| 
 | |
| 	if (bp->b_flags & XBF_WRITE) {
 | |
| 		if (bp->b_flags & XBF_SYNCIO)
 | |
| 			rw = WRITE_SYNC;
 | |
| 		else
 | |
| 			rw = WRITE;
 | |
| 		if (bp->b_flags & XBF_FUA)
 | |
| 			rw |= REQ_FUA;
 | |
| 		if (bp->b_flags & XBF_FLUSH)
 | |
| 			rw |= REQ_FLUSH;
 | |
| 
 | |
| 		/*
 | |
| 		 * Run the write verifier callback function if it exists. If
 | |
| 		 * this function fails it will mark the buffer with an error and
 | |
| 		 * the IO should not be dispatched.
 | |
| 		 */
 | |
| 		if (bp->b_ops) {
 | |
| 			bp->b_ops->verify_write(bp);
 | |
| 			if (bp->b_error) {
 | |
| 				xfs_force_shutdown(bp->b_target->bt_mount,
 | |
| 						   SHUTDOWN_CORRUPT_INCORE);
 | |
| 				return;
 | |
| 			}
 | |
| 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
 | |
| 			struct xfs_mount *mp = bp->b_target->bt_mount;
 | |
| 
 | |
| 			/*
 | |
| 			 * non-crc filesystems don't attach verifiers during
 | |
| 			 * log recovery, so don't warn for such filesystems.
 | |
| 			 */
 | |
| 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
 | |
| 				xfs_warn(mp,
 | |
| 					"%s: no ops on block 0x%llx/0x%x",
 | |
| 					__func__, bp->b_bn, bp->b_length);
 | |
| 				xfs_hex_dump(bp->b_addr, 64);
 | |
| 				dump_stack();
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (bp->b_flags & XBF_READ_AHEAD) {
 | |
| 		rw = READA;
 | |
| 	} else {
 | |
| 		rw = READ;
 | |
| 	}
 | |
| 
 | |
| 	/* we only use the buffer cache for meta-data */
 | |
| 	rw |= REQ_META;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk all the vectors issuing IO on them. Set up the initial offset
 | |
| 	 * into the buffer and the desired IO size before we start -
 | |
| 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
 | |
| 	 * subsequent call.
 | |
| 	 */
 | |
| 	offset = bp->b_offset;
 | |
| 	size = BBTOB(bp->b_io_length);
 | |
| 	blk_start_plug(&plug);
 | |
| 	for (i = 0; i < bp->b_map_count; i++) {
 | |
| 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
 | |
| 		if (bp->b_error)
 | |
| 			break;
 | |
| 		if (size <= 0)
 | |
| 			break;	/* all done */
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Asynchronous IO submission path. This transfers the buffer lock ownership and
 | |
|  * the current reference to the IO. It is not safe to reference the buffer after
 | |
|  * a call to this function unless the caller holds an additional reference
 | |
|  * itself.
 | |
|  */
 | |
| void
 | |
| xfs_buf_submit(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	trace_xfs_buf_submit(bp, _RET_IP_);
 | |
| 
 | |
| 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 | |
| 	ASSERT(bp->b_flags & XBF_ASYNC);
 | |
| 
 | |
| 	/* on shutdown we stale and complete the buffer immediately */
 | |
| 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
 | |
| 		xfs_buf_ioerror(bp, -EIO);
 | |
| 		bp->b_flags &= ~XBF_DONE;
 | |
| 		xfs_buf_stale(bp);
 | |
| 		xfs_buf_ioend(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->b_flags & XBF_WRITE)
 | |
| 		xfs_buf_wait_unpin(bp);
 | |
| 
 | |
| 	/* clear the internal error state to avoid spurious errors */
 | |
| 	bp->b_io_error = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller's reference is released during I/O completion.
 | |
| 	 * This occurs some time after the last b_io_remaining reference is
 | |
| 	 * released, so after we drop our Io reference we have to have some
 | |
| 	 * other reference to ensure the buffer doesn't go away from underneath
 | |
| 	 * us. Take a direct reference to ensure we have safe access to the
 | |
| 	 * buffer until we are finished with it.
 | |
| 	 */
 | |
| 	xfs_buf_hold(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the count to 1 initially, this will stop an I/O completion
 | |
| 	 * callout which happens before we have started all the I/O from calling
 | |
| 	 * xfs_buf_ioend too early.
 | |
| 	 */
 | |
| 	atomic_set(&bp->b_io_remaining, 1);
 | |
| 	_xfs_buf_ioapply(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
 | |
| 	 * reference we took above. If we drop it to zero, run completion so
 | |
| 	 * that we don't return to the caller with completion still pending.
 | |
| 	 */
 | |
| 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
 | |
| 		if (bp->b_error)
 | |
| 			xfs_buf_ioend(bp);
 | |
| 		else
 | |
| 			xfs_buf_ioend_async(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_rele(bp);
 | |
| 	/* Note: it is not safe to reference bp now we've dropped our ref */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Synchronous buffer IO submission path, read or write.
 | |
|  */
 | |
| int
 | |
| xfs_buf_submit_wait(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	int		error;
 | |
| 
 | |
| 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
 | |
| 
 | |
| 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
 | |
| 
 | |
| 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
 | |
| 		xfs_buf_ioerror(bp, -EIO);
 | |
| 		xfs_buf_stale(bp);
 | |
| 		bp->b_flags &= ~XBF_DONE;
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->b_flags & XBF_WRITE)
 | |
| 		xfs_buf_wait_unpin(bp);
 | |
| 
 | |
| 	/* clear the internal error state to avoid spurious errors */
 | |
| 	bp->b_io_error = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For synchronous IO, the IO does not inherit the submitters reference
 | |
| 	 * count, nor the buffer lock. Hence we cannot release the reference we
 | |
| 	 * are about to take until we've waited for all IO completion to occur,
 | |
| 	 * including any xfs_buf_ioend_async() work that may be pending.
 | |
| 	 */
 | |
| 	xfs_buf_hold(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the count to 1 initially, this will stop an I/O completion
 | |
| 	 * callout which happens before we have started all the I/O from calling
 | |
| 	 * xfs_buf_ioend too early.
 | |
| 	 */
 | |
| 	atomic_set(&bp->b_io_remaining, 1);
 | |
| 	_xfs_buf_ioapply(bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure we run completion synchronously if it raced with us and is
 | |
| 	 * already complete.
 | |
| 	 */
 | |
| 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
 | |
| 		xfs_buf_ioend(bp);
 | |
| 
 | |
| 	/* wait for completion before gathering the error from the buffer */
 | |
| 	trace_xfs_buf_iowait(bp, _RET_IP_);
 | |
| 	wait_for_completion(&bp->b_iowait);
 | |
| 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
 | |
| 	error = bp->b_error;
 | |
| 
 | |
| 	/*
 | |
| 	 * all done now, we can release the hold that keeps the buffer
 | |
| 	 * referenced for the entire IO.
 | |
| 	 */
 | |
| 	xfs_buf_rele(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void *
 | |
| xfs_buf_offset(
 | |
| 	struct xfs_buf		*bp,
 | |
| 	size_t			offset)
 | |
| {
 | |
| 	struct page		*page;
 | |
| 
 | |
| 	if (bp->b_addr)
 | |
| 		return bp->b_addr + offset;
 | |
| 
 | |
| 	offset += bp->b_offset;
 | |
| 	page = bp->b_pages[offset >> PAGE_SHIFT];
 | |
| 	return page_address(page) + (offset & (PAGE_SIZE-1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Move data into or out of a buffer.
 | |
|  */
 | |
| void
 | |
| xfs_buf_iomove(
 | |
| 	xfs_buf_t		*bp,	/* buffer to process		*/
 | |
| 	size_t			boff,	/* starting buffer offset	*/
 | |
| 	size_t			bsize,	/* length to copy		*/
 | |
| 	void			*data,	/* data address			*/
 | |
| 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
 | |
| {
 | |
| 	size_t			bend;
 | |
| 
 | |
| 	bend = boff + bsize;
 | |
| 	while (boff < bend) {
 | |
| 		struct page	*page;
 | |
| 		int		page_index, page_offset, csize;
 | |
| 
 | |
| 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
 | |
| 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
 | |
| 		page = bp->b_pages[page_index];
 | |
| 		csize = min_t(size_t, PAGE_SIZE - page_offset,
 | |
| 				      BBTOB(bp->b_io_length) - boff);
 | |
| 
 | |
| 		ASSERT((csize + page_offset) <= PAGE_SIZE);
 | |
| 
 | |
| 		switch (mode) {
 | |
| 		case XBRW_ZERO:
 | |
| 			memset(page_address(page) + page_offset, 0, csize);
 | |
| 			break;
 | |
| 		case XBRW_READ:
 | |
| 			memcpy(data, page_address(page) + page_offset, csize);
 | |
| 			break;
 | |
| 		case XBRW_WRITE:
 | |
| 			memcpy(page_address(page) + page_offset, data, csize);
 | |
| 		}
 | |
| 
 | |
| 		boff += csize;
 | |
| 		data += csize;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Handling of buffer targets (buftargs).
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Wait for any bufs with callbacks that have been submitted but have not yet
 | |
|  * returned. These buffers will have an elevated hold count, so wait on those
 | |
|  * while freeing all the buffers only held by the LRU.
 | |
|  */
 | |
| static enum lru_status
 | |
| xfs_buftarg_wait_rele(
 | |
| 	struct list_head	*item,
 | |
| 	struct list_lru_one	*lru,
 | |
| 	spinlock_t		*lru_lock,
 | |
| 	void			*arg)
 | |
| 
 | |
| {
 | |
| 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
 | |
| 	struct list_head	*dispose = arg;
 | |
| 
 | |
| 	if (atomic_read(&bp->b_hold) > 1) {
 | |
| 		/* need to wait, so skip it this pass */
 | |
| 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
 | |
| 		return LRU_SKIP;
 | |
| 	}
 | |
| 	if (!spin_trylock(&bp->b_lock))
 | |
| 		return LRU_SKIP;
 | |
| 
 | |
| 	/*
 | |
| 	 * clear the LRU reference count so the buffer doesn't get
 | |
| 	 * ignored in xfs_buf_rele().
 | |
| 	 */
 | |
| 	atomic_set(&bp->b_lru_ref, 0);
 | |
| 	bp->b_state |= XFS_BSTATE_DISPOSE;
 | |
| 	list_lru_isolate_move(lru, item, dispose);
 | |
| 	spin_unlock(&bp->b_lock);
 | |
| 	return LRU_REMOVED;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_wait_buftarg(
 | |
| 	struct xfs_buftarg	*btp)
 | |
| {
 | |
| 	LIST_HEAD(dispose);
 | |
| 	int loop = 0;
 | |
| 
 | |
| 	/* loop until there is nothing left on the lru list. */
 | |
| 	while (list_lru_count(&btp->bt_lru)) {
 | |
| 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
 | |
| 			      &dispose, LONG_MAX);
 | |
| 
 | |
| 		while (!list_empty(&dispose)) {
 | |
| 			struct xfs_buf *bp;
 | |
| 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
 | |
| 			list_del_init(&bp->b_lru);
 | |
| 			if (bp->b_flags & XBF_WRITE_FAIL) {
 | |
| 				xfs_alert(btp->bt_mount,
 | |
| "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
 | |
| "Please run xfs_repair to determine the extent of the problem.",
 | |
| 					(long long)bp->b_bn);
 | |
| 			}
 | |
| 			xfs_buf_rele(bp);
 | |
| 		}
 | |
| 		if (loop++ != 0)
 | |
| 			delay(100);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static enum lru_status
 | |
| xfs_buftarg_isolate(
 | |
| 	struct list_head	*item,
 | |
| 	struct list_lru_one	*lru,
 | |
| 	spinlock_t		*lru_lock,
 | |
| 	void			*arg)
 | |
| {
 | |
| 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
 | |
| 	struct list_head	*dispose = arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
 | |
| 	 * If we fail to get the lock, just skip it.
 | |
| 	 */
 | |
| 	if (!spin_trylock(&bp->b_lock))
 | |
| 		return LRU_SKIP;
 | |
| 	/*
 | |
| 	 * Decrement the b_lru_ref count unless the value is already
 | |
| 	 * zero. If the value is already zero, we need to reclaim the
 | |
| 	 * buffer, otherwise it gets another trip through the LRU.
 | |
| 	 */
 | |
| 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
 | |
| 		spin_unlock(&bp->b_lock);
 | |
| 		return LRU_ROTATE;
 | |
| 	}
 | |
| 
 | |
| 	bp->b_state |= XFS_BSTATE_DISPOSE;
 | |
| 	list_lru_isolate_move(lru, item, dispose);
 | |
| 	spin_unlock(&bp->b_lock);
 | |
| 	return LRU_REMOVED;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| xfs_buftarg_shrink_scan(
 | |
| 	struct shrinker		*shrink,
 | |
| 	struct shrink_control	*sc)
 | |
| {
 | |
| 	struct xfs_buftarg	*btp = container_of(shrink,
 | |
| 					struct xfs_buftarg, bt_shrinker);
 | |
| 	LIST_HEAD(dispose);
 | |
| 	unsigned long		freed;
 | |
| 
 | |
| 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
 | |
| 				     xfs_buftarg_isolate, &dispose);
 | |
| 
 | |
| 	while (!list_empty(&dispose)) {
 | |
| 		struct xfs_buf *bp;
 | |
| 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
 | |
| 		list_del_init(&bp->b_lru);
 | |
| 		xfs_buf_rele(bp);
 | |
| 	}
 | |
| 
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| xfs_buftarg_shrink_count(
 | |
| 	struct shrinker		*shrink,
 | |
| 	struct shrink_control	*sc)
 | |
| {
 | |
| 	struct xfs_buftarg	*btp = container_of(shrink,
 | |
| 					struct xfs_buftarg, bt_shrinker);
 | |
| 	return list_lru_shrink_count(&btp->bt_lru, sc);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_free_buftarg(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_buftarg	*btp)
 | |
| {
 | |
| 	unregister_shrinker(&btp->bt_shrinker);
 | |
| 	list_lru_destroy(&btp->bt_lru);
 | |
| 
 | |
| 	if (mp->m_flags & XFS_MOUNT_BARRIER)
 | |
| 		xfs_blkdev_issue_flush(btp);
 | |
| 
 | |
| 	kmem_free(btp);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_setsize_buftarg(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	unsigned int		sectorsize)
 | |
| {
 | |
| 	/* Set up metadata sector size info */
 | |
| 	btp->bt_meta_sectorsize = sectorsize;
 | |
| 	btp->bt_meta_sectormask = sectorsize - 1;
 | |
| 
 | |
| 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
 | |
| 		char name[BDEVNAME_SIZE];
 | |
| 
 | |
| 		bdevname(btp->bt_bdev, name);
 | |
| 
 | |
| 		xfs_warn(btp->bt_mount,
 | |
| 			"Cannot set_blocksize to %u on device %s",
 | |
| 			sectorsize, name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Set up device logical sector size mask */
 | |
| 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
 | |
| 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When allocating the initial buffer target we have not yet
 | |
|  * read in the superblock, so don't know what sized sectors
 | |
|  * are being used at this early stage.  Play safe.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_setsize_buftarg_early(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	struct block_device	*bdev)
 | |
| {
 | |
| 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
 | |
| }
 | |
| 
 | |
| xfs_buftarg_t *
 | |
| xfs_alloc_buftarg(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct block_device	*bdev)
 | |
| {
 | |
| 	xfs_buftarg_t		*btp;
 | |
| 
 | |
| 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
 | |
| 
 | |
| 	btp->bt_mount = mp;
 | |
| 	btp->bt_dev =  bdev->bd_dev;
 | |
| 	btp->bt_bdev = bdev;
 | |
| 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
 | |
| 
 | |
| 	if (xfs_setsize_buftarg_early(btp, bdev))
 | |
| 		goto error;
 | |
| 
 | |
| 	if (list_lru_init(&btp->bt_lru))
 | |
| 		goto error;
 | |
| 
 | |
| 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
 | |
| 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
 | |
| 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
 | |
| 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
 | |
| 	register_shrinker(&btp->bt_shrinker);
 | |
| 	return btp;
 | |
| 
 | |
| error:
 | |
| 	kmem_free(btp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a buffer to the delayed write list.
 | |
|  *
 | |
|  * This queues a buffer for writeout if it hasn't already been.  Note that
 | |
|  * neither this routine nor the buffer list submission functions perform
 | |
|  * any internal synchronization.  It is expected that the lists are thread-local
 | |
|  * to the callers.
 | |
|  *
 | |
|  * Returns true if we queued up the buffer, or false if it already had
 | |
|  * been on the buffer list.
 | |
|  */
 | |
| bool
 | |
| xfs_buf_delwri_queue(
 | |
| 	struct xfs_buf		*bp,
 | |
| 	struct list_head	*list)
 | |
| {
 | |
| 	ASSERT(xfs_buf_islocked(bp));
 | |
| 	ASSERT(!(bp->b_flags & XBF_READ));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the buffer is already marked delwri it already is queued up
 | |
| 	 * by someone else for imediate writeout.  Just ignore it in that
 | |
| 	 * case.
 | |
| 	 */
 | |
| 	if (bp->b_flags & _XBF_DELWRI_Q) {
 | |
| 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
 | |
| 
 | |
| 	/*
 | |
| 	 * If a buffer gets written out synchronously or marked stale while it
 | |
| 	 * is on a delwri list we lazily remove it. To do this, the other party
 | |
| 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
 | |
| 	 * It remains referenced and on the list.  In a rare corner case it
 | |
| 	 * might get readded to a delwri list after the synchronous writeout, in
 | |
| 	 * which case we need just need to re-add the flag here.
 | |
| 	 */
 | |
| 	bp->b_flags |= _XBF_DELWRI_Q;
 | |
| 	if (list_empty(&bp->b_list)) {
 | |
| 		atomic_inc(&bp->b_hold);
 | |
| 		list_add_tail(&bp->b_list, list);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare function is more complex than it needs to be because
 | |
|  * the return value is only 32 bits and we are doing comparisons
 | |
|  * on 64 bit values
 | |
|  */
 | |
| static int
 | |
| xfs_buf_cmp(
 | |
| 	void		*priv,
 | |
| 	struct list_head *a,
 | |
| 	struct list_head *b)
 | |
| {
 | |
| 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
 | |
| 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
 | |
| 	xfs_daddr_t		diff;
 | |
| 
 | |
| 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
 | |
| 	if (diff < 0)
 | |
| 		return -1;
 | |
| 	if (diff > 0)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| __xfs_buf_delwri_submit(
 | |
| 	struct list_head	*buffer_list,
 | |
| 	struct list_head	*io_list,
 | |
| 	bool			wait)
 | |
| {
 | |
| 	struct blk_plug		plug;
 | |
| 	struct xfs_buf		*bp, *n;
 | |
| 	int			pinned = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
 | |
| 		if (!wait) {
 | |
| 			if (xfs_buf_ispinned(bp)) {
 | |
| 				pinned++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!xfs_buf_trylock(bp))
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			xfs_buf_lock(bp);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Someone else might have written the buffer synchronously or
 | |
| 		 * marked it stale in the meantime.  In that case only the
 | |
| 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
 | |
| 		 * reference and remove it from the list here.
 | |
| 		 */
 | |
| 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
 | |
| 			list_del_init(&bp->b_list);
 | |
| 			xfs_buf_relse(bp);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		list_move_tail(&bp->b_list, io_list);
 | |
| 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
 | |
| 	}
 | |
| 
 | |
| 	list_sort(NULL, io_list, xfs_buf_cmp);
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	list_for_each_entry_safe(bp, n, io_list, b_list) {
 | |
| 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
 | |
| 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
 | |
| 
 | |
| 		/*
 | |
| 		 * we do all Io submission async. This means if we need to wait
 | |
| 		 * for IO completion we need to take an extra reference so the
 | |
| 		 * buffer is still valid on the other side.
 | |
| 		 */
 | |
| 		if (wait)
 | |
| 			xfs_buf_hold(bp);
 | |
| 		else
 | |
| 			list_del_init(&bp->b_list);
 | |
| 
 | |
| 		xfs_buf_submit(bp);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	return pinned;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out a buffer list asynchronously.
 | |
|  *
 | |
|  * This will take the @buffer_list, write all non-locked and non-pinned buffers
 | |
|  * out and not wait for I/O completion on any of the buffers.  This interface
 | |
|  * is only safely useable for callers that can track I/O completion by higher
 | |
|  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
 | |
|  * function.
 | |
|  */
 | |
| int
 | |
| xfs_buf_delwri_submit_nowait(
 | |
| 	struct list_head	*buffer_list)
 | |
| {
 | |
| 	LIST_HEAD		(io_list);
 | |
| 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out a buffer list synchronously.
 | |
|  *
 | |
|  * This will take the @buffer_list, write all buffers out and wait for I/O
 | |
|  * completion on all of the buffers. @buffer_list is consumed by the function,
 | |
|  * so callers must have some other way of tracking buffers if they require such
 | |
|  * functionality.
 | |
|  */
 | |
| int
 | |
| xfs_buf_delwri_submit(
 | |
| 	struct list_head	*buffer_list)
 | |
| {
 | |
| 	LIST_HEAD		(io_list);
 | |
| 	int			error = 0, error2;
 | |
| 	struct xfs_buf		*bp;
 | |
| 
 | |
| 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
 | |
| 
 | |
| 	/* Wait for IO to complete. */
 | |
| 	while (!list_empty(&io_list)) {
 | |
| 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
 | |
| 
 | |
| 		list_del_init(&bp->b_list);
 | |
| 
 | |
| 		/* locking the buffer will wait for async IO completion. */
 | |
| 		xfs_buf_lock(bp);
 | |
| 		error2 = bp->b_error;
 | |
| 		xfs_buf_relse(bp);
 | |
| 		if (!error)
 | |
| 			error = error2;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int __init
 | |
| xfs_buf_init(void)
 | |
| {
 | |
| 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
 | |
| 						KM_ZONE_HWALIGN, NULL);
 | |
| 	if (!xfs_buf_zone)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_terminate(void)
 | |
| {
 | |
| 	kmem_zone_destroy(xfs_buf_zone);
 | |
| }
 |