 b659ef0277
			
		
	
	
	b659ef0277
	
	
	
		
			
			Commit3a8b36f378("Btrfs: fix data loss in the fast fsync path") added a performance regression for that causes an unnecessary sync of the log trees (fs/subvol and root log trees) when 2 consecutive fsyncs are done against a file, without no writes or any metadata updates to the inode in between them and if a transaction is committed before the second fsync is called. Huang Ying reported this to lkml (https://lkml.org/lkml/2015/3/18/99) after a test sysbench test that measured a -62% decrease of file io requests per second for that tests' workload. The test is: echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor echo performance > /sys/devices/system/cpu/cpu1/cpufreq/scaling_governor echo performance > /sys/devices/system/cpu/cpu2/cpufreq/scaling_governor echo performance > /sys/devices/system/cpu/cpu3/cpufreq/scaling_governor mkfs -t btrfs /dev/sda2 mount -t btrfs /dev/sda2 /fs/sda2 cd /fs/sda2 for ((i = 0; i < 1024; i++)); do fallocate -l 67108864 testfile.$i; done sysbench --test=fileio --max-requests=0 --num-threads=4 --max-time=600 \ --file-test-mode=rndwr --file-total-size=68719476736 --file-io-mode=sync \ --file-num=1024 run A test on kvm guest, running a debug kernel gave me the following results: Without3a8b36f378: 16.01 reqs/sec With3a8b36f378: 3.39 reqs/sec With3a8b36f378and this patch: 16.04 reqs/sec Reported-by: Huang Ying <ying.huang@intel.com> Tested-by: Huang, Ying <ying.huang@intel.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
		
			
				
	
	
		
			2863 lines
		
	
	
	
		
			76 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2863 lines
		
	
	
	
		
			76 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/falloc.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/statfs.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/btrfs.h>
 | |
| #include <linux/uio.h>
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "print-tree.h"
 | |
| #include "tree-log.h"
 | |
| #include "locking.h"
 | |
| #include "volumes.h"
 | |
| #include "qgroup.h"
 | |
| 
 | |
| static struct kmem_cache *btrfs_inode_defrag_cachep;
 | |
| /*
 | |
|  * when auto defrag is enabled we
 | |
|  * queue up these defrag structs to remember which
 | |
|  * inodes need defragging passes
 | |
|  */
 | |
| struct inode_defrag {
 | |
| 	struct rb_node rb_node;
 | |
| 	/* objectid */
 | |
| 	u64 ino;
 | |
| 	/*
 | |
| 	 * transid where the defrag was added, we search for
 | |
| 	 * extents newer than this
 | |
| 	 */
 | |
| 	u64 transid;
 | |
| 
 | |
| 	/* root objectid */
 | |
| 	u64 root;
 | |
| 
 | |
| 	/* last offset we were able to defrag */
 | |
| 	u64 last_offset;
 | |
| 
 | |
| 	/* if we've wrapped around back to zero once already */
 | |
| 	int cycled;
 | |
| };
 | |
| 
 | |
| static int __compare_inode_defrag(struct inode_defrag *defrag1,
 | |
| 				  struct inode_defrag *defrag2)
 | |
| {
 | |
| 	if (defrag1->root > defrag2->root)
 | |
| 		return 1;
 | |
| 	else if (defrag1->root < defrag2->root)
 | |
| 		return -1;
 | |
| 	else if (defrag1->ino > defrag2->ino)
 | |
| 		return 1;
 | |
| 	else if (defrag1->ino < defrag2->ino)
 | |
| 		return -1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /* pop a record for an inode into the defrag tree.  The lock
 | |
|  * must be held already
 | |
|  *
 | |
|  * If you're inserting a record for an older transid than an
 | |
|  * existing record, the transid already in the tree is lowered
 | |
|  *
 | |
|  * If an existing record is found the defrag item you
 | |
|  * pass in is freed
 | |
|  */
 | |
| static int __btrfs_add_inode_defrag(struct inode *inode,
 | |
| 				    struct inode_defrag *defrag)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct inode_defrag *entry;
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	p = &root->fs_info->defrag_inodes.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct inode_defrag, rb_node);
 | |
| 
 | |
| 		ret = __compare_inode_defrag(defrag, entry);
 | |
| 		if (ret < 0)
 | |
| 			p = &parent->rb_left;
 | |
| 		else if (ret > 0)
 | |
| 			p = &parent->rb_right;
 | |
| 		else {
 | |
| 			/* if we're reinserting an entry for
 | |
| 			 * an old defrag run, make sure to
 | |
| 			 * lower the transid of our existing record
 | |
| 			 */
 | |
| 			if (defrag->transid < entry->transid)
 | |
| 				entry->transid = defrag->transid;
 | |
| 			if (defrag->last_offset > entry->last_offset)
 | |
| 				entry->last_offset = defrag->last_offset;
 | |
| 			return -EEXIST;
 | |
| 		}
 | |
| 	}
 | |
| 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 | |
| 	rb_link_node(&defrag->rb_node, parent, p);
 | |
| 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int __need_auto_defrag(struct btrfs_root *root)
 | |
| {
 | |
| 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_fs_closing(root->fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * insert a defrag record for this inode if auto defrag is
 | |
|  * enabled
 | |
|  */
 | |
| int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 | |
| 			   struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct inode_defrag *defrag;
 | |
| 	u64 transid;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!__need_auto_defrag(root))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (trans)
 | |
| 		transid = trans->transid;
 | |
| 	else
 | |
| 		transid = BTRFS_I(inode)->root->last_trans;
 | |
| 
 | |
| 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 | |
| 	if (!defrag)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	defrag->ino = btrfs_ino(inode);
 | |
| 	defrag->transid = transid;
 | |
| 	defrag->root = root->root_key.objectid;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->defrag_inodes_lock);
 | |
| 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
 | |
| 		/*
 | |
| 		 * If we set IN_DEFRAG flag and evict the inode from memory,
 | |
| 		 * and then re-read this inode, this new inode doesn't have
 | |
| 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 | |
| 		 */
 | |
| 		ret = __btrfs_add_inode_defrag(inode, defrag);
 | |
| 		if (ret)
 | |
| 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 	} else {
 | |
| 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->defrag_inodes_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Requeue the defrag object. If there is a defrag object that points to
 | |
|  * the same inode in the tree, we will merge them together (by
 | |
|  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 | |
|  */
 | |
| static void btrfs_requeue_inode_defrag(struct inode *inode,
 | |
| 				       struct inode_defrag *defrag)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!__need_auto_defrag(root))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we don't check the IN_DEFRAG flag, because we need merge
 | |
| 	 * them together.
 | |
| 	 */
 | |
| 	spin_lock(&root->fs_info->defrag_inodes_lock);
 | |
| 	ret = __btrfs_add_inode_defrag(inode, defrag);
 | |
| 	spin_unlock(&root->fs_info->defrag_inodes_lock);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	return;
 | |
| out:
 | |
| 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pick the defragable inode that we want, if it doesn't exist, we will get
 | |
|  * the next one.
 | |
|  */
 | |
| static struct inode_defrag *
 | |
| btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 | |
| {
 | |
| 	struct inode_defrag *entry = NULL;
 | |
| 	struct inode_defrag tmp;
 | |
| 	struct rb_node *p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	tmp.ino = ino;
 | |
| 	tmp.root = root;
 | |
| 
 | |
| 	spin_lock(&fs_info->defrag_inodes_lock);
 | |
| 	p = fs_info->defrag_inodes.rb_node;
 | |
| 	while (p) {
 | |
| 		parent = p;
 | |
| 		entry = rb_entry(parent, struct inode_defrag, rb_node);
 | |
| 
 | |
| 		ret = __compare_inode_defrag(&tmp, entry);
 | |
| 		if (ret < 0)
 | |
| 			p = parent->rb_left;
 | |
| 		else if (ret > 0)
 | |
| 			p = parent->rb_right;
 | |
| 		else
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 | |
| 		parent = rb_next(parent);
 | |
| 		if (parent)
 | |
| 			entry = rb_entry(parent, struct inode_defrag, rb_node);
 | |
| 		else
 | |
| 			entry = NULL;
 | |
| 	}
 | |
| out:
 | |
| 	if (entry)
 | |
| 		rb_erase(parent, &fs_info->defrag_inodes);
 | |
| 	spin_unlock(&fs_info->defrag_inodes_lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct inode_defrag *defrag;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	spin_lock(&fs_info->defrag_inodes_lock);
 | |
| 	node = rb_first(&fs_info->defrag_inodes);
 | |
| 	while (node) {
 | |
| 		rb_erase(node, &fs_info->defrag_inodes);
 | |
| 		defrag = rb_entry(node, struct inode_defrag, rb_node);
 | |
| 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 
 | |
| 		cond_resched_lock(&fs_info->defrag_inodes_lock);
 | |
| 
 | |
| 		node = rb_first(&fs_info->defrag_inodes);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->defrag_inodes_lock);
 | |
| }
 | |
| 
 | |
| #define BTRFS_DEFRAG_BATCH	1024
 | |
| 
 | |
| static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 | |
| 				    struct inode_defrag *defrag)
 | |
| {
 | |
| 	struct btrfs_root *inode_root;
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_ioctl_defrag_range_args range;
 | |
| 	int num_defrag;
 | |
| 	int index;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* get the inode */
 | |
| 	key.objectid = defrag->root;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	index = srcu_read_lock(&fs_info->subvol_srcu);
 | |
| 
 | |
| 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 | |
| 	if (IS_ERR(inode_root)) {
 | |
| 		ret = PTR_ERR(inode_root);
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = defrag->ino;
 | |
| 	key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		ret = PTR_ERR(inode);
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 	srcu_read_unlock(&fs_info->subvol_srcu, index);
 | |
| 
 | |
| 	/* do a chunk of defrag */
 | |
| 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 | |
| 	memset(&range, 0, sizeof(range));
 | |
| 	range.len = (u64)-1;
 | |
| 	range.start = defrag->last_offset;
 | |
| 
 | |
| 	sb_start_write(fs_info->sb);
 | |
| 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 | |
| 				       BTRFS_DEFRAG_BATCH);
 | |
| 	sb_end_write(fs_info->sb);
 | |
| 	/*
 | |
| 	 * if we filled the whole defrag batch, there
 | |
| 	 * must be more work to do.  Queue this defrag
 | |
| 	 * again
 | |
| 	 */
 | |
| 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
 | |
| 		defrag->last_offset = range.start;
 | |
| 		btrfs_requeue_inode_defrag(inode, defrag);
 | |
| 	} else if (defrag->last_offset && !defrag->cycled) {
 | |
| 		/*
 | |
| 		 * we didn't fill our defrag batch, but
 | |
| 		 * we didn't start at zero.  Make sure we loop
 | |
| 		 * around to the start of the file.
 | |
| 		 */
 | |
| 		defrag->last_offset = 0;
 | |
| 		defrag->cycled = 1;
 | |
| 		btrfs_requeue_inode_defrag(inode, defrag);
 | |
| 	} else {
 | |
| 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 	}
 | |
| 
 | |
| 	iput(inode);
 | |
| 	return 0;
 | |
| cleanup:
 | |
| 	srcu_read_unlock(&fs_info->subvol_srcu, index);
 | |
| 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * run through the list of inodes in the FS that need
 | |
|  * defragging
 | |
|  */
 | |
| int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct inode_defrag *defrag;
 | |
| 	u64 first_ino = 0;
 | |
| 	u64 root_objectid = 0;
 | |
| 
 | |
| 	atomic_inc(&fs_info->defrag_running);
 | |
| 	while (1) {
 | |
| 		/* Pause the auto defragger. */
 | |
| 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 | |
| 			     &fs_info->fs_state))
 | |
| 			break;
 | |
| 
 | |
| 		if (!__need_auto_defrag(fs_info->tree_root))
 | |
| 			break;
 | |
| 
 | |
| 		/* find an inode to defrag */
 | |
| 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 | |
| 						 first_ino);
 | |
| 		if (!defrag) {
 | |
| 			if (root_objectid || first_ino) {
 | |
| 				root_objectid = 0;
 | |
| 				first_ino = 0;
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		first_ino = defrag->ino + 1;
 | |
| 		root_objectid = defrag->root;
 | |
| 
 | |
| 		__btrfs_run_defrag_inode(fs_info, defrag);
 | |
| 	}
 | |
| 	atomic_dec(&fs_info->defrag_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * during unmount, we use the transaction_wait queue to
 | |
| 	 * wait for the defragger to stop
 | |
| 	 */
 | |
| 	wake_up(&fs_info->transaction_wait);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* simple helper to fault in pages and copy.  This should go away
 | |
|  * and be replaced with calls into generic code.
 | |
|  */
 | |
| static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
 | |
| 					 size_t write_bytes,
 | |
| 					 struct page **prepared_pages,
 | |
| 					 struct iov_iter *i)
 | |
| {
 | |
| 	size_t copied = 0;
 | |
| 	size_t total_copied = 0;
 | |
| 	int pg = 0;
 | |
| 	int offset = pos & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 	while (write_bytes > 0) {
 | |
| 		size_t count = min_t(size_t,
 | |
| 				     PAGE_CACHE_SIZE - offset, write_bytes);
 | |
| 		struct page *page = prepared_pages[pg];
 | |
| 		/*
 | |
| 		 * Copy data from userspace to the current page
 | |
| 		 */
 | |
| 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 | |
| 
 | |
| 		/* Flush processor's dcache for this page */
 | |
| 		flush_dcache_page(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * if we get a partial write, we can end up with
 | |
| 		 * partially up to date pages.  These add
 | |
| 		 * a lot of complexity, so make sure they don't
 | |
| 		 * happen by forcing this copy to be retried.
 | |
| 		 *
 | |
| 		 * The rest of the btrfs_file_write code will fall
 | |
| 		 * back to page at a time copies after we return 0.
 | |
| 		 */
 | |
| 		if (!PageUptodate(page) && copied < count)
 | |
| 			copied = 0;
 | |
| 
 | |
| 		iov_iter_advance(i, copied);
 | |
| 		write_bytes -= copied;
 | |
| 		total_copied += copied;
 | |
| 
 | |
| 		/* Return to btrfs_file_write_iter to fault page */
 | |
| 		if (unlikely(copied == 0))
 | |
| 			break;
 | |
| 
 | |
| 		if (copied < PAGE_CACHE_SIZE - offset) {
 | |
| 			offset += copied;
 | |
| 		} else {
 | |
| 			pg++;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return total_copied;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unlocks pages after btrfs_file_write is done with them
 | |
|  */
 | |
| static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 | |
| {
 | |
| 	size_t i;
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		/* page checked is some magic around finding pages that
 | |
| 		 * have been modified without going through btrfs_set_page_dirty
 | |
| 		 * clear it here. There should be no need to mark the pages
 | |
| 		 * accessed as prepare_pages should have marked them accessed
 | |
| 		 * in prepare_pages via find_or_create_page()
 | |
| 		 */
 | |
| 		ClearPageChecked(pages[i]);
 | |
| 		unlock_page(pages[i]);
 | |
| 		page_cache_release(pages[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * after copy_from_user, pages need to be dirtied and we need to make
 | |
|  * sure holes are created between the current EOF and the start of
 | |
|  * any next extents (if required).
 | |
|  *
 | |
|  * this also makes the decision about creating an inline extent vs
 | |
|  * doing real data extents, marking pages dirty and delalloc as required.
 | |
|  */
 | |
| int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
 | |
| 			     struct page **pages, size_t num_pages,
 | |
| 			     loff_t pos, size_t write_bytes,
 | |
| 			     struct extent_state **cached)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	int i;
 | |
| 	u64 num_bytes;
 | |
| 	u64 start_pos;
 | |
| 	u64 end_of_last_block;
 | |
| 	u64 end_pos = pos + write_bytes;
 | |
| 	loff_t isize = i_size_read(inode);
 | |
| 
 | |
| 	start_pos = pos & ~((u64)root->sectorsize - 1);
 | |
| 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
 | |
| 
 | |
| 	end_of_last_block = start_pos + num_bytes - 1;
 | |
| 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 | |
| 					cached);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		struct page *p = pages[i];
 | |
| 		SetPageUptodate(p);
 | |
| 		ClearPageChecked(p);
 | |
| 		set_page_dirty(p);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we've only changed i_size in ram, and we haven't updated
 | |
| 	 * the disk i_size.  There is no need to log the inode
 | |
| 	 * at this time.
 | |
| 	 */
 | |
| 	if (end_pos > isize)
 | |
| 		i_size_write(inode, end_pos);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this drops all the extents in the cache that intersect the range
 | |
|  * [start, end].  Existing extents are split as required.
 | |
|  */
 | |
| void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
 | |
| 			     int skip_pinned)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct extent_map *split = NULL;
 | |
| 	struct extent_map *split2 = NULL;
 | |
| 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 	u64 len = end - start + 1;
 | |
| 	u64 gen;
 | |
| 	int ret;
 | |
| 	int testend = 1;
 | |
| 	unsigned long flags;
 | |
| 	int compressed = 0;
 | |
| 	bool modified;
 | |
| 
 | |
| 	WARN_ON(end < start);
 | |
| 	if (end == (u64)-1) {
 | |
| 		len = (u64)-1;
 | |
| 		testend = 0;
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		int no_splits = 0;
 | |
| 
 | |
| 		modified = false;
 | |
| 		if (!split)
 | |
| 			split = alloc_extent_map();
 | |
| 		if (!split2)
 | |
| 			split2 = alloc_extent_map();
 | |
| 		if (!split || !split2)
 | |
| 			no_splits = 1;
 | |
| 
 | |
| 		write_lock(&em_tree->lock);
 | |
| 		em = lookup_extent_mapping(em_tree, start, len);
 | |
| 		if (!em) {
 | |
| 			write_unlock(&em_tree->lock);
 | |
| 			break;
 | |
| 		}
 | |
| 		flags = em->flags;
 | |
| 		gen = em->generation;
 | |
| 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 | |
| 			if (testend && em->start + em->len >= start + len) {
 | |
| 				free_extent_map(em);
 | |
| 				write_unlock(&em_tree->lock);
 | |
| 				break;
 | |
| 			}
 | |
| 			start = em->start + em->len;
 | |
| 			if (testend)
 | |
| 				len = start + len - (em->start + em->len);
 | |
| 			free_extent_map(em);
 | |
| 			write_unlock(&em_tree->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 | |
| 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 | |
| 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
 | |
| 		modified = !list_empty(&em->list);
 | |
| 		if (no_splits)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (em->start < start) {
 | |
| 			split->start = em->start;
 | |
| 			split->len = start - em->start;
 | |
| 
 | |
| 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 | |
| 				split->orig_start = em->orig_start;
 | |
| 				split->block_start = em->block_start;
 | |
| 
 | |
| 				if (compressed)
 | |
| 					split->block_len = em->block_len;
 | |
| 				else
 | |
| 					split->block_len = split->len;
 | |
| 				split->orig_block_len = max(split->block_len,
 | |
| 						em->orig_block_len);
 | |
| 				split->ram_bytes = em->ram_bytes;
 | |
| 			} else {
 | |
| 				split->orig_start = split->start;
 | |
| 				split->block_len = 0;
 | |
| 				split->block_start = em->block_start;
 | |
| 				split->orig_block_len = 0;
 | |
| 				split->ram_bytes = split->len;
 | |
| 			}
 | |
| 
 | |
| 			split->generation = gen;
 | |
| 			split->bdev = em->bdev;
 | |
| 			split->flags = flags;
 | |
| 			split->compress_type = em->compress_type;
 | |
| 			replace_extent_mapping(em_tree, em, split, modified);
 | |
| 			free_extent_map(split);
 | |
| 			split = split2;
 | |
| 			split2 = NULL;
 | |
| 		}
 | |
| 		if (testend && em->start + em->len > start + len) {
 | |
| 			u64 diff = start + len - em->start;
 | |
| 
 | |
| 			split->start = start + len;
 | |
| 			split->len = em->start + em->len - (start + len);
 | |
| 			split->bdev = em->bdev;
 | |
| 			split->flags = flags;
 | |
| 			split->compress_type = em->compress_type;
 | |
| 			split->generation = gen;
 | |
| 
 | |
| 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 | |
| 				split->orig_block_len = max(em->block_len,
 | |
| 						    em->orig_block_len);
 | |
| 
 | |
| 				split->ram_bytes = em->ram_bytes;
 | |
| 				if (compressed) {
 | |
| 					split->block_len = em->block_len;
 | |
| 					split->block_start = em->block_start;
 | |
| 					split->orig_start = em->orig_start;
 | |
| 				} else {
 | |
| 					split->block_len = split->len;
 | |
| 					split->block_start = em->block_start
 | |
| 						+ diff;
 | |
| 					split->orig_start = em->orig_start;
 | |
| 				}
 | |
| 			} else {
 | |
| 				split->ram_bytes = split->len;
 | |
| 				split->orig_start = split->start;
 | |
| 				split->block_len = 0;
 | |
| 				split->block_start = em->block_start;
 | |
| 				split->orig_block_len = 0;
 | |
| 			}
 | |
| 
 | |
| 			if (extent_map_in_tree(em)) {
 | |
| 				replace_extent_mapping(em_tree, em, split,
 | |
| 						       modified);
 | |
| 			} else {
 | |
| 				ret = add_extent_mapping(em_tree, split,
 | |
| 							 modified);
 | |
| 				ASSERT(ret == 0); /* Logic error */
 | |
| 			}
 | |
| 			free_extent_map(split);
 | |
| 			split = NULL;
 | |
| 		}
 | |
| next:
 | |
| 		if (extent_map_in_tree(em))
 | |
| 			remove_extent_mapping(em_tree, em);
 | |
| 		write_unlock(&em_tree->lock);
 | |
| 
 | |
| 		/* once for us */
 | |
| 		free_extent_map(em);
 | |
| 		/* once for the tree*/
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	if (split)
 | |
| 		free_extent_map(split);
 | |
| 	if (split2)
 | |
| 		free_extent_map(split2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is very complex, but the basic idea is to drop all extents
 | |
|  * in the range start - end.  hint_block is filled in with a block number
 | |
|  * that would be a good hint to the block allocator for this file.
 | |
|  *
 | |
|  * If an extent intersects the range but is not entirely inside the range
 | |
|  * it is either truncated or split.  Anything entirely inside the range
 | |
|  * is deleted from the tree.
 | |
|  */
 | |
| int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_root *root, struct inode *inode,
 | |
| 			 struct btrfs_path *path, u64 start, u64 end,
 | |
| 			 u64 *drop_end, int drop_cache,
 | |
| 			 int replace_extent,
 | |
| 			 u32 extent_item_size,
 | |
| 			 int *key_inserted)
 | |
| {
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key new_key;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 	u64 search_start = start;
 | |
| 	u64 disk_bytenr = 0;
 | |
| 	u64 num_bytes = 0;
 | |
| 	u64 extent_offset = 0;
 | |
| 	u64 extent_end = 0;
 | |
| 	int del_nr = 0;
 | |
| 	int del_slot = 0;
 | |
| 	int extent_type;
 | |
| 	int recow;
 | |
| 	int ret;
 | |
| 	int modify_tree = -1;
 | |
| 	int update_refs;
 | |
| 	int found = 0;
 | |
| 	int leafs_visited = 0;
 | |
| 
 | |
| 	if (drop_cache)
 | |
| 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
 | |
| 
 | |
| 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 | |
| 		modify_tree = 0;
 | |
| 
 | |
| 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 | |
| 		       root == root->fs_info->tree_root);
 | |
| 	while (1) {
 | |
| 		recow = 0;
 | |
| 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
 | |
| 					       search_start, modify_tree);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 | |
| 			leaf = path->nodes[0];
 | |
| 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 | |
| 			if (key.objectid == ino &&
 | |
| 			    key.type == BTRFS_EXTENT_DATA_KEY)
 | |
| 				path->slots[0]--;
 | |
| 		}
 | |
| 		ret = 0;
 | |
| 		leafs_visited++;
 | |
| next_slot:
 | |
| 		leaf = path->nodes[0];
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			BUG_ON(del_nr > 0);
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret < 0)
 | |
| 				break;
 | |
| 			if (ret > 0) {
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			leafs_visited++;
 | |
| 			leaf = path->nodes[0];
 | |
| 			recow = 1;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid > ino ||
 | |
| 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 | |
| 			break;
 | |
| 
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		extent_type = btrfs_file_extent_type(leaf, fi);
 | |
| 
 | |
| 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | |
| 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | |
| 			extent_offset = btrfs_file_extent_offset(leaf, fi);
 | |
| 			extent_end = key.offset +
 | |
| 				btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 			extent_end = key.offset +
 | |
| 				btrfs_file_extent_inline_len(leaf,
 | |
| 						     path->slots[0], fi);
 | |
| 		} else {
 | |
| 			WARN_ON(1);
 | |
| 			extent_end = search_start;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't skip extent items representing 0 byte lengths. They
 | |
| 		 * used to be created (bug) if while punching holes we hit
 | |
| 		 * -ENOSPC condition. So if we find one here, just ensure we
 | |
| 		 * delete it, otherwise we would insert a new file extent item
 | |
| 		 * with the same key (offset) as that 0 bytes length file
 | |
| 		 * extent item in the call to setup_items_for_insert() later
 | |
| 		 * in this function.
 | |
| 		 */
 | |
| 		if (extent_end == key.offset && extent_end >= search_start)
 | |
| 			goto delete_extent_item;
 | |
| 
 | |
| 		if (extent_end <= search_start) {
 | |
| 			path->slots[0]++;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		found = 1;
 | |
| 		search_start = max(key.offset, start);
 | |
| 		if (recow || !modify_tree) {
 | |
| 			modify_tree = -1;
 | |
| 			btrfs_release_path(path);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 *     | - range to drop - |
 | |
| 		 *  | -------- extent -------- |
 | |
| 		 */
 | |
| 		if (start > key.offset && end < extent_end) {
 | |
| 			BUG_ON(del_nr > 0);
 | |
| 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			memcpy(&new_key, &key, sizeof(new_key));
 | |
| 			new_key.offset = start;
 | |
| 			ret = btrfs_duplicate_item(trans, root, path,
 | |
| 						   &new_key);
 | |
| 			if (ret == -EAGAIN) {
 | |
| 				btrfs_release_path(path);
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (ret < 0)
 | |
| 				break;
 | |
| 
 | |
| 			leaf = path->nodes[0];
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							start - key.offset);
 | |
| 
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 
 | |
| 			extent_offset += start - key.offset;
 | |
| 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							extent_end - start);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 			if (update_refs && disk_bytenr > 0) {
 | |
| 				ret = btrfs_inc_extent_ref(trans, root,
 | |
| 						disk_bytenr, num_bytes, 0,
 | |
| 						root->root_key.objectid,
 | |
| 						new_key.objectid,
 | |
| 						start - extent_offset, 1);
 | |
| 				BUG_ON(ret); /* -ENOMEM */
 | |
| 			}
 | |
| 			key.offset = start;
 | |
| 		}
 | |
| 		/*
 | |
| 		 *  | ---- range to drop ----- |
 | |
| 		 *      | -------- extent -------- |
 | |
| 		 */
 | |
| 		if (start <= key.offset && end < extent_end) {
 | |
| 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			memcpy(&new_key, &key, sizeof(new_key));
 | |
| 			new_key.offset = end;
 | |
| 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 | |
| 
 | |
| 			extent_offset += end - key.offset;
 | |
| 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							extent_end - end);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 			if (update_refs && disk_bytenr > 0)
 | |
| 				inode_sub_bytes(inode, end - key.offset);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		search_start = extent_end;
 | |
| 		/*
 | |
| 		 *       | ---- range to drop ----- |
 | |
| 		 *  | -------- extent -------- |
 | |
| 		 */
 | |
| 		if (start > key.offset && end >= extent_end) {
 | |
| 			BUG_ON(del_nr > 0);
 | |
| 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							start - key.offset);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 			if (update_refs && disk_bytenr > 0)
 | |
| 				inode_sub_bytes(inode, extent_end - start);
 | |
| 			if (end == extent_end)
 | |
| 				break;
 | |
| 
 | |
| 			path->slots[0]++;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 *  | ---- range to drop ----- |
 | |
| 		 *    | ------ extent ------ |
 | |
| 		 */
 | |
| 		if (start <= key.offset && end >= extent_end) {
 | |
| delete_extent_item:
 | |
| 			if (del_nr == 0) {
 | |
| 				del_slot = path->slots[0];
 | |
| 				del_nr = 1;
 | |
| 			} else {
 | |
| 				BUG_ON(del_slot + del_nr != path->slots[0]);
 | |
| 				del_nr++;
 | |
| 			}
 | |
| 
 | |
| 			if (update_refs &&
 | |
| 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 				inode_sub_bytes(inode,
 | |
| 						extent_end - key.offset);
 | |
| 				extent_end = ALIGN(extent_end,
 | |
| 						   root->sectorsize);
 | |
| 			} else if (update_refs && disk_bytenr > 0) {
 | |
| 				ret = btrfs_free_extent(trans, root,
 | |
| 						disk_bytenr, num_bytes, 0,
 | |
| 						root->root_key.objectid,
 | |
| 						key.objectid, key.offset -
 | |
| 						extent_offset, 0);
 | |
| 				BUG_ON(ret); /* -ENOMEM */
 | |
| 				inode_sub_bytes(inode,
 | |
| 						extent_end - key.offset);
 | |
| 			}
 | |
| 
 | |
| 			if (end == extent_end)
 | |
| 				break;
 | |
| 
 | |
| 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 | |
| 				path->slots[0]++;
 | |
| 				goto next_slot;
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_del_items(trans, root, path, del_slot,
 | |
| 					      del_nr);
 | |
| 			if (ret) {
 | |
| 				btrfs_abort_transaction(trans, root, ret);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			del_nr = 0;
 | |
| 			del_slot = 0;
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	if (!ret && del_nr > 0) {
 | |
| 		/*
 | |
| 		 * Set path->slots[0] to first slot, so that after the delete
 | |
| 		 * if items are move off from our leaf to its immediate left or
 | |
| 		 * right neighbor leafs, we end up with a correct and adjusted
 | |
| 		 * path->slots[0] for our insertion (if replace_extent != 0).
 | |
| 		 */
 | |
| 		path->slots[0] = del_slot;
 | |
| 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 | |
| 		if (ret)
 | |
| 			btrfs_abort_transaction(trans, root, ret);
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	/*
 | |
| 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
 | |
| 	 * which case it unlocked our path, so check path->locks[0] matches a
 | |
| 	 * write lock.
 | |
| 	 */
 | |
| 	if (!ret && replace_extent && leafs_visited == 1 &&
 | |
| 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
 | |
| 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
 | |
| 	    btrfs_leaf_free_space(root, leaf) >=
 | |
| 	    sizeof(struct btrfs_item) + extent_item_size) {
 | |
| 
 | |
| 		key.objectid = ino;
 | |
| 		key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 		key.offset = start;
 | |
| 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
 | |
| 			struct btrfs_key slot_key;
 | |
| 
 | |
| 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
 | |
| 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
 | |
| 				path->slots[0]++;
 | |
| 		}
 | |
| 		setup_items_for_insert(root, path, &key,
 | |
| 				       &extent_item_size,
 | |
| 				       extent_item_size,
 | |
| 				       sizeof(struct btrfs_item) +
 | |
| 				       extent_item_size, 1);
 | |
| 		*key_inserted = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!replace_extent || !(*key_inserted))
 | |
| 		btrfs_release_path(path);
 | |
| 	if (drop_end)
 | |
| 		*drop_end = found ? min(end, extent_end) : end;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 | |
| 		       struct btrfs_root *root, struct inode *inode, u64 start,
 | |
| 		       u64 end, int drop_cache)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
 | |
| 				   drop_cache, 0, 0, NULL);
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int extent_mergeable(struct extent_buffer *leaf, int slot,
 | |
| 			    u64 objectid, u64 bytenr, u64 orig_offset,
 | |
| 			    u64 *start, u64 *end)
 | |
| {
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 extent_end;
 | |
| 
 | |
| 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 | |
| 		return 0;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 		return 0;
 | |
| 
 | |
| 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | |
| 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
 | |
| 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
 | |
| 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
 | |
| 	    btrfs_file_extent_compression(leaf, fi) ||
 | |
| 	    btrfs_file_extent_encryption(leaf, fi) ||
 | |
| 	    btrfs_file_extent_other_encoding(leaf, fi))
 | |
| 		return 0;
 | |
| 
 | |
| 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	*start = key.offset;
 | |
| 	*end = extent_end;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark extent in the range start - end as written.
 | |
|  *
 | |
|  * This changes extent type from 'pre-allocated' to 'regular'. If only
 | |
|  * part of extent is marked as written, the extent will be split into
 | |
|  * two or three.
 | |
|  */
 | |
| int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
 | |
| 			      struct inode *inode, u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key new_key;
 | |
| 	u64 bytenr;
 | |
| 	u64 num_bytes;
 | |
| 	u64 extent_end;
 | |
| 	u64 orig_offset;
 | |
| 	u64 other_start;
 | |
| 	u64 other_end;
 | |
| 	u64 split;
 | |
| 	int del_nr = 0;
 | |
| 	int del_slot = 0;
 | |
| 	int recow;
 | |
| 	int ret;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| again:
 | |
| 	recow = 0;
 | |
| 	split = start;
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = split;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0 && path->slots[0] > 0)
 | |
| 		path->slots[0]--;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
 | |
| 	fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 			    struct btrfs_file_extent_item);
 | |
| 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
 | |
| 	       BTRFS_FILE_EXTENT_PREALLOC);
 | |
| 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 | |
| 	BUG_ON(key.offset > start || extent_end < end);
 | |
| 
 | |
| 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 | |
| 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 | |
| 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
 | |
| 	memcpy(&new_key, &key, sizeof(new_key));
 | |
| 
 | |
| 	if (start == key.offset && end < extent_end) {
 | |
| 		other_start = 0;
 | |
| 		other_end = start;
 | |
| 		if (extent_mergeable(leaf, path->slots[0] - 1,
 | |
| 				     ino, bytenr, orig_offset,
 | |
| 				     &other_start, &other_end)) {
 | |
| 			new_key.offset = end;
 | |
| 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							extent_end - end);
 | |
| 			btrfs_set_file_extent_offset(leaf, fi,
 | |
| 						     end - orig_offset);
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							end - other_start);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (start > key.offset && end == extent_end) {
 | |
| 		other_start = end;
 | |
| 		other_end = 0;
 | |
| 		if (extent_mergeable(leaf, path->slots[0] + 1,
 | |
| 				     ino, bytenr, orig_offset,
 | |
| 				     &other_start, &other_end)) {
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							start - key.offset);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			path->slots[0]++;
 | |
| 			new_key.offset = start;
 | |
| 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
 | |
| 
 | |
| 			fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					    struct btrfs_file_extent_item);
 | |
| 			btrfs_set_file_extent_generation(leaf, fi,
 | |
| 							 trans->transid);
 | |
| 			btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 							other_end - start);
 | |
| 			btrfs_set_file_extent_offset(leaf, fi,
 | |
| 						     start - orig_offset);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (start > key.offset || end < extent_end) {
 | |
| 		if (key.offset == start)
 | |
| 			split = end;
 | |
| 
 | |
| 		new_key.offset = split;
 | |
| 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
 | |
| 		if (ret == -EAGAIN) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, root, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 						split - key.offset);
 | |
| 
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 						extent_end - split);
 | |
| 		btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
 | |
| 					   root->root_key.objectid,
 | |
| 					   ino, orig_offset, 1);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 		if (split == start) {
 | |
| 			key.offset = start;
 | |
| 		} else {
 | |
| 			BUG_ON(start != key.offset);
 | |
| 			path->slots[0]--;
 | |
| 			extent_end = end;
 | |
| 		}
 | |
| 		recow = 1;
 | |
| 	}
 | |
| 
 | |
| 	other_start = end;
 | |
| 	other_end = 0;
 | |
| 	if (extent_mergeable(leaf, path->slots[0] + 1,
 | |
| 			     ino, bytenr, orig_offset,
 | |
| 			     &other_start, &other_end)) {
 | |
| 		if (recow) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		extent_end = other_end;
 | |
| 		del_slot = path->slots[0] + 1;
 | |
| 		del_nr++;
 | |
| 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
 | |
| 					0, root->root_key.objectid,
 | |
| 					ino, orig_offset, 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 	other_start = 0;
 | |
| 	other_end = start;
 | |
| 	if (extent_mergeable(leaf, path->slots[0] - 1,
 | |
| 			     ino, bytenr, orig_offset,
 | |
| 			     &other_start, &other_end)) {
 | |
| 		if (recow) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		key.offset = other_start;
 | |
| 		del_slot = path->slots[0];
 | |
| 		del_nr++;
 | |
| 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
 | |
| 					0, root->root_key.objectid,
 | |
| 					ino, orig_offset, 0);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 	if (del_nr == 0) {
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 			   struct btrfs_file_extent_item);
 | |
| 		btrfs_set_file_extent_type(leaf, fi,
 | |
| 					   BTRFS_FILE_EXTENT_REG);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_mark_buffer_dirty(leaf);
 | |
| 	} else {
 | |
| 		fi = btrfs_item_ptr(leaf, del_slot - 1,
 | |
| 			   struct btrfs_file_extent_item);
 | |
| 		btrfs_set_file_extent_type(leaf, fi,
 | |
| 					   BTRFS_FILE_EXTENT_REG);
 | |
| 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi,
 | |
| 						extent_end - key.offset);
 | |
| 		btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_abort_transaction(trans, root, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * on error we return an unlocked page and the error value
 | |
|  * on success we return a locked page and 0
 | |
|  */
 | |
| static int prepare_uptodate_page(struct page *page, u64 pos,
 | |
| 				 bool force_uptodate)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
 | |
| 	    !PageUptodate(page)) {
 | |
| 		ret = btrfs_readpage(NULL, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		lock_page(page);
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			unlock_page(page);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this just gets pages into the page cache and locks them down.
 | |
|  */
 | |
| static noinline int prepare_pages(struct inode *inode, struct page **pages,
 | |
| 				  size_t num_pages, loff_t pos,
 | |
| 				  size_t write_bytes, bool force_uptodate)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
 | |
| 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 | |
| 	int err = 0;
 | |
| 	int faili;
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
 | |
| 					       mask | __GFP_WRITE);
 | |
| 		if (!pages[i]) {
 | |
| 			faili = i - 1;
 | |
| 			err = -ENOMEM;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		if (i == 0)
 | |
| 			err = prepare_uptodate_page(pages[i], pos,
 | |
| 						    force_uptodate);
 | |
| 		if (i == num_pages - 1)
 | |
| 			err = prepare_uptodate_page(pages[i],
 | |
| 						    pos + write_bytes, false);
 | |
| 		if (err) {
 | |
| 			page_cache_release(pages[i]);
 | |
| 			faili = i - 1;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		wait_on_page_writeback(pages[i]);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	while (faili >= 0) {
 | |
| 		unlock_page(pages[faili]);
 | |
| 		page_cache_release(pages[faili]);
 | |
| 		faili--;
 | |
| 	}
 | |
| 	return err;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function locks the extent and properly waits for data=ordered extents
 | |
|  * to finish before allowing the pages to be modified if need.
 | |
|  *
 | |
|  * The return value:
 | |
|  * 1 - the extent is locked
 | |
|  * 0 - the extent is not locked, and everything is OK
 | |
|  * -EAGAIN - need re-prepare the pages
 | |
|  * the other < 0 number - Something wrong happens
 | |
|  */
 | |
| static noinline int
 | |
| lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
 | |
| 				size_t num_pages, loff_t pos,
 | |
| 				u64 *lockstart, u64 *lockend,
 | |
| 				struct extent_state **cached_state)
 | |
| {
 | |
| 	u64 start_pos;
 | |
| 	u64 last_pos;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
 | |
| 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
 | |
| 
 | |
| 	if (start_pos < inode->i_size) {
 | |
| 		struct btrfs_ordered_extent *ordered;
 | |
| 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
 | |
| 				 start_pos, last_pos, 0, cached_state);
 | |
| 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
 | |
| 						     last_pos - start_pos + 1);
 | |
| 		if (ordered &&
 | |
| 		    ordered->file_offset + ordered->len > start_pos &&
 | |
| 		    ordered->file_offset <= last_pos) {
 | |
| 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 | |
| 					     start_pos, last_pos,
 | |
| 					     cached_state, GFP_NOFS);
 | |
| 			for (i = 0; i < num_pages; i++) {
 | |
| 				unlock_page(pages[i]);
 | |
| 				page_cache_release(pages[i]);
 | |
| 			}
 | |
| 			btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		if (ordered)
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 
 | |
| 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
 | |
| 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
 | |
| 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 | |
| 				  0, 0, cached_state, GFP_NOFS);
 | |
| 		*lockstart = start_pos;
 | |
| 		*lockend = last_pos;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		if (clear_page_dirty_for_io(pages[i]))
 | |
| 			account_page_redirty(pages[i]);
 | |
| 		set_page_extent_mapped(pages[i]);
 | |
| 		WARN_ON(!PageLocked(pages[i]));
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int check_can_nocow(struct inode *inode, loff_t pos,
 | |
| 				    size_t *write_bytes)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	u64 lockstart, lockend;
 | |
| 	u64 num_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_start_write_no_snapshoting(root);
 | |
| 	if (!ret)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	lockstart = round_down(pos, root->sectorsize);
 | |
| 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
 | |
| 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
 | |
| 						     lockend - lockstart + 1);
 | |
| 		if (!ordered) {
 | |
| 			break;
 | |
| 		}
 | |
| 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
 | |
| 		btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 	}
 | |
| 
 | |
| 	num_bytes = lockend - lockstart + 1;
 | |
| 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
 | |
| 	if (ret <= 0) {
 | |
| 		ret = 0;
 | |
| 		btrfs_end_write_no_snapshoting(root);
 | |
| 	} else {
 | |
| 		*write_bytes = min_t(size_t, *write_bytes ,
 | |
| 				     num_bytes - pos + lockstart);
 | |
| 	}
 | |
| 
 | |
| 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline ssize_t __btrfs_buffered_write(struct file *file,
 | |
| 					       struct iov_iter *i,
 | |
| 					       loff_t pos)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct page **pages = NULL;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 release_bytes = 0;
 | |
| 	u64 lockstart;
 | |
| 	u64 lockend;
 | |
| 	unsigned long first_index;
 | |
| 	size_t num_written = 0;
 | |
| 	int nrptrs;
 | |
| 	int ret = 0;
 | |
| 	bool only_release_metadata = false;
 | |
| 	bool force_page_uptodate = false;
 | |
| 	bool need_unlock;
 | |
| 
 | |
| 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
 | |
| 			PAGE_CACHE_SIZE / (sizeof(struct page *)));
 | |
| 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
 | |
| 	nrptrs = max(nrptrs, 8);
 | |
| 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
 | |
| 	if (!pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	first_index = pos >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	while (iov_iter_count(i) > 0) {
 | |
| 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
 | |
| 		size_t write_bytes = min(iov_iter_count(i),
 | |
| 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
 | |
| 					 offset);
 | |
| 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
 | |
| 						PAGE_CACHE_SIZE);
 | |
| 		size_t reserve_bytes;
 | |
| 		size_t dirty_pages;
 | |
| 		size_t copied;
 | |
| 
 | |
| 		WARN_ON(num_pages > nrptrs);
 | |
| 
 | |
| 		/*
 | |
| 		 * Fault pages before locking them in prepare_pages
 | |
| 		 * to avoid recursive lock
 | |
| 		 */
 | |
| 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
 | |
| 		ret = btrfs_check_data_free_space(inode, reserve_bytes, write_bytes);
 | |
| 		if (ret == -ENOSPC &&
 | |
| 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
 | |
| 					      BTRFS_INODE_PREALLOC))) {
 | |
| 			ret = check_can_nocow(inode, pos, &write_bytes);
 | |
| 			if (ret > 0) {
 | |
| 				only_release_metadata = true;
 | |
| 				/*
 | |
| 				 * our prealloc extent may be smaller than
 | |
| 				 * write_bytes, so scale down.
 | |
| 				 */
 | |
| 				num_pages = DIV_ROUND_UP(write_bytes + offset,
 | |
| 							 PAGE_CACHE_SIZE);
 | |
| 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
 | |
| 				ret = 0;
 | |
| 			} else {
 | |
| 				ret = -ENOSPC;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
 | |
| 		if (ret) {
 | |
| 			if (!only_release_metadata)
 | |
| 				btrfs_free_reserved_data_space(inode,
 | |
| 							       reserve_bytes);
 | |
| 			else
 | |
| 				btrfs_end_write_no_snapshoting(root);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		release_bytes = reserve_bytes;
 | |
| 		need_unlock = false;
 | |
| again:
 | |
| 		/*
 | |
| 		 * This is going to setup the pages array with the number of
 | |
| 		 * pages we want, so we don't really need to worry about the
 | |
| 		 * contents of pages from loop to loop
 | |
| 		 */
 | |
| 		ret = prepare_pages(inode, pages, num_pages,
 | |
| 				    pos, write_bytes,
 | |
| 				    force_page_uptodate);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
 | |
| 						      pos, &lockstart, &lockend,
 | |
| 						      &cached_state);
 | |
| 		if (ret < 0) {
 | |
| 			if (ret == -EAGAIN)
 | |
| 				goto again;
 | |
| 			break;
 | |
| 		} else if (ret > 0) {
 | |
| 			need_unlock = true;
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		copied = btrfs_copy_from_user(pos, num_pages,
 | |
| 					   write_bytes, pages, i);
 | |
| 
 | |
| 		/*
 | |
| 		 * if we have trouble faulting in the pages, fall
 | |
| 		 * back to one page at a time
 | |
| 		 */
 | |
| 		if (copied < write_bytes)
 | |
| 			nrptrs = 1;
 | |
| 
 | |
| 		if (copied == 0) {
 | |
| 			force_page_uptodate = true;
 | |
| 			dirty_pages = 0;
 | |
| 		} else {
 | |
| 			force_page_uptodate = false;
 | |
| 			dirty_pages = DIV_ROUND_UP(copied + offset,
 | |
| 						   PAGE_CACHE_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we had a short copy we need to release the excess delaloc
 | |
| 		 * bytes we reserved.  We need to increment outstanding_extents
 | |
| 		 * because btrfs_delalloc_release_space will decrement it, but
 | |
| 		 * we still have an outstanding extent for the chunk we actually
 | |
| 		 * managed to copy.
 | |
| 		 */
 | |
| 		if (num_pages > dirty_pages) {
 | |
| 			release_bytes = (num_pages - dirty_pages) <<
 | |
| 				PAGE_CACHE_SHIFT;
 | |
| 			if (copied > 0) {
 | |
| 				spin_lock(&BTRFS_I(inode)->lock);
 | |
| 				BTRFS_I(inode)->outstanding_extents++;
 | |
| 				spin_unlock(&BTRFS_I(inode)->lock);
 | |
| 			}
 | |
| 			if (only_release_metadata)
 | |
| 				btrfs_delalloc_release_metadata(inode,
 | |
| 								release_bytes);
 | |
| 			else
 | |
| 				btrfs_delalloc_release_space(inode,
 | |
| 							     release_bytes);
 | |
| 		}
 | |
| 
 | |
| 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		if (copied > 0)
 | |
| 			ret = btrfs_dirty_pages(root, inode, pages,
 | |
| 						dirty_pages, pos, copied,
 | |
| 						NULL);
 | |
| 		if (need_unlock)
 | |
| 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 | |
| 					     lockstart, lockend, &cached_state,
 | |
| 					     GFP_NOFS);
 | |
| 		if (ret) {
 | |
| 			btrfs_drop_pages(pages, num_pages);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		release_bytes = 0;
 | |
| 		if (only_release_metadata)
 | |
| 			btrfs_end_write_no_snapshoting(root);
 | |
| 
 | |
| 		if (only_release_metadata && copied > 0) {
 | |
| 			lockstart = round_down(pos, root->sectorsize);
 | |
| 			lockend = lockstart +
 | |
| 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
 | |
| 
 | |
| 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
 | |
| 				       lockend, EXTENT_NORESERVE, NULL,
 | |
| 				       NULL, GFP_NOFS);
 | |
| 			only_release_metadata = false;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_drop_pages(pages, num_pages);
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		balance_dirty_pages_ratelimited(inode->i_mapping);
 | |
| 		if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
 | |
| 			btrfs_btree_balance_dirty(root);
 | |
| 
 | |
| 		pos += copied;
 | |
| 		num_written += copied;
 | |
| 	}
 | |
| 
 | |
| 	kfree(pages);
 | |
| 
 | |
| 	if (release_bytes) {
 | |
| 		if (only_release_metadata) {
 | |
| 			btrfs_end_write_no_snapshoting(root);
 | |
| 			btrfs_delalloc_release_metadata(inode, release_bytes);
 | |
| 		} else {
 | |
| 			btrfs_delalloc_release_space(inode, release_bytes);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return num_written ? num_written : ret;
 | |
| }
 | |
| 
 | |
| static ssize_t __btrfs_direct_write(struct kiocb *iocb,
 | |
| 				    struct iov_iter *from,
 | |
| 				    loff_t pos)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	ssize_t written;
 | |
| 	ssize_t written_buffered;
 | |
| 	loff_t endbyte;
 | |
| 	int err;
 | |
| 
 | |
| 	written = generic_file_direct_write(iocb, from, pos);
 | |
| 
 | |
| 	if (written < 0 || !iov_iter_count(from))
 | |
| 		return written;
 | |
| 
 | |
| 	pos += written;
 | |
| 	written_buffered = __btrfs_buffered_write(file, from, pos);
 | |
| 	if (written_buffered < 0) {
 | |
| 		err = written_buffered;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Ensure all data is persisted. We want the next direct IO read to be
 | |
| 	 * able to read what was just written.
 | |
| 	 */
 | |
| 	endbyte = pos + written_buffered - 1;
 | |
| 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	written += written_buffered;
 | |
| 	iocb->ki_pos = pos + written_buffered;
 | |
| 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
 | |
| 				 endbyte >> PAGE_CACHE_SHIFT);
 | |
| out:
 | |
| 	return written ? written : err;
 | |
| }
 | |
| 
 | |
| static void update_time_for_write(struct inode *inode)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 
 | |
| 	if (IS_NOCMTIME(inode))
 | |
| 		return;
 | |
| 
 | |
| 	now = current_fs_time(inode->i_sb);
 | |
| 	if (!timespec_equal(&inode->i_mtime, &now))
 | |
| 		inode->i_mtime = now;
 | |
| 
 | |
| 	if (!timespec_equal(&inode->i_ctime, &now))
 | |
| 		inode->i_ctime = now;
 | |
| 
 | |
| 	if (IS_I_VERSION(inode))
 | |
| 		inode_inc_iversion(inode);
 | |
| }
 | |
| 
 | |
| static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
 | |
| 				    struct iov_iter *from)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	u64 start_pos;
 | |
| 	u64 end_pos;
 | |
| 	ssize_t num_written = 0;
 | |
| 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
 | |
| 	ssize_t err;
 | |
| 	loff_t pos;
 | |
| 	size_t count;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	err = generic_write_checks(iocb, from);
 | |
| 	if (err <= 0) {
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	current->backing_dev_info = inode_to_bdi(inode);
 | |
| 	err = file_remove_suid(file);
 | |
| 	if (err) {
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If BTRFS flips readonly due to some impossible error
 | |
| 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
 | |
| 	 * although we have opened a file as writable, we have
 | |
| 	 * to stop this write operation to ensure FS consistency.
 | |
| 	 */
 | |
| 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 		err = -EROFS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We reserve space for updating the inode when we reserve space for the
 | |
| 	 * extent we are going to write, so we will enospc out there.  We don't
 | |
| 	 * need to start yet another transaction to update the inode as we will
 | |
| 	 * update the inode when we finish writing whatever data we write.
 | |
| 	 */
 | |
| 	update_time_for_write(inode);
 | |
| 
 | |
| 	pos = iocb->ki_pos;
 | |
| 	count = iov_iter_count(from);
 | |
| 	start_pos = round_down(pos, root->sectorsize);
 | |
| 	if (start_pos > i_size_read(inode)) {
 | |
| 		/* Expand hole size to cover write data, preventing empty gap */
 | |
| 		end_pos = round_up(pos + count, root->sectorsize);
 | |
| 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
 | |
| 		if (err) {
 | |
| 			mutex_unlock(&inode->i_mutex);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sync)
 | |
| 		atomic_inc(&BTRFS_I(inode)->sync_writers);
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		num_written = __btrfs_direct_write(iocb, from, pos);
 | |
| 	} else {
 | |
| 		num_written = __btrfs_buffered_write(file, from, pos);
 | |
| 		if (num_written > 0)
 | |
| 			iocb->ki_pos = pos + num_written;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We also have to set last_sub_trans to the current log transid,
 | |
| 	 * otherwise subsequent syncs to a file that's been synced in this
 | |
| 	 * transaction will appear to have already occured.
 | |
| 	 */
 | |
| 	spin_lock(&BTRFS_I(inode)->lock);
 | |
| 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
 | |
| 	spin_unlock(&BTRFS_I(inode)->lock);
 | |
| 	if (num_written > 0) {
 | |
| 		err = generic_write_sync(file, pos, num_written);
 | |
| 		if (err < 0)
 | |
| 			num_written = err;
 | |
| 	}
 | |
| 
 | |
| 	if (sync)
 | |
| 		atomic_dec(&BTRFS_I(inode)->sync_writers);
 | |
| out:
 | |
| 	current->backing_dev_info = NULL;
 | |
| 	return num_written ? num_written : err;
 | |
| }
 | |
| 
 | |
| int btrfs_release_file(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	if (filp->private_data)
 | |
| 		btrfs_ioctl_trans_end(filp);
 | |
| 	/*
 | |
| 	 * ordered_data_close is set by settattr when we are about to truncate
 | |
| 	 * a file from a non-zero size to a zero size.  This tries to
 | |
| 	 * flush down new bytes that may have been written if the
 | |
| 	 * application were using truncate to replace a file in place.
 | |
| 	 */
 | |
| 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
 | |
| 			       &BTRFS_I(inode)->runtime_flags))
 | |
| 			filemap_flush(inode->i_mapping);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	atomic_inc(&BTRFS_I(inode)->sync_writers);
 | |
| 	ret = btrfs_fdatawrite_range(inode, start, end);
 | |
| 	atomic_dec(&BTRFS_I(inode)->sync_writers);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fsync call for both files and directories.  This logs the inode into
 | |
|  * the tree log instead of forcing full commits whenever possible.
 | |
|  *
 | |
|  * It needs to call filemap_fdatawait so that all ordered extent updates are
 | |
|  * in the metadata btree are up to date for copying to the log.
 | |
|  *
 | |
|  * It drops the inode mutex before doing the tree log commit.  This is an
 | |
|  * important optimization for directories because holding the mutex prevents
 | |
|  * new operations on the dir while we write to disk.
 | |
|  */
 | |
| int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 | |
| {
 | |
| 	struct dentry *dentry = file->f_path.dentry;
 | |
| 	struct inode *inode = d_inode(dentry);
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_log_ctx ctx;
 | |
| 	int ret = 0;
 | |
| 	bool full_sync = 0;
 | |
| 	const u64 len = end - start + 1;
 | |
| 
 | |
| 	trace_btrfs_sync_file(file, datasync);
 | |
| 
 | |
| 	/*
 | |
| 	 * We write the dirty pages in the range and wait until they complete
 | |
| 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
 | |
| 	 * multi-task, and make the performance up.  See
 | |
| 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
 | |
| 	 */
 | |
| 	ret = start_ordered_ops(inode, start, end);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	atomic_inc(&root->log_batch);
 | |
| 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | |
| 			     &BTRFS_I(inode)->runtime_flags);
 | |
| 	/*
 | |
| 	 * We might have have had more pages made dirty after calling
 | |
| 	 * start_ordered_ops and before acquiring the inode's i_mutex.
 | |
| 	 */
 | |
| 	if (full_sync) {
 | |
| 		/*
 | |
| 		 * For a full sync, we need to make sure any ordered operations
 | |
| 		 * start and finish before we start logging the inode, so that
 | |
| 		 * all extents are persisted and the respective file extent
 | |
| 		 * items are in the fs/subvol btree.
 | |
| 		 */
 | |
| 		ret = btrfs_wait_ordered_range(inode, start, len);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Start any new ordered operations before starting to log the
 | |
| 		 * inode. We will wait for them to finish in btrfs_sync_log().
 | |
| 		 *
 | |
| 		 * Right before acquiring the inode's mutex, we might have new
 | |
| 		 * writes dirtying pages, which won't immediately start the
 | |
| 		 * respective ordered operations - that is done through the
 | |
| 		 * fill_delalloc callbacks invoked from the writepage and
 | |
| 		 * writepages address space operations. So make sure we start
 | |
| 		 * all ordered operations before starting to log our inode. Not
 | |
| 		 * doing this means that while logging the inode, writeback
 | |
| 		 * could start and invoke writepage/writepages, which would call
 | |
| 		 * the fill_delalloc callbacks (cow_file_range,
 | |
| 		 * submit_compressed_extents). These callbacks add first an
 | |
| 		 * extent map to the modified list of extents and then create
 | |
| 		 * the respective ordered operation, which means in
 | |
| 		 * tree-log.c:btrfs_log_inode() we might capture all existing
 | |
| 		 * ordered operations (with btrfs_get_logged_extents()) before
 | |
| 		 * the fill_delalloc callback adds its ordered operation, and by
 | |
| 		 * the time we visit the modified list of extent maps (with
 | |
| 		 * btrfs_log_changed_extents()), we see and process the extent
 | |
| 		 * map they created. We then use the extent map to construct a
 | |
| 		 * file extent item for logging without waiting for the
 | |
| 		 * respective ordered operation to finish - this file extent
 | |
| 		 * item points to a disk location that might not have yet been
 | |
| 		 * written to, containing random data - so after a crash a log
 | |
| 		 * replay will make our inode have file extent items that point
 | |
| 		 * to disk locations containing invalid data, as we returned
 | |
| 		 * success to userspace without waiting for the respective
 | |
| 		 * ordered operation to finish, because it wasn't captured by
 | |
| 		 * btrfs_get_logged_extents().
 | |
| 		 */
 | |
| 		ret = start_ordered_ops(inode, start, end);
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	atomic_inc(&root->log_batch);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the last transaction that changed this file was before the current
 | |
| 	 * transaction and we have the full sync flag set in our inode, we can
 | |
| 	 * bail out now without any syncing.
 | |
| 	 *
 | |
| 	 * Note that we can't bail out if the full sync flag isn't set. This is
 | |
| 	 * because when the full sync flag is set we start all ordered extents
 | |
| 	 * and wait for them to fully complete - when they complete they update
 | |
| 	 * the inode's last_trans field through:
 | |
| 	 *
 | |
| 	 *     btrfs_finish_ordered_io() ->
 | |
| 	 *         btrfs_update_inode_fallback() ->
 | |
| 	 *             btrfs_update_inode() ->
 | |
| 	 *                 btrfs_set_inode_last_trans()
 | |
| 	 *
 | |
| 	 * So we are sure that last_trans is up to date and can do this check to
 | |
| 	 * bail out safely. For the fast path, when the full sync flag is not
 | |
| 	 * set in our inode, we can not do it because we start only our ordered
 | |
| 	 * extents and don't wait for them to complete (that is when
 | |
| 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
 | |
| 	 * value might be less than or equals to fs_info->last_trans_committed,
 | |
| 	 * and setting a speculative last_trans for an inode when a buffered
 | |
| 	 * write is made (such as fs_info->generation + 1 for example) would not
 | |
| 	 * be reliable since after setting the value and before fsync is called
 | |
| 	 * any number of transactions can start and commit (transaction kthread
 | |
| 	 * commits the current transaction periodically), and a transaction
 | |
| 	 * commit does not start nor waits for ordered extents to complete.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
 | |
| 	    (BTRFS_I(inode)->last_trans <=
 | |
| 	     root->fs_info->last_trans_committed &&
 | |
| 	     (full_sync ||
 | |
| 	      !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
 | |
| 		/*
 | |
| 		 * We'v had everything committed since the last time we were
 | |
| 		 * modified so clear this flag in case it was set for whatever
 | |
| 		 * reason, it's no longer relevant.
 | |
| 		 */
 | |
| 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | |
| 			  &BTRFS_I(inode)->runtime_flags);
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ok we haven't committed the transaction yet, lets do a commit
 | |
| 	 */
 | |
| 	if (file->private_data)
 | |
| 		btrfs_ioctl_trans_end(file);
 | |
| 
 | |
| 	/*
 | |
| 	 * We use start here because we will need to wait on the IO to complete
 | |
| 	 * in btrfs_sync_log, which could require joining a transaction (for
 | |
| 	 * example checking cross references in the nocow path).  If we use join
 | |
| 	 * here we could get into a situation where we're waiting on IO to
 | |
| 	 * happen that is blocked on a transaction trying to commit.  With start
 | |
| 	 * we inc the extwriter counter, so we wait for all extwriters to exit
 | |
| 	 * before we start blocking join'ers.  This comment is to keep somebody
 | |
| 	 * from thinking they are super smart and changing this to
 | |
| 	 * btrfs_join_transaction *cough*Josef*cough*.
 | |
| 	 */
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	trans->sync = true;
 | |
| 
 | |
| 	btrfs_init_log_ctx(&ctx);
 | |
| 
 | |
| 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
 | |
| 	if (ret < 0) {
 | |
| 		/* Fallthrough and commit/free transaction. */
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* we've logged all the items and now have a consistent
 | |
| 	 * version of the file in the log.  It is possible that
 | |
| 	 * someone will come in and modify the file, but that's
 | |
| 	 * fine because the log is consistent on disk, and we
 | |
| 	 * have references to all of the file's extents
 | |
| 	 *
 | |
| 	 * It is possible that someone will come in and log the
 | |
| 	 * file again, but that will end up using the synchronization
 | |
| 	 * inside btrfs_sync_log to keep things safe.
 | |
| 	 */
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * If any of the ordered extents had an error, just return it to user
 | |
| 	 * space, so that the application knows some writes didn't succeed and
 | |
| 	 * can take proper action (retry for e.g.). Blindly committing the
 | |
| 	 * transaction in this case, would fool userspace that everything was
 | |
| 	 * successful. And we also want to make sure our log doesn't contain
 | |
| 	 * file extent items pointing to extents that weren't fully written to -
 | |
| 	 * just like in the non fast fsync path, where we check for the ordered
 | |
| 	 * operation's error flag before writing to the log tree and return -EIO
 | |
| 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
 | |
| 	 * therefore we need to check for errors in the ordered operations,
 | |
| 	 * which are indicated by ctx.io_err.
 | |
| 	 */
 | |
| 	if (ctx.io_err) {
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		ret = ctx.io_err;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ret != BTRFS_NO_LOG_SYNC) {
 | |
| 		if (!ret) {
 | |
| 			ret = btrfs_sync_log(trans, root, &ctx);
 | |
| 			if (!ret) {
 | |
| 				ret = btrfs_end_transaction(trans, root);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!full_sync) {
 | |
| 			ret = btrfs_wait_ordered_range(inode, start,
 | |
| 						       end - start + 1);
 | |
| 			if (ret) {
 | |
| 				btrfs_end_transaction(trans, root);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		ret = btrfs_commit_transaction(trans, root);
 | |
| 	} else {
 | |
| 		ret = btrfs_end_transaction(trans, root);
 | |
| 	}
 | |
| out:
 | |
| 	return ret > 0 ? -EIO : ret;
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct btrfs_file_vm_ops = {
 | |
| 	.fault		= filemap_fault,
 | |
| 	.map_pages	= filemap_map_pages,
 | |
| 	.page_mkwrite	= btrfs_page_mkwrite,
 | |
| };
 | |
| 
 | |
| static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 
 | |
| 	if (!mapping->a_ops->readpage)
 | |
| 		return -ENOEXEC;
 | |
| 
 | |
| 	file_accessed(filp);
 | |
| 	vma->vm_ops = &btrfs_file_vm_ops;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
 | |
| 			  int slot, u64 start, u64 end)
 | |
| {
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
 | |
| 		return 0;
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 	if (key.objectid != btrfs_ino(inode) ||
 | |
| 	    key.type != BTRFS_EXTENT_DATA_KEY)
 | |
| 		return 0;
 | |
| 
 | |
| 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
 | |
| 
 | |
| 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (key.offset == end)
 | |
| 		return 1;
 | |
| 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
 | |
| 		      struct btrfs_path *path, u64 offset, u64 end)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_file_extent_item *fi;
 | |
| 	struct extent_map *hole_em;
 | |
| 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
 | |
| 		goto out;
 | |
| 
 | |
| 	key.objectid = btrfs_ino(inode);
 | |
| 	key.type = BTRFS_EXTENT_DATA_KEY;
 | |
| 	key.offset = offset;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	BUG_ON(!ret);
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
 | |
| 		u64 num_bytes;
 | |
| 
 | |
| 		path->slots[0]--;
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
 | |
| 			end - offset;
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_offset(leaf, fi, 0);
 | |
| 		btrfs_mark_buffer_dirty(leaf);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
 | |
| 		u64 num_bytes;
 | |
| 
 | |
| 		key.offset = offset;
 | |
| 		btrfs_set_item_key_safe(root->fs_info, path, &key);
 | |
| 		fi = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_file_extent_item);
 | |
| 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
 | |
| 			offset;
 | |
| 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
 | |
| 		btrfs_set_file_extent_offset(leaf, fi, 0);
 | |
| 		btrfs_mark_buffer_dirty(leaf);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
 | |
| 				       0, 0, end - offset, 0, end - offset,
 | |
| 				       0, 0, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	hole_em = alloc_extent_map();
 | |
| 	if (!hole_em) {
 | |
| 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
 | |
| 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | |
| 			&BTRFS_I(inode)->runtime_flags);
 | |
| 	} else {
 | |
| 		hole_em->start = offset;
 | |
| 		hole_em->len = end - offset;
 | |
| 		hole_em->ram_bytes = hole_em->len;
 | |
| 		hole_em->orig_start = offset;
 | |
| 
 | |
| 		hole_em->block_start = EXTENT_MAP_HOLE;
 | |
| 		hole_em->block_len = 0;
 | |
| 		hole_em->orig_block_len = 0;
 | |
| 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
 | |
| 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
 | |
| 		hole_em->generation = trans->transid;
 | |
| 
 | |
| 		do {
 | |
| 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
 | |
| 			write_lock(&em_tree->lock);
 | |
| 			ret = add_extent_mapping(em_tree, hole_em, 1);
 | |
| 			write_unlock(&em_tree->lock);
 | |
| 		} while (ret == -EEXIST);
 | |
| 		free_extent_map(hole_em);
 | |
| 		if (ret)
 | |
| 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
 | |
| 				&BTRFS_I(inode)->runtime_flags);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a hole extent on given inode and change start/len to the end of hole
 | |
|  * extent.(hole/vacuum extent whose em->start <= start &&
 | |
|  *	   em->start + em->len > start)
 | |
|  * When a hole extent is found, return 1 and modify start/len.
 | |
|  */
 | |
| static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
 | |
| 	if (IS_ERR_OR_NULL(em)) {
 | |
| 		if (!em)
 | |
| 			ret = -ENOMEM;
 | |
| 		else
 | |
| 			ret = PTR_ERR(em);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Hole or vacuum extent(only exists in no-hole mode) */
 | |
| 	if (em->block_start == EXTENT_MAP_HOLE) {
 | |
| 		ret = 1;
 | |
| 		*len = em->start + em->len > *start + *len ?
 | |
| 		       0 : *start + *len - em->start - em->len;
 | |
| 		*start = em->start + em->len;
 | |
| 	}
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_block_rsv *rsv;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	u64 lockstart;
 | |
| 	u64 lockend;
 | |
| 	u64 tail_start;
 | |
| 	u64 tail_len;
 | |
| 	u64 orig_start = offset;
 | |
| 	u64 cur_offset;
 | |
| 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
 | |
| 	u64 drop_end;
 | |
| 	int ret = 0;
 | |
| 	int err = 0;
 | |
| 	int rsv_count;
 | |
| 	bool same_page;
 | |
| 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
 | |
| 	u64 ino_size;
 | |
| 	bool truncated_page = false;
 | |
| 	bool updated_inode = false;
 | |
| 
 | |
| 	ret = btrfs_wait_ordered_range(inode, offset, len);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
 | |
| 	ret = find_first_non_hole(inode, &offset, &len);
 | |
| 	if (ret < 0)
 | |
| 		goto out_only_mutex;
 | |
| 	if (ret && !len) {
 | |
| 		/* Already in a large hole */
 | |
| 		ret = 0;
 | |
| 		goto out_only_mutex;
 | |
| 	}
 | |
| 
 | |
| 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
 | |
| 	lockend = round_down(offset + len,
 | |
| 			     BTRFS_I(inode)->root->sectorsize) - 1;
 | |
| 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
 | |
| 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
 | |
| 
 | |
| 	/*
 | |
| 	 * We needn't truncate any page which is beyond the end of the file
 | |
| 	 * because we are sure there is no data there.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * Only do this if we are in the same page and we aren't doing the
 | |
| 	 * entire page.
 | |
| 	 */
 | |
| 	if (same_page && len < PAGE_CACHE_SIZE) {
 | |
| 		if (offset < ino_size) {
 | |
| 			truncated_page = true;
 | |
| 			ret = btrfs_truncate_page(inode, offset, len, 0);
 | |
| 		} else {
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		goto out_only_mutex;
 | |
| 	}
 | |
| 
 | |
| 	/* zero back part of the first page */
 | |
| 	if (offset < ino_size) {
 | |
| 		truncated_page = true;
 | |
| 		ret = btrfs_truncate_page(inode, offset, 0, 0);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&inode->i_mutex);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check the aligned pages after the first unaligned page,
 | |
| 	 * if offset != orig_start, which means the first unaligned page
 | |
| 	 * including serveral following pages are already in holes,
 | |
| 	 * the extra check can be skipped */
 | |
| 	if (offset == orig_start) {
 | |
| 		/* after truncate page, check hole again */
 | |
| 		len = offset + len - lockstart;
 | |
| 		offset = lockstart;
 | |
| 		ret = find_first_non_hole(inode, &offset, &len);
 | |
| 		if (ret < 0)
 | |
| 			goto out_only_mutex;
 | |
| 		if (ret && !len) {
 | |
| 			ret = 0;
 | |
| 			goto out_only_mutex;
 | |
| 		}
 | |
| 		lockstart = offset;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the tail unaligned part is in a hole */
 | |
| 	tail_start = lockend + 1;
 | |
| 	tail_len = offset + len - tail_start;
 | |
| 	if (tail_len) {
 | |
| 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
 | |
| 		if (unlikely(ret < 0))
 | |
| 			goto out_only_mutex;
 | |
| 		if (!ret) {
 | |
| 			/* zero the front end of the last page */
 | |
| 			if (tail_start + tail_len < ino_size) {
 | |
| 				truncated_page = true;
 | |
| 				ret = btrfs_truncate_page(inode,
 | |
| 						tail_start + tail_len, 0, 1);
 | |
| 				if (ret)
 | |
| 					goto out_only_mutex;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (lockend < lockstart) {
 | |
| 		ret = 0;
 | |
| 		goto out_only_mutex;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 		truncate_pagecache_range(inode, lockstart, lockend);
 | |
| 
 | |
| 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | |
| 				 0, &cached_state);
 | |
| 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to make sure we have no ordered extents in this range
 | |
| 		 * and nobody raced in and read a page in this range, if we did
 | |
| 		 * we need to try again.
 | |
| 		 */
 | |
| 		if ((!ordered ||
 | |
| 		    (ordered->file_offset + ordered->len <= lockstart ||
 | |
| 		     ordered->file_offset > lockend)) &&
 | |
| 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
 | |
| 			if (ordered)
 | |
| 				btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ordered)
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
 | |
| 				     lockend, &cached_state, GFP_NOFS);
 | |
| 		ret = btrfs_wait_ordered_range(inode, lockstart,
 | |
| 					       lockend - lockstart + 1);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&inode->i_mutex);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
 | |
| 	if (!rsv) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
 | |
| 	rsv->failfast = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * 1 - update the inode
 | |
| 	 * 1 - removing the extents in the range
 | |
| 	 * 1 - adding the hole extent if no_holes isn't set
 | |
| 	 */
 | |
| 	rsv_count = no_holes ? 2 : 3;
 | |
| 	trans = btrfs_start_transaction(root, rsv_count);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		err = PTR_ERR(trans);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
 | |
| 				      min_size);
 | |
| 	BUG_ON(ret);
 | |
| 	trans->block_rsv = rsv;
 | |
| 
 | |
| 	cur_offset = lockstart;
 | |
| 	len = lockend - cur_offset;
 | |
| 	while (cur_offset < lockend) {
 | |
| 		ret = __btrfs_drop_extents(trans, root, inode, path,
 | |
| 					   cur_offset, lockend + 1,
 | |
| 					   &drop_end, 1, 0, 0, NULL);
 | |
| 		if (ret != -ENOSPC)
 | |
| 			break;
 | |
| 
 | |
| 		trans->block_rsv = &root->fs_info->trans_block_rsv;
 | |
| 
 | |
| 		if (cur_offset < ino_size) {
 | |
| 			ret = fill_holes(trans, inode, path, cur_offset,
 | |
| 					 drop_end);
 | |
| 			if (ret) {
 | |
| 				err = ret;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		cur_offset = drop_end;
 | |
| 
 | |
| 		ret = btrfs_update_inode(trans, root, inode);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_end_transaction(trans, root);
 | |
| 		btrfs_btree_balance_dirty(root);
 | |
| 
 | |
| 		trans = btrfs_start_transaction(root, rsv_count);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			trans = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
 | |
| 					      rsv, min_size);
 | |
| 		BUG_ON(ret);	/* shouldn't happen */
 | |
| 		trans->block_rsv = rsv;
 | |
| 
 | |
| 		ret = find_first_non_hole(inode, &cur_offset, &len);
 | |
| 		if (unlikely(ret < 0))
 | |
| 			break;
 | |
| 		if (ret && !len) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto out_trans;
 | |
| 	}
 | |
| 
 | |
| 	trans->block_rsv = &root->fs_info->trans_block_rsv;
 | |
| 	/*
 | |
| 	 * Don't insert file hole extent item if it's for a range beyond eof
 | |
| 	 * (because it's useless) or if it represents a 0 bytes range (when
 | |
| 	 * cur_offset == drop_end).
 | |
| 	 */
 | |
| 	if (cur_offset < ino_size && cur_offset < drop_end) {
 | |
| 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto out_trans;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_trans:
 | |
| 	if (!trans)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	inode_inc_iversion(inode);
 | |
| 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 | |
| 
 | |
| 	trans->block_rsv = &root->fs_info->trans_block_rsv;
 | |
| 	ret = btrfs_update_inode(trans, root, inode);
 | |
| 	updated_inode = true;
 | |
| 	btrfs_end_transaction(trans, root);
 | |
| 	btrfs_btree_balance_dirty(root);
 | |
| out_free:
 | |
| 	btrfs_free_path(path);
 | |
| 	btrfs_free_block_rsv(root, rsv);
 | |
| out:
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | |
| 			     &cached_state, GFP_NOFS);
 | |
| out_only_mutex:
 | |
| 	if (!updated_inode && truncated_page && !ret && !err) {
 | |
| 		/*
 | |
| 		 * If we only end up zeroing part of a page, we still need to
 | |
| 		 * update the inode item, so that all the time fields are
 | |
| 		 * updated as well as the necessary btrfs inode in memory fields
 | |
| 		 * for detecting, at fsync time, if the inode isn't yet in the
 | |
| 		 * log tree or it's there but not up to date.
 | |
| 		 */
 | |
| 		trans = btrfs_start_transaction(root, 1);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			err = PTR_ERR(trans);
 | |
| 		} else {
 | |
| 			err = btrfs_update_inode(trans, root, inode);
 | |
| 			ret = btrfs_end_transaction(trans, root);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 	if (ret && !err)
 | |
| 		err = ret;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static long btrfs_fallocate(struct file *file, int mode,
 | |
| 			    loff_t offset, loff_t len)
 | |
| {
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 cur_offset;
 | |
| 	u64 last_byte;
 | |
| 	u64 alloc_start;
 | |
| 	u64 alloc_end;
 | |
| 	u64 alloc_hint = 0;
 | |
| 	u64 locked_end;
 | |
| 	struct extent_map *em;
 | |
| 	int blocksize = BTRFS_I(inode)->root->sectorsize;
 | |
| 	int ret;
 | |
| 
 | |
| 	alloc_start = round_down(offset, blocksize);
 | |
| 	alloc_end = round_up(offset + len, blocksize);
 | |
| 
 | |
| 	/* Make sure we aren't being give some crap mode */
 | |
| 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (mode & FALLOC_FL_PUNCH_HOLE)
 | |
| 		return btrfs_punch_hole(inode, offset, len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we have enough space before we do the
 | |
| 	 * allocation.
 | |
| 	 */
 | |
| 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start, alloc_end - alloc_start);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	ret = inode_newsize_ok(inode, alloc_end);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (alloc_start > inode->i_size) {
 | |
| 		ret = btrfs_cont_expand(inode, i_size_read(inode),
 | |
| 					alloc_start);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we are fallocating from the end of the file onward we
 | |
| 		 * need to zero out the end of the page if i_size lands in the
 | |
| 		 * middle of a page.
 | |
| 		 */
 | |
| 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * wait for ordered IO before we have any locks.  We'll loop again
 | |
| 	 * below with the locks held.
 | |
| 	 */
 | |
| 	ret = btrfs_wait_ordered_range(inode, alloc_start,
 | |
| 				       alloc_end - alloc_start);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	locked_end = alloc_end - 1;
 | |
| 	while (1) {
 | |
| 		struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 		/* the extent lock is ordered inside the running
 | |
| 		 * transaction
 | |
| 		 */
 | |
| 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
 | |
| 				 locked_end, 0, &cached_state);
 | |
| 		ordered = btrfs_lookup_first_ordered_extent(inode,
 | |
| 							    alloc_end - 1);
 | |
| 		if (ordered &&
 | |
| 		    ordered->file_offset + ordered->len > alloc_start &&
 | |
| 		    ordered->file_offset < alloc_end) {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
 | |
| 					     alloc_start, locked_end,
 | |
| 					     &cached_state, GFP_NOFS);
 | |
| 			/*
 | |
| 			 * we can't wait on the range with the transaction
 | |
| 			 * running or with the extent lock held
 | |
| 			 */
 | |
| 			ret = btrfs_wait_ordered_range(inode, alloc_start,
 | |
| 						       alloc_end - alloc_start);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			if (ordered)
 | |
| 				btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cur_offset = alloc_start;
 | |
| 	while (1) {
 | |
| 		u64 actual_end;
 | |
| 
 | |
| 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
 | |
| 				      alloc_end - cur_offset, 0);
 | |
| 		if (IS_ERR_OR_NULL(em)) {
 | |
| 			if (!em)
 | |
| 				ret = -ENOMEM;
 | |
| 			else
 | |
| 				ret = PTR_ERR(em);
 | |
| 			break;
 | |
| 		}
 | |
| 		last_byte = min(extent_map_end(em), alloc_end);
 | |
| 		actual_end = min_t(u64, extent_map_end(em), offset + len);
 | |
| 		last_byte = ALIGN(last_byte, blocksize);
 | |
| 
 | |
| 		if (em->block_start == EXTENT_MAP_HOLE ||
 | |
| 		    (cur_offset >= inode->i_size &&
 | |
| 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
 | |
| 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
 | |
| 							last_byte - cur_offset,
 | |
| 							1 << inode->i_blkbits,
 | |
| 							offset + len,
 | |
| 							&alloc_hint);
 | |
| 		} else if (actual_end > inode->i_size &&
 | |
| 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
 | |
| 			struct btrfs_trans_handle *trans;
 | |
| 			struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 
 | |
| 			/*
 | |
| 			 * We didn't need to allocate any more space, but we
 | |
| 			 * still extended the size of the file so we need to
 | |
| 			 * update i_size and the inode item.
 | |
| 			 */
 | |
| 			trans = btrfs_start_transaction(root, 1);
 | |
| 			if (IS_ERR(trans)) {
 | |
| 				ret = PTR_ERR(trans);
 | |
| 			} else {
 | |
| 				inode->i_ctime = CURRENT_TIME;
 | |
| 				i_size_write(inode, actual_end);
 | |
| 				btrfs_ordered_update_i_size(inode, actual_end,
 | |
| 							    NULL);
 | |
| 				ret = btrfs_update_inode(trans, root, inode);
 | |
| 				if (ret)
 | |
| 					btrfs_end_transaction(trans, root);
 | |
| 				else
 | |
| 					ret = btrfs_end_transaction(trans,
 | |
| 								    root);
 | |
| 			}
 | |
| 		}
 | |
| 		free_extent_map(em);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		cur_offset = last_byte;
 | |
| 		if (cur_offset >= alloc_end) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
 | |
| 			     &cached_state, GFP_NOFS);
 | |
| out:
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 	/* Let go of our reservation. */
 | |
| 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct extent_map *em = NULL;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	u64 lockstart;
 | |
| 	u64 lockend;
 | |
| 	u64 start;
 | |
| 	u64 len;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (inode->i_size == 0)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * *offset can be negative, in this case we start finding DATA/HOLE from
 | |
| 	 * the very start of the file.
 | |
| 	 */
 | |
| 	start = max_t(loff_t, 0, *offset);
 | |
| 
 | |
| 	lockstart = round_down(start, root->sectorsize);
 | |
| 	lockend = round_up(i_size_read(inode), root->sectorsize);
 | |
| 	if (lockend <= lockstart)
 | |
| 		lockend = lockstart + root->sectorsize;
 | |
| 	lockend--;
 | |
| 	len = lockend - lockstart + 1;
 | |
| 
 | |
| 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
 | |
| 			 &cached_state);
 | |
| 
 | |
| 	while (start < inode->i_size) {
 | |
| 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
 | |
| 		if (IS_ERR(em)) {
 | |
| 			ret = PTR_ERR(em);
 | |
| 			em = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (whence == SEEK_HOLE &&
 | |
| 		    (em->block_start == EXTENT_MAP_HOLE ||
 | |
| 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
 | |
| 			break;
 | |
| 		else if (whence == SEEK_DATA &&
 | |
| 			   (em->block_start != EXTENT_MAP_HOLE &&
 | |
| 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
 | |
| 			break;
 | |
| 
 | |
| 		start = em->start + em->len;
 | |
| 		free_extent_map(em);
 | |
| 		em = NULL;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	free_extent_map(em);
 | |
| 	if (!ret) {
 | |
| 		if (whence == SEEK_DATA && start >= inode->i_size)
 | |
| 			ret = -ENXIO;
 | |
| 		else
 | |
| 			*offset = min_t(loff_t, start, inode->i_size);
 | |
| 	}
 | |
| 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
 | |
| 			     &cached_state, GFP_NOFS);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
 | |
| {
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	switch (whence) {
 | |
| 	case SEEK_END:
 | |
| 	case SEEK_CUR:
 | |
| 		offset = generic_file_llseek(file, offset, whence);
 | |
| 		goto out;
 | |
| 	case SEEK_DATA:
 | |
| 	case SEEK_HOLE:
 | |
| 		if (offset >= i_size_read(inode)) {
 | |
| 			mutex_unlock(&inode->i_mutex);
 | |
| 			return -ENXIO;
 | |
| 		}
 | |
| 
 | |
| 		ret = find_desired_extent(inode, &offset, whence);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&inode->i_mutex);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 | |
| out:
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| const struct file_operations btrfs_file_operations = {
 | |
| 	.llseek		= btrfs_file_llseek,
 | |
| 	.read_iter      = generic_file_read_iter,
 | |
| 	.splice_read	= generic_file_splice_read,
 | |
| 	.write_iter	= btrfs_file_write_iter,
 | |
| 	.mmap		= btrfs_file_mmap,
 | |
| 	.open		= generic_file_open,
 | |
| 	.release	= btrfs_release_file,
 | |
| 	.fsync		= btrfs_sync_file,
 | |
| 	.fallocate	= btrfs_fallocate,
 | |
| 	.unlocked_ioctl	= btrfs_ioctl,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_ioctl	= btrfs_ioctl,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| void btrfs_auto_defrag_exit(void)
 | |
| {
 | |
| 	if (btrfs_inode_defrag_cachep)
 | |
| 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
 | |
| }
 | |
| 
 | |
| int btrfs_auto_defrag_init(void)
 | |
| {
 | |
| 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
 | |
| 					sizeof(struct inode_defrag), 0,
 | |
| 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 | |
| 					NULL);
 | |
| 	if (!btrfs_inode_defrag_cachep)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * So with compression we will find and lock a dirty page and clear the
 | |
| 	 * first one as dirty, setup an async extent, and immediately return
 | |
| 	 * with the entire range locked but with nobody actually marked with
 | |
| 	 * writeback.  So we can't just filemap_write_and_wait_range() and
 | |
| 	 * expect it to work since it will just kick off a thread to do the
 | |
| 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
 | |
| 	 * since it will wait on the page lock, which won't be unlocked until
 | |
| 	 * after the pages have been marked as writeback and so we're good to go
 | |
| 	 * from there.  We have to do this otherwise we'll miss the ordered
 | |
| 	 * extents and that results in badness.  Please Josef, do not think you
 | |
| 	 * know better and pull this out at some point in the future, it is
 | |
| 	 * right and you are wrong.
 | |
| 	 */
 | |
| 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
 | |
| 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 | |
| 			     &BTRFS_I(inode)->runtime_flags))
 | |
| 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |