 497a5df7bf
			
		
	
	
	497a5df7bf
	
	
	
		
			
			- Use a single source list of hypercalls, generating other tables etc. at build time. - Add a "Xen PV" APIC driver to support >255 VCPUs in PV guests. - Significant performance improve to guest save/restore/migration. - scsiback/front save/restore support. - Infrastructure for multi-page xenbus rings. - Misc fixes. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.12 (GNU/Linux) iQEcBAABAgAGBQJVL6OZAAoJEFxbo/MsZsTRs3YH/2AycBHs129DNnc2OLmOklBz AdD43k+FOfZlv0YU80WmPVmOpGGHGB5Pqkix2KtnvPYmtx3pb/5ikhDwSTWZpqBl Qq6/RgsRjYZ8VMKqrMTkJMrJWHQYbg8lgsP5810nsFBn/Qdbxms+WBqpMkFVo3b2 rvUZj8QijMJPS3qr55DklVaOlXV4+sTAytTdCiubVnaB/agM2jjRflp/lnJrhtTg yc4NTrIlD1RsMV/lNh92upBP/pCm6Bs0zQ2H1v3hkdhBBmaO0IVXpSheYhfDOHfo 9v209n137N7X86CGWImFk6m2b+EfiFnLFir07zKSA+iZwkYKn75znSdPfj0KCc0= =bxTm -----END PGP SIGNATURE----- Merge tag 'stable/for-linus-4.1-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip Pull xen features and fixes from David Vrabel: - use a single source list of hypercalls, generating other tables etc. at build time. - add a "Xen PV" APIC driver to support >255 VCPUs in PV guests. - significant performance improve to guest save/restore/migration. - scsiback/front save/restore support. - infrastructure for multi-page xenbus rings. - misc fixes. * tag 'stable/for-linus-4.1-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: xen/pci: Try harder to get PXM information for Xen xenbus_client: Extend interface to support multi-page ring xen-pciback: also support disabling of bus-mastering and memory-write-invalidate xen: support suspend/resume in pvscsi frontend xen: scsiback: add LUN of restored domain xen-scsiback: define a pr_fmt macro with xen-pvscsi xen/mce: fix up xen_late_init_mcelog() error handling xen/privcmd: improve performance of MMAPBATCH_V2 xen: unify foreign GFN map/unmap for auto-xlated physmap guests x86/xen/apic: WARN with details. x86/xen: Provide a "Xen PV" APIC driver to support >255 VCPUs xen/pciback: Don't print scary messages when unsupported by hypervisor. xen: use generated hypercall symbols in arch/x86/xen/xen-head.S xen: use generated hypervisor symbols in arch/x86/xen/trace.c xen: synchronize include/xen/interface/xen.h with xen xen: build infrastructure for generating hypercall depending symbols xen: balloon: Use static attribute groups for sysfs entries xen: pcpu: Use static attribute groups for sysfs entry
		
			
				
	
	
		
			2591 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2591 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Xen mmu operations
 | |
|  *
 | |
|  * This file contains the various mmu fetch and update operations.
 | |
|  * The most important job they must perform is the mapping between the
 | |
|  * domain's pfn and the overall machine mfns.
 | |
|  *
 | |
|  * Xen allows guests to directly update the pagetable, in a controlled
 | |
|  * fashion.  In other words, the guest modifies the same pagetable
 | |
|  * that the CPU actually uses, which eliminates the overhead of having
 | |
|  * a separate shadow pagetable.
 | |
|  *
 | |
|  * In order to allow this, it falls on the guest domain to map its
 | |
|  * notion of a "physical" pfn - which is just a domain-local linear
 | |
|  * address - into a real "machine address" which the CPU's MMU can
 | |
|  * use.
 | |
|  *
 | |
|  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 | |
|  * inserted directly into the pagetable.  When creating a new
 | |
|  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 | |
|  * when reading the content back with __(pgd|pmd|pte)_val, it converts
 | |
|  * the mfn back into a pfn.
 | |
|  *
 | |
|  * The other constraint is that all pages which make up a pagetable
 | |
|  * must be mapped read-only in the guest.  This prevents uncontrolled
 | |
|  * guest updates to the pagetable.  Xen strictly enforces this, and
 | |
|  * will disallow any pagetable update which will end up mapping a
 | |
|  * pagetable page RW, and will disallow using any writable page as a
 | |
|  * pagetable.
 | |
|  *
 | |
|  * Naively, when loading %cr3 with the base of a new pagetable, Xen
 | |
|  * would need to validate the whole pagetable before going on.
 | |
|  * Naturally, this is quite slow.  The solution is to "pin" a
 | |
|  * pagetable, which enforces all the constraints on the pagetable even
 | |
|  * when it is not actively in use.  This menas that Xen can be assured
 | |
|  * that it is still valid when you do load it into %cr3, and doesn't
 | |
|  * need to revalidate it.
 | |
|  *
 | |
|  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/crash_dump.h>
 | |
| 
 | |
| #include <trace/events/xen.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/e820.h>
 | |
| #include <asm/linkage.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/init.h>
 | |
| #include <asm/pat.h>
 | |
| #include <asm/smp.h>
 | |
| 
 | |
| #include <asm/xen/hypercall.h>
 | |
| #include <asm/xen/hypervisor.h>
 | |
| 
 | |
| #include <xen/xen.h>
 | |
| #include <xen/page.h>
 | |
| #include <xen/interface/xen.h>
 | |
| #include <xen/interface/hvm/hvm_op.h>
 | |
| #include <xen/interface/version.h>
 | |
| #include <xen/interface/memory.h>
 | |
| #include <xen/hvc-console.h>
 | |
| 
 | |
| #include "multicalls.h"
 | |
| #include "mmu.h"
 | |
| #include "debugfs.h"
 | |
| 
 | |
| /*
 | |
|  * Protects atomic reservation decrease/increase against concurrent increases.
 | |
|  * Also protects non-atomic updates of current_pages and balloon lists.
 | |
|  */
 | |
| DEFINE_SPINLOCK(xen_reservation_lock);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| /*
 | |
|  * Identity map, in addition to plain kernel map.  This needs to be
 | |
|  * large enough to allocate page table pages to allocate the rest.
 | |
|  * Each page can map 2MB.
 | |
|  */
 | |
| #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
 | |
| static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
 | |
| #endif
 | |
| #ifdef CONFIG_X86_64
 | |
| /* l3 pud for userspace vsyscall mapping */
 | |
| static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * Note about cr3 (pagetable base) values:
 | |
|  *
 | |
|  * xen_cr3 contains the current logical cr3 value; it contains the
 | |
|  * last set cr3.  This may not be the current effective cr3, because
 | |
|  * its update may be being lazily deferred.  However, a vcpu looking
 | |
|  * at its own cr3 can use this value knowing that it everything will
 | |
|  * be self-consistent.
 | |
|  *
 | |
|  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 | |
|  * hypercall to set the vcpu cr3 is complete (so it may be a little
 | |
|  * out of date, but it will never be set early).  If one vcpu is
 | |
|  * looking at another vcpu's cr3 value, it should use this variable.
 | |
|  */
 | |
| DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
 | |
| DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 | |
|  * redzone above it, so round it up to a PGD boundary.
 | |
|  */
 | |
| #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 | |
| 
 | |
| unsigned long arbitrary_virt_to_mfn(void *vaddr)
 | |
| {
 | |
| 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 | |
| 
 | |
| 	return PFN_DOWN(maddr.maddr);
 | |
| }
 | |
| 
 | |
| xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 | |
| {
 | |
| 	unsigned long address = (unsigned long)vaddr;
 | |
| 	unsigned int level;
 | |
| 	pte_t *pte;
 | |
| 	unsigned offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * if the PFN is in the linear mapped vaddr range, we can just use
 | |
| 	 * the (quick) virt_to_machine() p2m lookup
 | |
| 	 */
 | |
| 	if (virt_addr_valid(vaddr))
 | |
| 		return virt_to_machine(vaddr);
 | |
| 
 | |
| 	/* otherwise we have to do a (slower) full page-table walk */
 | |
| 
 | |
| 	pte = lookup_address(address, &level);
 | |
| 	BUG_ON(pte == NULL);
 | |
| 	offset = address & ~PAGE_MASK;
 | |
| 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 | |
| 
 | |
| void make_lowmem_page_readonly(void *vaddr)
 | |
| {
 | |
| 	pte_t *pte, ptev;
 | |
| 	unsigned long address = (unsigned long)vaddr;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	pte = lookup_address(address, &level);
 | |
| 	if (pte == NULL)
 | |
| 		return;		/* vaddr missing */
 | |
| 
 | |
| 	ptev = pte_wrprotect(*pte);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| void make_lowmem_page_readwrite(void *vaddr)
 | |
| {
 | |
| 	pte_t *pte, ptev;
 | |
| 	unsigned long address = (unsigned long)vaddr;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	pte = lookup_address(address, &level);
 | |
| 	if (pte == NULL)
 | |
| 		return;		/* vaddr missing */
 | |
| 
 | |
| 	ptev = pte_mkwrite(*pte);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool xen_page_pinned(void *ptr)
 | |
| {
 | |
| 	struct page *page = virt_to_page(ptr);
 | |
| 
 | |
| 	return PagePinned(page);
 | |
| }
 | |
| 
 | |
| void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 	struct mmu_update *u;
 | |
| 
 | |
| 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*u));
 | |
| 	u = mcs.args;
 | |
| 
 | |
| 	/* ptep might be kmapped when using 32-bit HIGHPTE */
 | |
| 	u->ptr = virt_to_machine(ptep).maddr;
 | |
| 	u->val = pte_val_ma(pteval);
 | |
| 
 | |
| 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 | |
| 
 | |
| static void xen_extend_mmu_update(const struct mmu_update *update)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 	struct mmu_update *u;
 | |
| 
 | |
| 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 | |
| 
 | |
| 	if (mcs.mc != NULL) {
 | |
| 		mcs.mc->args[1]++;
 | |
| 	} else {
 | |
| 		mcs = __xen_mc_entry(sizeof(*u));
 | |
| 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 | |
| 	}
 | |
| 
 | |
| 	u = mcs.args;
 | |
| 	*u = *update;
 | |
| }
 | |
| 
 | |
| static void xen_extend_mmuext_op(const struct mmuext_op *op)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 	struct mmuext_op *u;
 | |
| 
 | |
| 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 | |
| 
 | |
| 	if (mcs.mc != NULL) {
 | |
| 		mcs.mc->args[1]++;
 | |
| 	} else {
 | |
| 		mcs = __xen_mc_entry(sizeof(*u));
 | |
| 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 | |
| 	}
 | |
| 
 | |
| 	u = mcs.args;
 | |
| 	*u = *op;
 | |
| }
 | |
| 
 | |
| static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	/* ptr may be ioremapped for 64-bit pagetable setup */
 | |
| 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 | |
| 	u.val = pmd_val_ma(val);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 | |
| {
 | |
| 	trace_xen_mmu_set_pmd(ptr, val);
 | |
| 
 | |
| 	/* If page is not pinned, we can just update the entry
 | |
| 	   directly */
 | |
| 	if (!xen_page_pinned(ptr)) {
 | |
| 		*ptr = val;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	xen_set_pmd_hyper(ptr, val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Associate a virtual page frame with a given physical page frame
 | |
|  * and protection flags for that frame.
 | |
|  */
 | |
| void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 | |
| {
 | |
| 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 | |
| }
 | |
| 
 | |
| static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 | |
| 		return false;
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 | |
| 	u.val = pte_val_ma(pteval);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	if (!xen_batched_set_pte(ptep, pteval)) {
 | |
| 		/*
 | |
| 		 * Could call native_set_pte() here and trap and
 | |
| 		 * emulate the PTE write but with 32-bit guests this
 | |
| 		 * needs two traps (one for each of the two 32-bit
 | |
| 		 * words in the PTE) so do one hypercall directly
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		struct mmu_update u;
 | |
| 
 | |
| 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 | |
| 		u.val = pte_val_ma(pteval);
 | |
| 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_set_pte(pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	trace_xen_mmu_set_pte(ptep, pteval);
 | |
| 	__xen_set_pte(ptep, pteval);
 | |
| }
 | |
| 
 | |
| static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 		    pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 | |
| 	__xen_set_pte(ptep, pteval);
 | |
| }
 | |
| 
 | |
| pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 | |
| 				 unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	/* Just return the pte as-is.  We preserve the bits on commit */
 | |
| 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 | |
| 	return *ptep;
 | |
| }
 | |
| 
 | |
| void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 | |
| 				 pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 | |
| 	u.val = pte_val_ma(pte);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| }
 | |
| 
 | |
| /* Assume pteval_t is equivalent to all the other *val_t types. */
 | |
| static pteval_t pte_mfn_to_pfn(pteval_t val)
 | |
| {
 | |
| 	if (val & _PAGE_PRESENT) {
 | |
| 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 | |
| 		unsigned long pfn = mfn_to_pfn(mfn);
 | |
| 
 | |
| 		pteval_t flags = val & PTE_FLAGS_MASK;
 | |
| 		if (unlikely(pfn == ~0))
 | |
| 			val = flags & ~_PAGE_PRESENT;
 | |
| 		else
 | |
| 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static pteval_t pte_pfn_to_mfn(pteval_t val)
 | |
| {
 | |
| 	if (val & _PAGE_PRESENT) {
 | |
| 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 | |
| 		pteval_t flags = val & PTE_FLAGS_MASK;
 | |
| 		unsigned long mfn;
 | |
| 
 | |
| 		if (!xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 			mfn = __pfn_to_mfn(pfn);
 | |
| 		else
 | |
| 			mfn = pfn;
 | |
| 		/*
 | |
| 		 * If there's no mfn for the pfn, then just create an
 | |
| 		 * empty non-present pte.  Unfortunately this loses
 | |
| 		 * information about the original pfn, so
 | |
| 		 * pte_mfn_to_pfn is asymmetric.
 | |
| 		 */
 | |
| 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 | |
| 			mfn = 0;
 | |
| 			flags = 0;
 | |
| 		} else
 | |
| 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
 | |
| 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| __visible pteval_t xen_pte_val(pte_t pte)
 | |
| {
 | |
| 	pteval_t pteval = pte.pte;
 | |
| 
 | |
| 	return pte_mfn_to_pfn(pteval);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 | |
| 
 | |
| __visible pgdval_t xen_pgd_val(pgd_t pgd)
 | |
| {
 | |
| 	return pte_mfn_to_pfn(pgd.pgd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 | |
| 
 | |
| __visible pte_t xen_make_pte(pteval_t pte)
 | |
| {
 | |
| 	pte = pte_pfn_to_mfn(pte);
 | |
| 
 | |
| 	return native_make_pte(pte);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 | |
| 
 | |
| __visible pgd_t xen_make_pgd(pgdval_t pgd)
 | |
| {
 | |
| 	pgd = pte_pfn_to_mfn(pgd);
 | |
| 	return native_make_pgd(pgd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 | |
| 
 | |
| __visible pmdval_t xen_pmd_val(pmd_t pmd)
 | |
| {
 | |
| 	return pte_mfn_to_pfn(pmd.pmd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 | |
| 
 | |
| static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	/* ptr may be ioremapped for 64-bit pagetable setup */
 | |
| 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 | |
| 	u.val = pud_val_ma(val);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_set_pud(pud_t *ptr, pud_t val)
 | |
| {
 | |
| 	trace_xen_mmu_set_pud(ptr, val);
 | |
| 
 | |
| 	/* If page is not pinned, we can just update the entry
 | |
| 	   directly */
 | |
| 	if (!xen_page_pinned(ptr)) {
 | |
| 		*ptr = val;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	xen_set_pud_hyper(ptr, val);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	trace_xen_mmu_set_pte_atomic(ptep, pte);
 | |
| 	set_64bit((u64 *)ptep, native_pte_val(pte));
 | |
| }
 | |
| 
 | |
| static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	trace_xen_mmu_pte_clear(mm, addr, ptep);
 | |
| 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 | |
| 		native_pte_clear(mm, addr, ptep);
 | |
| }
 | |
| 
 | |
| static void xen_pmd_clear(pmd_t *pmdp)
 | |
| {
 | |
| 	trace_xen_mmu_pmd_clear(pmdp);
 | |
| 	set_pmd(pmdp, __pmd(0));
 | |
| }
 | |
| #endif	/* CONFIG_X86_PAE */
 | |
| 
 | |
| __visible pmd_t xen_make_pmd(pmdval_t pmd)
 | |
| {
 | |
| 	pmd = pte_pfn_to_mfn(pmd);
 | |
| 	return native_make_pmd(pmd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 | |
| 
 | |
| #if CONFIG_PGTABLE_LEVELS == 4
 | |
| __visible pudval_t xen_pud_val(pud_t pud)
 | |
| {
 | |
| 	return pte_mfn_to_pfn(pud.pud);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 | |
| 
 | |
| __visible pud_t xen_make_pud(pudval_t pud)
 | |
| {
 | |
| 	pud = pte_pfn_to_mfn(pud);
 | |
| 
 | |
| 	return native_make_pud(pud);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 | |
| 
 | |
| static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 | |
| {
 | |
| 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 | |
| 	unsigned offset = pgd - pgd_page;
 | |
| 	pgd_t *user_ptr = NULL;
 | |
| 
 | |
| 	if (offset < pgd_index(USER_LIMIT)) {
 | |
| 		struct page *page = virt_to_page(pgd_page);
 | |
| 		user_ptr = (pgd_t *)page->private;
 | |
| 		if (user_ptr)
 | |
| 			user_ptr += offset;
 | |
| 	}
 | |
| 
 | |
| 	return user_ptr;
 | |
| }
 | |
| 
 | |
| static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	u.ptr = virt_to_machine(ptr).maddr;
 | |
| 	u.val = pgd_val_ma(val);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Raw hypercall-based set_pgd, intended for in early boot before
 | |
|  * there's a page structure.  This implies:
 | |
|  *  1. The only existing pagetable is the kernel's
 | |
|  *  2. It is always pinned
 | |
|  *  3. It has no user pagetable attached to it
 | |
|  */
 | |
| static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	__xen_set_pgd_hyper(ptr, val);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 | |
| {
 | |
| 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
 | |
| 
 | |
| 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 | |
| 
 | |
| 	/* If page is not pinned, we can just update the entry
 | |
| 	   directly */
 | |
| 	if (!xen_page_pinned(ptr)) {
 | |
| 		*ptr = val;
 | |
| 		if (user_ptr) {
 | |
| 			WARN_ON(xen_page_pinned(user_ptr));
 | |
| 			*user_ptr = val;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* If it's pinned, then we can at least batch the kernel and
 | |
| 	   user updates together. */
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	__xen_set_pgd_hyper(ptr, val);
 | |
| 	if (user_ptr)
 | |
| 		__xen_set_pgd_hyper(user_ptr, val);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| }
 | |
| #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
 | |
| 
 | |
| /*
 | |
|  * (Yet another) pagetable walker.  This one is intended for pinning a
 | |
|  * pagetable.  This means that it walks a pagetable and calls the
 | |
|  * callback function on each page it finds making up the page table,
 | |
|  * at every level.  It walks the entire pagetable, but it only bothers
 | |
|  * pinning pte pages which are below limit.  In the normal case this
 | |
|  * will be STACK_TOP_MAX, but at boot we need to pin up to
 | |
|  * FIXADDR_TOP.
 | |
|  *
 | |
|  * For 32-bit the important bit is that we don't pin beyond there,
 | |
|  * because then we start getting into Xen's ptes.
 | |
|  *
 | |
|  * For 64-bit, we must skip the Xen hole in the middle of the address
 | |
|  * space, just after the big x86-64 virtual hole.
 | |
|  */
 | |
| static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 | |
| 			  int (*func)(struct mm_struct *mm, struct page *,
 | |
| 				      enum pt_level),
 | |
| 			  unsigned long limit)
 | |
| {
 | |
| 	int flush = 0;
 | |
| 	unsigned hole_low, hole_high;
 | |
| 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 | |
| 	unsigned pgdidx, pudidx, pmdidx;
 | |
| 
 | |
| 	/* The limit is the last byte to be touched */
 | |
| 	limit--;
 | |
| 	BUG_ON(limit >= FIXADDR_TOP);
 | |
| 
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * 64-bit has a great big hole in the middle of the address
 | |
| 	 * space, which contains the Xen mappings.  On 32-bit these
 | |
| 	 * will end up making a zero-sized hole and so is a no-op.
 | |
| 	 */
 | |
| 	hole_low = pgd_index(USER_LIMIT);
 | |
| 	hole_high = pgd_index(PAGE_OFFSET);
 | |
| 
 | |
| 	pgdidx_limit = pgd_index(limit);
 | |
| #if PTRS_PER_PUD > 1
 | |
| 	pudidx_limit = pud_index(limit);
 | |
| #else
 | |
| 	pudidx_limit = 0;
 | |
| #endif
 | |
| #if PTRS_PER_PMD > 1
 | |
| 	pmdidx_limit = pmd_index(limit);
 | |
| #else
 | |
| 	pmdidx_limit = 0;
 | |
| #endif
 | |
| 
 | |
| 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 | |
| 		pud_t *pud;
 | |
| 
 | |
| 		if (pgdidx >= hole_low && pgdidx < hole_high)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!pgd_val(pgd[pgdidx]))
 | |
| 			continue;
 | |
| 
 | |
| 		pud = pud_offset(&pgd[pgdidx], 0);
 | |
| 
 | |
| 		if (PTRS_PER_PUD > 1) /* not folded */
 | |
| 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 | |
| 
 | |
| 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 | |
| 			pmd_t *pmd;
 | |
| 
 | |
| 			if (pgdidx == pgdidx_limit &&
 | |
| 			    pudidx > pudidx_limit)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (pud_none(pud[pudidx]))
 | |
| 				continue;
 | |
| 
 | |
| 			pmd = pmd_offset(&pud[pudidx], 0);
 | |
| 
 | |
| 			if (PTRS_PER_PMD > 1) /* not folded */
 | |
| 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 | |
| 
 | |
| 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 | |
| 				struct page *pte;
 | |
| 
 | |
| 				if (pgdidx == pgdidx_limit &&
 | |
| 				    pudidx == pudidx_limit &&
 | |
| 				    pmdidx > pmdidx_limit)
 | |
| 					goto out;
 | |
| 
 | |
| 				if (pmd_none(pmd[pmdidx]))
 | |
| 					continue;
 | |
| 
 | |
| 				pte = pmd_page(pmd[pmdidx]);
 | |
| 				flush |= (*func)(mm, pte, PT_PTE);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* Do the top level last, so that the callbacks can use it as
 | |
| 	   a cue to do final things like tlb flushes. */
 | |
| 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static int xen_pgd_walk(struct mm_struct *mm,
 | |
| 			int (*func)(struct mm_struct *mm, struct page *,
 | |
| 				    enum pt_level),
 | |
| 			unsigned long limit)
 | |
| {
 | |
| 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
 | |
| }
 | |
| 
 | |
| /* If we're using split pte locks, then take the page's lock and
 | |
|    return a pointer to it.  Otherwise return NULL. */
 | |
| static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 | |
| {
 | |
| 	spinlock_t *ptl = NULL;
 | |
| 
 | |
| #if USE_SPLIT_PTE_PTLOCKS
 | |
| 	ptl = ptlock_ptr(page);
 | |
| 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
 | |
| #endif
 | |
| 
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| static void xen_pte_unlock(void *v)
 | |
| {
 | |
| 	spinlock_t *ptl = v;
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| 
 | |
| static void xen_do_pin(unsigned level, unsigned long pfn)
 | |
| {
 | |
| 	struct mmuext_op op;
 | |
| 
 | |
| 	op.cmd = level;
 | |
| 	op.arg1.mfn = pfn_to_mfn(pfn);
 | |
| 
 | |
| 	xen_extend_mmuext_op(&op);
 | |
| }
 | |
| 
 | |
| static int xen_pin_page(struct mm_struct *mm, struct page *page,
 | |
| 			enum pt_level level)
 | |
| {
 | |
| 	unsigned pgfl = TestSetPagePinned(page);
 | |
| 	int flush;
 | |
| 
 | |
| 	if (pgfl)
 | |
| 		flush = 0;		/* already pinned */
 | |
| 	else if (PageHighMem(page))
 | |
| 		/* kmaps need flushing if we found an unpinned
 | |
| 		   highpage */
 | |
| 		flush = 1;
 | |
| 	else {
 | |
| 		void *pt = lowmem_page_address(page);
 | |
| 		unsigned long pfn = page_to_pfn(page);
 | |
| 		struct multicall_space mcs = __xen_mc_entry(0);
 | |
| 		spinlock_t *ptl;
 | |
| 
 | |
| 		flush = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to hold the pagetable lock between the time
 | |
| 		 * we make the pagetable RO and when we actually pin
 | |
| 		 * it.  If we don't, then other users may come in and
 | |
| 		 * attempt to update the pagetable by writing it,
 | |
| 		 * which will fail because the memory is RO but not
 | |
| 		 * pinned, so Xen won't do the trap'n'emulate.
 | |
| 		 *
 | |
| 		 * If we're using split pte locks, we can't hold the
 | |
| 		 * entire pagetable's worth of locks during the
 | |
| 		 * traverse, because we may wrap the preempt count (8
 | |
| 		 * bits).  The solution is to mark RO and pin each PTE
 | |
| 		 * page while holding the lock.  This means the number
 | |
| 		 * of locks we end up holding is never more than a
 | |
| 		 * batch size (~32 entries, at present).
 | |
| 		 *
 | |
| 		 * If we're not using split pte locks, we needn't pin
 | |
| 		 * the PTE pages independently, because we're
 | |
| 		 * protected by the overall pagetable lock.
 | |
| 		 */
 | |
| 		ptl = NULL;
 | |
| 		if (level == PT_PTE)
 | |
| 			ptl = xen_pte_lock(page, mm);
 | |
| 
 | |
| 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 | |
| 					pfn_pte(pfn, PAGE_KERNEL_RO),
 | |
| 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 | |
| 
 | |
| 		if (ptl) {
 | |
| 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 | |
| 
 | |
| 			/* Queue a deferred unlock for when this batch
 | |
| 			   is completed. */
 | |
| 			xen_mc_callback(xen_pte_unlock, ptl);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /* This is called just after a mm has been created, but it has not
 | |
|    been used yet.  We need to make sure that its pagetable is all
 | |
|    read-only, and can be pinned. */
 | |
| static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 | |
| {
 | |
| 	trace_xen_mmu_pgd_pin(mm, pgd);
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 | |
| 		/* re-enable interrupts for flushing */
 | |
| 		xen_mc_issue(0);
 | |
| 
 | |
| 		kmap_flush_unused();
 | |
| 
 | |
| 		xen_mc_batch();
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 | |
| 
 | |
| 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| 		if (user_pgd) {
 | |
| 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 | |
| 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
 | |
| 				   PFN_DOWN(__pa(user_pgd)));
 | |
| 		}
 | |
| 	}
 | |
| #else /* CONFIG_X86_32 */
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	/* Need to make sure unshared kernel PMD is pinnable */
 | |
| 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 | |
| 		     PT_PMD);
 | |
| #endif
 | |
| 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 	xen_mc_issue(0);
 | |
| }
 | |
| 
 | |
| static void xen_pgd_pin(struct mm_struct *mm)
 | |
| {
 | |
| 	__xen_pgd_pin(mm, mm->pgd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On save, we need to pin all pagetables to make sure they get their
 | |
|  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 | |
|  * them (unpinned pgds are not currently in use, probably because the
 | |
|  * process is under construction or destruction).
 | |
|  *
 | |
|  * Expected to be called in stop_machine() ("equivalent to taking
 | |
|  * every spinlock in the system"), so the locking doesn't really
 | |
|  * matter all that much.
 | |
|  */
 | |
| void xen_mm_pin_all(void)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	spin_lock(&pgd_lock);
 | |
| 
 | |
| 	list_for_each_entry(page, &pgd_list, lru) {
 | |
| 		if (!PagePinned(page)) {
 | |
| 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 | |
| 			SetPageSavePinned(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&pgd_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The init_mm pagetable is really pinned as soon as its created, but
 | |
|  * that's before we have page structures to store the bits.  So do all
 | |
|  * the book-keeping now.
 | |
|  */
 | |
| static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 | |
| 				  enum pt_level level)
 | |
| {
 | |
| 	SetPagePinned(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init xen_mark_init_mm_pinned(void)
 | |
| {
 | |
| 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 | |
| }
 | |
| 
 | |
| static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 | |
| 			  enum pt_level level)
 | |
| {
 | |
| 	unsigned pgfl = TestClearPagePinned(page);
 | |
| 
 | |
| 	if (pgfl && !PageHighMem(page)) {
 | |
| 		void *pt = lowmem_page_address(page);
 | |
| 		unsigned long pfn = page_to_pfn(page);
 | |
| 		spinlock_t *ptl = NULL;
 | |
| 		struct multicall_space mcs;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do the converse to pin_page.  If we're using split
 | |
| 		 * pte locks, we must be holding the lock for while
 | |
| 		 * the pte page is unpinned but still RO to prevent
 | |
| 		 * concurrent updates from seeing it in this
 | |
| 		 * partially-pinned state.
 | |
| 		 */
 | |
| 		if (level == PT_PTE) {
 | |
| 			ptl = xen_pte_lock(page, mm);
 | |
| 
 | |
| 			if (ptl)
 | |
| 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 | |
| 		}
 | |
| 
 | |
| 		mcs = __xen_mc_entry(0);
 | |
| 
 | |
| 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 | |
| 					pfn_pte(pfn, PAGE_KERNEL),
 | |
| 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 | |
| 
 | |
| 		if (ptl) {
 | |
| 			/* unlock when batch completed */
 | |
| 			xen_mc_callback(xen_pte_unlock, ptl);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;		/* never need to flush on unpin */
 | |
| }
 | |
| 
 | |
| /* Release a pagetables pages back as normal RW */
 | |
| static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 | |
| {
 | |
| 	trace_xen_mmu_pgd_unpin(mm, pgd);
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 | |
| 
 | |
| 		if (user_pgd) {
 | |
| 			xen_do_pin(MMUEXT_UNPIN_TABLE,
 | |
| 				   PFN_DOWN(__pa(user_pgd)));
 | |
| 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	/* Need to make sure unshared kernel PMD is unpinned */
 | |
| 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 | |
| 		       PT_PMD);
 | |
| #endif
 | |
| 
 | |
| 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 | |
| 
 | |
| 	xen_mc_issue(0);
 | |
| }
 | |
| 
 | |
| static void xen_pgd_unpin(struct mm_struct *mm)
 | |
| {
 | |
| 	__xen_pgd_unpin(mm, mm->pgd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On resume, undo any pinning done at save, so that the rest of the
 | |
|  * kernel doesn't see any unexpected pinned pagetables.
 | |
|  */
 | |
| void xen_mm_unpin_all(void)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	spin_lock(&pgd_lock);
 | |
| 
 | |
| 	list_for_each_entry(page, &pgd_list, lru) {
 | |
| 		if (PageSavePinned(page)) {
 | |
| 			BUG_ON(!PagePinned(page));
 | |
| 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 | |
| 			ClearPageSavePinned(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&pgd_lock);
 | |
| }
 | |
| 
 | |
| static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
 | |
| {
 | |
| 	spin_lock(&next->page_table_lock);
 | |
| 	xen_pgd_pin(next);
 | |
| 	spin_unlock(&next->page_table_lock);
 | |
| }
 | |
| 
 | |
| static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 | |
| {
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	xen_pgd_pin(mm);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /* Another cpu may still have their %cr3 pointing at the pagetable, so
 | |
|    we need to repoint it somewhere else before we can unpin it. */
 | |
| static void drop_other_mm_ref(void *info)
 | |
| {
 | |
| 	struct mm_struct *mm = info;
 | |
| 	struct mm_struct *active_mm;
 | |
| 
 | |
| 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 | |
| 
 | |
| 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
 | |
| 		leave_mm(smp_processor_id());
 | |
| 
 | |
| 	/* If this cpu still has a stale cr3 reference, then make sure
 | |
| 	   it has been flushed. */
 | |
| 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
 | |
| 		load_cr3(swapper_pg_dir);
 | |
| }
 | |
| 
 | |
| static void xen_drop_mm_ref(struct mm_struct *mm)
 | |
| {
 | |
| 	cpumask_var_t mask;
 | |
| 	unsigned cpu;
 | |
| 
 | |
| 	if (current->active_mm == mm) {
 | |
| 		if (current->mm == mm)
 | |
| 			load_cr3(swapper_pg_dir);
 | |
| 		else
 | |
| 			leave_mm(smp_processor_id());
 | |
| 	}
 | |
| 
 | |
| 	/* Get the "official" set of cpus referring to our pagetable. */
 | |
| 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
 | |
| 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
 | |
| 				continue;
 | |
| 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 	cpumask_copy(mask, mm_cpumask(mm));
 | |
| 
 | |
| 	/* It's possible that a vcpu may have a stale reference to our
 | |
| 	   cr3, because its in lazy mode, and it hasn't yet flushed
 | |
| 	   its set of pending hypercalls yet.  In this case, we can
 | |
| 	   look at its actual current cr3 value, and force it to flush
 | |
| 	   if needed. */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
 | |
| 			cpumask_set_cpu(cpu, mask);
 | |
| 	}
 | |
| 
 | |
| 	if (!cpumask_empty(mask))
 | |
| 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
 | |
| 	free_cpumask_var(mask);
 | |
| }
 | |
| #else
 | |
| static void xen_drop_mm_ref(struct mm_struct *mm)
 | |
| {
 | |
| 	if (current->active_mm == mm)
 | |
| 		load_cr3(swapper_pg_dir);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * While a process runs, Xen pins its pagetables, which means that the
 | |
|  * hypervisor forces it to be read-only, and it controls all updates
 | |
|  * to it.  This means that all pagetable updates have to go via the
 | |
|  * hypervisor, which is moderately expensive.
 | |
|  *
 | |
|  * Since we're pulling the pagetable down, we switch to use init_mm,
 | |
|  * unpin old process pagetable and mark it all read-write, which
 | |
|  * allows further operations on it to be simple memory accesses.
 | |
|  *
 | |
|  * The only subtle point is that another CPU may be still using the
 | |
|  * pagetable because of lazy tlb flushing.  This means we need need to
 | |
|  * switch all CPUs off this pagetable before we can unpin it.
 | |
|  */
 | |
| static void xen_exit_mmap(struct mm_struct *mm)
 | |
| {
 | |
| 	get_cpu();		/* make sure we don't move around */
 | |
| 	xen_drop_mm_ref(mm);
 | |
| 	put_cpu();
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 
 | |
| 	/* pgd may not be pinned in the error exit path of execve */
 | |
| 	if (xen_page_pinned(mm->pgd))
 | |
| 		xen_pgd_unpin(mm);
 | |
| 
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| }
 | |
| 
 | |
| static void xen_post_allocator_init(void);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void __init xen_cleanhighmap(unsigned long vaddr,
 | |
| 				    unsigned long vaddr_end)
 | |
| {
 | |
| 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 | |
| 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
 | |
| 
 | |
| 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
 | |
| 	 * We include the PMD passed in on _both_ boundaries. */
 | |
| 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
 | |
| 			pmd++, vaddr += PMD_SIZE) {
 | |
| 		if (pmd_none(*pmd))
 | |
| 			continue;
 | |
| 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
 | |
| 			set_pmd(pmd, __pmd(0));
 | |
| 	}
 | |
| 	/* In case we did something silly, we should crash in this function
 | |
| 	 * instead of somewhere later and be confusing. */
 | |
| 	xen_mc_flush();
 | |
| }
 | |
| 
 | |
| static void __init xen_pagetable_p2m_free(void)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
 | |
| 
 | |
| 	/* No memory or already called. */
 | |
| 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
 | |
| 		return;
 | |
| 
 | |
| 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
 | |
| 	memset((void *)xen_start_info->mfn_list, 0xff, size);
 | |
| 
 | |
| 	/* We should be in __ka space. */
 | |
| 	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
 | |
| 	addr = xen_start_info->mfn_list;
 | |
| 	/* We roundup to the PMD, which means that if anybody at this stage is
 | |
| 	 * using the __ka address of xen_start_info or xen_start_info->shared_info
 | |
| 	 * they are in going to crash. Fortunatly we have already revectored
 | |
| 	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
 | |
| 	size = roundup(size, PMD_SIZE);
 | |
| 	xen_cleanhighmap(addr, addr + size);
 | |
| 
 | |
| 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
 | |
| 	memblock_free(__pa(xen_start_info->mfn_list), size);
 | |
| 
 | |
| 	/* At this stage, cleanup_highmap has already cleaned __ka space
 | |
| 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
 | |
| 	 * the ramdisk). We continue on, erasing PMD entries that point to page
 | |
| 	 * tables - do note that they are accessible at this stage via __va.
 | |
| 	 * For good measure we also round up to the PMD - which means that if
 | |
| 	 * anybody is using __ka address to the initial boot-stack - and try
 | |
| 	 * to use it - they are going to crash. The xen_start_info has been
 | |
| 	 * taken care of already in xen_setup_kernel_pagetable. */
 | |
| 	addr = xen_start_info->pt_base;
 | |
| 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
 | |
| 
 | |
| 	xen_cleanhighmap(addr, addr + size);
 | |
| 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
 | |
| #ifdef DEBUG
 | |
| 	/* This is superflous and is not neccessary, but you know what
 | |
| 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
 | |
| 	 * anything at this stage. */
 | |
| 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __init xen_pagetable_p2m_setup(void)
 | |
| {
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return;
 | |
| 
 | |
| 	xen_vmalloc_p2m_tree();
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	xen_pagetable_p2m_free();
 | |
| #endif
 | |
| 	/* And revector! Bye bye old array */
 | |
| 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
 | |
| }
 | |
| 
 | |
| static void __init xen_pagetable_init(void)
 | |
| {
 | |
| 	paging_init();
 | |
| 	xen_post_allocator_init();
 | |
| 
 | |
| 	xen_pagetable_p2m_setup();
 | |
| 
 | |
| 	/* Allocate and initialize top and mid mfn levels for p2m structure */
 | |
| 	xen_build_mfn_list_list();
 | |
| 
 | |
| 	/* Remap memory freed due to conflicts with E820 map */
 | |
| 	if (!xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		xen_remap_memory();
 | |
| 
 | |
| 	xen_setup_shared_info();
 | |
| }
 | |
| static void xen_write_cr2(unsigned long cr2)
 | |
| {
 | |
| 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
 | |
| }
 | |
| 
 | |
| static unsigned long xen_read_cr2(void)
 | |
| {
 | |
| 	return this_cpu_read(xen_vcpu)->arch.cr2;
 | |
| }
 | |
| 
 | |
| unsigned long xen_read_cr2_direct(void)
 | |
| {
 | |
| 	return this_cpu_read(xen_vcpu_info.arch.cr2);
 | |
| }
 | |
| 
 | |
| void xen_flush_tlb_all(void)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	trace_xen_mmu_flush_tlb_all(0);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*op));
 | |
| 
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| static void xen_flush_tlb(void)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	trace_xen_mmu_flush_tlb(0);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*op));
 | |
| 
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_flush_tlb_single(unsigned long addr)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	trace_xen_mmu_flush_tlb_single(addr);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*op));
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = MMUEXT_INVLPG_LOCAL;
 | |
| 	op->arg1.linear_addr = addr & PAGE_MASK;
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_flush_tlb_others(const struct cpumask *cpus,
 | |
| 				 struct mm_struct *mm, unsigned long start,
 | |
| 				 unsigned long end)
 | |
| {
 | |
| 	struct {
 | |
| 		struct mmuext_op op;
 | |
| #ifdef CONFIG_SMP
 | |
| 		DECLARE_BITMAP(mask, num_processors);
 | |
| #else
 | |
| 		DECLARE_BITMAP(mask, NR_CPUS);
 | |
| #endif
 | |
| 	} *args;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
 | |
| 
 | |
| 	if (cpumask_empty(cpus))
 | |
| 		return;		/* nothing to do */
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*args));
 | |
| 	args = mcs.args;
 | |
| 	args->op.arg2.vcpumask = to_cpumask(args->mask);
 | |
| 
 | |
| 	/* Remove us, and any offline CPUS. */
 | |
| 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
 | |
| 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
 | |
| 
 | |
| 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
 | |
| 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
 | |
| 		args->op.cmd = MMUEXT_INVLPG_MULTI;
 | |
| 		args->op.arg1.linear_addr = start;
 | |
| 	}
 | |
| 
 | |
| 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| }
 | |
| 
 | |
| static unsigned long xen_read_cr3(void)
 | |
| {
 | |
| 	return this_cpu_read(xen_cr3);
 | |
| }
 | |
| 
 | |
| static void set_current_cr3(void *v)
 | |
| {
 | |
| 	this_cpu_write(xen_current_cr3, (unsigned long)v);
 | |
| }
 | |
| 
 | |
| static void __xen_write_cr3(bool kernel, unsigned long cr3)
 | |
| {
 | |
| 	struct mmuext_op op;
 | |
| 	unsigned long mfn;
 | |
| 
 | |
| 	trace_xen_mmu_write_cr3(kernel, cr3);
 | |
| 
 | |
| 	if (cr3)
 | |
| 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
 | |
| 	else
 | |
| 		mfn = 0;
 | |
| 
 | |
| 	WARN_ON(mfn == 0 && kernel);
 | |
| 
 | |
| 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
 | |
| 	op.arg1.mfn = mfn;
 | |
| 
 | |
| 	xen_extend_mmuext_op(&op);
 | |
| 
 | |
| 	if (kernel) {
 | |
| 		this_cpu_write(xen_cr3, cr3);
 | |
| 
 | |
| 		/* Update xen_current_cr3 once the batch has actually
 | |
| 		   been submitted. */
 | |
| 		xen_mc_callback(set_current_cr3, (void *)cr3);
 | |
| 	}
 | |
| }
 | |
| static void xen_write_cr3(unsigned long cr3)
 | |
| {
 | |
| 	BUG_ON(preemptible());
 | |
| 
 | |
| 	xen_mc_batch();  /* disables interrupts */
 | |
| 
 | |
| 	/* Update while interrupts are disabled, so its atomic with
 | |
| 	   respect to ipis */
 | |
| 	this_cpu_write(xen_cr3, cr3);
 | |
| 
 | |
| 	__xen_write_cr3(true, cr3);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
 | |
| 		if (user_pgd)
 | |
| 			__xen_write_cr3(false, __pa(user_pgd));
 | |
| 		else
 | |
| 			__xen_write_cr3(false, 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| /*
 | |
|  * At the start of the day - when Xen launches a guest, it has already
 | |
|  * built pagetables for the guest. We diligently look over them
 | |
|  * in xen_setup_kernel_pagetable and graft as appropiate them in the
 | |
|  * init_level4_pgt and its friends. Then when we are happy we load
 | |
|  * the new init_level4_pgt - and continue on.
 | |
|  *
 | |
|  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
 | |
|  * up the rest of the pagetables. When it has completed it loads the cr3.
 | |
|  * N.B. that baremetal would start at 'start_kernel' (and the early
 | |
|  * #PF handler would create bootstrap pagetables) - so we are running
 | |
|  * with the same assumptions as what to do when write_cr3 is executed
 | |
|  * at this point.
 | |
|  *
 | |
|  * Since there are no user-page tables at all, we have two variants
 | |
|  * of xen_write_cr3 - the early bootup (this one), and the late one
 | |
|  * (xen_write_cr3). The reason we have to do that is that in 64-bit
 | |
|  * the Linux kernel and user-space are both in ring 3 while the
 | |
|  * hypervisor is in ring 0.
 | |
|  */
 | |
| static void __init xen_write_cr3_init(unsigned long cr3)
 | |
| {
 | |
| 	BUG_ON(preemptible());
 | |
| 
 | |
| 	xen_mc_batch();  /* disables interrupts */
 | |
| 
 | |
| 	/* Update while interrupts are disabled, so its atomic with
 | |
| 	   respect to ipis */
 | |
| 	this_cpu_write(xen_cr3, cr3);
 | |
| 
 | |
| 	__xen_write_cr3(true, cr3);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int xen_pgd_alloc(struct mm_struct *mm)
 | |
| {
 | |
| 	pgd_t *pgd = mm->pgd;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(PagePinned(virt_to_page(pgd)));
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		struct page *page = virt_to_page(pgd);
 | |
| 		pgd_t *user_pgd;
 | |
| 
 | |
| 		BUG_ON(page->private != 0);
 | |
| 
 | |
| 		ret = -ENOMEM;
 | |
| 
 | |
| 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 		page->private = (unsigned long)user_pgd;
 | |
| 
 | |
| 		if (user_pgd != NULL) {
 | |
| #ifdef CONFIG_X86_VSYSCALL_EMULATION
 | |
| 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
 | |
| 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
 | |
| #endif
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
 | |
| 
 | |
| 	if (user_pgd)
 | |
| 		free_page((unsigned long)user_pgd);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
 | |
| 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
 | |
| 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
 | |
| 			       pte_val_ma(pte));
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| #else /* CONFIG_X86_64 */
 | |
| static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * Init-time set_pte while constructing initial pagetables, which
 | |
|  * doesn't allow RO page table pages to be remapped RW.
 | |
|  *
 | |
|  * If there is no MFN for this PFN then this page is initially
 | |
|  * ballooned out so clear the PTE (as in decrease_reservation() in
 | |
|  * drivers/xen/balloon.c).
 | |
|  *
 | |
|  * Many of these PTE updates are done on unpinned and writable pages
 | |
|  * and doing a hypercall for these is unnecessary and expensive.  At
 | |
|  * this point it is not possible to tell if a page is pinned or not,
 | |
|  * so always write the PTE directly and rely on Xen trapping and
 | |
|  * emulating any updates as necessary.
 | |
|  */
 | |
| static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
 | |
| 		pte = mask_rw_pte(ptep, pte);
 | |
| 	else
 | |
| 		pte = __pte_ma(0);
 | |
| 
 | |
| 	native_set_pte(ptep, pte);
 | |
| }
 | |
| 
 | |
| static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
 | |
| {
 | |
| 	struct mmuext_op op;
 | |
| 	op.cmd = cmd;
 | |
| 	op.arg1.mfn = pfn_to_mfn(pfn);
 | |
| 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| /* Early in boot, while setting up the initial pagetable, assume
 | |
|    everything is pinned. */
 | |
| static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	BUG_ON(mem_map);	/* should only be used early */
 | |
| #endif
 | |
| 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
 | |
| 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
 | |
| }
 | |
| 
 | |
| /* Used for pmd and pud */
 | |
| static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	BUG_ON(mem_map);	/* should only be used early */
 | |
| #endif
 | |
| 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
 | |
| }
 | |
| 
 | |
| /* Early release_pte assumes that all pts are pinned, since there's
 | |
|    only init_mm and anything attached to that is pinned. */
 | |
| static void __init xen_release_pte_init(unsigned long pfn)
 | |
| {
 | |
| 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
 | |
| 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
 | |
| }
 | |
| 
 | |
| static void __init xen_release_pmd_init(unsigned long pfn)
 | |
| {
 | |
| 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
 | |
| }
 | |
| 
 | |
| static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 	struct mmuext_op *op;
 | |
| 
 | |
| 	mcs = __xen_mc_entry(sizeof(*op));
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = cmd;
 | |
| 	op->arg1.mfn = pfn_to_mfn(pfn);
 | |
| 
 | |
| 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 | |
| }
 | |
| 
 | |
| static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
 | |
| 
 | |
| 	mcs = __xen_mc_entry(0);
 | |
| 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
 | |
| 				pfn_pte(pfn, prot), 0);
 | |
| }
 | |
| 
 | |
| /* This needs to make sure the new pte page is pinned iff its being
 | |
|    attached to a pinned pagetable. */
 | |
| static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
 | |
| 				    unsigned level)
 | |
| {
 | |
| 	bool pinned = PagePinned(virt_to_page(mm->pgd));
 | |
| 
 | |
| 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
 | |
| 
 | |
| 	if (pinned) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		SetPagePinned(page);
 | |
| 
 | |
| 		if (!PageHighMem(page)) {
 | |
| 			xen_mc_batch();
 | |
| 
 | |
| 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
 | |
| 
 | |
| 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
 | |
| 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
 | |
| 
 | |
| 			xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 		} else {
 | |
| 			/* make sure there are no stray mappings of
 | |
| 			   this page */
 | |
| 			kmap_flush_unused();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| 	xen_alloc_ptpage(mm, pfn, PT_PTE);
 | |
| }
 | |
| 
 | |
| static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| 	xen_alloc_ptpage(mm, pfn, PT_PMD);
 | |
| }
 | |
| 
 | |
| /* This should never happen until we're OK to use struct page */
 | |
| static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(pfn);
 | |
| 	bool pinned = PagePinned(page);
 | |
| 
 | |
| 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
 | |
| 
 | |
| 	if (pinned) {
 | |
| 		if (!PageHighMem(page)) {
 | |
| 			xen_mc_batch();
 | |
| 
 | |
| 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
 | |
| 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
 | |
| 
 | |
| 			__set_pfn_prot(pfn, PAGE_KERNEL);
 | |
| 
 | |
| 			xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 		}
 | |
| 		ClearPagePinned(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_release_pte(unsigned long pfn)
 | |
| {
 | |
| 	xen_release_ptpage(pfn, PT_PTE);
 | |
| }
 | |
| 
 | |
| static void xen_release_pmd(unsigned long pfn)
 | |
| {
 | |
| 	xen_release_ptpage(pfn, PT_PMD);
 | |
| }
 | |
| 
 | |
| #if CONFIG_PGTABLE_LEVELS == 4
 | |
| static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| 	xen_alloc_ptpage(mm, pfn, PT_PUD);
 | |
| }
 | |
| 
 | |
| static void xen_release_pud(unsigned long pfn)
 | |
| {
 | |
| 	xen_release_ptpage(pfn, PT_PUD);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init xen_reserve_top(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_32
 | |
| 	unsigned long top = HYPERVISOR_VIRT_START;
 | |
| 	struct xen_platform_parameters pp;
 | |
| 
 | |
| 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
 | |
| 		top = pp.virt_start;
 | |
| 
 | |
| 	reserve_top_address(-top);
 | |
| #endif	/* CONFIG_X86_32 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Like __va(), but returns address in the kernel mapping (which is
 | |
|  * all we have until the physical memory mapping has been set up.
 | |
|  */
 | |
| static void * __init __ka(phys_addr_t paddr)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	return (void *)(paddr + __START_KERNEL_map);
 | |
| #else
 | |
| 	return __va(paddr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Convert a machine address to physical address */
 | |
| static unsigned long __init m2p(phys_addr_t maddr)
 | |
| {
 | |
| 	phys_addr_t paddr;
 | |
| 
 | |
| 	maddr &= PTE_PFN_MASK;
 | |
| 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
 | |
| 
 | |
| 	return paddr;
 | |
| }
 | |
| 
 | |
| /* Convert a machine address to kernel virtual */
 | |
| static void * __init m2v(phys_addr_t maddr)
 | |
| {
 | |
| 	return __ka(m2p(maddr));
 | |
| }
 | |
| 
 | |
| /* Set the page permissions on an identity-mapped pages */
 | |
| static void __init set_page_prot_flags(void *addr, pgprot_t prot,
 | |
| 				       unsigned long flags)
 | |
| {
 | |
| 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
 | |
| 	pte_t pte = pfn_pte(pfn, prot);
 | |
| 
 | |
| 	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return;
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
 | |
| 		BUG();
 | |
| }
 | |
| static void __init set_page_prot(void *addr, pgprot_t prot)
 | |
| {
 | |
| 	return set_page_prot_flags(addr, prot, UVMF_NONE);
 | |
| }
 | |
| #ifdef CONFIG_X86_32
 | |
| static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
 | |
| {
 | |
| 	unsigned pmdidx, pteidx;
 | |
| 	unsigned ident_pte;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
 | |
| 				      PAGE_SIZE);
 | |
| 
 | |
| 	ident_pte = 0;
 | |
| 	pfn = 0;
 | |
| 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
 | |
| 		pte_t *pte_page;
 | |
| 
 | |
| 		/* Reuse or allocate a page of ptes */
 | |
| 		if (pmd_present(pmd[pmdidx]))
 | |
| 			pte_page = m2v(pmd[pmdidx].pmd);
 | |
| 		else {
 | |
| 			/* Check for free pte pages */
 | |
| 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
 | |
| 				break;
 | |
| 
 | |
| 			pte_page = &level1_ident_pgt[ident_pte];
 | |
| 			ident_pte += PTRS_PER_PTE;
 | |
| 
 | |
| 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
 | |
| 		}
 | |
| 
 | |
| 		/* Install mappings */
 | |
| 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
 | |
| 			pte_t pte;
 | |
| 
 | |
| 			if (pfn > max_pfn_mapped)
 | |
| 				max_pfn_mapped = pfn;
 | |
| 
 | |
| 			if (!pte_none(pte_page[pteidx]))
 | |
| 				continue;
 | |
| 
 | |
| 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
 | |
| 			pte_page[pteidx] = pte;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
 | |
| 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
 | |
| 
 | |
| 	set_page_prot(pmd, PAGE_KERNEL_RO);
 | |
| }
 | |
| #endif
 | |
| void __init xen_setup_machphys_mapping(void)
 | |
| {
 | |
| 	struct xen_machphys_mapping mapping;
 | |
| 
 | |
| 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
 | |
| 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
 | |
| 		machine_to_phys_nr = mapping.max_mfn + 1;
 | |
| 	} else {
 | |
| 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
 | |
| 	}
 | |
| #ifdef CONFIG_X86_32
 | |
| 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
 | |
| 		< machine_to_phys_mapping);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void __init convert_pfn_mfn(void *v)
 | |
| {
 | |
| 	pte_t *pte = v;
 | |
| 	int i;
 | |
| 
 | |
| 	/* All levels are converted the same way, so just treat them
 | |
| 	   as ptes. */
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++)
 | |
| 		pte[i] = xen_make_pte(pte[i].pte);
 | |
| }
 | |
| static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
 | |
| 				 unsigned long addr)
 | |
| {
 | |
| 	if (*pt_base == PFN_DOWN(__pa(addr))) {
 | |
| 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
 | |
| 		clear_page((void *)addr);
 | |
| 		(*pt_base)++;
 | |
| 	}
 | |
| 	if (*pt_end == PFN_DOWN(__pa(addr))) {
 | |
| 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
 | |
| 		clear_page((void *)addr);
 | |
| 		(*pt_end)--;
 | |
| 	}
 | |
| }
 | |
| /*
 | |
|  * Set up the initial kernel pagetable.
 | |
|  *
 | |
|  * We can construct this by grafting the Xen provided pagetable into
 | |
|  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 | |
|  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
 | |
|  * kernel has a physical mapping to start with - but that's enough to
 | |
|  * get __va working.  We need to fill in the rest of the physical
 | |
|  * mapping once some sort of allocator has been set up.  NOTE: for
 | |
|  * PVH, the page tables are native.
 | |
|  */
 | |
| void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
 | |
| {
 | |
| 	pud_t *l3;
 | |
| 	pmd_t *l2;
 | |
| 	unsigned long addr[3];
 | |
| 	unsigned long pt_base, pt_end;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/* max_pfn_mapped is the last pfn mapped in the initial memory
 | |
| 	 * mappings. Considering that on Xen after the kernel mappings we
 | |
| 	 * have the mappings of some pages that don't exist in pfn space, we
 | |
| 	 * set max_pfn_mapped to the last real pfn mapped. */
 | |
| 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
 | |
| 
 | |
| 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
 | |
| 	pt_end = pt_base + xen_start_info->nr_pt_frames;
 | |
| 
 | |
| 	/* Zap identity mapping */
 | |
| 	init_level4_pgt[0] = __pgd(0);
 | |
| 
 | |
| 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
 | |
| 		/* Pre-constructed entries are in pfn, so convert to mfn */
 | |
| 		/* L4[272] -> level3_ident_pgt
 | |
| 		 * L4[511] -> level3_kernel_pgt */
 | |
| 		convert_pfn_mfn(init_level4_pgt);
 | |
| 
 | |
| 		/* L3_i[0] -> level2_ident_pgt */
 | |
| 		convert_pfn_mfn(level3_ident_pgt);
 | |
| 		/* L3_k[510] -> level2_kernel_pgt
 | |
| 		 * L3_k[511] -> level2_fixmap_pgt */
 | |
| 		convert_pfn_mfn(level3_kernel_pgt);
 | |
| 
 | |
| 		/* L3_k[511][506] -> level1_fixmap_pgt */
 | |
| 		convert_pfn_mfn(level2_fixmap_pgt);
 | |
| 	}
 | |
| 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
 | |
| 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
 | |
| 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
 | |
| 
 | |
| 	addr[0] = (unsigned long)pgd;
 | |
| 	addr[1] = (unsigned long)l3;
 | |
| 	addr[2] = (unsigned long)l2;
 | |
| 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
 | |
| 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
 | |
| 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
 | |
| 	 * it will be also modified in the __ka space! (But if you just
 | |
| 	 * modify the PMD table to point to other PTE's or none, then you
 | |
| 	 * are OK - which is what cleanup_highmap does) */
 | |
| 	copy_page(level2_ident_pgt, l2);
 | |
| 	/* Graft it onto L4[511][510] */
 | |
| 	copy_page(level2_kernel_pgt, l2);
 | |
| 
 | |
| 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
 | |
| 		/* Make pagetable pieces RO */
 | |
| 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
 | |
| 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
 | |
| 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
 | |
| 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
 | |
| 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
 | |
| 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
 | |
| 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
 | |
| 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
 | |
| 
 | |
| 		/* Pin down new L4 */
 | |
| 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
 | |
| 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
 | |
| 
 | |
| 		/* Unpin Xen-provided one */
 | |
| 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| 		/*
 | |
| 		 * At this stage there can be no user pgd, and no page
 | |
| 		 * structure to attach it to, so make sure we just set kernel
 | |
| 		 * pgd.
 | |
| 		 */
 | |
| 		xen_mc_batch();
 | |
| 		__xen_write_cr3(true, __pa(init_level4_pgt));
 | |
| 		xen_mc_issue(PARAVIRT_LAZY_CPU);
 | |
| 	} else
 | |
| 		native_write_cr3(__pa(init_level4_pgt));
 | |
| 
 | |
| 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
 | |
| 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
 | |
| 	 * the initial domain. For guests using the toolstack, they are in:
 | |
| 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
 | |
| 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(addr); i++)
 | |
| 		check_pt_base(&pt_base, &pt_end, addr[i]);
 | |
| 
 | |
| 	/* Our (by three pages) smaller Xen pagetable that we are using */
 | |
| 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
 | |
| 	/* Revector the xen_start_info */
 | |
| 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
 | |
| }
 | |
| #else	/* !CONFIG_X86_64 */
 | |
| static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
 | |
| static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
 | |
| 
 | |
| static void __init xen_write_cr3_init(unsigned long cr3)
 | |
| {
 | |
| 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
 | |
| 
 | |
| 	BUG_ON(read_cr3() != __pa(initial_page_table));
 | |
| 	BUG_ON(cr3 != __pa(swapper_pg_dir));
 | |
| 
 | |
| 	/*
 | |
| 	 * We are switching to swapper_pg_dir for the first time (from
 | |
| 	 * initial_page_table) and therefore need to mark that page
 | |
| 	 * read-only and then pin it.
 | |
| 	 *
 | |
| 	 * Xen disallows sharing of kernel PMDs for PAE
 | |
| 	 * guests. Therefore we must copy the kernel PMD from
 | |
| 	 * initial_page_table into a new kernel PMD to be used in
 | |
| 	 * swapper_pg_dir.
 | |
| 	 */
 | |
| 	swapper_kernel_pmd =
 | |
| 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
 | |
| 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
 | |
| 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
 | |
| 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
 | |
| 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
 | |
| 
 | |
| 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
 | |
| 	xen_write_cr3(cr3);
 | |
| 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
 | |
| 
 | |
| 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
 | |
| 			  PFN_DOWN(__pa(initial_page_table)));
 | |
| 	set_page_prot(initial_page_table, PAGE_KERNEL);
 | |
| 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
 | |
| 
 | |
| 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
 | |
| }
 | |
| 
 | |
| void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
 | |
| {
 | |
| 	pmd_t *kernel_pmd;
 | |
| 
 | |
| 	initial_kernel_pmd =
 | |
| 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
 | |
| 
 | |
| 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
 | |
| 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
 | |
| 				  512*1024);
 | |
| 
 | |
| 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
 | |
| 	copy_page(initial_kernel_pmd, kernel_pmd);
 | |
| 
 | |
| 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
 | |
| 
 | |
| 	copy_page(initial_page_table, pgd);
 | |
| 	initial_page_table[KERNEL_PGD_BOUNDARY] =
 | |
| 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
 | |
| 
 | |
| 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
 | |
| 
 | |
| 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
 | |
| 			  PFN_DOWN(__pa(initial_page_table)));
 | |
| 	xen_write_cr3(__pa(initial_page_table));
 | |
| 
 | |
| 	memblock_reserve(__pa(xen_start_info->pt_base),
 | |
| 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
 | |
| }
 | |
| #endif	/* CONFIG_X86_64 */
 | |
| 
 | |
| static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
 | |
| 
 | |
| static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	phys >>= PAGE_SHIFT;
 | |
| 
 | |
| 	switch (idx) {
 | |
| 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
 | |
| 	case FIX_RO_IDT:
 | |
| #ifdef CONFIG_X86_32
 | |
| 	case FIX_WP_TEST:
 | |
| # ifdef CONFIG_HIGHMEM
 | |
| 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
 | |
| # endif
 | |
| #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
 | |
| 	case VSYSCALL_PAGE:
 | |
| #endif
 | |
| 	case FIX_TEXT_POKE0:
 | |
| 	case FIX_TEXT_POKE1:
 | |
| 		/* All local page mappings */
 | |
| 		pte = pfn_pte(phys, prot);
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| 	case FIX_APIC_BASE:	/* maps dummy local APIC */
 | |
| 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_IO_APIC
 | |
| 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
 | |
| 		/*
 | |
| 		 * We just don't map the IO APIC - all access is via
 | |
| 		 * hypercalls.  Keep the address in the pte for reference.
 | |
| 		 */
 | |
| 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	case FIX_PARAVIRT_BOOTMAP:
 | |
| 		/* This is an MFN, but it isn't an IO mapping from the
 | |
| 		   IO domain */
 | |
| 		pte = mfn_pte(phys, prot);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		/* By default, set_fixmap is used for hardware mappings */
 | |
| 		pte = mfn_pte(phys, prot);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	__native_set_fixmap(idx, pte);
 | |
| 
 | |
| #ifdef CONFIG_X86_VSYSCALL_EMULATION
 | |
| 	/* Replicate changes to map the vsyscall page into the user
 | |
| 	   pagetable vsyscall mapping. */
 | |
| 	if (idx == VSYSCALL_PAGE) {
 | |
| 		unsigned long vaddr = __fix_to_virt(idx);
 | |
| 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init xen_post_allocator_init(void)
 | |
| {
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return;
 | |
| 
 | |
| 	pv_mmu_ops.set_pte = xen_set_pte;
 | |
| 	pv_mmu_ops.set_pmd = xen_set_pmd;
 | |
| 	pv_mmu_ops.set_pud = xen_set_pud;
 | |
| #if CONFIG_PGTABLE_LEVELS == 4
 | |
| 	pv_mmu_ops.set_pgd = xen_set_pgd;
 | |
| #endif
 | |
| 
 | |
| 	/* This will work as long as patching hasn't happened yet
 | |
| 	   (which it hasn't) */
 | |
| 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
 | |
| 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
 | |
| 	pv_mmu_ops.release_pte = xen_release_pte;
 | |
| 	pv_mmu_ops.release_pmd = xen_release_pmd;
 | |
| #if CONFIG_PGTABLE_LEVELS == 4
 | |
| 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
 | |
| 	pv_mmu_ops.release_pud = xen_release_pud;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
 | |
| 	SetPagePinned(virt_to_page(level3_user_vsyscall));
 | |
| #endif
 | |
| 	xen_mark_init_mm_pinned();
 | |
| }
 | |
| 
 | |
| static void xen_leave_lazy_mmu(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	xen_mc_flush();
 | |
| 	paravirt_leave_lazy_mmu();
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static const struct pv_mmu_ops xen_mmu_ops __initconst = {
 | |
| 	.read_cr2 = xen_read_cr2,
 | |
| 	.write_cr2 = xen_write_cr2,
 | |
| 
 | |
| 	.read_cr3 = xen_read_cr3,
 | |
| 	.write_cr3 = xen_write_cr3_init,
 | |
| 
 | |
| 	.flush_tlb_user = xen_flush_tlb,
 | |
| 	.flush_tlb_kernel = xen_flush_tlb,
 | |
| 	.flush_tlb_single = xen_flush_tlb_single,
 | |
| 	.flush_tlb_others = xen_flush_tlb_others,
 | |
| 
 | |
| 	.pte_update = paravirt_nop,
 | |
| 	.pte_update_defer = paravirt_nop,
 | |
| 
 | |
| 	.pgd_alloc = xen_pgd_alloc,
 | |
| 	.pgd_free = xen_pgd_free,
 | |
| 
 | |
| 	.alloc_pte = xen_alloc_pte_init,
 | |
| 	.release_pte = xen_release_pte_init,
 | |
| 	.alloc_pmd = xen_alloc_pmd_init,
 | |
| 	.release_pmd = xen_release_pmd_init,
 | |
| 
 | |
| 	.set_pte = xen_set_pte_init,
 | |
| 	.set_pte_at = xen_set_pte_at,
 | |
| 	.set_pmd = xen_set_pmd_hyper,
 | |
| 
 | |
| 	.ptep_modify_prot_start = __ptep_modify_prot_start,
 | |
| 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
 | |
| 
 | |
| 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
 | |
| 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
 | |
| 
 | |
| 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
 | |
| 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	.set_pte_atomic = xen_set_pte_atomic,
 | |
| 	.pte_clear = xen_pte_clear,
 | |
| 	.pmd_clear = xen_pmd_clear,
 | |
| #endif	/* CONFIG_X86_PAE */
 | |
| 	.set_pud = xen_set_pud_hyper,
 | |
| 
 | |
| 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
 | |
| 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
 | |
| 
 | |
| #if CONFIG_PGTABLE_LEVELS == 4
 | |
| 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
 | |
| 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
 | |
| 	.set_pgd = xen_set_pgd_hyper,
 | |
| 
 | |
| 	.alloc_pud = xen_alloc_pmd_init,
 | |
| 	.release_pud = xen_release_pmd_init,
 | |
| #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
 | |
| 
 | |
| 	.activate_mm = xen_activate_mm,
 | |
| 	.dup_mmap = xen_dup_mmap,
 | |
| 	.exit_mmap = xen_exit_mmap,
 | |
| 
 | |
| 	.lazy_mode = {
 | |
| 		.enter = paravirt_enter_lazy_mmu,
 | |
| 		.leave = xen_leave_lazy_mmu,
 | |
| 		.flush = paravirt_flush_lazy_mmu,
 | |
| 	},
 | |
| 
 | |
| 	.set_fixmap = xen_set_fixmap,
 | |
| };
 | |
| 
 | |
| void __init xen_init_mmu_ops(void)
 | |
| {
 | |
| 	x86_init.paging.pagetable_init = xen_pagetable_init;
 | |
| 
 | |
| 	/* Optimization - we can use the HVM one but it has no idea which
 | |
| 	 * VCPUs are descheduled - which means that it will needlessly IPI
 | |
| 	 * them. Xen knows so let it do the job.
 | |
| 	 */
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
 | |
| 		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
 | |
| 		return;
 | |
| 	}
 | |
| 	pv_mmu_ops = xen_mmu_ops;
 | |
| 
 | |
| 	memset(dummy_mapping, 0xff, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| /* Protected by xen_reservation_lock. */
 | |
| #define MAX_CONTIG_ORDER 9 /* 2MB */
 | |
| static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
 | |
| 
 | |
| #define VOID_PTE (mfn_pte(0, __pgprot(0)))
 | |
| static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
 | |
| 				unsigned long *in_frames,
 | |
| 				unsigned long *out_frames)
 | |
| {
 | |
| 	int i;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
 | |
| 		mcs = __xen_mc_entry(0);
 | |
| 
 | |
| 		if (in_frames)
 | |
| 			in_frames[i] = virt_to_mfn(vaddr);
 | |
| 
 | |
| 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
 | |
| 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
 | |
| 
 | |
| 		if (out_frames)
 | |
| 			out_frames[i] = virt_to_pfn(vaddr);
 | |
| 	}
 | |
| 	xen_mc_issue(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the pfn-to-mfn mappings for a virtual address range, either to
 | |
|  * point to an array of mfns, or contiguously from a single starting
 | |
|  * mfn.
 | |
|  */
 | |
| static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
 | |
| 				     unsigned long *mfns,
 | |
| 				     unsigned long first_mfn)
 | |
| {
 | |
| 	unsigned i, limit;
 | |
| 	unsigned long mfn;
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	limit = 1u << order;
 | |
| 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
 | |
| 		struct multicall_space mcs;
 | |
| 		unsigned flags;
 | |
| 
 | |
| 		mcs = __xen_mc_entry(0);
 | |
| 		if (mfns)
 | |
| 			mfn = mfns[i];
 | |
| 		else
 | |
| 			mfn = first_mfn + i;
 | |
| 
 | |
| 		if (i < (limit - 1))
 | |
| 			flags = 0;
 | |
| 		else {
 | |
| 			if (order == 0)
 | |
| 				flags = UVMF_INVLPG | UVMF_ALL;
 | |
| 			else
 | |
| 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
 | |
| 		}
 | |
| 
 | |
| 		MULTI_update_va_mapping(mcs.mc, vaddr,
 | |
| 				mfn_pte(mfn, PAGE_KERNEL), flags);
 | |
| 
 | |
| 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
 | |
| 	}
 | |
| 
 | |
| 	xen_mc_issue(0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform the hypercall to exchange a region of our pfns to point to
 | |
|  * memory with the required contiguous alignment.  Takes the pfns as
 | |
|  * input, and populates mfns as output.
 | |
|  *
 | |
|  * Returns a success code indicating whether the hypervisor was able to
 | |
|  * satisfy the request or not.
 | |
|  */
 | |
| static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
 | |
| 			       unsigned long *pfns_in,
 | |
| 			       unsigned long extents_out,
 | |
| 			       unsigned int order_out,
 | |
| 			       unsigned long *mfns_out,
 | |
| 			       unsigned int address_bits)
 | |
| {
 | |
| 	long rc;
 | |
| 	int success;
 | |
| 
 | |
| 	struct xen_memory_exchange exchange = {
 | |
| 		.in = {
 | |
| 			.nr_extents   = extents_in,
 | |
| 			.extent_order = order_in,
 | |
| 			.extent_start = pfns_in,
 | |
| 			.domid        = DOMID_SELF
 | |
| 		},
 | |
| 		.out = {
 | |
| 			.nr_extents   = extents_out,
 | |
| 			.extent_order = order_out,
 | |
| 			.extent_start = mfns_out,
 | |
| 			.address_bits = address_bits,
 | |
| 			.domid        = DOMID_SELF
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	BUG_ON(extents_in << order_in != extents_out << order_out);
 | |
| 
 | |
| 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
 | |
| 	success = (exchange.nr_exchanged == extents_in);
 | |
| 
 | |
| 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
 | |
| 	BUG_ON(success && (rc != 0));
 | |
| 
 | |
| 	return success;
 | |
| }
 | |
| 
 | |
| int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
 | |
| 				 unsigned int address_bits,
 | |
| 				 dma_addr_t *dma_handle)
 | |
| {
 | |
| 	unsigned long *in_frames = discontig_frames, out_frame;
 | |
| 	unsigned long  flags;
 | |
| 	int            success;
 | |
| 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently an auto-translated guest will not perform I/O, nor will
 | |
| 	 * it require PAE page directories below 4GB. Therefore any calls to
 | |
| 	 * this function are redundant and can be ignored.
 | |
| 	 */
 | |
| 
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(order > MAX_CONTIG_ORDER))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memset((void *) vstart, 0, PAGE_SIZE << order);
 | |
| 
 | |
| 	spin_lock_irqsave(&xen_reservation_lock, flags);
 | |
| 
 | |
| 	/* 1. Zap current PTEs, remembering MFNs. */
 | |
| 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
 | |
| 
 | |
| 	/* 2. Get a new contiguous memory extent. */
 | |
| 	out_frame = virt_to_pfn(vstart);
 | |
| 	success = xen_exchange_memory(1UL << order, 0, in_frames,
 | |
| 				      1, order, &out_frame,
 | |
| 				      address_bits);
 | |
| 
 | |
| 	/* 3. Map the new extent in place of old pages. */
 | |
| 	if (success)
 | |
| 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
 | |
| 	else
 | |
| 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
 | |
| 
 | |
| 	*dma_handle = virt_to_machine(vstart).maddr;
 | |
| 	return success ? 0 : -ENOMEM;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
 | |
| 
 | |
| void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
 | |
| {
 | |
| 	unsigned long *out_frames = discontig_frames, in_frame;
 | |
| 	unsigned long  flags;
 | |
| 	int success;
 | |
| 	unsigned long vstart;
 | |
| 
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(order > MAX_CONTIG_ORDER))
 | |
| 		return;
 | |
| 
 | |
| 	vstart = (unsigned long)phys_to_virt(pstart);
 | |
| 	memset((void *) vstart, 0, PAGE_SIZE << order);
 | |
| 
 | |
| 	spin_lock_irqsave(&xen_reservation_lock, flags);
 | |
| 
 | |
| 	/* 1. Find start MFN of contiguous extent. */
 | |
| 	in_frame = virt_to_mfn(vstart);
 | |
| 
 | |
| 	/* 2. Zap current PTEs. */
 | |
| 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
 | |
| 
 | |
| 	/* 3. Do the exchange for non-contiguous MFNs. */
 | |
| 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
 | |
| 					0, out_frames, 0);
 | |
| 
 | |
| 	/* 4. Map new pages in place of old pages. */
 | |
| 	if (success)
 | |
| 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
 | |
| 	else
 | |
| 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
 | |
| 
 | |
| #ifdef CONFIG_XEN_PVHVM
 | |
| #ifdef CONFIG_PROC_VMCORE
 | |
| /*
 | |
|  * This function is used in two contexts:
 | |
|  * - the kdump kernel has to check whether a pfn of the crashed kernel
 | |
|  *   was a ballooned page. vmcore is using this function to decide
 | |
|  *   whether to access a pfn of the crashed kernel.
 | |
|  * - the kexec kernel has to check whether a pfn was ballooned by the
 | |
|  *   previous kernel. If the pfn is ballooned, handle it properly.
 | |
|  * Returns 0 if the pfn is not backed by a RAM page, the caller may
 | |
|  * handle the pfn special in this case.
 | |
|  */
 | |
| static int xen_oldmem_pfn_is_ram(unsigned long pfn)
 | |
| {
 | |
| 	struct xen_hvm_get_mem_type a = {
 | |
| 		.domid = DOMID_SELF,
 | |
| 		.pfn = pfn,
 | |
| 	};
 | |
| 	int ram;
 | |
| 
 | |
| 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	switch (a.mem_type) {
 | |
| 		case HVMMEM_mmio_dm:
 | |
| 			ram = 0;
 | |
| 			break;
 | |
| 		case HVMMEM_ram_rw:
 | |
| 		case HVMMEM_ram_ro:
 | |
| 		default:
 | |
| 			ram = 1;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ram;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void xen_hvm_exit_mmap(struct mm_struct *mm)
 | |
| {
 | |
| 	struct xen_hvm_pagetable_dying a;
 | |
| 	int rc;
 | |
| 
 | |
| 	a.domid = DOMID_SELF;
 | |
| 	a.gpa = __pa(mm->pgd);
 | |
| 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
 | |
| 	WARN_ON_ONCE(rc < 0);
 | |
| }
 | |
| 
 | |
| static int is_pagetable_dying_supported(void)
 | |
| {
 | |
| 	struct xen_hvm_pagetable_dying a;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	a.domid = DOMID_SELF;
 | |
| 	a.gpa = 0x00;
 | |
| 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
 | |
| 	if (rc < 0) {
 | |
| 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __init xen_hvm_init_mmu_ops(void)
 | |
| {
 | |
| 	if (is_pagetable_dying_supported())
 | |
| 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
 | |
| #ifdef CONFIG_PROC_VMCORE
 | |
| 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define REMAP_BATCH_SIZE 16
 | |
| 
 | |
| struct remap_data {
 | |
| 	xen_pfn_t *mfn;
 | |
| 	bool contiguous;
 | |
| 	pgprot_t prot;
 | |
| 	struct mmu_update *mmu_update;
 | |
| };
 | |
| 
 | |
| static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
 | |
| 				 unsigned long addr, void *data)
 | |
| {
 | |
| 	struct remap_data *rmd = data;
 | |
| 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
 | |
| 
 | |
| 	/* If we have a contigious range, just update the mfn itself,
 | |
| 	   else update pointer to be "next mfn". */
 | |
| 	if (rmd->contiguous)
 | |
| 		(*rmd->mfn)++;
 | |
| 	else
 | |
| 		rmd->mfn++;
 | |
| 
 | |
| 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
 | |
| 	rmd->mmu_update->val = pte_val_ma(pte);
 | |
| 	rmd->mmu_update++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_remap_mfn(struct vm_area_struct *vma,
 | |
| 			unsigned long addr,
 | |
| 			xen_pfn_t *mfn, int nr,
 | |
| 			int *err_ptr, pgprot_t prot,
 | |
| 			unsigned domid,
 | |
| 			struct page **pages)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct remap_data rmd;
 | |
| 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
 | |
| 	unsigned long range;
 | |
| 	int mapped = 0;
 | |
| 
 | |
| 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
 | |
| 
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
 | |
| #ifdef CONFIG_XEN_PVH
 | |
| 		/* We need to update the local page tables and the xen HAP */
 | |
| 		return xen_xlate_remap_gfn_array(vma, addr, mfn, nr, err_ptr,
 | |
| 						 prot, domid, pages);
 | |
| #else
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
|         }
 | |
| 
 | |
| 	rmd.mfn = mfn;
 | |
| 	rmd.prot = prot;
 | |
| 	/* We use the err_ptr to indicate if there we are doing a contigious
 | |
| 	 * mapping or a discontigious mapping. */
 | |
| 	rmd.contiguous = !err_ptr;
 | |
| 
 | |
| 	while (nr) {
 | |
| 		int index = 0;
 | |
| 		int done = 0;
 | |
| 		int batch = min(REMAP_BATCH_SIZE, nr);
 | |
| 		int batch_left = batch;
 | |
| 		range = (unsigned long)batch << PAGE_SHIFT;
 | |
| 
 | |
| 		rmd.mmu_update = mmu_update;
 | |
| 		err = apply_to_page_range(vma->vm_mm, addr, range,
 | |
| 					  remap_area_mfn_pte_fn, &rmd);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* We record the error for each page that gives an error, but
 | |
| 		 * continue mapping until the whole set is done */
 | |
| 		do {
 | |
| 			int i;
 | |
| 
 | |
| 			err = HYPERVISOR_mmu_update(&mmu_update[index],
 | |
| 						    batch_left, &done, domid);
 | |
| 
 | |
| 			/*
 | |
| 			 * @err_ptr may be the same buffer as @mfn, so
 | |
| 			 * only clear it after each chunk of @mfn is
 | |
| 			 * used.
 | |
| 			 */
 | |
| 			if (err_ptr) {
 | |
| 				for (i = index; i < index + done; i++)
 | |
| 					err_ptr[i] = 0;
 | |
| 			}
 | |
| 			if (err < 0) {
 | |
| 				if (!err_ptr)
 | |
| 					goto out;
 | |
| 				err_ptr[i] = err;
 | |
| 				done++; /* Skip failed frame. */
 | |
| 			} else
 | |
| 				mapped += done;
 | |
| 			batch_left -= done;
 | |
| 			index += done;
 | |
| 		} while (batch_left);
 | |
| 
 | |
| 		nr -= batch;
 | |
| 		addr += range;
 | |
| 		if (err_ptr)
 | |
| 			err_ptr += batch;
 | |
| 	}
 | |
| out:
 | |
| 
 | |
| 	xen_flush_tlb_all();
 | |
| 
 | |
| 	return err < 0 ? err : mapped;
 | |
| }
 | |
| 
 | |
| int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
 | |
| 			       unsigned long addr,
 | |
| 			       xen_pfn_t mfn, int nr,
 | |
| 			       pgprot_t prot, unsigned domid,
 | |
| 			       struct page **pages)
 | |
| {
 | |
| 	return do_remap_mfn(vma, addr, &mfn, nr, NULL, prot, domid, pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
 | |
| 
 | |
| int xen_remap_domain_mfn_array(struct vm_area_struct *vma,
 | |
| 			       unsigned long addr,
 | |
| 			       xen_pfn_t *mfn, int nr,
 | |
| 			       int *err_ptr, pgprot_t prot,
 | |
| 			       unsigned domid, struct page **pages)
 | |
| {
 | |
| 	/* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
 | |
| 	 * and the consequences later is quite hard to detect what the actual
 | |
| 	 * cause of "wrong memory was mapped in".
 | |
| 	 */
 | |
| 	BUG_ON(err_ptr == NULL);
 | |
| 	return do_remap_mfn(vma, addr, mfn, nr, err_ptr, prot, domid, pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_array);
 | |
| 
 | |
| 
 | |
| /* Returns: 0 success */
 | |
| int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
 | |
| 			       int numpgs, struct page **pages)
 | |
| {
 | |
| 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_XEN_PVH
 | |
| 	return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
 | |
| #else
 | |
| 	return -EINVAL;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
 |