 0faef837e4
			
		
	
	
	0faef837e4
	
	
	
		
			
			Pull livepatching fixes from Jiri Kosina: - symbol lookup locking fix, from Miroslav Benes - error handling improvements in case of failure of the module coming notifier, from Minfei Huang - we were too pessimistic when kASLR has been enabled on x86 and were dropping address hints on the floor unnecessarily in such case. Fix from Jiri Kosina - a few other small fixes and cleanups * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching: livepatch: add module locking around kallsyms calls livepatch: annotate klp_init() with __init livepatch: introduce patch/func-walking helpers livepatch: make kobject in klp_object statically allocated livepatch: Prevent patch inconsistencies if the coming module notifier fails livepatch: match return value to function signature x86: kaslr: fix build due to missing ALIGN definition livepatch: x86: make kASLR logic more accurate x86: introduce kaslr_offset()
		
			
				
	
	
		
			538 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			538 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * handle transition of Linux booting another kernel
 | |
|  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
 | |
|  *
 | |
|  * This source code is licensed under the GNU General Public License,
 | |
|  * Version 2.  See the file COPYING for more details.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)	"kexec: " fmt
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/numa.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include <asm/init.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/io_apic.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/kexec-bzimage64.h>
 | |
| #include <asm/setup.h>
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_FILE
 | |
| static struct kexec_file_ops *kexec_file_loaders[] = {
 | |
| 		&kexec_bzImage64_ops,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static void free_transition_pgtable(struct kimage *image)
 | |
| {
 | |
| 	free_page((unsigned long)image->arch.pud);
 | |
| 	free_page((unsigned long)image->arch.pmd);
 | |
| 	free_page((unsigned long)image->arch.pte);
 | |
| }
 | |
| 
 | |
| static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	unsigned long vaddr, paddr;
 | |
| 	int result = -ENOMEM;
 | |
| 
 | |
| 	vaddr = (unsigned long)relocate_kernel;
 | |
| 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
 | |
| 	pgd += pgd_index(vaddr);
 | |
| 	if (!pgd_present(*pgd)) {
 | |
| 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
 | |
| 		if (!pud)
 | |
| 			goto err;
 | |
| 		image->arch.pud = pud;
 | |
| 		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
 | |
| 	}
 | |
| 	pud = pud_offset(pgd, vaddr);
 | |
| 	if (!pud_present(*pud)) {
 | |
| 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 | |
| 		if (!pmd)
 | |
| 			goto err;
 | |
| 		image->arch.pmd = pmd;
 | |
| 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 | |
| 	}
 | |
| 	pmd = pmd_offset(pud, vaddr);
 | |
| 	if (!pmd_present(*pmd)) {
 | |
| 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
 | |
| 		if (!pte)
 | |
| 			goto err;
 | |
| 		image->arch.pte = pte;
 | |
| 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 | |
| 	}
 | |
| 	pte = pte_offset_kernel(pmd, vaddr);
 | |
| 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
 | |
| 	return 0;
 | |
| err:
 | |
| 	free_transition_pgtable(image);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static void *alloc_pgt_page(void *data)
 | |
| {
 | |
| 	struct kimage *image = (struct kimage *)data;
 | |
| 	struct page *page;
 | |
| 	void *p = NULL;
 | |
| 
 | |
| 	page = kimage_alloc_control_pages(image, 0);
 | |
| 	if (page) {
 | |
| 		p = page_address(page);
 | |
| 		clear_page(p);
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
 | |
| {
 | |
| 	struct x86_mapping_info info = {
 | |
| 		.alloc_pgt_page	= alloc_pgt_page,
 | |
| 		.context	= image,
 | |
| 		.pmd_flag	= __PAGE_KERNEL_LARGE_EXEC,
 | |
| 	};
 | |
| 	unsigned long mstart, mend;
 | |
| 	pgd_t *level4p;
 | |
| 	int result;
 | |
| 	int i;
 | |
| 
 | |
| 	level4p = (pgd_t *)__va(start_pgtable);
 | |
| 	clear_page(level4p);
 | |
| 	for (i = 0; i < nr_pfn_mapped; i++) {
 | |
| 		mstart = pfn_mapped[i].start << PAGE_SHIFT;
 | |
| 		mend   = pfn_mapped[i].end << PAGE_SHIFT;
 | |
| 
 | |
| 		result = kernel_ident_mapping_init(&info,
 | |
| 						 level4p, mstart, mend);
 | |
| 		if (result)
 | |
| 			return result;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * segments's mem ranges could be outside 0 ~ max_pfn,
 | |
| 	 * for example when jump back to original kernel from kexeced kernel.
 | |
| 	 * or first kernel is booted with user mem map, and second kernel
 | |
| 	 * could be loaded out of that range.
 | |
| 	 */
 | |
| 	for (i = 0; i < image->nr_segments; i++) {
 | |
| 		mstart = image->segment[i].mem;
 | |
| 		mend   = mstart + image->segment[i].memsz;
 | |
| 
 | |
| 		result = kernel_ident_mapping_init(&info,
 | |
| 						 level4p, mstart, mend);
 | |
| 
 | |
| 		if (result)
 | |
| 			return result;
 | |
| 	}
 | |
| 
 | |
| 	return init_transition_pgtable(image, level4p);
 | |
| }
 | |
| 
 | |
| static void set_idt(void *newidt, u16 limit)
 | |
| {
 | |
| 	struct desc_ptr curidt;
 | |
| 
 | |
| 	/* x86-64 supports unaliged loads & stores */
 | |
| 	curidt.size    = limit;
 | |
| 	curidt.address = (unsigned long)newidt;
 | |
| 
 | |
| 	__asm__ __volatile__ (
 | |
| 		"lidtq %0\n"
 | |
| 		: : "m" (curidt)
 | |
| 		);
 | |
| };
 | |
| 
 | |
| 
 | |
| static void set_gdt(void *newgdt, u16 limit)
 | |
| {
 | |
| 	struct desc_ptr curgdt;
 | |
| 
 | |
| 	/* x86-64 supports unaligned loads & stores */
 | |
| 	curgdt.size    = limit;
 | |
| 	curgdt.address = (unsigned long)newgdt;
 | |
| 
 | |
| 	__asm__ __volatile__ (
 | |
| 		"lgdtq %0\n"
 | |
| 		: : "m" (curgdt)
 | |
| 		);
 | |
| };
 | |
| 
 | |
| static void load_segments(void)
 | |
| {
 | |
| 	__asm__ __volatile__ (
 | |
| 		"\tmovl %0,%%ds\n"
 | |
| 		"\tmovl %0,%%es\n"
 | |
| 		"\tmovl %0,%%ss\n"
 | |
| 		"\tmovl %0,%%fs\n"
 | |
| 		"\tmovl %0,%%gs\n"
 | |
| 		: : "a" (__KERNEL_DS) : "memory"
 | |
| 		);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_FILE
 | |
| /* Update purgatory as needed after various image segments have been prepared */
 | |
| static int arch_update_purgatory(struct kimage *image)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!image->file_mode)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Setup copying of backup region */
 | |
| 	if (image->type == KEXEC_TYPE_CRASH) {
 | |
| 		ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
 | |
| 				&image->arch.backup_load_addr,
 | |
| 				sizeof(image->arch.backup_load_addr), 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = kexec_purgatory_get_set_symbol(image, "backup_src",
 | |
| 				&image->arch.backup_src_start,
 | |
| 				sizeof(image->arch.backup_src_start), 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
 | |
| 				&image->arch.backup_src_sz,
 | |
| 				sizeof(image->arch.backup_src_sz), 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #else /* !CONFIG_KEXEC_FILE */
 | |
| static inline int arch_update_purgatory(struct kimage *image)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_KEXEC_FILE */
 | |
| 
 | |
| int machine_kexec_prepare(struct kimage *image)
 | |
| {
 | |
| 	unsigned long start_pgtable;
 | |
| 	int result;
 | |
| 
 | |
| 	/* Calculate the offsets */
 | |
| 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
 | |
| 
 | |
| 	/* Setup the identity mapped 64bit page table */
 | |
| 	result = init_pgtable(image, start_pgtable);
 | |
| 	if (result)
 | |
| 		return result;
 | |
| 
 | |
| 	/* update purgatory as needed */
 | |
| 	result = arch_update_purgatory(image);
 | |
| 	if (result)
 | |
| 		return result;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void machine_kexec_cleanup(struct kimage *image)
 | |
| {
 | |
| 	free_transition_pgtable(image);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do not allocate memory (or fail in any way) in machine_kexec().
 | |
|  * We are past the point of no return, committed to rebooting now.
 | |
|  */
 | |
| void machine_kexec(struct kimage *image)
 | |
| {
 | |
| 	unsigned long page_list[PAGES_NR];
 | |
| 	void *control_page;
 | |
| 	int save_ftrace_enabled;
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_JUMP
 | |
| 	if (image->preserve_context)
 | |
| 		save_processor_state();
 | |
| #endif
 | |
| 
 | |
| 	save_ftrace_enabled = __ftrace_enabled_save();
 | |
| 
 | |
| 	/* Interrupts aren't acceptable while we reboot */
 | |
| 	local_irq_disable();
 | |
| 	hw_breakpoint_disable();
 | |
| 
 | |
| 	if (image->preserve_context) {
 | |
| #ifdef CONFIG_X86_IO_APIC
 | |
| 		/*
 | |
| 		 * We need to put APICs in legacy mode so that we can
 | |
| 		 * get timer interrupts in second kernel. kexec/kdump
 | |
| 		 * paths already have calls to disable_IO_APIC() in
 | |
| 		 * one form or other. kexec jump path also need
 | |
| 		 * one.
 | |
| 		 */
 | |
| 		disable_IO_APIC();
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	control_page = page_address(image->control_code_page) + PAGE_SIZE;
 | |
| 	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
 | |
| 
 | |
| 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
 | |
| 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
 | |
| 	page_list[PA_TABLE_PAGE] =
 | |
| 	  (unsigned long)__pa(page_address(image->control_code_page));
 | |
| 
 | |
| 	if (image->type == KEXEC_TYPE_DEFAULT)
 | |
| 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
 | |
| 						<< PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * The segment registers are funny things, they have both a
 | |
| 	 * visible and an invisible part.  Whenever the visible part is
 | |
| 	 * set to a specific selector, the invisible part is loaded
 | |
| 	 * with from a table in memory.  At no other time is the
 | |
| 	 * descriptor table in memory accessed.
 | |
| 	 *
 | |
| 	 * I take advantage of this here by force loading the
 | |
| 	 * segments, before I zap the gdt with an invalid value.
 | |
| 	 */
 | |
| 	load_segments();
 | |
| 	/*
 | |
| 	 * The gdt & idt are now invalid.
 | |
| 	 * If you want to load them you must set up your own idt & gdt.
 | |
| 	 */
 | |
| 	set_gdt(phys_to_virt(0), 0);
 | |
| 	set_idt(phys_to_virt(0), 0);
 | |
| 
 | |
| 	/* now call it */
 | |
| 	image->start = relocate_kernel((unsigned long)image->head,
 | |
| 				       (unsigned long)page_list,
 | |
| 				       image->start,
 | |
| 				       image->preserve_context);
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_JUMP
 | |
| 	if (image->preserve_context)
 | |
| 		restore_processor_state();
 | |
| #endif
 | |
| 
 | |
| 	__ftrace_enabled_restore(save_ftrace_enabled);
 | |
| }
 | |
| 
 | |
| void arch_crash_save_vmcoreinfo(void)
 | |
| {
 | |
| 	VMCOREINFO_SYMBOL(phys_base);
 | |
| 	VMCOREINFO_SYMBOL(init_level4_pgt);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	VMCOREINFO_SYMBOL(node_data);
 | |
| 	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
 | |
| #endif
 | |
| 	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
 | |
| 			      kaslr_offset());
 | |
| }
 | |
| 
 | |
| /* arch-dependent functionality related to kexec file-based syscall */
 | |
| 
 | |
| #ifdef CONFIG_KEXEC_FILE
 | |
| int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 | |
| 				  unsigned long buf_len)
 | |
| {
 | |
| 	int i, ret = -ENOEXEC;
 | |
| 	struct kexec_file_ops *fops;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
 | |
| 		fops = kexec_file_loaders[i];
 | |
| 		if (!fops || !fops->probe)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = fops->probe(buf, buf_len);
 | |
| 		if (!ret) {
 | |
| 			image->fops = fops;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *arch_kexec_kernel_image_load(struct kimage *image)
 | |
| {
 | |
| 	vfree(image->arch.elf_headers);
 | |
| 	image->arch.elf_headers = NULL;
 | |
| 
 | |
| 	if (!image->fops || !image->fops->load)
 | |
| 		return ERR_PTR(-ENOEXEC);
 | |
| 
 | |
| 	return image->fops->load(image, image->kernel_buf,
 | |
| 				 image->kernel_buf_len, image->initrd_buf,
 | |
| 				 image->initrd_buf_len, image->cmdline_buf,
 | |
| 				 image->cmdline_buf_len);
 | |
| }
 | |
| 
 | |
| int arch_kimage_file_post_load_cleanup(struct kimage *image)
 | |
| {
 | |
| 	if (!image->fops || !image->fops->cleanup)
 | |
| 		return 0;
 | |
| 
 | |
| 	return image->fops->cleanup(image->image_loader_data);
 | |
| }
 | |
| 
 | |
| int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
 | |
| 				 unsigned long kernel_len)
 | |
| {
 | |
| 	if (!image->fops || !image->fops->verify_sig) {
 | |
| 		pr_debug("kernel loader does not support signature verification.");
 | |
| 		return -EKEYREJECTED;
 | |
| 	}
 | |
| 
 | |
| 	return image->fops->verify_sig(kernel, kernel_len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Apply purgatory relocations.
 | |
|  *
 | |
|  * ehdr: Pointer to elf headers
 | |
|  * sechdrs: Pointer to section headers.
 | |
|  * relsec: section index of SHT_RELA section.
 | |
|  *
 | |
|  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 | |
|  */
 | |
| int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
 | |
| 				     Elf64_Shdr *sechdrs, unsigned int relsec)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	Elf64_Rela *rel;
 | |
| 	Elf64_Sym *sym;
 | |
| 	void *location;
 | |
| 	Elf64_Shdr *section, *symtabsec;
 | |
| 	unsigned long address, sec_base, value;
 | |
| 	const char *strtab, *name, *shstrtab;
 | |
| 
 | |
| 	/*
 | |
| 	 * ->sh_offset has been modified to keep the pointer to section
 | |
| 	 * contents in memory
 | |
| 	 */
 | |
| 	rel = (void *)sechdrs[relsec].sh_offset;
 | |
| 
 | |
| 	/* Section to which relocations apply */
 | |
| 	section = &sechdrs[sechdrs[relsec].sh_info];
 | |
| 
 | |
| 	pr_debug("Applying relocate section %u to %u\n", relsec,
 | |
| 		 sechdrs[relsec].sh_info);
 | |
| 
 | |
| 	/* Associated symbol table */
 | |
| 	symtabsec = &sechdrs[sechdrs[relsec].sh_link];
 | |
| 
 | |
| 	/* String table */
 | |
| 	if (symtabsec->sh_link >= ehdr->e_shnum) {
 | |
| 		/* Invalid strtab section number */
 | |
| 		pr_err("Invalid string table section index %d\n",
 | |
| 		       symtabsec->sh_link);
 | |
| 		return -ENOEXEC;
 | |
| 	}
 | |
| 
 | |
| 	strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
 | |
| 
 | |
| 	/* section header string table */
 | |
| 	shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
 | |
| 
 | |
| 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 | |
| 
 | |
| 		/*
 | |
| 		 * rel[i].r_offset contains byte offset from beginning
 | |
| 		 * of section to the storage unit affected.
 | |
| 		 *
 | |
| 		 * This is location to update (->sh_offset). This is temporary
 | |
| 		 * buffer where section is currently loaded. This will finally
 | |
| 		 * be loaded to a different address later, pointed to by
 | |
| 		 * ->sh_addr. kexec takes care of moving it
 | |
| 		 *  (kexec_load_segment()).
 | |
| 		 */
 | |
| 		location = (void *)(section->sh_offset + rel[i].r_offset);
 | |
| 
 | |
| 		/* Final address of the location */
 | |
| 		address = section->sh_addr + rel[i].r_offset;
 | |
| 
 | |
| 		/*
 | |
| 		 * rel[i].r_info contains information about symbol table index
 | |
| 		 * w.r.t which relocation must be made and type of relocation
 | |
| 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
 | |
| 		 * these respectively.
 | |
| 		 */
 | |
| 		sym = (Elf64_Sym *)symtabsec->sh_offset +
 | |
| 				ELF64_R_SYM(rel[i].r_info);
 | |
| 
 | |
| 		if (sym->st_name)
 | |
| 			name = strtab + sym->st_name;
 | |
| 		else
 | |
| 			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
 | |
| 
 | |
| 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
 | |
| 			 name, sym->st_info, sym->st_shndx, sym->st_value,
 | |
| 			 sym->st_size);
 | |
| 
 | |
| 		if (sym->st_shndx == SHN_UNDEF) {
 | |
| 			pr_err("Undefined symbol: %s\n", name);
 | |
| 			return -ENOEXEC;
 | |
| 		}
 | |
| 
 | |
| 		if (sym->st_shndx == SHN_COMMON) {
 | |
| 			pr_err("symbol '%s' in common section\n", name);
 | |
| 			return -ENOEXEC;
 | |
| 		}
 | |
| 
 | |
| 		if (sym->st_shndx == SHN_ABS)
 | |
| 			sec_base = 0;
 | |
| 		else if (sym->st_shndx >= ehdr->e_shnum) {
 | |
| 			pr_err("Invalid section %d for symbol %s\n",
 | |
| 			       sym->st_shndx, name);
 | |
| 			return -ENOEXEC;
 | |
| 		} else
 | |
| 			sec_base = sechdrs[sym->st_shndx].sh_addr;
 | |
| 
 | |
| 		value = sym->st_value;
 | |
| 		value += sec_base;
 | |
| 		value += rel[i].r_addend;
 | |
| 
 | |
| 		switch (ELF64_R_TYPE(rel[i].r_info)) {
 | |
| 		case R_X86_64_NONE:
 | |
| 			break;
 | |
| 		case R_X86_64_64:
 | |
| 			*(u64 *)location = value;
 | |
| 			break;
 | |
| 		case R_X86_64_32:
 | |
| 			*(u32 *)location = value;
 | |
| 			if (value != *(u32 *)location)
 | |
| 				goto overflow;
 | |
| 			break;
 | |
| 		case R_X86_64_32S:
 | |
| 			*(s32 *)location = value;
 | |
| 			if ((s64)value != *(s32 *)location)
 | |
| 				goto overflow;
 | |
| 			break;
 | |
| 		case R_X86_64_PC32:
 | |
| 			value -= (u64)address;
 | |
| 			*(u32 *)location = value;
 | |
| 			break;
 | |
| 		default:
 | |
| 			pr_err("Unknown rela relocation: %llu\n",
 | |
| 			       ELF64_R_TYPE(rel[i].r_info));
 | |
| 			return -ENOEXEC;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| overflow:
 | |
| 	pr_err("Overflow in relocation type %d value 0x%lx\n",
 | |
| 	       (int)ELF64_R_TYPE(rel[i].r_info), value);
 | |
| 	return -ENOEXEC;
 | |
| }
 | |
| #endif /* CONFIG_KEXEC_FILE */
 |