 cb17b2a674
			
		
	
	
	cb17b2a674
	
	
	
		
			
			hpet_assign_irq() is called with hpet_device->num as "hardware
interrupt number", but hpet_device->num is initialized after the
interrupt has been assigned, so it's always 0. As a consequence only
the first MSI allocation succeeds, the following ones fail because the
"hardware interrupt number" already exists.
Move the initialization of dev->num and other fields before the call
to hpet_assign_irq(), which is the ordering before the offending
commit which introduced that regression.
Fixes: "3cb96f0c97 x86/hpet: Enhance HPET IRQ to support hierarchical irqdomains"
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1506211635010.4107@nanos
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
		
	
			
		
			
				
	
	
		
			1227 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1227 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/clocksource.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/i8253.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hpet.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <asm/irqdomain.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/hpet.h>
 | |
| #include <asm/time.h>
 | |
| 
 | |
| #define HPET_MASK			CLOCKSOURCE_MASK(32)
 | |
| 
 | |
| /* FSEC = 10^-15
 | |
|    NSEC = 10^-9 */
 | |
| #define FSEC_PER_NSEC			1000000L
 | |
| 
 | |
| #define HPET_DEV_USED_BIT		2
 | |
| #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
 | |
| #define HPET_DEV_VALID			0x8
 | |
| #define HPET_DEV_FSB_CAP		0x1000
 | |
| #define HPET_DEV_PERI_CAP		0x2000
 | |
| 
 | |
| #define HPET_MIN_CYCLES			128
 | |
| #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
 | |
| 
 | |
| /*
 | |
|  * HPET address is set in acpi/boot.c, when an ACPI entry exists
 | |
|  */
 | |
| unsigned long				hpet_address;
 | |
| u8					hpet_blockid; /* OS timer block num */
 | |
| u8					hpet_msi_disable;
 | |
| 
 | |
| #ifdef CONFIG_PCI_MSI
 | |
| static unsigned long			hpet_num_timers;
 | |
| #endif
 | |
| static void __iomem			*hpet_virt_address;
 | |
| 
 | |
| struct hpet_dev {
 | |
| 	struct clock_event_device	evt;
 | |
| 	unsigned int			num;
 | |
| 	int				cpu;
 | |
| 	unsigned int			irq;
 | |
| 	unsigned int			flags;
 | |
| 	char				name[10];
 | |
| };
 | |
| 
 | |
| inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
 | |
| {
 | |
| 	return container_of(evtdev, struct hpet_dev, evt);
 | |
| }
 | |
| 
 | |
| inline unsigned int hpet_readl(unsigned int a)
 | |
| {
 | |
| 	return readl(hpet_virt_address + a);
 | |
| }
 | |
| 
 | |
| static inline void hpet_writel(unsigned int d, unsigned int a)
 | |
| {
 | |
| 	writel(d, hpet_virt_address + a);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #include <asm/pgtable.h>
 | |
| #endif
 | |
| 
 | |
| static inline void hpet_set_mapping(void)
 | |
| {
 | |
| 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
 | |
| }
 | |
| 
 | |
| static inline void hpet_clear_mapping(void)
 | |
| {
 | |
| 	iounmap(hpet_virt_address);
 | |
| 	hpet_virt_address = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * HPET command line enable / disable
 | |
|  */
 | |
| int boot_hpet_disable;
 | |
| int hpet_force_user;
 | |
| static int hpet_verbose;
 | |
| 
 | |
| static int __init hpet_setup(char *str)
 | |
| {
 | |
| 	while (str) {
 | |
| 		char *next = strchr(str, ',');
 | |
| 
 | |
| 		if (next)
 | |
| 			*next++ = 0;
 | |
| 		if (!strncmp("disable", str, 7))
 | |
| 			boot_hpet_disable = 1;
 | |
| 		if (!strncmp("force", str, 5))
 | |
| 			hpet_force_user = 1;
 | |
| 		if (!strncmp("verbose", str, 7))
 | |
| 			hpet_verbose = 1;
 | |
| 		str = next;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hpet=", hpet_setup);
 | |
| 
 | |
| static int __init disable_hpet(char *str)
 | |
| {
 | |
| 	boot_hpet_disable = 1;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("nohpet", disable_hpet);
 | |
| 
 | |
| static inline int is_hpet_capable(void)
 | |
| {
 | |
| 	return !boot_hpet_disable && hpet_address;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * HPET timer interrupt enable / disable
 | |
|  */
 | |
| static int hpet_legacy_int_enabled;
 | |
| 
 | |
| /**
 | |
|  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 | |
|  */
 | |
| int is_hpet_enabled(void)
 | |
| {
 | |
| 	return is_hpet_capable() && hpet_legacy_int_enabled;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(is_hpet_enabled);
 | |
| 
 | |
| static void _hpet_print_config(const char *function, int line)
 | |
| {
 | |
| 	u32 i, timers, l, h;
 | |
| 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 | |
| 	l = hpet_readl(HPET_ID);
 | |
| 	h = hpet_readl(HPET_PERIOD);
 | |
| 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 | |
| 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 | |
| 	l = hpet_readl(HPET_CFG);
 | |
| 	h = hpet_readl(HPET_STATUS);
 | |
| 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 | |
| 	l = hpet_readl(HPET_COUNTER);
 | |
| 	h = hpet_readl(HPET_COUNTER+4);
 | |
| 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 | |
| 
 | |
| 	for (i = 0; i < timers; i++) {
 | |
| 		l = hpet_readl(HPET_Tn_CFG(i));
 | |
| 		h = hpet_readl(HPET_Tn_CFG(i)+4);
 | |
| 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 | |
| 		       i, l, h);
 | |
| 		l = hpet_readl(HPET_Tn_CMP(i));
 | |
| 		h = hpet_readl(HPET_Tn_CMP(i)+4);
 | |
| 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 | |
| 		       i, l, h);
 | |
| 		l = hpet_readl(HPET_Tn_ROUTE(i));
 | |
| 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 | |
| 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 | |
| 		       i, l, h);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define hpet_print_config()					\
 | |
| do {								\
 | |
| 	if (hpet_verbose)					\
 | |
| 		_hpet_print_config(__func__, __LINE__);	\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 | |
|  * timer 0 and timer 1 in case of RTC emulation.
 | |
|  */
 | |
| #ifdef CONFIG_HPET
 | |
| 
 | |
| static void hpet_reserve_msi_timers(struct hpet_data *hd);
 | |
| 
 | |
| static void hpet_reserve_platform_timers(unsigned int id)
 | |
| {
 | |
| 	struct hpet __iomem *hpet = hpet_virt_address;
 | |
| 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 | |
| 	unsigned int nrtimers, i;
 | |
| 	struct hpet_data hd;
 | |
| 
 | |
| 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 | |
| 
 | |
| 	memset(&hd, 0, sizeof(hd));
 | |
| 	hd.hd_phys_address	= hpet_address;
 | |
| 	hd.hd_address		= hpet;
 | |
| 	hd.hd_nirqs		= nrtimers;
 | |
| 	hpet_reserve_timer(&hd, 0);
 | |
| 
 | |
| #ifdef CONFIG_HPET_EMULATE_RTC
 | |
| 	hpet_reserve_timer(&hd, 1);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 | |
| 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 | |
| 	 * don't bother configuring *any* comparator interrupts.
 | |
| 	 */
 | |
| 	hd.hd_irq[0] = HPET_LEGACY_8254;
 | |
| 	hd.hd_irq[1] = HPET_LEGACY_RTC;
 | |
| 
 | |
| 	for (i = 2; i < nrtimers; timer++, i++) {
 | |
| 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 | |
| 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	hpet_reserve_msi_timers(&hd);
 | |
| 
 | |
| 	hpet_alloc(&hd);
 | |
| 
 | |
| }
 | |
| #else
 | |
| static void hpet_reserve_platform_timers(unsigned int id) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Common hpet info
 | |
|  */
 | |
| static unsigned long hpet_freq;
 | |
| 
 | |
| static void hpet_legacy_set_mode(enum clock_event_mode mode,
 | |
| 			  struct clock_event_device *evt);
 | |
| static int hpet_legacy_next_event(unsigned long delta,
 | |
| 			   struct clock_event_device *evt);
 | |
| 
 | |
| /*
 | |
|  * The hpet clock event device
 | |
|  */
 | |
| static struct clock_event_device hpet_clockevent = {
 | |
| 	.name		= "hpet",
 | |
| 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 | |
| 	.set_mode	= hpet_legacy_set_mode,
 | |
| 	.set_next_event = hpet_legacy_next_event,
 | |
| 	.irq		= 0,
 | |
| 	.rating		= 50,
 | |
| };
 | |
| 
 | |
| static void hpet_stop_counter(void)
 | |
| {
 | |
| 	unsigned long cfg = hpet_readl(HPET_CFG);
 | |
| 	cfg &= ~HPET_CFG_ENABLE;
 | |
| 	hpet_writel(cfg, HPET_CFG);
 | |
| }
 | |
| 
 | |
| static void hpet_reset_counter(void)
 | |
| {
 | |
| 	hpet_writel(0, HPET_COUNTER);
 | |
| 	hpet_writel(0, HPET_COUNTER + 4);
 | |
| }
 | |
| 
 | |
| static void hpet_start_counter(void)
 | |
| {
 | |
| 	unsigned int cfg = hpet_readl(HPET_CFG);
 | |
| 	cfg |= HPET_CFG_ENABLE;
 | |
| 	hpet_writel(cfg, HPET_CFG);
 | |
| }
 | |
| 
 | |
| static void hpet_restart_counter(void)
 | |
| {
 | |
| 	hpet_stop_counter();
 | |
| 	hpet_reset_counter();
 | |
| 	hpet_start_counter();
 | |
| }
 | |
| 
 | |
| static void hpet_resume_device(void)
 | |
| {
 | |
| 	force_hpet_resume();
 | |
| }
 | |
| 
 | |
| static void hpet_resume_counter(struct clocksource *cs)
 | |
| {
 | |
| 	hpet_resume_device();
 | |
| 	hpet_restart_counter();
 | |
| }
 | |
| 
 | |
| static void hpet_enable_legacy_int(void)
 | |
| {
 | |
| 	unsigned int cfg = hpet_readl(HPET_CFG);
 | |
| 
 | |
| 	cfg |= HPET_CFG_LEGACY;
 | |
| 	hpet_writel(cfg, HPET_CFG);
 | |
| 	hpet_legacy_int_enabled = 1;
 | |
| }
 | |
| 
 | |
| static void hpet_legacy_clockevent_register(void)
 | |
| {
 | |
| 	/* Start HPET legacy interrupts */
 | |
| 	hpet_enable_legacy_int();
 | |
| 
 | |
| 	/*
 | |
| 	 * Start hpet with the boot cpu mask and make it
 | |
| 	 * global after the IO_APIC has been initialized.
 | |
| 	 */
 | |
| 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 | |
| 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 | |
| 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 | |
| 	global_clock_event = &hpet_clockevent;
 | |
| 	printk(KERN_DEBUG "hpet clockevent registered\n");
 | |
| }
 | |
| 
 | |
| static void hpet_set_mode(enum clock_event_mode mode,
 | |
| 			  struct clock_event_device *evt, int timer)
 | |
| {
 | |
| 	unsigned int cfg, cmp, now;
 | |
| 	uint64_t delta;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case CLOCK_EVT_MODE_PERIODIC:
 | |
| 		hpet_stop_counter();
 | |
| 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 | |
| 		delta >>= evt->shift;
 | |
| 		now = hpet_readl(HPET_COUNTER);
 | |
| 		cmp = now + (unsigned int) delta;
 | |
| 		cfg = hpet_readl(HPET_Tn_CFG(timer));
 | |
| 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 | |
| 		       HPET_TN_SETVAL | HPET_TN_32BIT;
 | |
| 		hpet_writel(cfg, HPET_Tn_CFG(timer));
 | |
| 		hpet_writel(cmp, HPET_Tn_CMP(timer));
 | |
| 		udelay(1);
 | |
| 		/*
 | |
| 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 | |
| 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 | |
| 		 * bit is automatically cleared after the first write.
 | |
| 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 | |
| 		 * Publication # 24674)
 | |
| 		 */
 | |
| 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 | |
| 		hpet_start_counter();
 | |
| 		hpet_print_config();
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_EVT_MODE_ONESHOT:
 | |
| 		cfg = hpet_readl(HPET_Tn_CFG(timer));
 | |
| 		cfg &= ~HPET_TN_PERIODIC;
 | |
| 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 | |
| 		hpet_writel(cfg, HPET_Tn_CFG(timer));
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_EVT_MODE_UNUSED:
 | |
| 	case CLOCK_EVT_MODE_SHUTDOWN:
 | |
| 		cfg = hpet_readl(HPET_Tn_CFG(timer));
 | |
| 		cfg &= ~HPET_TN_ENABLE;
 | |
| 		hpet_writel(cfg, HPET_Tn_CFG(timer));
 | |
| 		break;
 | |
| 
 | |
| 	case CLOCK_EVT_MODE_RESUME:
 | |
| 		if (timer == 0) {
 | |
| 			hpet_enable_legacy_int();
 | |
| 		} else {
 | |
| 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 | |
| 			irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
 | |
| 			disable_irq(hdev->irq);
 | |
| 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 | |
| 			enable_irq(hdev->irq);
 | |
| 		}
 | |
| 		hpet_print_config();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hpet_next_event(unsigned long delta,
 | |
| 			   struct clock_event_device *evt, int timer)
 | |
| {
 | |
| 	u32 cnt;
 | |
| 	s32 res;
 | |
| 
 | |
| 	cnt = hpet_readl(HPET_COUNTER);
 | |
| 	cnt += (u32) delta;
 | |
| 	hpet_writel(cnt, HPET_Tn_CMP(timer));
 | |
| 
 | |
| 	/*
 | |
| 	 * HPETs are a complete disaster. The compare register is
 | |
| 	 * based on a equal comparison and neither provides a less
 | |
| 	 * than or equal functionality (which would require to take
 | |
| 	 * the wraparound into account) nor a simple count down event
 | |
| 	 * mode. Further the write to the comparator register is
 | |
| 	 * delayed internally up to two HPET clock cycles in certain
 | |
| 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 | |
| 	 * longer delays. We worked around that by reading back the
 | |
| 	 * compare register, but that required another workaround for
 | |
| 	 * ICH9,10 chips where the first readout after write can
 | |
| 	 * return the old stale value. We already had a minimum
 | |
| 	 * programming delta of 5us enforced, but a NMI or SMI hitting
 | |
| 	 * between the counter readout and the comparator write can
 | |
| 	 * move us behind that point easily. Now instead of reading
 | |
| 	 * the compare register back several times, we make the ETIME
 | |
| 	 * decision based on the following: Return ETIME if the
 | |
| 	 * counter value after the write is less than HPET_MIN_CYCLES
 | |
| 	 * away from the event or if the counter is already ahead of
 | |
| 	 * the event. The minimum programming delta for the generic
 | |
| 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 | |
| 	 */
 | |
| 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 | |
| 
 | |
| 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 | |
| }
 | |
| 
 | |
| static void hpet_legacy_set_mode(enum clock_event_mode mode,
 | |
| 			struct clock_event_device *evt)
 | |
| {
 | |
| 	hpet_set_mode(mode, evt, 0);
 | |
| }
 | |
| 
 | |
| static int hpet_legacy_next_event(unsigned long delta,
 | |
| 			struct clock_event_device *evt)
 | |
| {
 | |
| 	return hpet_next_event(delta, evt, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * HPET MSI Support
 | |
|  */
 | |
| #ifdef CONFIG_PCI_MSI
 | |
| 
 | |
| static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 | |
| static struct hpet_dev	*hpet_devs;
 | |
| static struct irq_domain *hpet_domain;
 | |
| 
 | |
| void hpet_msi_unmask(struct irq_data *data)
 | |
| {
 | |
| 	struct hpet_dev *hdev = data->handler_data;
 | |
| 	unsigned int cfg;
 | |
| 
 | |
| 	/* unmask it */
 | |
| 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 | |
| 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 | |
| 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 | |
| }
 | |
| 
 | |
| void hpet_msi_mask(struct irq_data *data)
 | |
| {
 | |
| 	struct hpet_dev *hdev = data->handler_data;
 | |
| 	unsigned int cfg;
 | |
| 
 | |
| 	/* mask it */
 | |
| 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 | |
| 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 | |
| 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 | |
| }
 | |
| 
 | |
| void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 | |
| {
 | |
| 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 | |
| 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 | |
| }
 | |
| 
 | |
| void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 | |
| {
 | |
| 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 | |
| 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 | |
| 	msg->address_hi = 0;
 | |
| }
 | |
| 
 | |
| static void hpet_msi_set_mode(enum clock_event_mode mode,
 | |
| 				struct clock_event_device *evt)
 | |
| {
 | |
| 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 | |
| 	hpet_set_mode(mode, evt, hdev->num);
 | |
| }
 | |
| 
 | |
| static int hpet_msi_next_event(unsigned long delta,
 | |
| 				struct clock_event_device *evt)
 | |
| {
 | |
| 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 | |
| 	return hpet_next_event(delta, evt, hdev->num);
 | |
| }
 | |
| 
 | |
| static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 | |
| {
 | |
| 	struct hpet_dev *dev = (struct hpet_dev *)data;
 | |
| 	struct clock_event_device *hevt = &dev->evt;
 | |
| 
 | |
| 	if (!hevt->event_handler) {
 | |
| 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 | |
| 				dev->num);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	hevt->event_handler(hevt);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int hpet_setup_irq(struct hpet_dev *dev)
 | |
| {
 | |
| 
 | |
| 	if (request_irq(dev->irq, hpet_interrupt_handler,
 | |
| 			IRQF_TIMER | IRQF_NOBALANCING,
 | |
| 			dev->name, dev))
 | |
| 		return -1;
 | |
| 
 | |
| 	disable_irq(dev->irq);
 | |
| 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 | |
| 	enable_irq(dev->irq);
 | |
| 
 | |
| 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 | |
| 			 dev->name, dev->irq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This should be called in specific @cpu */
 | |
| static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 | |
| {
 | |
| 	struct clock_event_device *evt = &hdev->evt;
 | |
| 
 | |
| 	WARN_ON(cpu != smp_processor_id());
 | |
| 	if (!(hdev->flags & HPET_DEV_VALID))
 | |
| 		return;
 | |
| 
 | |
| 	hdev->cpu = cpu;
 | |
| 	per_cpu(cpu_hpet_dev, cpu) = hdev;
 | |
| 	evt->name = hdev->name;
 | |
| 	hpet_setup_irq(hdev);
 | |
| 	evt->irq = hdev->irq;
 | |
| 
 | |
| 	evt->rating = 110;
 | |
| 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 | |
| 	if (hdev->flags & HPET_DEV_PERI_CAP)
 | |
| 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 | |
| 
 | |
| 	evt->set_mode = hpet_msi_set_mode;
 | |
| 	evt->set_next_event = hpet_msi_next_event;
 | |
| 	evt->cpumask = cpumask_of(hdev->cpu);
 | |
| 
 | |
| 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 | |
| 					0x7FFFFFFF);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HPET
 | |
| /* Reserve at least one timer for userspace (/dev/hpet) */
 | |
| #define RESERVE_TIMERS 1
 | |
| #else
 | |
| #define RESERVE_TIMERS 0
 | |
| #endif
 | |
| 
 | |
| static void hpet_msi_capability_lookup(unsigned int start_timer)
 | |
| {
 | |
| 	unsigned int id;
 | |
| 	unsigned int num_timers;
 | |
| 	unsigned int num_timers_used = 0;
 | |
| 	int i, irq;
 | |
| 
 | |
| 	if (hpet_msi_disable)
 | |
| 		return;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_ARAT))
 | |
| 		return;
 | |
| 	id = hpet_readl(HPET_ID);
 | |
| 
 | |
| 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 | |
| 	num_timers++; /* Value read out starts from 0 */
 | |
| 	hpet_print_config();
 | |
| 
 | |
| 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
 | |
| 	if (!hpet_domain)
 | |
| 		return;
 | |
| 
 | |
| 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 | |
| 	if (!hpet_devs)
 | |
| 		return;
 | |
| 
 | |
| 	hpet_num_timers = num_timers;
 | |
| 
 | |
| 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 | |
| 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 | |
| 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 | |
| 
 | |
| 		/* Only consider HPET timer with MSI support */
 | |
| 		if (!(cfg & HPET_TN_FSB_CAP))
 | |
| 			continue;
 | |
| 
 | |
| 		hdev->flags = 0;
 | |
| 		if (cfg & HPET_TN_PERIODIC_CAP)
 | |
| 			hdev->flags |= HPET_DEV_PERI_CAP;
 | |
| 		sprintf(hdev->name, "hpet%d", i);
 | |
| 		hdev->num = i;
 | |
| 
 | |
| 		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
 | |
| 		if (irq <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		hdev->irq = irq;
 | |
| 		hdev->flags |= HPET_DEV_FSB_CAP;
 | |
| 		hdev->flags |= HPET_DEV_VALID;
 | |
| 		num_timers_used++;
 | |
| 		if (num_timers_used == num_possible_cpus())
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 | |
| 		num_timers, num_timers_used);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HPET
 | |
| static void hpet_reserve_msi_timers(struct hpet_data *hd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!hpet_devs)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < hpet_num_timers; i++) {
 | |
| 		struct hpet_dev *hdev = &hpet_devs[i];
 | |
| 
 | |
| 		if (!(hdev->flags & HPET_DEV_VALID))
 | |
| 			continue;
 | |
| 
 | |
| 		hd->hd_irq[hdev->num] = hdev->irq;
 | |
| 		hpet_reserve_timer(hd, hdev->num);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct hpet_dev *hpet_get_unused_timer(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!hpet_devs)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < hpet_num_timers; i++) {
 | |
| 		struct hpet_dev *hdev = &hpet_devs[i];
 | |
| 
 | |
| 		if (!(hdev->flags & HPET_DEV_VALID))
 | |
| 			continue;
 | |
| 		if (test_and_set_bit(HPET_DEV_USED_BIT,
 | |
| 			(unsigned long *)&hdev->flags))
 | |
| 			continue;
 | |
| 		return hdev;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct hpet_work_struct {
 | |
| 	struct delayed_work work;
 | |
| 	struct completion complete;
 | |
| };
 | |
| 
 | |
| static void hpet_work(struct work_struct *w)
 | |
| {
 | |
| 	struct hpet_dev *hdev;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct hpet_work_struct *hpet_work;
 | |
| 
 | |
| 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 | |
| 
 | |
| 	hdev = hpet_get_unused_timer();
 | |
| 	if (hdev)
 | |
| 		init_one_hpet_msi_clockevent(hdev, cpu);
 | |
| 
 | |
| 	complete(&hpet_work->complete);
 | |
| }
 | |
| 
 | |
| static int hpet_cpuhp_notify(struct notifier_block *n,
 | |
| 		unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned long cpu = (unsigned long)hcpu;
 | |
| 	struct hpet_work_struct work;
 | |
| 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 | |
| 
 | |
| 	switch (action & 0xf) {
 | |
| 	case CPU_ONLINE:
 | |
| 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 | |
| 		init_completion(&work.complete);
 | |
| 		/* FIXME: add schedule_work_on() */
 | |
| 		schedule_delayed_work_on(cpu, &work.work, 0);
 | |
| 		wait_for_completion(&work.complete);
 | |
| 		destroy_delayed_work_on_stack(&work.work);
 | |
| 		break;
 | |
| 	case CPU_DEAD:
 | |
| 		if (hdev) {
 | |
| 			free_irq(hdev->irq, hdev);
 | |
| 			hdev->flags &= ~HPET_DEV_USED;
 | |
| 			per_cpu(cpu_hpet_dev, cpu) = NULL;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| #else
 | |
| 
 | |
| static void hpet_msi_capability_lookup(unsigned int start_timer)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HPET
 | |
| static void hpet_reserve_msi_timers(struct hpet_data *hd)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int hpet_cpuhp_notify(struct notifier_block *n,
 | |
| 		unsigned long action, void *hcpu)
 | |
| {
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Clock source related code
 | |
|  */
 | |
| static cycle_t read_hpet(struct clocksource *cs)
 | |
| {
 | |
| 	return (cycle_t)hpet_readl(HPET_COUNTER);
 | |
| }
 | |
| 
 | |
| static struct clocksource clocksource_hpet = {
 | |
| 	.name		= "hpet",
 | |
| 	.rating		= 250,
 | |
| 	.read		= read_hpet,
 | |
| 	.mask		= HPET_MASK,
 | |
| 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.resume		= hpet_resume_counter,
 | |
| 	.archdata	= { .vclock_mode = VCLOCK_HPET },
 | |
| };
 | |
| 
 | |
| static int hpet_clocksource_register(void)
 | |
| {
 | |
| 	u64 start, now;
 | |
| 	cycle_t t1;
 | |
| 
 | |
| 	/* Start the counter */
 | |
| 	hpet_restart_counter();
 | |
| 
 | |
| 	/* Verify whether hpet counter works */
 | |
| 	t1 = hpet_readl(HPET_COUNTER);
 | |
| 	rdtscll(start);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't know the TSC frequency yet, but waiting for
 | |
| 	 * 200000 TSC cycles is safe:
 | |
| 	 * 4 GHz == 50us
 | |
| 	 * 1 GHz == 200us
 | |
| 	 */
 | |
| 	do {
 | |
| 		rep_nop();
 | |
| 		rdtscll(now);
 | |
| 	} while ((now - start) < 200000UL);
 | |
| 
 | |
| 	if (t1 == hpet_readl(HPET_COUNTER)) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "HPET counter not counting. HPET disabled\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 *hpet_boot_cfg;
 | |
| 
 | |
| /**
 | |
|  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 | |
|  */
 | |
| int __init hpet_enable(void)
 | |
| {
 | |
| 	u32 hpet_period, cfg, id;
 | |
| 	u64 freq;
 | |
| 	unsigned int i, last;
 | |
| 
 | |
| 	if (!is_hpet_capable())
 | |
| 		return 0;
 | |
| 
 | |
| 	hpet_set_mapping();
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the period and check for a sane value:
 | |
| 	 */
 | |
| 	hpet_period = hpet_readl(HPET_PERIOD);
 | |
| 
 | |
| 	/*
 | |
| 	 * AMD SB700 based systems with spread spectrum enabled use a
 | |
| 	 * SMM based HPET emulation to provide proper frequency
 | |
| 	 * setting. The SMM code is initialized with the first HPET
 | |
| 	 * register access and takes some time to complete. During
 | |
| 	 * this time the config register reads 0xffffffff. We check
 | |
| 	 * for max. 1000 loops whether the config register reads a non
 | |
| 	 * 0xffffffff value to make sure that HPET is up and running
 | |
| 	 * before we go further. A counting loop is safe, as the HPET
 | |
| 	 * access takes thousands of CPU cycles. On non SB700 based
 | |
| 	 * machines this check is only done once and has no side
 | |
| 	 * effects.
 | |
| 	 */
 | |
| 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 | |
| 		if (i == 1000) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "HPET config register value = 0xFFFFFFFF. "
 | |
| 			       "Disabling HPET\n");
 | |
| 			goto out_nohpet;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 | |
| 		goto out_nohpet;
 | |
| 
 | |
| 	/*
 | |
| 	 * The period is a femto seconds value. Convert it to a
 | |
| 	 * frequency.
 | |
| 	 */
 | |
| 	freq = FSEC_PER_SEC;
 | |
| 	do_div(freq, hpet_period);
 | |
| 	hpet_freq = freq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the HPET ID register to retrieve the IRQ routing
 | |
| 	 * information and the number of channels
 | |
| 	 */
 | |
| 	id = hpet_readl(HPET_ID);
 | |
| 	hpet_print_config();
 | |
| 
 | |
| 	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 | |
| 
 | |
| #ifdef CONFIG_HPET_EMULATE_RTC
 | |
| 	/*
 | |
| 	 * The legacy routing mode needs at least two channels, tick timer
 | |
| 	 * and the rtc emulation channel.
 | |
| 	 */
 | |
| 	if (!last)
 | |
| 		goto out_nohpet;
 | |
| #endif
 | |
| 
 | |
| 	cfg = hpet_readl(HPET_CFG);
 | |
| 	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 | |
| 				GFP_KERNEL);
 | |
| 	if (hpet_boot_cfg)
 | |
| 		*hpet_boot_cfg = cfg;
 | |
| 	else
 | |
| 		pr_warn("HPET initial state will not be saved\n");
 | |
| 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 | |
| 	hpet_writel(cfg, HPET_CFG);
 | |
| 	if (cfg)
 | |
| 		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 | |
| 			cfg);
 | |
| 
 | |
| 	for (i = 0; i <= last; ++i) {
 | |
| 		cfg = hpet_readl(HPET_Tn_CFG(i));
 | |
| 		if (hpet_boot_cfg)
 | |
| 			hpet_boot_cfg[i + 1] = cfg;
 | |
| 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 | |
| 		hpet_writel(cfg, HPET_Tn_CFG(i));
 | |
| 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 | |
| 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 | |
| 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
 | |
| 		if (cfg)
 | |
| 			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 | |
| 				cfg, i);
 | |
| 	}
 | |
| 	hpet_print_config();
 | |
| 
 | |
| 	if (hpet_clocksource_register())
 | |
| 		goto out_nohpet;
 | |
| 
 | |
| 	if (id & HPET_ID_LEGSUP) {
 | |
| 		hpet_legacy_clockevent_register();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| out_nohpet:
 | |
| 	hpet_clear_mapping();
 | |
| 	hpet_address = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Needs to be late, as the reserve_timer code calls kalloc !
 | |
|  *
 | |
|  * Not a problem on i386 as hpet_enable is called from late_time_init,
 | |
|  * but on x86_64 it is necessary !
 | |
|  */
 | |
| static __init int hpet_late_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (boot_hpet_disable)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!hpet_address) {
 | |
| 		if (!force_hpet_address)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		hpet_address = force_hpet_address;
 | |
| 		hpet_enable();
 | |
| 	}
 | |
| 
 | |
| 	if (!hpet_virt_address)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 | |
| 		hpet_msi_capability_lookup(2);
 | |
| 	else
 | |
| 		hpet_msi_capability_lookup(0);
 | |
| 
 | |
| 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 | |
| 	hpet_print_config();
 | |
| 
 | |
| 	if (hpet_msi_disable)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_ARAT))
 | |
| 		return 0;
 | |
| 
 | |
| 	cpu_notifier_register_begin();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 | |
| 	}
 | |
| 
 | |
| 	/* This notifier should be called after workqueue is ready */
 | |
| 	__hotcpu_notifier(hpet_cpuhp_notify, -20);
 | |
| 	cpu_notifier_register_done();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(hpet_late_init);
 | |
| 
 | |
| void hpet_disable(void)
 | |
| {
 | |
| 	if (is_hpet_capable() && hpet_virt_address) {
 | |
| 		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
 | |
| 
 | |
| 		if (hpet_boot_cfg)
 | |
| 			cfg = *hpet_boot_cfg;
 | |
| 		else if (hpet_legacy_int_enabled) {
 | |
| 			cfg &= ~HPET_CFG_LEGACY;
 | |
| 			hpet_legacy_int_enabled = 0;
 | |
| 		}
 | |
| 		cfg &= ~HPET_CFG_ENABLE;
 | |
| 		hpet_writel(cfg, HPET_CFG);
 | |
| 
 | |
| 		if (!hpet_boot_cfg)
 | |
| 			return;
 | |
| 
 | |
| 		id = hpet_readl(HPET_ID);
 | |
| 		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 | |
| 
 | |
| 		for (id = 0; id <= last; ++id)
 | |
| 			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
 | |
| 
 | |
| 		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
 | |
| 			hpet_writel(*hpet_boot_cfg, HPET_CFG);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HPET_EMULATE_RTC
 | |
| 
 | |
| /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 | |
|  * is enabled, we support RTC interrupt functionality in software.
 | |
|  * RTC has 3 kinds of interrupts:
 | |
|  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 | |
|  *    is updated
 | |
|  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 | |
|  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 | |
|  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 | |
|  * (1) and (2) above are implemented using polling at a frequency of
 | |
|  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 | |
|  * overhead. (DEFAULT_RTC_INT_FREQ)
 | |
|  * For (3), we use interrupts at 64Hz or user specified periodic
 | |
|  * frequency, whichever is higher.
 | |
|  */
 | |
| #include <linux/mc146818rtc.h>
 | |
| #include <linux/rtc.h>
 | |
| #include <asm/rtc.h>
 | |
| 
 | |
| #define DEFAULT_RTC_INT_FREQ	64
 | |
| #define DEFAULT_RTC_SHIFT	6
 | |
| #define RTC_NUM_INTS		1
 | |
| 
 | |
| static unsigned long hpet_rtc_flags;
 | |
| static int hpet_prev_update_sec;
 | |
| static struct rtc_time hpet_alarm_time;
 | |
| static unsigned long hpet_pie_count;
 | |
| static u32 hpet_t1_cmp;
 | |
| static u32 hpet_default_delta;
 | |
| static u32 hpet_pie_delta;
 | |
| static unsigned long hpet_pie_limit;
 | |
| 
 | |
| static rtc_irq_handler irq_handler;
 | |
| 
 | |
| /*
 | |
|  * Check that the hpet counter c1 is ahead of the c2
 | |
|  */
 | |
| static inline int hpet_cnt_ahead(u32 c1, u32 c2)
 | |
| {
 | |
| 	return (s32)(c2 - c1) < 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Registers a IRQ handler.
 | |
|  */
 | |
| int hpet_register_irq_handler(rtc_irq_handler handler)
 | |
| {
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return -ENODEV;
 | |
| 	if (irq_handler)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	irq_handler = handler;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
 | |
| 
 | |
| /*
 | |
|  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 | |
|  * and does cleanup.
 | |
|  */
 | |
| void hpet_unregister_irq_handler(rtc_irq_handler handler)
 | |
| {
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	irq_handler = NULL;
 | |
| 	hpet_rtc_flags = 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
 | |
| 
 | |
| /*
 | |
|  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
 | |
|  * is not supported by all HPET implementations for timer 1.
 | |
|  *
 | |
|  * hpet_rtc_timer_init() is called when the rtc is initialized.
 | |
|  */
 | |
| int hpet_rtc_timer_init(void)
 | |
| {
 | |
| 	unsigned int cfg, cnt, delta;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!hpet_default_delta) {
 | |
| 		uint64_t clc;
 | |
| 
 | |
| 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
 | |
| 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
 | |
| 		hpet_default_delta = clc;
 | |
| 	}
 | |
| 
 | |
| 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
 | |
| 		delta = hpet_default_delta;
 | |
| 	else
 | |
| 		delta = hpet_pie_delta;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cnt = delta + hpet_readl(HPET_COUNTER);
 | |
| 	hpet_writel(cnt, HPET_T1_CMP);
 | |
| 	hpet_t1_cmp = cnt;
 | |
| 
 | |
| 	cfg = hpet_readl(HPET_T1_CFG);
 | |
| 	cfg &= ~HPET_TN_PERIODIC;
 | |
| 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 | |
| 	hpet_writel(cfg, HPET_T1_CFG);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
 | |
| 
 | |
| static void hpet_disable_rtc_channel(void)
 | |
| {
 | |
| 	unsigned long cfg;
 | |
| 	cfg = hpet_readl(HPET_T1_CFG);
 | |
| 	cfg &= ~HPET_TN_ENABLE;
 | |
| 	hpet_writel(cfg, HPET_T1_CFG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The functions below are called from rtc driver.
 | |
|  * Return 0 if HPET is not being used.
 | |
|  * Otherwise do the necessary changes and return 1.
 | |
|  */
 | |
| int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
 | |
| {
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	hpet_rtc_flags &= ~bit_mask;
 | |
| 	if (unlikely(!hpet_rtc_flags))
 | |
| 		hpet_disable_rtc_channel();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
 | |
| 
 | |
| int hpet_set_rtc_irq_bit(unsigned long bit_mask)
 | |
| {
 | |
| 	unsigned long oldbits = hpet_rtc_flags;
 | |
| 
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	hpet_rtc_flags |= bit_mask;
 | |
| 
 | |
| 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
 | |
| 		hpet_prev_update_sec = -1;
 | |
| 
 | |
| 	if (!oldbits)
 | |
| 		hpet_rtc_timer_init();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
 | |
| 
 | |
| int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
 | |
| 			unsigned char sec)
 | |
| {
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	hpet_alarm_time.tm_hour = hrs;
 | |
| 	hpet_alarm_time.tm_min = min;
 | |
| 	hpet_alarm_time.tm_sec = sec;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
 | |
| 
 | |
| int hpet_set_periodic_freq(unsigned long freq)
 | |
| {
 | |
| 	uint64_t clc;
 | |
| 
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (freq <= DEFAULT_RTC_INT_FREQ)
 | |
| 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
 | |
| 	else {
 | |
| 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
 | |
| 		do_div(clc, freq);
 | |
| 		clc >>= hpet_clockevent.shift;
 | |
| 		hpet_pie_delta = clc;
 | |
| 		hpet_pie_limit = 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
 | |
| 
 | |
| int hpet_rtc_dropped_irq(void)
 | |
| {
 | |
| 	return is_hpet_enabled();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
 | |
| 
 | |
| static void hpet_rtc_timer_reinit(void)
 | |
| {
 | |
| 	unsigned int delta;
 | |
| 	int lost_ints = -1;
 | |
| 
 | |
| 	if (unlikely(!hpet_rtc_flags))
 | |
| 		hpet_disable_rtc_channel();
 | |
| 
 | |
| 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
 | |
| 		delta = hpet_default_delta;
 | |
| 	else
 | |
| 		delta = hpet_pie_delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * Increment the comparator value until we are ahead of the
 | |
| 	 * current count.
 | |
| 	 */
 | |
| 	do {
 | |
| 		hpet_t1_cmp += delta;
 | |
| 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
 | |
| 		lost_ints++;
 | |
| 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
 | |
| 
 | |
| 	if (lost_ints) {
 | |
| 		if (hpet_rtc_flags & RTC_PIE)
 | |
| 			hpet_pie_count += lost_ints;
 | |
| 		if (printk_ratelimit())
 | |
| 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
 | |
| 				lost_ints);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct rtc_time curr_time;
 | |
| 	unsigned long rtc_int_flag = 0;
 | |
| 
 | |
| 	hpet_rtc_timer_reinit();
 | |
| 	memset(&curr_time, 0, sizeof(struct rtc_time));
 | |
| 
 | |
| 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
 | |
| 		get_rtc_time(&curr_time);
 | |
| 
 | |
| 	if (hpet_rtc_flags & RTC_UIE &&
 | |
| 	    curr_time.tm_sec != hpet_prev_update_sec) {
 | |
| 		if (hpet_prev_update_sec >= 0)
 | |
| 			rtc_int_flag = RTC_UF;
 | |
| 		hpet_prev_update_sec = curr_time.tm_sec;
 | |
| 	}
 | |
| 
 | |
| 	if (hpet_rtc_flags & RTC_PIE &&
 | |
| 	    ++hpet_pie_count >= hpet_pie_limit) {
 | |
| 		rtc_int_flag |= RTC_PF;
 | |
| 		hpet_pie_count = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (hpet_rtc_flags & RTC_AIE &&
 | |
| 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
 | |
| 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
 | |
| 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
 | |
| 			rtc_int_flag |= RTC_AF;
 | |
| 
 | |
| 	if (rtc_int_flag) {
 | |
| 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
 | |
| 		if (irq_handler)
 | |
| 			irq_handler(rtc_int_flag, dev_id);
 | |
| 	}
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
 | |
| #endif
 |