Make sure the WARN_ON_FPU() macro consumes the macro argument, to avoid 'unused variable' build warnings if the only use of a variable is in debugging code. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			694 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			694 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 1994 Linus Torvalds
 | 
						|
 *
 | 
						|
 * Pentium III FXSR, SSE support
 | 
						|
 * General FPU state handling cleanups
 | 
						|
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 | 
						|
 * x86-64 work by Andi Kleen 2002
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef _ASM_X86_FPU_INTERNAL_H
 | 
						|
#define _ASM_X86_FPU_INTERNAL_H
 | 
						|
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <asm/user.h>
 | 
						|
#include <asm/fpu/api.h>
 | 
						|
#include <asm/fpu/xstate.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * High level FPU state handling functions:
 | 
						|
 */
 | 
						|
extern void fpu__activate_curr(struct fpu *fpu);
 | 
						|
extern void fpu__activate_fpstate_read(struct fpu *fpu);
 | 
						|
extern void fpu__activate_fpstate_write(struct fpu *fpu);
 | 
						|
extern void fpu__save(struct fpu *fpu);
 | 
						|
extern void fpu__restore(struct fpu *fpu);
 | 
						|
extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
 | 
						|
extern void fpu__drop(struct fpu *fpu);
 | 
						|
extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
 | 
						|
extern void fpu__clear(struct fpu *fpu);
 | 
						|
extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
 | 
						|
extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
 | 
						|
 | 
						|
/*
 | 
						|
 * Boot time FPU initialization functions:
 | 
						|
 */
 | 
						|
extern void fpu__init_cpu(void);
 | 
						|
extern void fpu__init_system_xstate(void);
 | 
						|
extern void fpu__init_cpu_xstate(void);
 | 
						|
extern void fpu__init_system(struct cpuinfo_x86 *c);
 | 
						|
extern void fpu__init_check_bugs(void);
 | 
						|
extern void fpu__resume_cpu(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * Debugging facility:
 | 
						|
 */
 | 
						|
#ifdef CONFIG_X86_DEBUG_FPU
 | 
						|
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
 | 
						|
#else
 | 
						|
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * FPU related CPU feature flag helper routines:
 | 
						|
 */
 | 
						|
static __always_inline __pure bool use_eager_fpu(void)
 | 
						|
{
 | 
						|
	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline __pure bool use_xsaveopt(void)
 | 
						|
{
 | 
						|
	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline __pure bool use_xsave(void)
 | 
						|
{
 | 
						|
	return static_cpu_has_safe(X86_FEATURE_XSAVE);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline __pure bool use_fxsr(void)
 | 
						|
{
 | 
						|
	return static_cpu_has_safe(X86_FEATURE_FXSR);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fpstate handling functions:
 | 
						|
 */
 | 
						|
 | 
						|
extern union fpregs_state init_fpstate;
 | 
						|
 | 
						|
extern void fpstate_init(union fpregs_state *state);
 | 
						|
#ifdef CONFIG_MATH_EMULATION
 | 
						|
extern void fpstate_init_soft(struct swregs_state *soft);
 | 
						|
#else
 | 
						|
static inline void fpstate_init_soft(struct swregs_state *soft) {}
 | 
						|
#endif
 | 
						|
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
 | 
						|
{
 | 
						|
	fx->cwd = 0x37f;
 | 
						|
	fx->mxcsr = MXCSR_DEFAULT;
 | 
						|
}
 | 
						|
extern void fpstate_sanitize_xstate(struct fpu *fpu);
 | 
						|
 | 
						|
#define user_insn(insn, output, input...)				\
 | 
						|
({									\
 | 
						|
	int err;							\
 | 
						|
	asm volatile(ASM_STAC "\n"					\
 | 
						|
		     "1:" #insn "\n\t"					\
 | 
						|
		     "2: " ASM_CLAC "\n"				\
 | 
						|
		     ".section .fixup,\"ax\"\n"				\
 | 
						|
		     "3:  movl $-1,%[err]\n"				\
 | 
						|
		     "    jmp  2b\n"					\
 | 
						|
		     ".previous\n"					\
 | 
						|
		     _ASM_EXTABLE(1b, 3b)				\
 | 
						|
		     : [err] "=r" (err), output				\
 | 
						|
		     : "0"(0), input);					\
 | 
						|
	err;								\
 | 
						|
})
 | 
						|
 | 
						|
#define check_insn(insn, output, input...)				\
 | 
						|
({									\
 | 
						|
	int err;							\
 | 
						|
	asm volatile("1:" #insn "\n\t"					\
 | 
						|
		     "2:\n"						\
 | 
						|
		     ".section .fixup,\"ax\"\n"				\
 | 
						|
		     "3:  movl $-1,%[err]\n"				\
 | 
						|
		     "    jmp  2b\n"					\
 | 
						|
		     ".previous\n"					\
 | 
						|
		     _ASM_EXTABLE(1b, 3b)				\
 | 
						|
		     : [err] "=r" (err), output				\
 | 
						|
		     : "0"(0), input);					\
 | 
						|
	err;								\
 | 
						|
})
 | 
						|
 | 
						|
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
 | 
						|
{
 | 
						|
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
 | 
						|
}
 | 
						|
 | 
						|
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
 | 
						|
{
 | 
						|
	if (config_enabled(CONFIG_X86_32))
 | 
						|
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
 | 
						|
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
 | 
						|
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
 | 
						|
 | 
						|
	/* See comment in copy_fxregs_to_kernel() below. */
 | 
						|
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
 | 
						|
}
 | 
						|
 | 
						|
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (config_enabled(CONFIG_X86_32)) {
 | 
						|
		err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
 | 
						|
	} else {
 | 
						|
		if (config_enabled(CONFIG_AS_FXSAVEQ)) {
 | 
						|
			err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
 | 
						|
		} else {
 | 
						|
			/* See comment in copy_fxregs_to_kernel() below. */
 | 
						|
			err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/* Copying from a kernel buffer to FPU registers should never fail: */
 | 
						|
	WARN_ON_FPU(err);
 | 
						|
}
 | 
						|
 | 
						|
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
 | 
						|
{
 | 
						|
	if (config_enabled(CONFIG_X86_32))
 | 
						|
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
 | 
						|
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
 | 
						|
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
 | 
						|
 | 
						|
	/* See comment in copy_fxregs_to_kernel() below. */
 | 
						|
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
 | 
						|
			  "m" (*fx));
 | 
						|
}
 | 
						|
 | 
						|
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
 | 
						|
{
 | 
						|
	int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
 | 
						|
 | 
						|
	WARN_ON_FPU(err);
 | 
						|
}
 | 
						|
 | 
						|
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
 | 
						|
{
 | 
						|
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
 | 
						|
}
 | 
						|
 | 
						|
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
 | 
						|
{
 | 
						|
	if (config_enabled(CONFIG_X86_32))
 | 
						|
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
 | 
						|
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
 | 
						|
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
 | 
						|
	else {
 | 
						|
		/* Using "rex64; fxsave %0" is broken because, if the memory
 | 
						|
		 * operand uses any extended registers for addressing, a second
 | 
						|
		 * REX prefix will be generated (to the assembler, rex64
 | 
						|
		 * followed by semicolon is a separate instruction), and hence
 | 
						|
		 * the 64-bitness is lost.
 | 
						|
		 *
 | 
						|
		 * Using "fxsaveq %0" would be the ideal choice, but is only
 | 
						|
		 * supported starting with gas 2.16.
 | 
						|
		 *
 | 
						|
		 * Using, as a workaround, the properly prefixed form below
 | 
						|
		 * isn't accepted by any binutils version so far released,
 | 
						|
		 * complaining that the same type of prefix is used twice if
 | 
						|
		 * an extended register is needed for addressing (fix submitted
 | 
						|
		 * to mainline 2005-11-21).
 | 
						|
		 *
 | 
						|
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
 | 
						|
		 *
 | 
						|
		 * This, however, we can work around by forcing the compiler to
 | 
						|
		 * select an addressing mode that doesn't require extended
 | 
						|
		 * registers.
 | 
						|
		 */
 | 
						|
		asm volatile( "rex64/fxsave (%[fx])"
 | 
						|
			     : "=m" (fpu->state.fxsave)
 | 
						|
			     : [fx] "R" (&fpu->state.fxsave));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
 | 
						|
#define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
 | 
						|
#define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
 | 
						|
#define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
 | 
						|
#define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
 | 
						|
#define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"
 | 
						|
 | 
						|
/* xstate instruction fault handler: */
 | 
						|
#define xstate_fault(__err)		\
 | 
						|
					\
 | 
						|
	".section .fixup,\"ax\"\n"	\
 | 
						|
					\
 | 
						|
	"3:  movl $-2,%[_err]\n"	\
 | 
						|
	"    jmp  2b\n"			\
 | 
						|
					\
 | 
						|
	".previous\n"			\
 | 
						|
					\
 | 
						|
	_ASM_EXTABLE(1b, 3b)		\
 | 
						|
	: [_err] "=r" (__err)
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is called only during boot time when x86 caps are not set
 | 
						|
 * up and alternative can not be used yet.
 | 
						|
 */
 | 
						|
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
 | 
						|
{
 | 
						|
	u64 mask = -1;
 | 
						|
	u32 lmask = mask;
 | 
						|
	u32 hmask = mask >> 32;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	WARN_ON(system_state != SYSTEM_BOOTING);
 | 
						|
 | 
						|
	if (boot_cpu_has(X86_FEATURE_XSAVES))
 | 
						|
		asm volatile("1:"XSAVES"\n\t"
 | 
						|
			"2:\n\t"
 | 
						|
			     xstate_fault(err)
 | 
						|
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
 | 
						|
			: "memory");
 | 
						|
	else
 | 
						|
		asm volatile("1:"XSAVE"\n\t"
 | 
						|
			"2:\n\t"
 | 
						|
			     xstate_fault(err)
 | 
						|
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
 | 
						|
			: "memory");
 | 
						|
 | 
						|
	/* We should never fault when copying to a kernel buffer: */
 | 
						|
	WARN_ON_FPU(err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is called only during boot time when x86 caps are not set
 | 
						|
 * up and alternative can not be used yet.
 | 
						|
 */
 | 
						|
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
 | 
						|
{
 | 
						|
	u64 mask = -1;
 | 
						|
	u32 lmask = mask;
 | 
						|
	u32 hmask = mask >> 32;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	WARN_ON(system_state != SYSTEM_BOOTING);
 | 
						|
 | 
						|
	if (boot_cpu_has(X86_FEATURE_XSAVES))
 | 
						|
		asm volatile("1:"XRSTORS"\n\t"
 | 
						|
			"2:\n\t"
 | 
						|
			     xstate_fault(err)
 | 
						|
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
 | 
						|
			: "memory");
 | 
						|
	else
 | 
						|
		asm volatile("1:"XRSTOR"\n\t"
 | 
						|
			"2:\n\t"
 | 
						|
			     xstate_fault(err)
 | 
						|
			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
 | 
						|
			: "memory");
 | 
						|
 | 
						|
	/* We should never fault when copying from a kernel buffer: */
 | 
						|
	WARN_ON_FPU(err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Save processor xstate to xsave area.
 | 
						|
 */
 | 
						|
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
 | 
						|
{
 | 
						|
	u64 mask = -1;
 | 
						|
	u32 lmask = mask;
 | 
						|
	u32 hmask = mask >> 32;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	WARN_ON(!alternatives_patched);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If xsaves is enabled, xsaves replaces xsaveopt because
 | 
						|
	 * it supports compact format and supervisor states in addition to
 | 
						|
	 * modified optimization in xsaveopt.
 | 
						|
	 *
 | 
						|
	 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
 | 
						|
	 * because xsaveopt supports modified optimization which is not
 | 
						|
	 * supported by xsave.
 | 
						|
	 *
 | 
						|
	 * If none of xsaves and xsaveopt is enabled, use xsave.
 | 
						|
	 */
 | 
						|
	alternative_input_2(
 | 
						|
		"1:"XSAVE,
 | 
						|
		XSAVEOPT,
 | 
						|
		X86_FEATURE_XSAVEOPT,
 | 
						|
		XSAVES,
 | 
						|
		X86_FEATURE_XSAVES,
 | 
						|
		[xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
 | 
						|
		"memory");
 | 
						|
	asm volatile("2:\n\t"
 | 
						|
		     xstate_fault(err)
 | 
						|
		     : "0" (err)
 | 
						|
		     : "memory");
 | 
						|
 | 
						|
	/* We should never fault when copying to a kernel buffer: */
 | 
						|
	WARN_ON_FPU(err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Restore processor xstate from xsave area.
 | 
						|
 */
 | 
						|
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
 | 
						|
{
 | 
						|
	u32 lmask = mask;
 | 
						|
	u32 hmask = mask >> 32;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use xrstors to restore context if it is enabled. xrstors supports
 | 
						|
	 * compacted format of xsave area which is not supported by xrstor.
 | 
						|
	 */
 | 
						|
	alternative_input(
 | 
						|
		"1: " XRSTOR,
 | 
						|
		XRSTORS,
 | 
						|
		X86_FEATURE_XSAVES,
 | 
						|
		"D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
 | 
						|
		: "memory");
 | 
						|
 | 
						|
	asm volatile("2:\n"
 | 
						|
		     xstate_fault(err)
 | 
						|
		     : "0" (err)
 | 
						|
		     : "memory");
 | 
						|
 | 
						|
	/* We should never fault when copying from a kernel buffer: */
 | 
						|
	WARN_ON_FPU(err);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Save xstate to user space xsave area.
 | 
						|
 *
 | 
						|
 * We don't use modified optimization because xrstor/xrstors might track
 | 
						|
 * a different application.
 | 
						|
 *
 | 
						|
 * We don't use compacted format xsave area for
 | 
						|
 * backward compatibility for old applications which don't understand
 | 
						|
 * compacted format of xsave area.
 | 
						|
 */
 | 
						|
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear the xsave header first, so that reserved fields are
 | 
						|
	 * initialized to zero.
 | 
						|
	 */
 | 
						|
	err = __clear_user(&buf->header, sizeof(buf->header));
 | 
						|
	if (unlikely(err))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	__asm__ __volatile__(ASM_STAC "\n"
 | 
						|
			     "1:"XSAVE"\n"
 | 
						|
			     "2: " ASM_CLAC "\n"
 | 
						|
			     xstate_fault(err)
 | 
						|
			     : "D" (buf), "a" (-1), "d" (-1), "0" (err)
 | 
						|
			     : "memory");
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Restore xstate from user space xsave area.
 | 
						|
 */
 | 
						|
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
 | 
						|
{
 | 
						|
	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
 | 
						|
	u32 lmask = mask;
 | 
						|
	u32 hmask = mask >> 32;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	__asm__ __volatile__(ASM_STAC "\n"
 | 
						|
			     "1:"XRSTOR"\n"
 | 
						|
			     "2: " ASM_CLAC "\n"
 | 
						|
			     xstate_fault(err)
 | 
						|
			     : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
 | 
						|
			     : "memory");	/* memory required? */
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * These must be called with preempt disabled. Returns
 | 
						|
 * 'true' if the FPU state is still intact and we can
 | 
						|
 * keep registers active.
 | 
						|
 *
 | 
						|
 * The legacy FNSAVE instruction cleared all FPU state
 | 
						|
 * unconditionally, so registers are essentially destroyed.
 | 
						|
 * Modern FPU state can be kept in registers, if there are
 | 
						|
 * no pending FP exceptions.
 | 
						|
 */
 | 
						|
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
 | 
						|
{
 | 
						|
	if (likely(use_xsave())) {
 | 
						|
		copy_xregs_to_kernel(&fpu->state.xsave);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (likely(use_fxsr())) {
 | 
						|
		copy_fxregs_to_kernel(fpu);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
 | 
						|
	 * so we have to mark them inactive:
 | 
						|
	 */
 | 
						|
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
 | 
						|
{
 | 
						|
	if (use_xsave()) {
 | 
						|
		copy_kernel_to_xregs(&fpstate->xsave, -1);
 | 
						|
	} else {
 | 
						|
		if (use_fxsr())
 | 
						|
			copy_kernel_to_fxregs(&fpstate->fxsave);
 | 
						|
		else
 | 
						|
			copy_kernel_to_fregs(&fpstate->fsave);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
 | 
						|
	 * pending. Clear the x87 state here by setting it to fixed values.
 | 
						|
	 * "m" is a random variable that should be in L1.
 | 
						|
	 */
 | 
						|
	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
 | 
						|
		asm volatile(
 | 
						|
			"fnclex\n\t"
 | 
						|
			"emms\n\t"
 | 
						|
			"fildl %P[addr]"	/* set F?P to defined value */
 | 
						|
			: : [addr] "m" (fpstate));
 | 
						|
	}
 | 
						|
 | 
						|
	__copy_kernel_to_fpregs(fpstate);
 | 
						|
}
 | 
						|
 | 
						|
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
 | 
						|
 | 
						|
/*
 | 
						|
 * FPU context switch related helper methods:
 | 
						|
 */
 | 
						|
 | 
						|
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 | 
						|
 | 
						|
/*
 | 
						|
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
 | 
						|
 * on this CPU.
 | 
						|
 *
 | 
						|
 * This will disable any lazy FPU state restore of the current FPU state,
 | 
						|
 * but if the current thread owns the FPU, it will still be saved by.
 | 
						|
 */
 | 
						|
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
 | 
						|
{
 | 
						|
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
 | 
						|
{
 | 
						|
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
 | 
						|
 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
 | 
						|
 */
 | 
						|
 | 
						|
static inline void __fpregs_activate_hw(void)
 | 
						|
{
 | 
						|
	if (!use_eager_fpu())
 | 
						|
		clts();
 | 
						|
}
 | 
						|
 | 
						|
static inline void __fpregs_deactivate_hw(void)
 | 
						|
{
 | 
						|
	if (!use_eager_fpu())
 | 
						|
		stts();
 | 
						|
}
 | 
						|
 | 
						|
/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
 | 
						|
static inline void __fpregs_deactivate(struct fpu *fpu)
 | 
						|
{
 | 
						|
	WARN_ON_FPU(!fpu->fpregs_active);
 | 
						|
 | 
						|
	fpu->fpregs_active = 0;
 | 
						|
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
 | 
						|
static inline void __fpregs_activate(struct fpu *fpu)
 | 
						|
{
 | 
						|
	WARN_ON_FPU(fpu->fpregs_active);
 | 
						|
 | 
						|
	fpu->fpregs_active = 1;
 | 
						|
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The question "does this thread have fpu access?"
 | 
						|
 * is slightly racy, since preemption could come in
 | 
						|
 * and revoke it immediately after the test.
 | 
						|
 *
 | 
						|
 * However, even in that very unlikely scenario,
 | 
						|
 * we can just assume we have FPU access - typically
 | 
						|
 * to save the FP state - we'll just take a #NM
 | 
						|
 * fault and get the FPU access back.
 | 
						|
 */
 | 
						|
static inline int fpregs_active(void)
 | 
						|
{
 | 
						|
	return current->thread.fpu.fpregs_active;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Encapsulate the CR0.TS handling together with the
 | 
						|
 * software flag.
 | 
						|
 *
 | 
						|
 * These generally need preemption protection to work,
 | 
						|
 * do try to avoid using these on their own.
 | 
						|
 */
 | 
						|
static inline void fpregs_activate(struct fpu *fpu)
 | 
						|
{
 | 
						|
	__fpregs_activate_hw();
 | 
						|
	__fpregs_activate(fpu);
 | 
						|
}
 | 
						|
 | 
						|
static inline void fpregs_deactivate(struct fpu *fpu)
 | 
						|
{
 | 
						|
	__fpregs_deactivate(fpu);
 | 
						|
	__fpregs_deactivate_hw();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * FPU state switching for scheduling.
 | 
						|
 *
 | 
						|
 * This is a two-stage process:
 | 
						|
 *
 | 
						|
 *  - switch_fpu_prepare() saves the old state and
 | 
						|
 *    sets the new state of the CR0.TS bit. This is
 | 
						|
 *    done within the context of the old process.
 | 
						|
 *
 | 
						|
 *  - switch_fpu_finish() restores the new state as
 | 
						|
 *    necessary.
 | 
						|
 */
 | 
						|
typedef struct { int preload; } fpu_switch_t;
 | 
						|
 | 
						|
static inline fpu_switch_t
 | 
						|
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
 | 
						|
{
 | 
						|
	fpu_switch_t fpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the task has used the math, pre-load the FPU on xsave processors
 | 
						|
	 * or if the past 5 consecutive context-switches used math.
 | 
						|
	 */
 | 
						|
	fpu.preload = new_fpu->fpstate_active &&
 | 
						|
		      (use_eager_fpu() || new_fpu->counter > 5);
 | 
						|
 | 
						|
	if (old_fpu->fpregs_active) {
 | 
						|
		if (!copy_fpregs_to_fpstate(old_fpu))
 | 
						|
			old_fpu->last_cpu = -1;
 | 
						|
		else
 | 
						|
			old_fpu->last_cpu = cpu;
 | 
						|
 | 
						|
		/* But leave fpu_fpregs_owner_ctx! */
 | 
						|
		old_fpu->fpregs_active = 0;
 | 
						|
 | 
						|
		/* Don't change CR0.TS if we just switch! */
 | 
						|
		if (fpu.preload) {
 | 
						|
			new_fpu->counter++;
 | 
						|
			__fpregs_activate(new_fpu);
 | 
						|
			prefetch(&new_fpu->state);
 | 
						|
		} else {
 | 
						|
			__fpregs_deactivate_hw();
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		old_fpu->counter = 0;
 | 
						|
		old_fpu->last_cpu = -1;
 | 
						|
		if (fpu.preload) {
 | 
						|
			new_fpu->counter++;
 | 
						|
			if (fpu_want_lazy_restore(new_fpu, cpu))
 | 
						|
				fpu.preload = 0;
 | 
						|
			else
 | 
						|
				prefetch(&new_fpu->state);
 | 
						|
			fpregs_activate(new_fpu);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return fpu;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Misc helper functions:
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * By the time this gets called, we've already cleared CR0.TS and
 | 
						|
 * given the process the FPU if we are going to preload the FPU
 | 
						|
 * state - all we need to do is to conditionally restore the register
 | 
						|
 * state itself.
 | 
						|
 */
 | 
						|
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
 | 
						|
{
 | 
						|
	if (fpu_switch.preload)
 | 
						|
		copy_kernel_to_fpregs(&new_fpu->state);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Needs to be preemption-safe.
 | 
						|
 *
 | 
						|
 * NOTE! user_fpu_begin() must be used only immediately before restoring
 | 
						|
 * the save state. It does not do any saving/restoring on its own. In
 | 
						|
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 | 
						|
 * the task can lose the FPU right after preempt_enable().
 | 
						|
 */
 | 
						|
static inline void user_fpu_begin(void)
 | 
						|
{
 | 
						|
	struct fpu *fpu = ¤t->thread.fpu;
 | 
						|
 | 
						|
	preempt_disable();
 | 
						|
	if (!fpregs_active())
 | 
						|
		fpregs_activate(fpu);
 | 
						|
	preempt_enable();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * MXCSR and XCR definitions:
 | 
						|
 */
 | 
						|
 | 
						|
extern unsigned int mxcsr_feature_mask;
 | 
						|
 | 
						|
#define XCR_XFEATURE_ENABLED_MASK	0x00000000
 | 
						|
 | 
						|
static inline u64 xgetbv(u32 index)
 | 
						|
{
 | 
						|
	u32 eax, edx;
 | 
						|
 | 
						|
	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
 | 
						|
		     : "=a" (eax), "=d" (edx)
 | 
						|
		     : "c" (index));
 | 
						|
	return eax + ((u64)edx << 32);
 | 
						|
}
 | 
						|
 | 
						|
static inline void xsetbv(u32 index, u64 value)
 | 
						|
{
 | 
						|
	u32 eax = value;
 | 
						|
	u32 edx = value >> 32;
 | 
						|
 | 
						|
	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
 | 
						|
		     : : "a" (eax), "d" (edx), "c" (index));
 | 
						|
}
 | 
						|
 | 
						|
#endif /* _ASM_X86_FPU_INTERNAL_H */
 |