 876e78818d
			
		
	
	
	876e78818d
	
	
	
		
			
			In preparation of adding another tkr field, rename this one to tkr_mono. Also rename tk_read_base::base_mono to tk_read_base::base, since the structure is not specific to CLOCK_MONOTONIC and the mono name got added to the tk_read_base instance. Lots of trivial churn. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: John Stultz <john.stultz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20150319093400.344679419@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			300 lines
		
	
	
	
		
			8.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			300 lines
		
	
	
	
		
			8.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2010 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  *
 | |
|  * Support the cycle counter clocksource and tile timer clock event device.
 | |
|  */
 | |
| 
 | |
| #include <linux/time.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/timekeeper_internal.h>
 | |
| #include <asm/irq_regs.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/vdso.h>
 | |
| #include <hv/hypervisor.h>
 | |
| #include <arch/interrupts.h>
 | |
| #include <arch/spr_def.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Define the cycle counter clock source.
 | |
|  */
 | |
| 
 | |
| /* How many cycles per second we are running at. */
 | |
| static cycles_t cycles_per_sec __write_once;
 | |
| 
 | |
| cycles_t get_clock_rate(void)
 | |
| {
 | |
| 	return cycles_per_sec;
 | |
| }
 | |
| 
 | |
| #if CHIP_HAS_SPLIT_CYCLE()
 | |
| cycles_t get_cycles(void)
 | |
| {
 | |
| 	unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
 | |
| 	unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
 | |
| 	unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
 | |
| 
 | |
| 	while (unlikely(high != high2)) {
 | |
| 		low = __insn_mfspr(SPR_CYCLE_LOW);
 | |
| 		high = high2;
 | |
| 		high2 = __insn_mfspr(SPR_CYCLE_HIGH);
 | |
| 	}
 | |
| 
 | |
| 	return (((cycles_t)high) << 32) | low;
 | |
| }
 | |
| EXPORT_SYMBOL(get_cycles);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We use a relatively small shift value so that sched_clock()
 | |
|  * won't wrap around very often.
 | |
|  */
 | |
| #define SCHED_CLOCK_SHIFT 10
 | |
| 
 | |
| static unsigned long sched_clock_mult __write_once;
 | |
| 
 | |
| static cycles_t clocksource_get_cycles(struct clocksource *cs)
 | |
| {
 | |
| 	return get_cycles();
 | |
| }
 | |
| 
 | |
| static struct clocksource cycle_counter_cs = {
 | |
| 	.name = "cycle counter",
 | |
| 	.rating = 300,
 | |
| 	.read = clocksource_get_cycles,
 | |
| 	.mask = CLOCKSOURCE_MASK(64),
 | |
| 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Called very early from setup_arch() to set cycles_per_sec.
 | |
|  * We initialize it early so we can use it to set up loops_per_jiffy.
 | |
|  */
 | |
| void __init setup_clock(void)
 | |
| {
 | |
| 	cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
 | |
| 	sched_clock_mult =
 | |
| 		clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
 | |
| }
 | |
| 
 | |
| void __init calibrate_delay(void)
 | |
| {
 | |
| 	loops_per_jiffy = get_clock_rate() / HZ;
 | |
| 	pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
 | |
| 		loops_per_jiffy / (500000 / HZ),
 | |
| 		(loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
 | |
| }
 | |
| 
 | |
| /* Called fairly late in init/main.c, but before we go smp. */
 | |
| void __init time_init(void)
 | |
| {
 | |
| 	/* Initialize and register the clock source. */
 | |
| 	clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
 | |
| 
 | |
| 	/* Start up the tile-timer interrupt source on the boot cpu. */
 | |
| 	setup_tile_timer();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Define the tile timer clock event device.  The timer is driven by
 | |
|  * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
 | |
|  * counter, plus bit 31, which signifies that the counter has wrapped
 | |
|  * from zero to (2**31) - 1.  The INT_TILE_TIMER interrupt will be
 | |
|  * raised as long as bit 31 is set.
 | |
|  *
 | |
|  * The TILE_MINSEC value represents the largest range of real-time
 | |
|  * we can possibly cover with the timer, based on MAX_TICK combined
 | |
|  * with the slowest reasonable clock rate we might run at.
 | |
|  */
 | |
| 
 | |
| #define MAX_TICK 0x7fffffff   /* we have 31 bits of countdown timer */
 | |
| #define TILE_MINSEC 5         /* timer covers no more than 5 seconds */
 | |
| 
 | |
| static int tile_timer_set_next_event(unsigned long ticks,
 | |
| 				     struct clock_event_device *evt)
 | |
| {
 | |
| 	BUG_ON(ticks > MAX_TICK);
 | |
| 	__insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
 | |
| 	arch_local_irq_unmask_now(INT_TILE_TIMER);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Whenever anyone tries to change modes, we just mask interrupts
 | |
|  * and wait for the next event to get set.
 | |
|  */
 | |
| static void tile_timer_set_mode(enum clock_event_mode mode,
 | |
| 				struct clock_event_device *evt)
 | |
| {
 | |
| 	arch_local_irq_mask_now(INT_TILE_TIMER);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set min_delta_ns to 1 microsecond, since it takes about
 | |
|  * that long to fire the interrupt.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
 | |
| 	.name = "tile timer",
 | |
| 	.features = CLOCK_EVT_FEAT_ONESHOT,
 | |
| 	.min_delta_ns = 1000,
 | |
| 	.rating = 100,
 | |
| 	.irq = -1,
 | |
| 	.set_next_event = tile_timer_set_next_event,
 | |
| 	.set_mode = tile_timer_set_mode,
 | |
| };
 | |
| 
 | |
| void setup_tile_timer(void)
 | |
| {
 | |
| 	struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
 | |
| 
 | |
| 	/* Fill in fields that are speed-specific. */
 | |
| 	clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
 | |
| 	evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
 | |
| 
 | |
| 	/* Mark as being for this cpu only. */
 | |
| 	evt->cpumask = cpumask_of(smp_processor_id());
 | |
| 
 | |
| 	/* Start out with timer not firing. */
 | |
| 	arch_local_irq_mask_now(INT_TILE_TIMER);
 | |
| 
 | |
| 	/* Register tile timer. */
 | |
| 	clockevents_register_device(evt);
 | |
| }
 | |
| 
 | |
| /* Called from the interrupt vector. */
 | |
| void do_timer_interrupt(struct pt_regs *regs, int fault_num)
 | |
| {
 | |
| 	struct pt_regs *old_regs = set_irq_regs(regs);
 | |
| 	struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask the timer interrupt here, since we are a oneshot timer
 | |
| 	 * and there are now by definition no events pending.
 | |
| 	 */
 | |
| 	arch_local_irq_mask(INT_TILE_TIMER);
 | |
| 
 | |
| 	/* Track time spent here in an interrupt context */
 | |
| 	irq_enter();
 | |
| 
 | |
| 	/* Track interrupt count. */
 | |
| 	__this_cpu_inc(irq_stat.irq_timer_count);
 | |
| 
 | |
| 	/* Call the generic timer handler */
 | |
| 	evt->event_handler(evt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Track time spent against the current process again and
 | |
| 	 * process any softirqs if they are waiting.
 | |
| 	 */
 | |
| 	irq_exit();
 | |
| 
 | |
| 	set_irq_regs(old_regs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scheduler clock - returns current time in nanosec units.
 | |
|  * Note that with LOCKDEP, this is called during lockdep_init(), and
 | |
|  * we will claim that sched_clock() is zero for a little while, until
 | |
|  * we run setup_clock(), above.
 | |
|  */
 | |
| unsigned long long sched_clock(void)
 | |
| {
 | |
| 	return clocksource_cyc2ns(get_cycles(),
 | |
| 				  sched_clock_mult, SCHED_CLOCK_SHIFT);
 | |
| }
 | |
| 
 | |
| int setup_profiling_timer(unsigned int multiplier)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the tile timer to convert nsecs to core clock cycles, relying
 | |
|  * on it having the same frequency as SPR_CYCLE.
 | |
|  */
 | |
| cycles_t ns2cycles(unsigned long nsecs)
 | |
| {
 | |
| 	/*
 | |
| 	 * We do not have to disable preemption here as each core has the same
 | |
| 	 * clock frequency.
 | |
| 	 */
 | |
| 	struct clock_event_device *dev = raw_cpu_ptr(&tile_timer);
 | |
| 
 | |
| 	/*
 | |
| 	 * as in clocksource.h and x86's timer.h, we split the calculation
 | |
| 	 * into 2 parts to avoid unecessary overflow of the intermediate
 | |
| 	 * value. This will not lead to any loss of precision.
 | |
| 	 */
 | |
| 	u64 quot = (u64)nsecs >> dev->shift;
 | |
| 	u64 rem  = (u64)nsecs & ((1ULL << dev->shift) - 1);
 | |
| 	return quot * dev->mult + ((rem * dev->mult) >> dev->shift);
 | |
| }
 | |
| 
 | |
| void update_vsyscall_tz(void)
 | |
| {
 | |
| 	write_seqcount_begin(&vdso_data->tz_seq);
 | |
| 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 | |
| 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 | |
| 	write_seqcount_end(&vdso_data->tz_seq);
 | |
| }
 | |
| 
 | |
| void update_vsyscall(struct timekeeper *tk)
 | |
| {
 | |
| 	if (tk->tkr_mono.clock != &cycle_counter_cs)
 | |
| 		return;
 | |
| 
 | |
| 	write_seqcount_begin(&vdso_data->tb_seq);
 | |
| 
 | |
| 	vdso_data->cycle_last		= tk->tkr_mono.cycle_last;
 | |
| 	vdso_data->mask			= tk->tkr_mono.mask;
 | |
| 	vdso_data->mult			= tk->tkr_mono.mult;
 | |
| 	vdso_data->shift		= tk->tkr_mono.shift;
 | |
| 
 | |
| 	vdso_data->wall_time_sec	= tk->xtime_sec;
 | |
| 	vdso_data->wall_time_snsec	= tk->tkr_mono.xtime_nsec;
 | |
| 
 | |
| 	vdso_data->monotonic_time_sec	= tk->xtime_sec
 | |
| 					+ tk->wall_to_monotonic.tv_sec;
 | |
| 	vdso_data->monotonic_time_snsec	= tk->tkr_mono.xtime_nsec
 | |
| 					+ ((u64)tk->wall_to_monotonic.tv_nsec
 | |
| 						<< tk->tkr_mono.shift);
 | |
| 	while (vdso_data->monotonic_time_snsec >=
 | |
| 					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 | |
| 		vdso_data->monotonic_time_snsec -=
 | |
| 					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
 | |
| 		vdso_data->monotonic_time_sec++;
 | |
| 	}
 | |
| 
 | |
| 	vdso_data->wall_time_coarse_sec	= tk->xtime_sec;
 | |
| 	vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >>
 | |
| 						 tk->tkr_mono.shift);
 | |
| 
 | |
| 	vdso_data->monotonic_time_coarse_sec =
 | |
| 		vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec;
 | |
| 	vdso_data->monotonic_time_coarse_nsec =
 | |
| 		vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
 | |
| 
 | |
| 	while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) {
 | |
| 		vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC;
 | |
| 		vdso_data->monotonic_time_coarse_sec++;
 | |
| 	}
 | |
| 
 | |
| 	write_seqcount_end(&vdso_data->tb_seq);
 | |
| }
 |