 b97ea289cf
			
		
	
	
	b97ea289cf
	
	
	
		
			
			Previously, pci_scan_root_bus() created a root PCI bus, enumerated the
devices on it, and called pci_bus_add_devices(), which made the devices
available for drivers to claim them.
Most callers assigned resources to devices after pci_scan_root_bus()
returns, which may be after drivers have claimed the devices.  This is
incorrect; the PCI core should not change device resources while a driver
is managing the device.
Remove pci_bus_add_devices() from pci_scan_root_bus() and do it after any
resource assignment in the callers.
Note that ARM's pci_common_init_dev() already called pci_bus_add_devices()
after pci_scan_root_bus(), so we only need to remove the first call:
  pci_common_init_dev
    pcibios_init_hw
      pci_scan_root_bus
        pci_bus_add_devices        # first call
    pci_bus_assign_resources
    pci_bus_add_devices            # second call
[bhelgaas: changelog, drop "root_bus" var in alpha common_init_pci(),
return failure earlier in mn10300, add "return" in x86 pcibios_scan_root(),
return early if xtensa platform_pcibios_fixup() fails]
Signed-off-by: Yijing Wang <wangyijing@huawei.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
CC: Richard Henderson <rth@twiddle.net>
CC: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
CC: Matt Turner <mattst88@gmail.com>
CC: David Howells <dhowells@redhat.com>
CC: Tony Luck <tony.luck@intel.com>
CC: Michal Simek <monstr@monstr.eu>
CC: Ralf Baechle <ralf@linux-mips.org>
CC: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
CC: Sebastian Ott <sebott@linux.vnet.ibm.com>
CC: "David S. Miller" <davem@davemloft.net>
CC: Chris Metcalf <cmetcalf@ezchip.com>
CC: Chris Zankel <chris@zankel.net>
CC: Max Filippov <jcmvbkbc@gmail.com>
CC: Thomas Gleixner <tglx@linutronix.de>
		
	
			
		
			
				
	
	
		
			1595 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1595 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2012 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/msi.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/ctype.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| #include <gxio/iorpc_globals.h>
 | |
| #include <gxio/kiorpc.h>
 | |
| #include <gxio/trio.h>
 | |
| #include <gxio/iorpc_trio.h>
 | |
| #include <hv/drv_trio_intf.h>
 | |
| 
 | |
| #include <arch/sim.h>
 | |
| 
 | |
| /*
 | |
|  * This file containes the routines to search for PCI buses,
 | |
|  * enumerate the buses, and configure any attached devices.
 | |
|  */
 | |
| 
 | |
| #define DEBUG_PCI_CFG	0
 | |
| 
 | |
| #if DEBUG_PCI_CFG
 | |
| #define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
 | |
| 	pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
 | |
| 		size, val, bus, dev, func, offset & 0xFFF);
 | |
| #define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
 | |
| 	pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
 | |
| 		size, val, bus, dev, func, offset & 0xFFF);
 | |
| #else
 | |
| #define TRACE_CFG_WR(...)
 | |
| #define TRACE_CFG_RD(...)
 | |
| #endif
 | |
| 
 | |
| static int pci_probe = 1;
 | |
| 
 | |
| /* Information on the PCIe RC ports configuration. */
 | |
| static int pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
 | |
| 
 | |
| /*
 | |
|  * On some platforms with one or more Gx endpoint ports, we need to
 | |
|  * delay the PCIe RC port probe for a few seconds to work around
 | |
|  * a HW PCIe link-training bug. The exact delay is specified with
 | |
|  * a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
 | |
|  * where T is the TRIO instance number, P is the port number and S is
 | |
|  * the delay in seconds. If the argument is specified, but the delay is
 | |
|  * not provided, the value will be DEFAULT_RC_DELAY.
 | |
|  */
 | |
| static int rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
 | |
| 
 | |
| /* Default number of seconds that the PCIe RC port probe can be delayed. */
 | |
| #define DEFAULT_RC_DELAY	10
 | |
| 
 | |
| /* The PCI I/O space size in each PCI domain. */
 | |
| #define IO_SPACE_SIZE		0x10000
 | |
| 
 | |
| /* Provide shorter versions of some very long constant names. */
 | |
| #define AUTO_CONFIG_RC	\
 | |
| 	TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC
 | |
| #define AUTO_CONFIG_RC_G1	\
 | |
| 	TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1
 | |
| #define AUTO_CONFIG_EP	\
 | |
| 	TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT
 | |
| #define AUTO_CONFIG_EP_G1	\
 | |
| 	TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1
 | |
| 
 | |
| /* Array of the PCIe ports configuration info obtained from the BIB. */
 | |
| struct pcie_trio_ports_property pcie_ports[TILEGX_NUM_TRIO];
 | |
| 
 | |
| /* Number of configured TRIO instances. */
 | |
| int num_trio_shims;
 | |
| 
 | |
| /* All drivers share the TRIO contexts defined here. */
 | |
| gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
 | |
| 
 | |
| /* Pointer to an array of PCIe RC controllers. */
 | |
| struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
 | |
| int num_rc_controllers;
 | |
| 
 | |
| static struct pci_ops tile_cfg_ops;
 | |
| 
 | |
| /* Mask of CPUs that should receive PCIe interrupts. */
 | |
| static struct cpumask intr_cpus_map;
 | |
| 
 | |
| /* We don't need to worry about the alignment of resources. */
 | |
| resource_size_t pcibios_align_resource(void *data, const struct resource *res,
 | |
| 				       resource_size_t size,
 | |
| 				       resource_size_t align)
 | |
| {
 | |
| 	return res->start;
 | |
| }
 | |
| EXPORT_SYMBOL(pcibios_align_resource);
 | |
| 
 | |
| /*
 | |
|  * Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
 | |
|  * For now, we simply send interrupts to non-dataplane CPUs.
 | |
|  * We may implement methods to allow user to specify the target CPUs,
 | |
|  * e.g. via boot arguments.
 | |
|  */
 | |
| static int tile_irq_cpu(int irq)
 | |
| {
 | |
| 	unsigned int count;
 | |
| 	int i = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	count = cpumask_weight(&intr_cpus_map);
 | |
| 	if (unlikely(count == 0)) {
 | |
| 		pr_warn("intr_cpus_map empty, interrupts will be delievered to dataplane tiles\n");
 | |
| 		return irq % (smp_height * smp_width);
 | |
| 	}
 | |
| 
 | |
| 	count = irq % count;
 | |
| 	for_each_cpu(cpu, &intr_cpus_map) {
 | |
| 		if (i++ == count)
 | |
| 			break;
 | |
| 	}
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| /* Open a file descriptor to the TRIO shim. */
 | |
| static int tile_pcie_open(int trio_index)
 | |
| {
 | |
| 	gxio_trio_context_t *context = &trio_contexts[trio_index];
 | |
| 	int ret;
 | |
| 	int mac;
 | |
| 
 | |
| 	/* This opens a file descriptor to the TRIO shim. */
 | |
| 	ret = gxio_trio_init(context, trio_index);
 | |
| 	if (ret < 0)
 | |
| 		goto gxio_trio_init_failure;
 | |
| 
 | |
| 	/* Allocate an ASID for the kernel. */
 | |
| 	ret = gxio_trio_alloc_asids(context, 1, 0, 0);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
 | |
| 			trio_index);
 | |
| 		goto asid_alloc_failure;
 | |
| 	}
 | |
| 
 | |
| 	context->asid = ret;
 | |
| 
 | |
| #ifdef USE_SHARED_PCIE_CONFIG_REGION
 | |
| 	/*
 | |
| 	 * Alloc a PIO region for config access, shared by all MACs per TRIO.
 | |
| 	 * This shouldn't fail since the kernel is supposed to the first
 | |
| 	 * client of the TRIO's PIO regions.
 | |
| 	 */
 | |
| 	ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
 | |
| 			trio_index);
 | |
| 		goto pio_alloc_failure;
 | |
| 	}
 | |
| 
 | |
| 	context->pio_cfg_index = ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
 | |
| 	 * is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
 | |
| 	 */
 | |
| 	ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
 | |
| 		0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
 | |
| 			trio_index);
 | |
| 		goto pio_alloc_failure;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Get the properties of the PCIe ports on this TRIO instance. */
 | |
| 	ret = gxio_trio_get_port_property(context, &pcie_ports[trio_index]);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d, on TRIO %d\n",
 | |
| 		       ret, trio_index);
 | |
| 		goto get_port_property_failure;
 | |
| 	}
 | |
| 
 | |
| 	context->mmio_base_mac =
 | |
| 		iorpc_ioremap(context->fd, 0, HV_TRIO_CONFIG_IOREMAP_SIZE);
 | |
| 	if (context->mmio_base_mac == NULL) {
 | |
| 		pr_err("PCI: TRIO config space mapping failure, error %d, on TRIO %d\n",
 | |
| 		       ret, trio_index);
 | |
| 		ret = -ENOMEM;
 | |
| 
 | |
| 		goto trio_mmio_mapping_failure;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the port strap state which will override the BIB setting. */
 | |
| 	for (mac = 0; mac < TILEGX_TRIO_PCIES; mac++) {
 | |
| 		TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
 | |
| 		unsigned int reg_offset;
 | |
| 
 | |
| 		/* Ignore ports that are not specified in the BIB. */
 | |
| 		if (!pcie_ports[trio_index].ports[mac].allow_rc &&
 | |
| 		    !pcie_ports[trio_index].ports[mac].allow_ep)
 | |
| 			continue;
 | |
| 
 | |
| 		reg_offset =
 | |
| 			(TRIO_PCIE_INTFC_PORT_CONFIG <<
 | |
| 				TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 			(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
 | |
| 				TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
 | |
| 			(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 		port_config.word =
 | |
| 			__gxio_mmio_read(context->mmio_base_mac + reg_offset);
 | |
| 
 | |
| 		if (port_config.strap_state != AUTO_CONFIG_RC &&
 | |
| 		    port_config.strap_state != AUTO_CONFIG_RC_G1) {
 | |
| 			/*
 | |
| 			 * If this is really intended to be an EP port, record
 | |
| 			 * it so that the endpoint driver will know about it.
 | |
| 			 */
 | |
| 			if (port_config.strap_state == AUTO_CONFIG_EP ||
 | |
| 			    port_config.strap_state == AUTO_CONFIG_EP_G1)
 | |
| 				pcie_ports[trio_index].ports[mac].allow_ep = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| trio_mmio_mapping_failure:
 | |
| get_port_property_failure:
 | |
| asid_alloc_failure:
 | |
| #ifdef USE_SHARED_PCIE_CONFIG_REGION
 | |
| pio_alloc_failure:
 | |
| #endif
 | |
| 	hv_dev_close(context->fd);
 | |
| gxio_trio_init_failure:
 | |
| 	context->fd = -1;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init tile_trio_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* We loop over all the TRIO shims. */
 | |
| 	for (i = 0; i < TILEGX_NUM_TRIO; i++) {
 | |
| 		if (tile_pcie_open(i) < 0)
 | |
| 			continue;
 | |
| 		num_trio_shims++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| postcore_initcall(tile_trio_init);
 | |
| 
 | |
| static void tilegx_legacy_irq_ack(struct irq_data *d)
 | |
| {
 | |
| 	__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
 | |
| }
 | |
| 
 | |
| static void tilegx_legacy_irq_mask(struct irq_data *d)
 | |
| {
 | |
| 	__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
 | |
| }
 | |
| 
 | |
| static void tilegx_legacy_irq_unmask(struct irq_data *d)
 | |
| {
 | |
| 	__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
 | |
| }
 | |
| 
 | |
| static struct irq_chip tilegx_legacy_irq_chip = {
 | |
| 	.name			= "tilegx_legacy_irq",
 | |
| 	.irq_ack		= tilegx_legacy_irq_ack,
 | |
| 	.irq_mask		= tilegx_legacy_irq_mask,
 | |
| 	.irq_unmask		= tilegx_legacy_irq_unmask,
 | |
| 
 | |
| 	/* TBD: support set_affinity. */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is a wrapper function of the kernel level-trigger interrupt
 | |
|  * handler handle_level_irq() for PCI legacy interrupts. The TRIO
 | |
|  * is configured such that only INTx Assert interrupts are proxied
 | |
|  * to Linux which just calls handle_level_irq() after clearing the
 | |
|  * MAC INTx Assert status bit associated with this interrupt.
 | |
|  */
 | |
| static void trio_handle_level_irq(unsigned int irq, struct irq_desc *desc)
 | |
| {
 | |
| 	struct pci_controller *controller = irq_desc_get_handler_data(desc);
 | |
| 	gxio_trio_context_t *trio_context = controller->trio;
 | |
| 	uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
 | |
| 	int mac = controller->mac;
 | |
| 	unsigned int reg_offset;
 | |
| 	uint64_t level_mask;
 | |
| 
 | |
| 	handle_level_irq(irq, desc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the INTx Level status, otherwise future interrupts are
 | |
| 	 * not sent.
 | |
| 	 */
 | |
| 	reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
 | |
| 		TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 		(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
 | |
| 		TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 		(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 	level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
 | |
| 
 | |
| 	__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create kernel irqs and set up the handlers for the legacy interrupts.
 | |
|  * Also some minimum initialization for the MSI support.
 | |
|  */
 | |
| static int tile_init_irqs(struct pci_controller *controller)
 | |
| {
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	int irq;
 | |
| 	int result;
 | |
| 
 | |
| 	cpumask_copy(&intr_cpus_map, cpu_online_mask);
 | |
| 
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		gxio_trio_context_t *context = controller->trio;
 | |
| 		int cpu;
 | |
| 
 | |
| 		/* Ask the kernel to allocate an IRQ. */
 | |
| 		irq = irq_alloc_hwirq(-1);
 | |
| 		if (!irq) {
 | |
| 			pr_err("PCI: no free irq vectors, failed for %d\n", i);
 | |
| 			goto free_irqs;
 | |
| 		}
 | |
| 		controller->irq_intx_table[i] = irq;
 | |
| 
 | |
| 		/* Distribute the 4 IRQs to different tiles. */
 | |
| 		cpu = tile_irq_cpu(irq);
 | |
| 
 | |
| 		/* Configure the TRIO intr binding for this IRQ. */
 | |
| 		result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
 | |
| 						      cpu_y(cpu), KERNEL_PL,
 | |
| 						      irq, controller->mac, i);
 | |
| 		if (result < 0) {
 | |
| 			pr_err("PCI: MAC intx config failed for %d\n", i);
 | |
| 
 | |
| 			goto free_irqs;
 | |
| 		}
 | |
| 
 | |
| 		/* Register the IRQ handler with the kernel. */
 | |
| 		irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
 | |
| 					trio_handle_level_irq);
 | |
| 		irq_set_chip_data(irq, (void *)(uint64_t)i);
 | |
| 		irq_set_handler_data(irq, controller);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_irqs:
 | |
| 	for (j = 0; j < i; j++)
 | |
| 		irq_free_hwirq(controller->irq_intx_table[j]);
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if the port is strapped to operate in RC mode.
 | |
|  */
 | |
| static int
 | |
| strapped_for_rc(gxio_trio_context_t *trio_context, int mac)
 | |
| {
 | |
| 	TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
 | |
| 	unsigned int reg_offset;
 | |
| 
 | |
| 	/* Check the port configuration. */
 | |
| 	reg_offset =
 | |
| 		(TRIO_PCIE_INTFC_PORT_CONFIG <<
 | |
| 			TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 		(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
 | |
| 			TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
 | |
| 		(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 	port_config.word =
 | |
| 		__gxio_mmio_read(trio_context->mmio_base_mac + reg_offset);
 | |
| 
 | |
| 	if (port_config.strap_state == AUTO_CONFIG_RC ||
 | |
| 	    port_config.strap_state == AUTO_CONFIG_RC_G1)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find valid controllers and fill in pci_controller structs for each
 | |
|  * of them.
 | |
|  *
 | |
|  * Return the number of controllers discovered.
 | |
|  */
 | |
| int __init tile_pci_init(void)
 | |
| {
 | |
| 	int ctl_index = 0;
 | |
| 	int i, j;
 | |
| 
 | |
| 	if (!pci_probe) {
 | |
| 		pr_info("PCI: disabled by boot argument\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("PCI: Searching for controllers...\n");
 | |
| 
 | |
| 	if (num_trio_shims == 0 || sim_is_simulator())
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now determine which PCIe ports are configured to operate in RC
 | |
| 	 * mode. There is a differece in the port configuration capability
 | |
| 	 * between the Gx36 and Gx72 devices.
 | |
| 	 *
 | |
| 	 * The Gx36 has configuration capability for each of the 3 PCIe
 | |
| 	 * interfaces (disable, auto endpoint, auto RC, etc.).
 | |
| 	 * On the Gx72, you can only select one of the 3 PCIe interfaces per
 | |
| 	 * TRIO to train automatically. Further, the allowable training modes
 | |
| 	 * are reduced to four options (auto endpoint, auto RC, stream x1,
 | |
| 	 * stream x4).
 | |
| 	 *
 | |
| 	 * For Gx36 ports, it must be allowed to be in RC mode by the
 | |
| 	 * Board Information Block, and the hardware strapping pins must be
 | |
| 	 * set to RC mode.
 | |
| 	 *
 | |
| 	 * For Gx72 ports, the port will operate in RC mode if either of the
 | |
| 	 * following is true:
 | |
| 	 * 1. It is allowed to be in RC mode by the Board Information Block,
 | |
| 	 *    and the BIB doesn't allow the EP mode.
 | |
| 	 * 2. It is allowed to be in either the RC or the EP mode by the BIB,
 | |
| 	 *    and the hardware strapping pin is set to RC mode.
 | |
| 	 */
 | |
| 	for (i = 0; i < TILEGX_NUM_TRIO; i++) {
 | |
| 		gxio_trio_context_t *context = &trio_contexts[i];
 | |
| 
 | |
| 		if (context->fd < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
 | |
| 			int is_rc = 0;
 | |
| 
 | |
| 			if (pcie_ports[i].is_gx72 &&
 | |
| 			    pcie_ports[i].ports[j].allow_rc) {
 | |
| 				if (!pcie_ports[i].ports[j].allow_ep ||
 | |
| 				    strapped_for_rc(context, j))
 | |
| 					is_rc = 1;
 | |
| 			} else if (pcie_ports[i].ports[j].allow_rc &&
 | |
| 				   strapped_for_rc(context, j)) {
 | |
| 				is_rc = 1;
 | |
| 			}
 | |
| 			if (is_rc) {
 | |
| 				pcie_rc[i][j] = 1;
 | |
| 				num_rc_controllers++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Return if no PCIe ports are configured to operate in RC mode. */
 | |
| 	if (num_rc_controllers == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Set the TRIO pointer and MAC index for each PCIe RC port. */
 | |
| 	for (i = 0; i < TILEGX_NUM_TRIO; i++) {
 | |
| 		for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
 | |
| 			if (pcie_rc[i][j]) {
 | |
| 				pci_controllers[ctl_index].trio =
 | |
| 					&trio_contexts[i];
 | |
| 				pci_controllers[ctl_index].mac = j;
 | |
| 				pci_controllers[ctl_index].trio_index = i;
 | |
| 				ctl_index++;
 | |
| 				if (ctl_index == num_rc_controllers)
 | |
| 					goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* Configure each PCIe RC port. */
 | |
| 	for (i = 0; i < num_rc_controllers; i++) {
 | |
| 
 | |
| 		/* Configure the PCIe MAC to run in RC mode. */
 | |
| 		struct pci_controller *controller = &pci_controllers[i];
 | |
| 
 | |
| 		controller->index = i;
 | |
| 		controller->ops = &tile_cfg_ops;
 | |
| 
 | |
| 		controller->io_space.start = PCIBIOS_MIN_IO +
 | |
| 			(i * IO_SPACE_SIZE);
 | |
| 		controller->io_space.end = controller->io_space.start +
 | |
| 			IO_SPACE_SIZE - 1;
 | |
| 		BUG_ON(controller->io_space.end > IO_SPACE_LIMIT);
 | |
| 		controller->io_space.flags = IORESOURCE_IO;
 | |
| 		snprintf(controller->io_space_name,
 | |
| 			 sizeof(controller->io_space_name),
 | |
| 			 "PCI I/O domain %d", i);
 | |
| 		controller->io_space.name = controller->io_space_name;
 | |
| 
 | |
| 		/*
 | |
| 		 * The PCI memory resource is located above the PA space.
 | |
| 		 * For every host bridge, the BAR window or the MMIO aperture
 | |
| 		 * is in range [3GB, 4GB - 1] of a 4GB space beyond the
 | |
| 		 * PA space.
 | |
| 		 */
 | |
| 		controller->mem_offset = TILE_PCI_MEM_START +
 | |
| 			(i * TILE_PCI_BAR_WINDOW_TOP);
 | |
| 		controller->mem_space.start = controller->mem_offset +
 | |
| 			TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE;
 | |
| 		controller->mem_space.end = controller->mem_offset +
 | |
| 			TILE_PCI_BAR_WINDOW_TOP - 1;
 | |
| 		controller->mem_space.flags = IORESOURCE_MEM;
 | |
| 		snprintf(controller->mem_space_name,
 | |
| 			 sizeof(controller->mem_space_name),
 | |
| 			 "PCI mem domain %d", i);
 | |
| 		controller->mem_space.name = controller->mem_space_name;
 | |
| 	}
 | |
| 
 | |
| 	return num_rc_controllers;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * (pin - 1) converts from the PCI standard's [1:4] convention to
 | |
|  * a normal [0:3] range.
 | |
|  */
 | |
| static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
 | |
| {
 | |
| 	struct pci_controller *controller =
 | |
| 		(struct pci_controller *)dev->sysdata;
 | |
| 	return controller->irq_intx_table[pin - 1];
 | |
| }
 | |
| 
 | |
| static void fixup_read_and_payload_sizes(struct pci_controller *controller)
 | |
| {
 | |
| 	gxio_trio_context_t *trio_context = controller->trio;
 | |
| 	struct pci_bus *root_bus = controller->root_bus;
 | |
| 	TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
 | |
| 	TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
 | |
| 	unsigned int reg_offset;
 | |
| 	struct pci_bus *child;
 | |
| 	int mac;
 | |
| 	int err;
 | |
| 
 | |
| 	mac = controller->mac;
 | |
| 
 | |
| 	/* Set our max read request size to be 4KB. */
 | |
| 	reg_offset =
 | |
| 		(TRIO_PCIE_RC_DEVICE_CONTROL <<
 | |
| 			TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 		(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
 | |
| 			TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 		(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 	dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
 | |
| 					      reg_offset);
 | |
| 	dev_control.max_read_req_sz = 5;
 | |
| 	__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
 | |
| 			    dev_control.word);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the max payload size supported by this Gx PCIe MAC.
 | |
| 	 * Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
 | |
| 	 * experiments have shown that setting MPS to 256 yields the
 | |
| 	 * best performance.
 | |
| 	 */
 | |
| 	reg_offset =
 | |
| 		(TRIO_PCIE_RC_DEVICE_CAP <<
 | |
| 			TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 		(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
 | |
| 			TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 		(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 	rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
 | |
| 					     reg_offset);
 | |
| 	rc_dev_cap.mps_sup = 1;
 | |
| 	__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
 | |
| 			    rc_dev_cap.word);
 | |
| 
 | |
| 	/* Configure PCI Express MPS setting. */
 | |
| 	list_for_each_entry(child, &root_bus->children, node)
 | |
| 		pcie_bus_configure_settings(child);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the mac_config register in trio based on the MPS/MRS of the link.
 | |
| 	 */
 | |
| 	reg_offset =
 | |
| 		(TRIO_PCIE_RC_DEVICE_CONTROL <<
 | |
| 			TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 		(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
 | |
| 			TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 		(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 	dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
 | |
| 						reg_offset);
 | |
| 
 | |
| 	err = gxio_trio_set_mps_mrs(trio_context,
 | |
| 				    dev_control.max_payload_size,
 | |
| 				    dev_control.max_read_req_sz,
 | |
| 				    mac);
 | |
| 	if (err < 0) {
 | |
| 		pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, MAC %d on TRIO %d\n",
 | |
| 		       mac, controller->trio_index);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int setup_pcie_rc_delay(char *str)
 | |
| {
 | |
| 	unsigned long delay = 0;
 | |
| 	unsigned long trio_index;
 | |
| 	unsigned long mac;
 | |
| 
 | |
| 	if (str == NULL || !isdigit(*str))
 | |
| 		return -EINVAL;
 | |
| 	trio_index = simple_strtoul(str, (char **)&str, 10);
 | |
| 	if (trio_index >= TILEGX_NUM_TRIO)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (*str != ',')
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	str++;
 | |
| 	if (!isdigit(*str))
 | |
| 		return -EINVAL;
 | |
| 	mac = simple_strtoul(str, (char **)&str, 10);
 | |
| 	if (mac >= TILEGX_TRIO_PCIES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (*str != '\0') {
 | |
| 		if (*str != ',')
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		str++;
 | |
| 		if (!isdigit(*str))
 | |
| 			return -EINVAL;
 | |
| 		delay = simple_strtoul(str, (char **)&str, 10);
 | |
| 	}
 | |
| 
 | |
| 	rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("pcie_rc_delay", setup_pcie_rc_delay);
 | |
| 
 | |
| /* PCI initialization entry point, called by subsys_initcall. */
 | |
| int __init pcibios_init(void)
 | |
| {
 | |
| 	resource_size_t offset;
 | |
| 	LIST_HEAD(resources);
 | |
| 	int next_busno;
 | |
| 	int i;
 | |
| 
 | |
| 	tile_pci_init();
 | |
| 
 | |
| 	if (num_rc_controllers == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Delay a bit in case devices aren't ready.  Some devices are
 | |
| 	 * known to require at least 20ms here, but we use a more
 | |
| 	 * conservative value.
 | |
| 	 */
 | |
| 	msleep(250);
 | |
| 
 | |
| 	/* Scan all of the recorded PCI controllers.  */
 | |
| 	for (next_busno = 0, i = 0; i < num_rc_controllers; i++) {
 | |
| 		struct pci_controller *controller = &pci_controllers[i];
 | |
| 		gxio_trio_context_t *trio_context = controller->trio;
 | |
| 		TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
 | |
| 		TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
 | |
| 		struct pci_bus *bus;
 | |
| 		unsigned int reg_offset;
 | |
| 		unsigned int class_code_revision;
 | |
| 		int trio_index;
 | |
| 		int mac;
 | |
| 		int ret;
 | |
| 
 | |
| 		if (trio_context->fd < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		trio_index = controller->trio_index;
 | |
| 		mac = controller->mac;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for PCIe link-up status to decide if we need
 | |
| 		 * to force the link to come up.
 | |
| 		 */
 | |
| 		reg_offset =
 | |
| 			(TRIO_PCIE_INTFC_PORT_STATUS <<
 | |
| 				TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 			(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
 | |
| 				TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
 | |
| 			(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 		port_status.word =
 | |
| 			__gxio_mmio_read(trio_context->mmio_base_mac +
 | |
| 					 reg_offset);
 | |
| 		if (!port_status.dl_up) {
 | |
| 			if (rc_delay[trio_index][mac]) {
 | |
| 				pr_info("Delaying PCIe RC TRIO init %d sec on MAC %d on TRIO %d\n",
 | |
| 					rc_delay[trio_index][mac], mac,
 | |
| 					trio_index);
 | |
| 				msleep(rc_delay[trio_index][mac] * 1000);
 | |
| 			}
 | |
| 			ret = gxio_trio_force_rc_link_up(trio_context, mac);
 | |
| 			if (ret < 0)
 | |
| 				pr_err("PCI: PCIE_FORCE_LINK_UP failure, MAC %d on TRIO %d\n",
 | |
| 				       mac, trio_index);
 | |
| 		}
 | |
| 
 | |
| 		pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n",
 | |
| 			i, trio_index, controller->mac);
 | |
| 
 | |
| 		/* Delay the bus probe if needed. */
 | |
| 		if (rc_delay[trio_index][mac]) {
 | |
| 			pr_info("Delaying PCIe RC bus enumerating %d sec on MAC %d on TRIO %d\n",
 | |
| 				rc_delay[trio_index][mac], mac, trio_index);
 | |
| 			msleep(rc_delay[trio_index][mac] * 1000);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Wait a bit here because some EP devices
 | |
| 			 * take longer to come up.
 | |
| 			 */
 | |
| 			msleep(1000);
 | |
| 		}
 | |
| 
 | |
| 		/* Check for PCIe link-up status again. */
 | |
| 		port_status.word =
 | |
| 			__gxio_mmio_read(trio_context->mmio_base_mac +
 | |
| 					 reg_offset);
 | |
| 		if (!port_status.dl_up) {
 | |
| 			if (pcie_ports[trio_index].ports[mac].removable) {
 | |
| 				pr_info("PCI: link is down, MAC %d on TRIO %d\n",
 | |
| 					mac, trio_index);
 | |
| 				pr_info("This is expected if no PCIe card is connected to this link\n");
 | |
| 			} else
 | |
| 				pr_err("PCI: link is down, MAC %d on TRIO %d\n",
 | |
| 				       mac, trio_index);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure that the link can come out of L1 power down state.
 | |
| 		 * Strictly speaking, this is needed only in the case of
 | |
| 		 * heavy RC-initiated DMAs.
 | |
| 		 */
 | |
| 		reg_offset =
 | |
| 			(TRIO_PCIE_INTFC_TX_FIFO_CTL <<
 | |
| 				TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 			(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
 | |
| 				TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 			(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 		tx_fifo_ctl.word =
 | |
| 			__gxio_mmio_read(trio_context->mmio_base_mac +
 | |
| 					 reg_offset);
 | |
| 		tx_fifo_ctl.min_p_credits = 0;
 | |
| 		__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
 | |
| 				  tx_fifo_ctl.word);
 | |
| 
 | |
| 		/*
 | |
| 		 * Change the device ID so that Linux bus crawl doesn't confuse
 | |
| 		 * the internal bridge with any Tilera endpoints.
 | |
| 		 */
 | |
| 		reg_offset =
 | |
| 			(TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
 | |
| 				TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 			(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
 | |
| 				TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 			(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 		__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
 | |
| 				    (TILERA_GX36_RC_DEV_ID <<
 | |
| 				    TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
 | |
| 				    TILERA_VENDOR_ID);
 | |
| 
 | |
| 		/* Set the internal P2P bridge class code. */
 | |
| 		reg_offset =
 | |
| 			(TRIO_PCIE_RC_REVISION_ID <<
 | |
| 				TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 			(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
 | |
| 				TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 			(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 		class_code_revision =
 | |
| 			__gxio_mmio_read32(trio_context->mmio_base_mac +
 | |
| 					   reg_offset);
 | |
| 		class_code_revision = (class_code_revision & 0xff) |
 | |
| 			(PCI_CLASS_BRIDGE_PCI << 16);
 | |
| 
 | |
| 		__gxio_mmio_write32(trio_context->mmio_base_mac +
 | |
| 				    reg_offset, class_code_revision);
 | |
| 
 | |
| #ifdef USE_SHARED_PCIE_CONFIG_REGION
 | |
| 
 | |
| 		/* Map in the MMIO space for the PIO region. */
 | |
| 		offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
 | |
| 			(((unsigned long long)mac) <<
 | |
| 			TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
 | |
| 
 | |
| #else
 | |
| 
 | |
| 		/* Alloc a PIO region for PCI config access per MAC. */
 | |
| 		ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("PCI: PCI CFG PIO alloc failure for mac %d on TRIO %d, give up\n",
 | |
| 			       mac, trio_index);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		trio_context->pio_cfg_index[mac] = ret;
 | |
| 
 | |
| 		/* For PIO CFG, the bus_address_hi parameter is 0. */
 | |
| 		ret = gxio_trio_init_pio_region_aux(trio_context,
 | |
| 			trio_context->pio_cfg_index[mac],
 | |
| 			mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("PCI: PCI CFG PIO init failure for mac %d on TRIO %d, give up\n",
 | |
| 			       mac, trio_index);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
 | |
| 			(((unsigned long long)mac) <<
 | |
| 			TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * To save VMALLOC space, we take advantage of the fact that
 | |
| 		 * bit 29 in the PIO CFG address format is reserved 0. With
 | |
| 		 * TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT being 30,
 | |
| 		 * this cuts VMALLOC space usage from 1GB to 512MB per mac.
 | |
| 		 */
 | |
| 		trio_context->mmio_base_pio_cfg[mac] =
 | |
| 			iorpc_ioremap(trio_context->fd, offset, (1UL <<
 | |
| 			(TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT - 1)));
 | |
| 		if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
 | |
| 			pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
 | |
| 			       mac, trio_index);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Initialize the PCIe interrupts. */
 | |
| 		if (tile_init_irqs(controller)) {
 | |
| 			pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
 | |
| 				mac, trio_index);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The PCI memory resource is located above the PA space.
 | |
| 		 * The memory range for the PCI root bus should not overlap
 | |
| 		 * with the physical RAM.
 | |
| 		 */
 | |
| 		pci_add_resource_offset(&resources, &controller->mem_space,
 | |
| 					controller->mem_offset);
 | |
| 		pci_add_resource(&resources, &controller->io_space);
 | |
| 		controller->first_busno = next_busno;
 | |
| 		bus = pci_scan_root_bus(NULL, next_busno, controller->ops,
 | |
| 					controller, &resources);
 | |
| 		controller->root_bus = bus;
 | |
| 		next_busno = bus->busn_res.end + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Do machine dependent PCI interrupt routing */
 | |
| 	pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
 | |
| 
 | |
| 	/*
 | |
| 	 * This comes from the generic Linux PCI driver.
 | |
| 	 *
 | |
| 	 * It allocates all of the resources (I/O memory, etc)
 | |
| 	 * associated with the devices read in above.
 | |
| 	 */
 | |
| 	pci_assign_unassigned_resources();
 | |
| 
 | |
| 	/* Record the I/O resources in the PCI controller structure. */
 | |
| 	for (i = 0; i < num_rc_controllers; i++) {
 | |
| 		struct pci_controller *controller = &pci_controllers[i];
 | |
| 		gxio_trio_context_t *trio_context = controller->trio;
 | |
| 		struct pci_bus *root_bus = pci_controllers[i].root_bus;
 | |
| 		int ret;
 | |
| 		int j;
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip controllers that are not properly initialized or
 | |
| 		 * have down links.
 | |
| 		 */
 | |
| 		if (root_bus == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Configure the max_payload_size values for this domain. */
 | |
| 		fixup_read_and_payload_sizes(controller);
 | |
| 
 | |
| 		/* Alloc a PIO region for PCI memory access for each RC port. */
 | |
| 		ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, give up\n",
 | |
| 			       controller->trio_index, controller->mac);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		controller->pio_mem_index = ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * For PIO MEM, the bus_address_hi parameter is hard-coded 0
 | |
| 		 * because we always assign 32-bit PCI bus BAR ranges.
 | |
| 		 */
 | |
| 		ret = gxio_trio_init_pio_region_aux(trio_context,
 | |
| 						    controller->pio_mem_index,
 | |
| 						    controller->mac,
 | |
| 						    0,
 | |
| 						    0);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, give up\n",
 | |
| 			       controller->trio_index, controller->mac);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_TILE_PCI_IO
 | |
| 		/*
 | |
| 		 * Alloc a PIO region for PCI I/O space access for each RC port.
 | |
| 		 */
 | |
| 		ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("PCI: I/O PIO alloc failure on TRIO %d mac %d, give up\n",
 | |
| 			       controller->trio_index, controller->mac);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		controller->pio_io_index = ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * For PIO IO, the bus_address_hi parameter is hard-coded 0
 | |
| 		 * because PCI I/O address space is 32-bit.
 | |
| 		 */
 | |
| 		ret = gxio_trio_init_pio_region_aux(trio_context,
 | |
| 						    controller->pio_io_index,
 | |
| 						    controller->mac,
 | |
| 						    0,
 | |
| 						    HV_TRIO_PIO_FLAG_IO_SPACE);
 | |
| 		if (ret < 0) {
 | |
| 			pr_err("PCI: I/O PIO init failure on TRIO %d mac %d, give up\n",
 | |
| 			       controller->trio_index, controller->mac);
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * Configure a Mem-Map region for each memory controller so
 | |
| 		 * that Linux can map all of its PA space to the PCI bus.
 | |
| 		 * Use the IOMMU to handle hash-for-home memory.
 | |
| 		 */
 | |
| 		for_each_online_node(j) {
 | |
| 			unsigned long start_pfn = node_start_pfn[j];
 | |
| 			unsigned long end_pfn = node_end_pfn[j];
 | |
| 			unsigned long nr_pages = end_pfn - start_pfn;
 | |
| 
 | |
| 			ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
 | |
| 							  0);
 | |
| 			if (ret < 0) {
 | |
| 				pr_err("PCI: Mem-Map alloc failure on TRIO %d mac %d for MC %d, give up\n",
 | |
| 				       controller->trio_index, controller->mac,
 | |
| 				       j);
 | |
| 
 | |
| 				goto alloc_mem_map_failed;
 | |
| 			}
 | |
| 
 | |
| 			controller->mem_maps[j] = ret;
 | |
| 
 | |
| 			/*
 | |
| 			 * Initialize the Mem-Map and the I/O MMU so that all
 | |
| 			 * the physical memory can be accessed by the endpoint
 | |
| 			 * devices. The base bus address is set to the base CPA
 | |
| 			 * of this memory controller plus an offset (see pci.h).
 | |
| 			 * The region's base VA is set to the base CPA. The
 | |
| 			 * I/O MMU table essentially translates the CPA to
 | |
| 			 * the real PA. Implicitly, for node 0, we create
 | |
| 			 * a separate Mem-Map region that serves as the inbound
 | |
| 			 * window for legacy 32-bit devices. This is a direct
 | |
| 			 * map of the low 4GB CPA space.
 | |
| 			 */
 | |
| 			ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
 | |
| 				controller->mem_maps[j],
 | |
| 				start_pfn << PAGE_SHIFT,
 | |
| 				nr_pages << PAGE_SHIFT,
 | |
| 				trio_context->asid,
 | |
| 				controller->mac,
 | |
| 				(start_pfn << PAGE_SHIFT) +
 | |
| 				TILE_PCI_MEM_MAP_BASE_OFFSET,
 | |
| 				j,
 | |
| 				GXIO_TRIO_ORDER_MODE_UNORDERED);
 | |
| 			if (ret < 0) {
 | |
| 				pr_err("PCI: Mem-Map init failure on TRIO %d mac %d for MC %d, give up\n",
 | |
| 				       controller->trio_index, controller->mac,
 | |
| 				       j);
 | |
| 
 | |
| 				goto alloc_mem_map_failed;
 | |
| 			}
 | |
| 			continue;
 | |
| 
 | |
| alloc_mem_map_failed:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		pci_bus_add_devices(root_bus);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(pcibios_init);
 | |
| 
 | |
| /* No bus fixups needed. */
 | |
| void pcibios_fixup_bus(struct pci_bus *bus)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* Process any "pci=" kernel boot arguments. */
 | |
| char *__init pcibios_setup(char *str)
 | |
| {
 | |
| 	if (!strcmp(str, "off")) {
 | |
| 		pci_probe = 0;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called for each device after PCI setup is done.
 | |
|  * We initialize the PCI device capabilities conservatively, assuming that
 | |
|  * all devices can only address the 32-bit DMA space. The exception here is
 | |
|  * that the device dma_offset is set to the value that matches the 64-bit
 | |
|  * capable devices. This is OK because dma_offset is not used by legacy
 | |
|  * dma_ops, nor by the hybrid dma_ops's streaming DMAs, which are 64-bit ops.
 | |
|  * This implementation matches the kernel design of setting PCI devices'
 | |
|  * coherent_dma_mask to 0xffffffffull by default, allowing the device drivers
 | |
|  * to skip calling pci_set_consistent_dma_mask(DMA_BIT_MASK(32)).
 | |
|  */
 | |
| static void pcibios_fixup_final(struct pci_dev *pdev)
 | |
| {
 | |
| 	set_dma_ops(&pdev->dev, gx_legacy_pci_dma_map_ops);
 | |
| 	set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
 | |
| 	pdev->dev.archdata.max_direct_dma_addr =
 | |
| 		TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
 | |
| 	pdev->dev.coherent_dma_mask = TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
 | |
| }
 | |
| DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
 | |
| 
 | |
| /* Map a PCI MMIO bus address into VA space. */
 | |
| void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
 | |
| {
 | |
| 	struct pci_controller *controller = NULL;
 | |
| 	resource_size_t bar_start;
 | |
| 	resource_size_t bar_end;
 | |
| 	resource_size_t offset;
 | |
| 	resource_size_t start;
 | |
| 	resource_size_t end;
 | |
| 	int trio_fd;
 | |
| 	int i;
 | |
| 
 | |
| 	start = phys_addr;
 | |
| 	end = phys_addr + size - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * By searching phys_addr in each controller's mem_space, we can
 | |
| 	 * determine the controller that should accept the PCI memory access.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_rc_controllers; i++) {
 | |
| 		/*
 | |
| 		 * Skip controllers that are not properly initialized or
 | |
| 		 * have down links.
 | |
| 		 */
 | |
| 		if (pci_controllers[i].root_bus == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		bar_start = pci_controllers[i].mem_space.start;
 | |
| 		bar_end = pci_controllers[i].mem_space.end;
 | |
| 
 | |
| 		if ((start >= bar_start) && (end <= bar_end)) {
 | |
| 			controller = &pci_controllers[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (controller == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	trio_fd = controller->trio->fd;
 | |
| 
 | |
| 	/* Convert the resource start to the bus address offset. */
 | |
| 	start = phys_addr - controller->mem_offset;
 | |
| 
 | |
| 	offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start;
 | |
| 
 | |
| 	/* We need to keep the PCI bus address's in-page offset in the VA. */
 | |
| 	return iorpc_ioremap(trio_fd, offset, size) +
 | |
| 		(start & (PAGE_SIZE - 1));
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap);
 | |
| 
 | |
| #ifdef CONFIG_TILE_PCI_IO
 | |
| /* Map a PCI I/O address into VA space. */
 | |
| void __iomem *ioport_map(unsigned long port, unsigned int size)
 | |
| {
 | |
| 	struct pci_controller *controller = NULL;
 | |
| 	resource_size_t bar_start;
 | |
| 	resource_size_t bar_end;
 | |
| 	resource_size_t offset;
 | |
| 	resource_size_t start;
 | |
| 	resource_size_t end;
 | |
| 	int trio_fd;
 | |
| 	int i;
 | |
| 
 | |
| 	start = port;
 | |
| 	end = port + size - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * By searching the port in each controller's io_space, we can
 | |
| 	 * determine the controller that should accept the PCI I/O access.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_rc_controllers; i++) {
 | |
| 		/*
 | |
| 		 * Skip controllers that are not properly initialized or
 | |
| 		 * have down links.
 | |
| 		 */
 | |
| 		if (pci_controllers[i].root_bus == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		bar_start = pci_controllers[i].io_space.start;
 | |
| 		bar_end = pci_controllers[i].io_space.end;
 | |
| 
 | |
| 		if ((start >= bar_start) && (end <= bar_end)) {
 | |
| 			controller = &pci_controllers[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (controller == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	trio_fd = controller->trio->fd;
 | |
| 
 | |
| 	/* Convert the resource start to the bus address offset. */
 | |
| 	port -= controller->io_space.start;
 | |
| 
 | |
| 	offset = HV_TRIO_PIO_OFFSET(controller->pio_io_index) + port;
 | |
| 
 | |
| 	/* We need to keep the PCI bus address's in-page offset in the VA. */
 | |
| 	return iorpc_ioremap(trio_fd, offset, size) + (port & (PAGE_SIZE - 1));
 | |
| }
 | |
| EXPORT_SYMBOL(ioport_map);
 | |
| 
 | |
| void ioport_unmap(void __iomem *addr)
 | |
| {
 | |
| 	iounmap(addr);
 | |
| }
 | |
| EXPORT_SYMBOL(ioport_unmap);
 | |
| #endif
 | |
| 
 | |
| void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
 | |
| {
 | |
| 	iounmap(addr);
 | |
| }
 | |
| EXPORT_SYMBOL(pci_iounmap);
 | |
| 
 | |
| /****************************************************************
 | |
|  *
 | |
|  * Tile PCI config space read/write routines
 | |
|  *
 | |
|  ****************************************************************/
 | |
| 
 | |
| /*
 | |
|  * These are the normal read and write ops
 | |
|  * These are expanded with macros from  pci_bus_read_config_byte() etc.
 | |
|  *
 | |
|  * devfn is the combined PCI device & function.
 | |
|  *
 | |
|  * offset is in bytes, from the start of config space for the
 | |
|  * specified bus & device.
 | |
|  */
 | |
| static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
 | |
| 			 int size, u32 *val)
 | |
| {
 | |
| 	struct pci_controller *controller = bus->sysdata;
 | |
| 	gxio_trio_context_t *trio_context = controller->trio;
 | |
| 	int busnum = bus->number & 0xff;
 | |
| 	int device = PCI_SLOT(devfn);
 | |
| 	int function = PCI_FUNC(devfn);
 | |
| 	int config_type = 1;
 | |
| 	TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
 | |
| 	void *mmio_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map all accesses to the local device on root bus into the
 | |
| 	 * MMIO space of the MAC. Accesses to the downstream devices
 | |
| 	 * go to the PIO space.
 | |
| 	 */
 | |
| 	if (pci_is_root_bus(bus)) {
 | |
| 		if (device == 0) {
 | |
| 			/*
 | |
| 			 * This is the internal downstream P2P bridge,
 | |
| 			 * access directly.
 | |
| 			 */
 | |
| 			unsigned int reg_offset;
 | |
| 
 | |
| 			reg_offset = ((offset & 0xFFF) <<
 | |
| 				TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 				(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
 | |
| 				<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 				(controller->mac <<
 | |
| 					TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 			mmio_addr = trio_context->mmio_base_mac + reg_offset;
 | |
| 
 | |
| 			goto valid_device;
 | |
| 
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We fake an empty device for (device > 0),
 | |
| 			 * since there is only one device on bus 0.
 | |
| 			 */
 | |
| 			goto invalid_device;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Accesses to the directly attached device have to be
 | |
| 	 * sent as type-0 configs.
 | |
| 	 */
 | |
| 	if (busnum == (controller->first_busno + 1)) {
 | |
| 		/*
 | |
| 		 * There is only one device off of our built-in P2P bridge.
 | |
| 		 */
 | |
| 		if (device != 0)
 | |
| 			goto invalid_device;
 | |
| 
 | |
| 		config_type = 0;
 | |
| 	}
 | |
| 
 | |
| 	cfg_addr.word = 0;
 | |
| 	cfg_addr.reg_addr = (offset & 0xFFF);
 | |
| 	cfg_addr.fn = function;
 | |
| 	cfg_addr.dev = device;
 | |
| 	cfg_addr.bus = busnum;
 | |
| 	cfg_addr.type = config_type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that we don't set the mac field in cfg_addr because the
 | |
| 	 * mapping is per port.
 | |
| 	 */
 | |
| 	mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
 | |
| 		cfg_addr.word;
 | |
| 
 | |
| valid_device:
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 4:
 | |
| 		*val = __gxio_mmio_read32(mmio_addr);
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		*val = __gxio_mmio_read16(mmio_addr);
 | |
| 		break;
 | |
| 
 | |
| 	case 1:
 | |
| 		*val = __gxio_mmio_read8(mmio_addr);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return PCIBIOS_FUNC_NOT_SUPPORTED;
 | |
| 	}
 | |
| 
 | |
| 	TRACE_CFG_RD(size, *val, busnum, device, function, offset);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| invalid_device:
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 4:
 | |
| 		*val = 0xFFFFFFFF;
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		*val = 0xFFFF;
 | |
| 		break;
 | |
| 
 | |
| 	case 1:
 | |
| 		*val = 0xFF;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return PCIBIOS_FUNC_NOT_SUPPORTED;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * See tile_cfg_read() for relevent comments.
 | |
|  * Note that "val" is the value to write, not a pointer to that value.
 | |
|  */
 | |
| static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
 | |
| 			  int size, u32 val)
 | |
| {
 | |
| 	struct pci_controller *controller = bus->sysdata;
 | |
| 	gxio_trio_context_t *trio_context = controller->trio;
 | |
| 	int busnum = bus->number & 0xff;
 | |
| 	int device = PCI_SLOT(devfn);
 | |
| 	int function = PCI_FUNC(devfn);
 | |
| 	int config_type = 1;
 | |
| 	TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
 | |
| 	void *mmio_addr;
 | |
| 	u32 val_32 = (u32)val;
 | |
| 	u16 val_16 = (u16)val;
 | |
| 	u8 val_8 = (u8)val;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map all accesses to the local device on root bus into the
 | |
| 	 * MMIO space of the MAC. Accesses to the downstream devices
 | |
| 	 * go to the PIO space.
 | |
| 	 */
 | |
| 	if (pci_is_root_bus(bus)) {
 | |
| 		if (device == 0) {
 | |
| 			/*
 | |
| 			 * This is the internal downstream P2P bridge,
 | |
| 			 * access directly.
 | |
| 			 */
 | |
| 			unsigned int reg_offset;
 | |
| 
 | |
| 			reg_offset = ((offset & 0xFFF) <<
 | |
| 				TRIO_CFG_REGION_ADDR__REG_SHIFT) |
 | |
| 				(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
 | |
| 				<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
 | |
| 				(controller->mac <<
 | |
| 					TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
 | |
| 
 | |
| 			mmio_addr = trio_context->mmio_base_mac + reg_offset;
 | |
| 
 | |
| 			goto valid_device;
 | |
| 
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We fake an empty device for (device > 0),
 | |
| 			 * since there is only one device on bus 0.
 | |
| 			 */
 | |
| 			goto invalid_device;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Accesses to the directly attached device have to be
 | |
| 	 * sent as type-0 configs.
 | |
| 	 */
 | |
| 	if (busnum == (controller->first_busno + 1)) {
 | |
| 		/*
 | |
| 		 * There is only one device off of our built-in P2P bridge.
 | |
| 		 */
 | |
| 		if (device != 0)
 | |
| 			goto invalid_device;
 | |
| 
 | |
| 		config_type = 0;
 | |
| 	}
 | |
| 
 | |
| 	cfg_addr.word = 0;
 | |
| 	cfg_addr.reg_addr = (offset & 0xFFF);
 | |
| 	cfg_addr.fn = function;
 | |
| 	cfg_addr.dev = device;
 | |
| 	cfg_addr.bus = busnum;
 | |
| 	cfg_addr.type = config_type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that we don't set the mac field in cfg_addr because the
 | |
| 	 * mapping is per port.
 | |
| 	 */
 | |
| 	mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
 | |
| 			cfg_addr.word;
 | |
| 
 | |
| valid_device:
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 4:
 | |
| 		__gxio_mmio_write32(mmio_addr, val_32);
 | |
| 		TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		__gxio_mmio_write16(mmio_addr, val_16);
 | |
| 		TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
 | |
| 		break;
 | |
| 
 | |
| 	case 1:
 | |
| 		__gxio_mmio_write8(mmio_addr, val_8);
 | |
| 		TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return PCIBIOS_FUNC_NOT_SUPPORTED;
 | |
| 	}
 | |
| 
 | |
| invalid_device:
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct pci_ops tile_cfg_ops = {
 | |
| 	.read =         tile_cfg_read,
 | |
| 	.write =        tile_cfg_write,
 | |
| };
 | |
| 
 | |
| 
 | |
| /* MSI support starts here. */
 | |
| static unsigned int tilegx_msi_startup(struct irq_data *d)
 | |
| {
 | |
| 	if (d->msi_desc)
 | |
| 		pci_msi_unmask_irq(d);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void tilegx_msi_ack(struct irq_data *d)
 | |
| {
 | |
| 	__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
 | |
| }
 | |
| 
 | |
| static void tilegx_msi_mask(struct irq_data *d)
 | |
| {
 | |
| 	pci_msi_mask_irq(d);
 | |
| 	__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
 | |
| }
 | |
| 
 | |
| static void tilegx_msi_unmask(struct irq_data *d)
 | |
| {
 | |
| 	__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
 | |
| 	pci_msi_unmask_irq(d);
 | |
| }
 | |
| 
 | |
| static struct irq_chip tilegx_msi_chip = {
 | |
| 	.name			= "tilegx_msi",
 | |
| 	.irq_startup		= tilegx_msi_startup,
 | |
| 	.irq_ack		= tilegx_msi_ack,
 | |
| 	.irq_mask		= tilegx_msi_mask,
 | |
| 	.irq_unmask		= tilegx_msi_unmask,
 | |
| 
 | |
| 	/* TBD: support set_affinity. */
 | |
| };
 | |
| 
 | |
| int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
 | |
| {
 | |
| 	struct pci_controller *controller;
 | |
| 	gxio_trio_context_t *trio_context;
 | |
| 	struct msi_msg msg;
 | |
| 	int default_irq;
 | |
| 	uint64_t mem_map_base;
 | |
| 	uint64_t mem_map_limit;
 | |
| 	u64 msi_addr;
 | |
| 	int mem_map;
 | |
| 	int cpu;
 | |
| 	int irq;
 | |
| 	int ret;
 | |
| 
 | |
| 	irq = irq_alloc_hwirq(-1);
 | |
| 	if (!irq)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we use a 64-bit Mem-Map to accept the MSI write, we fail
 | |
| 	 * devices that are not capable of generating a 64-bit message address.
 | |
| 	 * These devices will fall back to using the legacy interrupts.
 | |
| 	 * Most PCIe endpoint devices do support 64-bit message addressing.
 | |
| 	 */
 | |
| 	if (desc->msi_attrib.is_64 == 0) {
 | |
| 		dev_info(&pdev->dev, "64-bit MSI message address not supported, falling back to legacy interrupts\n");
 | |
| 
 | |
| 		ret = -ENOMEM;
 | |
| 		goto is_64_failure;
 | |
| 	}
 | |
| 
 | |
| 	default_irq = desc->msi_attrib.default_irq;
 | |
| 	controller = irq_get_handler_data(default_irq);
 | |
| 
 | |
| 	BUG_ON(!controller);
 | |
| 
 | |
| 	trio_context = controller->trio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a scatter-queue that will accept the MSI write and
 | |
| 	 * trigger the TILE-side interrupts. We use the scatter-queue regions
 | |
| 	 * before the mem map regions, because the latter are needed by more
 | |
| 	 * applications.
 | |
| 	 */
 | |
| 	mem_map = gxio_trio_alloc_scatter_queues(trio_context, 1, 0, 0);
 | |
| 	if (mem_map >= 0) {
 | |
| 		TRIO_MAP_SQ_DOORBELL_FMT_t doorbell_template = {{
 | |
| 			.pop = 0,
 | |
| 			.doorbell = 1,
 | |
| 		}};
 | |
| 
 | |
| 		mem_map += TRIO_NUM_MAP_MEM_REGIONS;
 | |
| 		mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
 | |
| 			mem_map * MEM_MAP_INTR_REGION_SIZE;
 | |
| 		mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
 | |
| 
 | |
| 		msi_addr = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 8;
 | |
| 		msg.data = (unsigned int)doorbell_template.word;
 | |
| 	} else {
 | |
| 		/* SQ regions are out, allocate from map mem regions. */
 | |
| 		mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
 | |
| 		if (mem_map < 0) {
 | |
| 			dev_info(&pdev->dev, "%s Mem-Map alloc failure - failed to initialize MSI interrupts - falling back to legacy interrupts\n",
 | |
| 				 desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
 | |
| 			ret = -ENOMEM;
 | |
| 			goto msi_mem_map_alloc_failure;
 | |
| 		}
 | |
| 
 | |
| 		mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
 | |
| 			mem_map * MEM_MAP_INTR_REGION_SIZE;
 | |
| 		mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
 | |
| 
 | |
| 		msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 -
 | |
| 			TRIO_MAP_MEM_REG_INT0;
 | |
| 
 | |
| 		msg.data = mem_map;
 | |
| 	}
 | |
| 
 | |
| 	/* We try to distribute different IRQs to different tiles. */
 | |
| 	cpu = tile_irq_cpu(irq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now call up to the HV to configure the MSI interrupt and
 | |
| 	 * set up the IPI binding.
 | |
| 	 */
 | |
| 	ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
 | |
| 					KERNEL_PL, irq, controller->mac,
 | |
| 					mem_map, mem_map_base, mem_map_limit,
 | |
| 					trio_context->asid);
 | |
| 	if (ret < 0) {
 | |
| 		dev_info(&pdev->dev, "HV MSI config failed\n");
 | |
| 
 | |
| 		goto hv_msi_config_failure;
 | |
| 	}
 | |
| 
 | |
| 	irq_set_msi_desc(irq, desc);
 | |
| 
 | |
| 	msg.address_hi = msi_addr >> 32;
 | |
| 	msg.address_lo = msi_addr & 0xffffffff;
 | |
| 
 | |
| 	pci_write_msi_msg(irq, &msg);
 | |
| 	irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
 | |
| 	irq_set_handler_data(irq, controller);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| hv_msi_config_failure:
 | |
| 	/* Free mem-map */
 | |
| msi_mem_map_alloc_failure:
 | |
| is_64_failure:
 | |
| 	irq_free_hwirq(irq);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void arch_teardown_msi_irq(unsigned int irq)
 | |
| {
 | |
| 	irq_free_hwirq(irq);
 | |
| }
 |