 f47436734d
			
		
	
	
	f47436734d
	
	
	
		
			
			And other message logging neatening. Other miscellanea: o coalesce formats o realign arguments o standardize a couple of macros o use __func__ instead of embedding the function name Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
		
			
				
	
	
		
			527 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			527 lines
		
	
	
	
		
			13 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * arch/tile/kernel/kprobes.c
 | |
|  * Kprobes on TILE-Gx
 | |
|  *
 | |
|  * Some portions copied from the MIPS version.
 | |
|  *
 | |
|  * Copyright (C) IBM Corporation, 2002, 2004
 | |
|  * Copyright 2006 Sony Corp.
 | |
|  * Copyright 2010 Cavium Networks
 | |
|  *
 | |
|  * Copyright 2012 Tilera Corporation. All Rights Reserved.
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful, but
 | |
|  *   WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  *   NON INFRINGEMENT.  See the GNU General Public License for
 | |
|  *   more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| #include <arch/opcode.h>
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
 | |
| tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;
 | |
| 
 | |
| /*
 | |
|  * Check whether instruction is branch or jump, or if executing it
 | |
|  * has different results depending on where it is executed (e.g. lnk).
 | |
|  */
 | |
| static int __kprobes insn_has_control(kprobe_opcode_t insn)
 | |
| {
 | |
| 	if (get_Mode(insn) != 0) {   /* Y-format bundle */
 | |
| 		if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
 | |
| 		    get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
 | |
| 			return 0;
 | |
| 
 | |
| 		switch (get_UnaryOpcodeExtension_Y1(insn)) {
 | |
| 		case JALRP_UNARY_OPCODE_Y1:
 | |
| 		case JALR_UNARY_OPCODE_Y1:
 | |
| 		case JRP_UNARY_OPCODE_Y1:
 | |
| 		case JR_UNARY_OPCODE_Y1:
 | |
| 		case LNK_UNARY_OPCODE_Y1:
 | |
| 			return 1;
 | |
| 		default:
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (get_Opcode_X1(insn)) {
 | |
| 	case BRANCH_OPCODE_X1:	/* branch instructions */
 | |
| 	case JUMP_OPCODE_X1:	/* jump instructions: j and jal */
 | |
| 		return 1;
 | |
| 
 | |
| 	case RRR_0_OPCODE_X1:   /* other jump instructions */
 | |
| 		if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
 | |
| 			return 0;
 | |
| 		switch (get_UnaryOpcodeExtension_X1(insn)) {
 | |
| 		case JALRP_UNARY_OPCODE_X1:
 | |
| 		case JALR_UNARY_OPCODE_X1:
 | |
| 		case JRP_UNARY_OPCODE_X1:
 | |
| 		case JR_UNARY_OPCODE_X1:
 | |
| 		case LNK_UNARY_OPCODE_X1:
 | |
| 			return 1;
 | |
| 		default:
 | |
| 			return 0;
 | |
| 		}
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)p->addr;
 | |
| 
 | |
| 	if (addr & (sizeof(kprobe_opcode_t) - 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (insn_has_control(*p->addr)) {
 | |
| 		pr_notice("Kprobes for control instructions are not supported\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* insn: must be on special executable page on tile. */
 | |
| 	p->ainsn.insn = get_insn_slot();
 | |
| 	if (!p->ainsn.insn)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the kprobe->ainsn.insn[] array we store the original
 | |
| 	 * instruction at index zero and a break trap instruction at
 | |
| 	 * index one.
 | |
| 	 */
 | |
| 	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
 | |
| 	p->ainsn.insn[1] = breakpoint2_insn;
 | |
| 	p->opcode = *p->addr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	unsigned long addr_wr;
 | |
| 
 | |
| 	/* Operate on writable kernel text mapping. */
 | |
| 	addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET;
 | |
| 
 | |
| 	if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
 | |
| 		sizeof(breakpoint_insn)))
 | |
| 		pr_err("%s: failed to enable kprobe\n", __func__);
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	flush_insn_slot(p);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *kp)
 | |
| {
 | |
| 	unsigned long addr_wr;
 | |
| 
 | |
| 	/* Operate on writable kernel text mapping. */
 | |
| 	addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET;
 | |
| 
 | |
| 	if (probe_kernel_write((void *)addr_wr, &kp->opcode,
 | |
| 		sizeof(kp->opcode)))
 | |
| 		pr_err("%s: failed to enable kprobe\n", __func__);
 | |
| 
 | |
| 	smp_wmb();
 | |
| 	flush_insn_slot(kp);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->ainsn.insn) {
 | |
| 		free_insn_slot(p->ainsn.insn, 0);
 | |
| 		p->ainsn.insn = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| 	kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| 	kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 			struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__this_cpu_write(current_kprobe, p);
 | |
| 	kcb->kprobe_saved_pc = regs->pc;
 | |
| }
 | |
| 
 | |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	/* Single step inline if the instruction is a break. */
 | |
| 	if (p->opcode == breakpoint_insn ||
 | |
| 	    p->opcode == breakpoint2_insn)
 | |
| 		regs->pc = (unsigned long)p->addr;
 | |
| 	else
 | |
| 		regs->pc = (unsigned long)&p->ainsn.insn[0];
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	int ret = 0;
 | |
| 	kprobe_opcode_t *addr;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	addr = (kprobe_opcode_t *)regs->pc;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	/* Check we're not actually recursing. */
 | |
| 	if (kprobe_running()) {
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
 | |
| 			    p->ainsn.insn[0] == breakpoint_insn) {
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * We have reentered the kprobe_handler(), since
 | |
| 			 * another probe was hit while within the handler.
 | |
| 			 * We here save the original kprobes variables and
 | |
| 			 * just single step on the instruction of the new probe
 | |
| 			 * without calling any user handlers.
 | |
| 			 */
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p, regs, kcb);
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			prepare_singlestep(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			if (*addr != breakpoint_insn) {
 | |
| 				/*
 | |
| 				 * The breakpoint instruction was removed by
 | |
| 				 * another cpu right after we hit, no further
 | |
| 				 * handling of this interrupt is appropriate.
 | |
| 				 */
 | |
| 				ret = 1;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			p = __this_cpu_read(current_kprobe);
 | |
| 			if (p->break_handler && p->break_handler(p, regs))
 | |
| 				goto ss_probe;
 | |
| 		}
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p) {
 | |
| 		if (*addr != breakpoint_insn) {
 | |
| 			/*
 | |
| 			 * The breakpoint instruction was removed right
 | |
| 			 * after we hit it.  Another cpu has removed
 | |
| 			 * either a probepoint or a debugger breakpoint
 | |
| 			 * at this address.  In either case, no further
 | |
| 			 * handling of this interrupt is appropriate.
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		/* Not one of ours: let kernel handle it. */
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	set_current_kprobe(p, regs, kcb);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 
 | |
| 	if (p->pre_handler && p->pre_handler(p, regs)) {
 | |
| 		/* Handler has already set things up, so skip ss setup. */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| ss_probe:
 | |
| 	prepare_singlestep(p, regs);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction that has been replaced by the breakpoint. To avoid the
 | |
|  * SMP problems that can occur when we temporarily put back the
 | |
|  * original opcode to single-step, we single-stepped a copy of the
 | |
|  * instruction.  The address of this copy is p->ainsn.insn.
 | |
|  *
 | |
|  * This function prepares to return from the post-single-step
 | |
|  * breakpoint trap.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p,
 | |
| 				       struct pt_regs *regs,
 | |
| 				       struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	unsigned long orig_pc = kcb->kprobe_saved_pc;
 | |
| 	regs->pc = orig_pc + 8;
 | |
| }
 | |
| 
 | |
| static inline int post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(cur, regs, kcb);
 | |
| 
 | |
| 	/* Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	reset_current_kprobe();
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the ip points back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		resume_execution(cur, regs, kcb);
 | |
| 		reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = (struct die_args *)data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_BREAK:
 | |
| 		if (kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_SSTEPBP:
 | |
| 		if (post_kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_PAGE_FAULT:
 | |
| 		/* kprobe_running() needs smp_processor_id(). */
 | |
| 		preempt_disable();
 | |
| 
 | |
| 		if (kprobe_running()
 | |
| 		    && kprobe_fault_handler(args->regs, args->trapnr))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		preempt_enable();
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	kcb->jprobe_saved_regs = *regs;
 | |
| 	kcb->jprobe_saved_sp = regs->sp;
 | |
| 
 | |
| 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
 | |
| 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
 | |
| 
 | |
| 	regs->pc = (unsigned long)(jp->entry);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Defined in the inline asm below. */
 | |
| void jprobe_return_end(void);
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	asm volatile(
 | |
| 		"bpt\n\t"
 | |
| 		".globl jprobe_return_end\n"
 | |
| 		"jprobe_return_end:\n");
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (regs->pc >= (unsigned long)jprobe_return &&
 | |
| 	    regs->pc <= (unsigned long)jprobe_return_end) {
 | |
| 		*regs = kcb->jprobe_saved_regs;
 | |
| 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
 | |
| 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
 | |
| 		preempt_enable_no_resched();
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function return probe trampoline:
 | |
|  * - init_kprobes() establishes a probepoint here
 | |
|  * - When the probed function returns, this probe causes the
 | |
|  *   handlers to fire
 | |
|  */
 | |
| static void __used kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile(
 | |
| 		"nop\n\t"
 | |
| 		".global kretprobe_trampoline\n"
 | |
| 		"kretprobe_trampoline:\n\t"
 | |
| 		"nop\n\t"
 | |
| 		: : : "memory");
 | |
| }
 | |
| 
 | |
| void kretprobe_trampoline(void);
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *) regs->lr;
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->lr = (unsigned long)kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the probe at kretprobe trampoline is hit.
 | |
|  */
 | |
| static int __kprobes trampoline_probe_handler(struct kprobe *p,
 | |
| 						struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because multiple functions in the call path have
 | |
| 	 * a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *       function, the first instance's ret_addr will point to the
 | |
| 	 *       real return address, and all the rest will point to
 | |
| 	 *       kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler)
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address) {
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 	instruction_pointer(regs) = orig_ret_address;
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By returning a non-zero value, we are telling
 | |
| 	 * kprobe_handler() that we don't want the post_handler
 | |
| 	 * to run (and have re-enabled preemption)
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	register_kprobe(&trampoline_p);
 | |
| 	return 0;
 | |
| }
 |