 433185d2b4
			
		
	
	
	433185d2b4
	
	
	
		
			
			The function eeh_add_parent_pe() is used to create a PE or add one edev to its parent PE. Current code checks if PE#0 is valid for the later case. Actually, we should validate PE#0 for both cases when EEH core regards PE#0 as invalid one (without flag EEH_VALID_PE_ZERO). Otherwise, not all EEH devices can be added to its parent PE#0 for EEH on P7IOC. The patch fixes the issue by validating PE#0 for the two cases. So far, we don't have PE#0 for EEH on P7IOC, but it will show up when we enable M64 for P7IOC. The patch also makes the error message more meaningful. Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			925 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			925 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The file intends to implement PE based on the information from
 | |
|  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
 | |
|  * All the PEs should be organized as hierarchy tree. The first level
 | |
|  * of the tree will be associated to existing PHBs since the particular
 | |
|  * PE is only meaningful in one PHB domain.
 | |
|  *
 | |
|  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/string.h>
 | |
| 
 | |
| #include <asm/pci-bridge.h>
 | |
| #include <asm/ppc-pci.h>
 | |
| 
 | |
| static int eeh_pe_aux_size = 0;
 | |
| static LIST_HEAD(eeh_phb_pe);
 | |
| 
 | |
| /**
 | |
|  * eeh_set_pe_aux_size - Set PE auxillary data size
 | |
|  * @size: PE auxillary data size
 | |
|  *
 | |
|  * Set PE auxillary data size
 | |
|  */
 | |
| void eeh_set_pe_aux_size(int size)
 | |
| {
 | |
| 	if (size < 0)
 | |
| 		return;
 | |
| 
 | |
| 	eeh_pe_aux_size = size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_alloc - Allocate PE
 | |
|  * @phb: PCI controller
 | |
|  * @type: PE type
 | |
|  *
 | |
|  * Allocate PE instance dynamically.
 | |
|  */
 | |
| static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
 | |
| {
 | |
| 	struct eeh_pe *pe;
 | |
| 	size_t alloc_size;
 | |
| 
 | |
| 	alloc_size = sizeof(struct eeh_pe);
 | |
| 	if (eeh_pe_aux_size) {
 | |
| 		alloc_size = ALIGN(alloc_size, cache_line_size());
 | |
| 		alloc_size += eeh_pe_aux_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate PHB PE */
 | |
| 	pe = kzalloc(alloc_size, GFP_KERNEL);
 | |
| 	if (!pe) return NULL;
 | |
| 
 | |
| 	/* Initialize PHB PE */
 | |
| 	pe->type = type;
 | |
| 	pe->phb = phb;
 | |
| 	INIT_LIST_HEAD(&pe->child_list);
 | |
| 	INIT_LIST_HEAD(&pe->child);
 | |
| 	INIT_LIST_HEAD(&pe->edevs);
 | |
| 
 | |
| 	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
 | |
| 				      cache_line_size());
 | |
| 	return pe;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_phb_pe_create - Create PHB PE
 | |
|  * @phb: PCI controller
 | |
|  *
 | |
|  * The function should be called while the PHB is detected during
 | |
|  * system boot or PCI hotplug in order to create PHB PE.
 | |
|  */
 | |
| int eeh_phb_pe_create(struct pci_controller *phb)
 | |
| {
 | |
| 	struct eeh_pe *pe;
 | |
| 
 | |
| 	/* Allocate PHB PE */
 | |
| 	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
 | |
| 	if (!pe) {
 | |
| 		pr_err("%s: out of memory!\n", __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Put it into the list */
 | |
| 	list_add_tail(&pe->child, &eeh_phb_pe);
 | |
| 
 | |
| 	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
 | |
|  * @phb: PCI controller
 | |
|  *
 | |
|  * The overall PEs form hierarchy tree. The first layer of the
 | |
|  * hierarchy tree is composed of PHB PEs. The function is used
 | |
|  * to retrieve the corresponding PHB PE according to the given PHB.
 | |
|  */
 | |
| struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
 | |
| {
 | |
| 	struct eeh_pe *pe;
 | |
| 
 | |
| 	list_for_each_entry(pe, &eeh_phb_pe, child) {
 | |
| 		/*
 | |
| 		 * Actually, we needn't check the type since
 | |
| 		 * the PE for PHB has been determined when that
 | |
| 		 * was created.
 | |
| 		 */
 | |
| 		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
 | |
| 			return pe;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_next - Retrieve the next PE in the tree
 | |
|  * @pe: current PE
 | |
|  * @root: root PE
 | |
|  *
 | |
|  * The function is used to retrieve the next PE in the
 | |
|  * hierarchy PE tree.
 | |
|  */
 | |
| static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
 | |
| 				  struct eeh_pe *root)
 | |
| {
 | |
| 	struct list_head *next = pe->child_list.next;
 | |
| 
 | |
| 	if (next == &pe->child_list) {
 | |
| 		while (1) {
 | |
| 			if (pe == root)
 | |
| 				return NULL;
 | |
| 			next = pe->child.next;
 | |
| 			if (next != &pe->parent->child_list)
 | |
| 				break;
 | |
| 			pe = pe->parent;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return list_entry(next, struct eeh_pe, child);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_traverse - Traverse PEs in the specified PHB
 | |
|  * @root: root PE
 | |
|  * @fn: callback
 | |
|  * @flag: extra parameter to callback
 | |
|  *
 | |
|  * The function is used to traverse the specified PE and its
 | |
|  * child PEs. The traversing is to be terminated once the
 | |
|  * callback returns something other than NULL, or no more PEs
 | |
|  * to be traversed.
 | |
|  */
 | |
| void *eeh_pe_traverse(struct eeh_pe *root,
 | |
| 		      eeh_traverse_func fn, void *flag)
 | |
| {
 | |
| 	struct eeh_pe *pe;
 | |
| 	void *ret;
 | |
| 
 | |
| 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
 | |
| 		ret = fn(pe, flag);
 | |
| 		if (ret) return ret;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_dev_traverse - Traverse the devices from the PE
 | |
|  * @root: EEH PE
 | |
|  * @fn: function callback
 | |
|  * @flag: extra parameter to callback
 | |
|  *
 | |
|  * The function is used to traverse the devices of the specified
 | |
|  * PE and its child PEs.
 | |
|  */
 | |
| void *eeh_pe_dev_traverse(struct eeh_pe *root,
 | |
| 		eeh_traverse_func fn, void *flag)
 | |
| {
 | |
| 	struct eeh_pe *pe;
 | |
| 	struct eeh_dev *edev, *tmp;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (!root) {
 | |
| 		pr_warn("%s: Invalid PE %p\n",
 | |
| 			__func__, root);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Traverse root PE */
 | |
| 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
 | |
| 		eeh_pe_for_each_dev(pe, edev, tmp) {
 | |
| 			ret = fn(edev, flag);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __eeh_pe_get - Check the PE address
 | |
|  * @data: EEH PE
 | |
|  * @flag: EEH device
 | |
|  *
 | |
|  * For one particular PE, it can be identified by PE address
 | |
|  * or tranditional BDF address. BDF address is composed of
 | |
|  * Bus/Device/Function number. The extra data referred by flag
 | |
|  * indicates which type of address should be used.
 | |
|  */
 | |
| static void *__eeh_pe_get(void *data, void *flag)
 | |
| {
 | |
| 	struct eeh_pe *pe = (struct eeh_pe *)data;
 | |
| 	struct eeh_dev *edev = (struct eeh_dev *)flag;
 | |
| 
 | |
| 	/* Unexpected PHB PE */
 | |
| 	if (pe->type & EEH_PE_PHB)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We prefer PE address. For most cases, we should
 | |
| 	 * have non-zero PE address
 | |
| 	 */
 | |
| 	if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
 | |
| 		if (edev->pe_config_addr == pe->addr)
 | |
| 			return pe;
 | |
| 	} else {
 | |
| 		if (edev->pe_config_addr &&
 | |
| 		    (edev->pe_config_addr == pe->addr))
 | |
| 		return pe;
 | |
| 	}
 | |
| 
 | |
| 	/* Try BDF address */
 | |
| 	if (edev->config_addr &&
 | |
| 	   (edev->config_addr == pe->config_addr))
 | |
| 		return pe;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_get - Search PE based on the given address
 | |
|  * @edev: EEH device
 | |
|  *
 | |
|  * Search the corresponding PE based on the specified address which
 | |
|  * is included in the eeh device. The function is used to check if
 | |
|  * the associated PE has been created against the PE address. It's
 | |
|  * notable that the PE address has 2 format: traditional PE address
 | |
|  * which is composed of PCI bus/device/function number, or unified
 | |
|  * PE address.
 | |
|  */
 | |
| struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
 | |
| 	struct eeh_pe *pe;
 | |
| 
 | |
| 	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
 | |
| 
 | |
| 	return pe;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_get_parent - Retrieve the parent PE
 | |
|  * @edev: EEH device
 | |
|  *
 | |
|  * The whole PEs existing in the system are organized as hierarchy
 | |
|  * tree. The function is used to retrieve the parent PE according
 | |
|  * to the parent EEH device.
 | |
|  */
 | |
| static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct eeh_dev *parent;
 | |
| 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 | |
| 
 | |
| 	/*
 | |
| 	 * It might have the case for the indirect parent
 | |
| 	 * EEH device already having associated PE, but
 | |
| 	 * the direct parent EEH device doesn't have yet.
 | |
| 	 */
 | |
| 	pdn = pdn ? pdn->parent : NULL;
 | |
| 	while (pdn) {
 | |
| 		/* We're poking out of PCI territory */
 | |
| 		parent = pdn_to_eeh_dev(pdn);
 | |
| 		if (!parent)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (parent->pe)
 | |
| 			return parent->pe;
 | |
| 
 | |
| 		pdn = pdn->parent;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_add_to_parent_pe - Add EEH device to parent PE
 | |
|  * @edev: EEH device
 | |
|  *
 | |
|  * Add EEH device to the parent PE. If the parent PE already
 | |
|  * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
 | |
|  * we have to create new PE to hold the EEH device and the new
 | |
|  * PE will be linked to its parent PE as well.
 | |
|  */
 | |
| int eeh_add_to_parent_pe(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct eeh_pe *pe, *parent;
 | |
| 
 | |
| 	/* Check if the PE number is valid */
 | |
| 	if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
 | |
| 		pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%d\n",
 | |
| 		       __func__, edev->config_addr, edev->phb->global_number);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search the PE has been existing or not according
 | |
| 	 * to the PE address. If that has been existing, the
 | |
| 	 * PE should be composed of PCI bus and its subordinate
 | |
| 	 * components.
 | |
| 	 */
 | |
| 	pe = eeh_pe_get(edev);
 | |
| 	if (pe && !(pe->type & EEH_PE_INVALID)) {
 | |
| 		/* Mark the PE as type of PCI bus */
 | |
| 		pe->type = EEH_PE_BUS;
 | |
| 		edev->pe = pe;
 | |
| 
 | |
| 		/* Put the edev to PE */
 | |
| 		list_add_tail(&edev->list, &pe->edevs);
 | |
| 		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
 | |
| 			edev->phb->global_number,
 | |
| 			edev->config_addr >> 8,
 | |
| 			PCI_SLOT(edev->config_addr & 0xFF),
 | |
| 			PCI_FUNC(edev->config_addr & 0xFF),
 | |
| 			pe->addr);
 | |
| 		return 0;
 | |
| 	} else if (pe && (pe->type & EEH_PE_INVALID)) {
 | |
| 		list_add_tail(&edev->list, &pe->edevs);
 | |
| 		edev->pe = pe;
 | |
| 		/*
 | |
| 		 * We're running to here because of PCI hotplug caused by
 | |
| 		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
 | |
| 		 */
 | |
| 		parent = pe;
 | |
| 		while (parent) {
 | |
| 			if (!(parent->type & EEH_PE_INVALID))
 | |
| 				break;
 | |
| 			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
 | |
| 			parent = parent->parent;
 | |
| 		}
 | |
| 
 | |
| 		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
 | |
| 			 "PE#%x, Parent PE#%x\n",
 | |
| 			edev->phb->global_number,
 | |
| 			edev->config_addr >> 8,
 | |
|                         PCI_SLOT(edev->config_addr & 0xFF),
 | |
|                         PCI_FUNC(edev->config_addr & 0xFF),
 | |
| 			pe->addr, pe->parent->addr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Create a new EEH PE */
 | |
| 	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
 | |
| 	if (!pe) {
 | |
| 		pr_err("%s: out of memory!\n", __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	pe->addr	= edev->pe_config_addr;
 | |
| 	pe->config_addr	= edev->config_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Put the new EEH PE into hierarchy tree. If the parent
 | |
| 	 * can't be found, the newly created PE will be attached
 | |
| 	 * to PHB directly. Otherwise, we have to associate the
 | |
| 	 * PE with its parent.
 | |
| 	 */
 | |
| 	parent = eeh_pe_get_parent(edev);
 | |
| 	if (!parent) {
 | |
| 		parent = eeh_phb_pe_get(edev->phb);
 | |
| 		if (!parent) {
 | |
| 			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
 | |
| 				__func__, edev->phb->global_number);
 | |
| 			edev->pe = NULL;
 | |
| 			kfree(pe);
 | |
| 			return -EEXIST;
 | |
| 		}
 | |
| 	}
 | |
| 	pe->parent = parent;
 | |
| 
 | |
| 	/*
 | |
| 	 * Put the newly created PE into the child list and
 | |
| 	 * link the EEH device accordingly.
 | |
| 	 */
 | |
| 	list_add_tail(&pe->child, &parent->child_list);
 | |
| 	list_add_tail(&edev->list, &pe->edevs);
 | |
| 	edev->pe = pe;
 | |
| 	pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
 | |
| 		 "Device PE#%x, Parent PE#%x\n",
 | |
| 		 edev->phb->global_number,
 | |
| 		 edev->config_addr >> 8,
 | |
| 		 PCI_SLOT(edev->config_addr & 0xFF),
 | |
| 		 PCI_FUNC(edev->config_addr & 0xFF),
 | |
| 		 pe->addr, pe->parent->addr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
 | |
|  * @edev: EEH device
 | |
|  *
 | |
|  * The PE hierarchy tree might be changed when doing PCI hotplug.
 | |
|  * Also, the PCI devices or buses could be removed from the system
 | |
|  * during EEH recovery. So we have to call the function remove the
 | |
|  * corresponding PE accordingly if necessary.
 | |
|  */
 | |
| int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct eeh_pe *pe, *parent, *child;
 | |
| 	int cnt;
 | |
| 
 | |
| 	if (!edev->pe) {
 | |
| 		pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
 | |
| 			 __func__,  edev->phb->global_number,
 | |
| 			 edev->config_addr >> 8,
 | |
| 			 PCI_SLOT(edev->config_addr & 0xFF),
 | |
| 			 PCI_FUNC(edev->config_addr & 0xFF));
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	/* Remove the EEH device */
 | |
| 	pe = eeh_dev_to_pe(edev);
 | |
| 	edev->pe = NULL;
 | |
| 	list_del(&edev->list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the parent PE includes any EEH devices.
 | |
| 	 * If not, we should delete that. Also, we should
 | |
| 	 * delete the parent PE if it doesn't have associated
 | |
| 	 * child PEs and EEH devices.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		parent = pe->parent;
 | |
| 		if (pe->type & EEH_PE_PHB)
 | |
| 			break;
 | |
| 
 | |
| 		if (!(pe->state & EEH_PE_KEEP)) {
 | |
| 			if (list_empty(&pe->edevs) &&
 | |
| 			    list_empty(&pe->child_list)) {
 | |
| 				list_del(&pe->child);
 | |
| 				kfree(pe);
 | |
| 			} else {
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (list_empty(&pe->edevs)) {
 | |
| 				cnt = 0;
 | |
| 				list_for_each_entry(child, &pe->child_list, child) {
 | |
| 					if (!(child->type & EEH_PE_INVALID)) {
 | |
| 						cnt++;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if (!cnt)
 | |
| 					pe->type |= EEH_PE_INVALID;
 | |
| 				else
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		pe = parent;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * We have time stamp for each PE to trace its time of getting
 | |
|  * frozen in last hour. The function should be called to update
 | |
|  * the time stamp on first error of the specific PE. On the other
 | |
|  * handle, we needn't account for errors happened in last hour.
 | |
|  */
 | |
| void eeh_pe_update_time_stamp(struct eeh_pe *pe)
 | |
| {
 | |
| 	struct timeval tstamp;
 | |
| 
 | |
| 	if (!pe) return;
 | |
| 
 | |
| 	if (pe->freeze_count <= 0) {
 | |
| 		pe->freeze_count = 0;
 | |
| 		do_gettimeofday(&pe->tstamp);
 | |
| 	} else {
 | |
| 		do_gettimeofday(&tstamp);
 | |
| 		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
 | |
| 			pe->tstamp = tstamp;
 | |
| 			pe->freeze_count = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __eeh_pe_state_mark - Mark the state for the PE
 | |
|  * @data: EEH PE
 | |
|  * @flag: state
 | |
|  *
 | |
|  * The function is used to mark the indicated state for the given
 | |
|  * PE. Also, the associated PCI devices will be put into IO frozen
 | |
|  * state as well.
 | |
|  */
 | |
| static void *__eeh_pe_state_mark(void *data, void *flag)
 | |
| {
 | |
| 	struct eeh_pe *pe = (struct eeh_pe *)data;
 | |
| 	int state = *((int *)flag);
 | |
| 	struct eeh_dev *edev, *tmp;
 | |
| 	struct pci_dev *pdev;
 | |
| 
 | |
| 	/* Keep the state of permanently removed PE intact */
 | |
| 	if (pe->state & EEH_PE_REMOVED)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pe->state |= state;
 | |
| 
 | |
| 	/* Offline PCI devices if applicable */
 | |
| 	if (!(state & EEH_PE_ISOLATED))
 | |
| 		return NULL;
 | |
| 
 | |
| 	eeh_pe_for_each_dev(pe, edev, tmp) {
 | |
| 		pdev = eeh_dev_to_pci_dev(edev);
 | |
| 		if (pdev)
 | |
| 			pdev->error_state = pci_channel_io_frozen;
 | |
| 	}
 | |
| 
 | |
| 	/* Block PCI config access if required */
 | |
| 	if (pe->state & EEH_PE_CFG_RESTRICTED)
 | |
| 		pe->state |= EEH_PE_CFG_BLOCKED;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_state_mark - Mark specified state for PE and its associated device
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * EEH error affects the current PE and its child PEs. The function
 | |
|  * is used to mark appropriate state for the affected PEs and the
 | |
|  * associated devices.
 | |
|  */
 | |
| void eeh_pe_state_mark(struct eeh_pe *pe, int state)
 | |
| {
 | |
| 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
 | |
| }
 | |
| 
 | |
| static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
 | |
| {
 | |
| 	struct eeh_dev *edev = data;
 | |
| 	int mode = *((int *)flag);
 | |
| 
 | |
| 	edev->mode |= mode;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_dev_state_mark - Mark state for all device under the PE
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * Mark specific state for all child devices of the PE.
 | |
|  */
 | |
| void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
 | |
| {
 | |
| 	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __eeh_pe_state_clear - Clear state for the PE
 | |
|  * @data: EEH PE
 | |
|  * @flag: state
 | |
|  *
 | |
|  * The function is used to clear the indicated state from the
 | |
|  * given PE. Besides, we also clear the check count of the PE
 | |
|  * as well.
 | |
|  */
 | |
| static void *__eeh_pe_state_clear(void *data, void *flag)
 | |
| {
 | |
| 	struct eeh_pe *pe = (struct eeh_pe *)data;
 | |
| 	int state = *((int *)flag);
 | |
| 	struct eeh_dev *edev, *tmp;
 | |
| 	struct pci_dev *pdev;
 | |
| 
 | |
| 	/* Keep the state of permanently removed PE intact */
 | |
| 	if (pe->state & EEH_PE_REMOVED)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pe->state &= ~state;
 | |
| 
 | |
| 	/*
 | |
| 	 * Special treatment on clearing isolated state. Clear
 | |
| 	 * check count since last isolation and put all affected
 | |
| 	 * devices to normal state.
 | |
| 	 */
 | |
| 	if (!(state & EEH_PE_ISOLATED))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pe->check_count = 0;
 | |
| 	eeh_pe_for_each_dev(pe, edev, tmp) {
 | |
| 		pdev = eeh_dev_to_pci_dev(edev);
 | |
| 		if (!pdev)
 | |
| 			continue;
 | |
| 
 | |
| 		pdev->error_state = pci_channel_io_normal;
 | |
| 	}
 | |
| 
 | |
| 	/* Unblock PCI config access if required */
 | |
| 	if (pe->state & EEH_PE_CFG_RESTRICTED)
 | |
| 		pe->state &= ~EEH_PE_CFG_BLOCKED;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_state_clear - Clear state for the PE and its children
 | |
|  * @pe: PE
 | |
|  * @state: state to be cleared
 | |
|  *
 | |
|  * When the PE and its children has been recovered from error,
 | |
|  * we need clear the error state for that. The function is used
 | |
|  * for the purpose.
 | |
|  */
 | |
| void eeh_pe_state_clear(struct eeh_pe *pe, int state)
 | |
| {
 | |
| 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
 | |
|  * buses assigned explicitly by firmware, and we probably have
 | |
|  * lost that after reset. So we have to delay the check until
 | |
|  * the PCI-CFG registers have been restored for the parent
 | |
|  * bridge.
 | |
|  *
 | |
|  * Don't use normal PCI-CFG accessors, which probably has been
 | |
|  * blocked on normal path during the stage. So we need utilize
 | |
|  * eeh operations, which is always permitted.
 | |
|  */
 | |
| static void eeh_bridge_check_link(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 | |
| 	int cap;
 | |
| 	uint32_t val;
 | |
| 	int timeout = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only check root port and downstream ports of
 | |
| 	 * PCIe switches
 | |
| 	 */
 | |
| 	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
 | |
| 		 __func__, edev->phb->global_number,
 | |
| 		 edev->config_addr >> 8,
 | |
| 		 PCI_SLOT(edev->config_addr & 0xFF),
 | |
| 		 PCI_FUNC(edev->config_addr & 0xFF));
 | |
| 
 | |
| 	/* Check slot status */
 | |
| 	cap = edev->pcie_cap;
 | |
| 	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
 | |
| 	if (!(val & PCI_EXP_SLTSTA_PDS)) {
 | |
| 		pr_debug("  No card in the slot (0x%04x) !\n", val);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check power status if we have the capability */
 | |
| 	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
 | |
| 	if (val & PCI_EXP_SLTCAP_PCP) {
 | |
| 		eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
 | |
| 		if (val & PCI_EXP_SLTCTL_PCC) {
 | |
| 			pr_debug("  In power-off state, power it on ...\n");
 | |
| 			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
 | |
| 			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
 | |
| 			eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
 | |
| 			msleep(2 * 1000);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Enable link */
 | |
| 	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
 | |
| 	val &= ~PCI_EXP_LNKCTL_LD;
 | |
| 	eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
 | |
| 
 | |
| 	/* Check link */
 | |
| 	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
 | |
| 	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
 | |
| 		pr_debug("  No link reporting capability (0x%08x) \n", val);
 | |
| 		msleep(1000);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait the link is up until timeout (5s) */
 | |
| 	timeout = 0;
 | |
| 	while (timeout < 5000) {
 | |
| 		msleep(20);
 | |
| 		timeout += 20;
 | |
| 
 | |
| 		eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
 | |
| 		if (val & PCI_EXP_LNKSTA_DLLLA)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (val & PCI_EXP_LNKSTA_DLLLA)
 | |
| 		pr_debug("  Link up (%s)\n",
 | |
| 			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
 | |
| 	else
 | |
| 		pr_debug("  Link not ready (0x%04x)\n", val);
 | |
| }
 | |
| 
 | |
| #define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
 | |
| #define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
 | |
| 
 | |
| static void eeh_restore_bridge_bars(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Device BARs: 0x10 - 0x18
 | |
| 	 * Bus numbers and windows: 0x18 - 0x30
 | |
| 	 */
 | |
| 	for (i = 4; i < 13; i++)
 | |
| 		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 | |
| 	/* Rom: 0x38 */
 | |
| 	eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
 | |
| 
 | |
| 	/* Cache line & Latency timer: 0xC 0xD */
 | |
| 	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 | |
|                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 | |
|         eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 | |
|                 SAVED_BYTE(PCI_LATENCY_TIMER));
 | |
| 	/* Max latency, min grant, interrupt ping and line: 0x3C */
 | |
| 	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 | |
| 
 | |
| 	/* PCI Command: 0x4 */
 | |
| 	eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]);
 | |
| 
 | |
| 	/* Check the PCIe link is ready */
 | |
| 	eeh_bridge_check_link(edev);
 | |
| }
 | |
| 
 | |
| static void eeh_restore_device_bars(struct eeh_dev *edev)
 | |
| {
 | |
| 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 | |
| 	int i;
 | |
| 	u32 cmd;
 | |
| 
 | |
| 	for (i = 4; i < 10; i++)
 | |
| 		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
 | |
| 	/* 12 == Expansion ROM Address */
 | |
| 	eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
 | |
| 
 | |
| 	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
 | |
| 		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 | |
| 	eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
 | |
| 		SAVED_BYTE(PCI_LATENCY_TIMER));
 | |
| 
 | |
| 	/* max latency, min grant, interrupt pin and line */
 | |
| 	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore PERR & SERR bits, some devices require it,
 | |
| 	 * don't touch the other command bits
 | |
| 	 */
 | |
| 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
 | |
| 	if (edev->config_space[1] & PCI_COMMAND_PARITY)
 | |
| 		cmd |= PCI_COMMAND_PARITY;
 | |
| 	else
 | |
| 		cmd &= ~PCI_COMMAND_PARITY;
 | |
| 	if (edev->config_space[1] & PCI_COMMAND_SERR)
 | |
| 		cmd |= PCI_COMMAND_SERR;
 | |
| 	else
 | |
| 		cmd &= ~PCI_COMMAND_SERR;
 | |
| 	eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
 | |
|  * @data: EEH device
 | |
|  * @flag: Unused
 | |
|  *
 | |
|  * Loads the PCI configuration space base address registers,
 | |
|  * the expansion ROM base address, the latency timer, and etc.
 | |
|  * from the saved values in the device node.
 | |
|  */
 | |
| static void *eeh_restore_one_device_bars(void *data, void *flag)
 | |
| {
 | |
| 	struct eeh_dev *edev = (struct eeh_dev *)data;
 | |
| 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 | |
| 
 | |
| 	/* Do special restore for bridges */
 | |
| 	if (edev->mode & EEH_DEV_BRIDGE)
 | |
| 		eeh_restore_bridge_bars(edev);
 | |
| 	else
 | |
| 		eeh_restore_device_bars(edev);
 | |
| 
 | |
| 	if (eeh_ops->restore_config && pdn)
 | |
| 		eeh_ops->restore_config(pdn);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_restore_bars - Restore the PCI config space info
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * This routine performs a recursive walk to the children
 | |
|  * of this device as well.
 | |
|  */
 | |
| void eeh_pe_restore_bars(struct eeh_pe *pe)
 | |
| {
 | |
| 	/*
 | |
| 	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
 | |
| 	 * will take that.
 | |
| 	 */
 | |
| 	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_loc_get - Retrieve location code binding to the given PE
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * Retrieve the location code of the given PE. If the primary PE bus
 | |
|  * is root bus, we will grab location code from PHB device tree node
 | |
|  * or root port. Otherwise, the upstream bridge's device tree node
 | |
|  * of the primary PE bus will be checked for the location code.
 | |
|  */
 | |
| const char *eeh_pe_loc_get(struct eeh_pe *pe)
 | |
| {
 | |
| 	struct pci_bus *bus = eeh_pe_bus_get(pe);
 | |
| 	struct device_node *dn = pci_bus_to_OF_node(bus);
 | |
| 	const char *loc = NULL;
 | |
| 
 | |
| 	if (!dn)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* PHB PE or root PE ? */
 | |
| 	if (pci_is_root_bus(bus)) {
 | |
| 		loc = of_get_property(dn, "ibm,loc-code", NULL);
 | |
| 		if (!loc)
 | |
| 			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
 | |
| 		if (loc)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* Check the root port */
 | |
| 		dn = dn->child;
 | |
| 		if (!dn)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	loc = of_get_property(dn, "ibm,loc-code", NULL);
 | |
| 	if (!loc)
 | |
| 		loc = of_get_property(dn, "ibm,slot-location-code", NULL);
 | |
| 
 | |
| out:
 | |
| 	return loc ? loc : "N/A";
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
 | |
|  * @pe: EEH PE
 | |
|  *
 | |
|  * Retrieve the PCI bus according to the given PE. Basically,
 | |
|  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
 | |
|  * primary PCI bus will be retrieved. The parent bus will be
 | |
|  * returned for BUS PE. However, we don't have associated PCI
 | |
|  * bus for DEVICE PE.
 | |
|  */
 | |
| struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
 | |
| {
 | |
| 	struct pci_bus *bus = NULL;
 | |
| 	struct eeh_dev *edev;
 | |
| 	struct pci_dev *pdev;
 | |
| 
 | |
| 	if (pe->type & EEH_PE_PHB) {
 | |
| 		bus = pe->phb->bus;
 | |
| 	} else if (pe->type & EEH_PE_BUS ||
 | |
| 		   pe->type & EEH_PE_DEVICE) {
 | |
| 		if (pe->bus) {
 | |
| 			bus = pe->bus;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
 | |
| 		pdev = eeh_dev_to_pci_dev(edev);
 | |
| 		if (pdev)
 | |
| 			bus = pdev->bus;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return bus;
 | |
| }
 |