 70ffdb9393
			
		
	
	
	70ffdb9393
	
	
	
		
			
			Introduce faulthandler_disabled() and use it to check for irq context and disabled pagefaults (via pagefault_disable()) in the pagefault handlers. Please note that we keep the in_atomic() checks in place - to detect whether in irq context (in which case preemption is always properly disabled). In contrast, preempt_disable() should never be used to disable pagefaults. With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt counter, and therefore the result of in_atomic() differs. We validate that condition by using might_fault() checks when calling might_sleep(). Therefore, add a comment to faulthandler_disabled(), describing why this is needed. faulthandler_disabled() and pagefault_disable() are defined in linux/uaccess.h, so let's properly add that include to all relevant files. This patch is based on a patch from Thomas Gleixner. Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			870 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			870 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/parisc/traps.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * 'Traps.c' handles hardware traps and faults after we have saved some
 | |
|  * state in 'asm.s'.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <asm/assembly.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/pdc.h>
 | |
| #include <asm/pdc_chassis.h>
 | |
| #include <asm/unwind.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| #include "../math-emu/math-emu.h"	/* for handle_fpe() */
 | |
| 
 | |
| #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
 | |
| DEFINE_SPINLOCK(pa_dbit_lock);
 | |
| #endif
 | |
| 
 | |
| static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
 | |
| 	struct pt_regs *regs);
 | |
| 
 | |
| static int printbinary(char *buf, unsigned long x, int nbits)
 | |
| {
 | |
| 	unsigned long mask = 1UL << (nbits - 1);
 | |
| 	while (mask != 0) {
 | |
| 		*buf++ = (mask & x ? '1' : '0');
 | |
| 		mask >>= 1;
 | |
| 	}
 | |
| 	*buf = '\0';
 | |
| 
 | |
| 	return nbits;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define RFMT "%016lx"
 | |
| #else
 | |
| #define RFMT "%08lx"
 | |
| #endif
 | |
| #define FFMT "%016llx"	/* fpregs are 64-bit always */
 | |
| 
 | |
| #define PRINTREGS(lvl,r,f,fmt,x)	\
 | |
| 	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
 | |
| 		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
 | |
| 		(r)[(x)+2], (r)[(x)+3])
 | |
| 
 | |
| static void print_gr(char *level, struct pt_regs *regs)
 | |
| {
 | |
| 	int i;
 | |
| 	char buf[64];
 | |
| 
 | |
| 	printk("%s\n", level);
 | |
| 	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
 | |
| 	printbinary(buf, regs->gr[0], 32);
 | |
| 	printk("%sPSW: %s %s\n", level, buf, print_tainted());
 | |
| 
 | |
| 	for (i = 0; i < 32; i += 4)
 | |
| 		PRINTREGS(level, regs->gr, "r", RFMT, i);
 | |
| }
 | |
| 
 | |
| static void print_fr(char *level, struct pt_regs *regs)
 | |
| {
 | |
| 	int i;
 | |
| 	char buf[64];
 | |
| 	struct { u32 sw[2]; } s;
 | |
| 
 | |
| 	/* FR are 64bit everywhere. Need to use asm to get the content
 | |
| 	 * of fpsr/fper1, and we assume that we won't have a FP Identify
 | |
| 	 * in our way, otherwise we're screwed.
 | |
| 	 * The fldd is used to restore the T-bit if there was one, as the
 | |
| 	 * store clears it anyway.
 | |
| 	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
 | |
| 	asm volatile ("fstd %%fr0,0(%1)	\n\t"
 | |
| 		      "fldd 0(%1),%%fr0	\n\t"
 | |
| 		      : "=m" (s) : "r" (&s) : "r0");
 | |
| 
 | |
| 	printk("%s\n", level);
 | |
| 	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
 | |
| 	printbinary(buf, s.sw[0], 32);
 | |
| 	printk("%sFPSR: %s\n", level, buf);
 | |
| 	printk("%sFPER1: %08x\n", level, s.sw[1]);
 | |
| 
 | |
| 	/* here we'll print fr0 again, tho it'll be meaningless */
 | |
| 	for (i = 0; i < 32; i += 4)
 | |
| 		PRINTREGS(level, regs->fr, "fr", FFMT, i);
 | |
| }
 | |
| 
 | |
| void show_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	int i, user;
 | |
| 	char *level;
 | |
| 	unsigned long cr30, cr31;
 | |
| 
 | |
| 	user = user_mode(regs);
 | |
| 	level = user ? KERN_DEBUG : KERN_CRIT;
 | |
| 
 | |
| 	show_regs_print_info(level);
 | |
| 
 | |
| 	print_gr(level, regs);
 | |
| 
 | |
| 	for (i = 0; i < 8; i += 4)
 | |
| 		PRINTREGS(level, regs->sr, "sr", RFMT, i);
 | |
| 
 | |
| 	if (user)
 | |
| 		print_fr(level, regs);
 | |
| 
 | |
| 	cr30 = mfctl(30);
 | |
| 	cr31 = mfctl(31);
 | |
| 	printk("%s\n", level);
 | |
| 	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
 | |
| 	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
 | |
| 	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
 | |
| 	       level, regs->iir, regs->isr, regs->ior);
 | |
| 	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
 | |
| 	       level, current_thread_info()->cpu, cr30, cr31);
 | |
| 	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
 | |
| 
 | |
| 	if (user) {
 | |
| 		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
 | |
| 		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
 | |
| 		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
 | |
| 	} else {
 | |
| 		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
 | |
| 		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
 | |
| 		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
 | |
| 
 | |
| 		parisc_show_stack(current, NULL, regs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static DEFINE_RATELIMIT_STATE(_hppa_rs,
 | |
| 	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| #define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
 | |
| 	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
 | |
| 		printk(fmt, ##__VA_ARGS__);				      \
 | |
| 		show_regs(regs);					      \
 | |
| 	}								      \
 | |
| }
 | |
| 
 | |
| 
 | |
| static void do_show_stack(struct unwind_frame_info *info)
 | |
| {
 | |
| 	int i = 1;
 | |
| 
 | |
| 	printk(KERN_CRIT "Backtrace:\n");
 | |
| 	while (i <= 16) {
 | |
| 		if (unwind_once(info) < 0 || info->ip == 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (__kernel_text_address(info->ip)) {
 | |
| 			printk(KERN_CRIT " [<" RFMT ">] %pS\n",
 | |
| 				info->ip, (void *) info->ip);
 | |
| 			i++;
 | |
| 		}
 | |
| 	}
 | |
| 	printk(KERN_CRIT "\n");
 | |
| }
 | |
| 
 | |
| static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
 | |
| 	struct pt_regs *regs)
 | |
| {
 | |
| 	struct unwind_frame_info info;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	t = task ? task : current;
 | |
| 	if (regs) {
 | |
| 		unwind_frame_init(&info, t, regs);
 | |
| 		goto show_stack;
 | |
| 	}
 | |
| 
 | |
| 	if (t == current) {
 | |
| 		unsigned long sp;
 | |
| 
 | |
| HERE:
 | |
| 		asm volatile ("copy %%r30, %0" : "=r"(sp));
 | |
| 		{
 | |
| 			struct pt_regs r;
 | |
| 
 | |
| 			memset(&r, 0, sizeof(struct pt_regs));
 | |
| 			r.iaoq[0] = (unsigned long)&&HERE;
 | |
| 			r.gr[2] = (unsigned long)__builtin_return_address(0);
 | |
| 			r.gr[30] = sp;
 | |
| 
 | |
| 			unwind_frame_init(&info, current, &r);
 | |
| 		}
 | |
| 	} else {
 | |
| 		unwind_frame_init_from_blocked_task(&info, t);
 | |
| 	}
 | |
| 
 | |
| show_stack:
 | |
| 	do_show_stack(&info);
 | |
| }
 | |
| 
 | |
| void show_stack(struct task_struct *t, unsigned long *sp)
 | |
| {
 | |
| 	return parisc_show_stack(t, sp, NULL);
 | |
| }
 | |
| 
 | |
| int is_valid_bugaddr(unsigned long iaoq)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void die_if_kernel(char *str, struct pt_regs *regs, long err)
 | |
| {
 | |
| 	if (user_mode(regs)) {
 | |
| 		if (err == 0)
 | |
| 			return; /* STFU */
 | |
| 
 | |
| 		parisc_printk_ratelimited(1, regs,
 | |
| 			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
 | |
| 			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	oops_in_progress = 1;
 | |
| 
 | |
| 	oops_enter();
 | |
| 
 | |
| 	/* Amuse the user in a SPARC fashion */
 | |
| 	if (err) printk(KERN_CRIT
 | |
| 			"      _______________________________ \n"
 | |
| 			"     < Your System ate a SPARC! Gah! >\n"
 | |
| 			"      ------------------------------- \n"
 | |
| 			"             \\   ^__^\n"
 | |
| 			"                 (__)\\       )\\/\\\n"
 | |
| 			"                  U  ||----w |\n"
 | |
| 			"                     ||     ||\n");
 | |
| 	
 | |
| 	/* unlock the pdc lock if necessary */
 | |
| 	pdc_emergency_unlock();
 | |
| 
 | |
| 	/* maybe the kernel hasn't booted very far yet and hasn't been able 
 | |
| 	 * to initialize the serial or STI console. In that case we should 
 | |
| 	 * re-enable the pdc console, so that the user will be able to 
 | |
| 	 * identify the problem. */
 | |
| 	if (!console_drivers)
 | |
| 		pdc_console_restart();
 | |
| 	
 | |
| 	if (err)
 | |
| 		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
 | |
| 			current->comm, task_pid_nr(current), str, err);
 | |
| 
 | |
| 	/* Wot's wrong wif bein' racy? */
 | |
| 	if (current->thread.flags & PARISC_KERNEL_DEATH) {
 | |
| 		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
 | |
| 		local_irq_enable();
 | |
| 		while (1);
 | |
| 	}
 | |
| 	current->thread.flags |= PARISC_KERNEL_DEATH;
 | |
| 
 | |
| 	show_regs(regs);
 | |
| 	dump_stack();
 | |
| 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 | |
| 
 | |
| 	if (in_interrupt())
 | |
| 		panic("Fatal exception in interrupt");
 | |
| 
 | |
| 	if (panic_on_oops) {
 | |
| 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
 | |
| 		ssleep(5);
 | |
| 		panic("Fatal exception");
 | |
| 	}
 | |
| 
 | |
| 	oops_exit();
 | |
| 	do_exit(SIGSEGV);
 | |
| }
 | |
| 
 | |
| /* gdb uses break 4,8 */
 | |
| #define GDB_BREAK_INSN 0x10004
 | |
| static void handle_gdb_break(struct pt_regs *regs, int wot)
 | |
| {
 | |
| 	struct siginfo si;
 | |
| 
 | |
| 	si.si_signo = SIGTRAP;
 | |
| 	si.si_errno = 0;
 | |
| 	si.si_code = wot;
 | |
| 	si.si_addr = (void __user *) (regs->iaoq[0] & ~3);
 | |
| 	force_sig_info(SIGTRAP, &si, current);
 | |
| }
 | |
| 
 | |
| static void handle_break(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned iir = regs->iir;
 | |
| 
 | |
| 	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
 | |
| 		/* check if a BUG() or WARN() trapped here.  */
 | |
| 		enum bug_trap_type tt;
 | |
| 		tt = report_bug(regs->iaoq[0] & ~3, regs);
 | |
| 		if (tt == BUG_TRAP_TYPE_WARN) {
 | |
| 			regs->iaoq[0] += 4;
 | |
| 			regs->iaoq[1] += 4;
 | |
| 			return; /* return to next instruction when WARN_ON().  */
 | |
| 		}
 | |
| 		die_if_kernel("Unknown kernel breakpoint", regs,
 | |
| 			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(iir != GDB_BREAK_INSN))
 | |
| 		parisc_printk_ratelimited(0, regs,
 | |
| 			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
 | |
| 			iir & 31, (iir>>13) & ((1<<13)-1),
 | |
| 			task_pid_nr(current), current->comm);
 | |
| 
 | |
| 	/* send standard GDB signal */
 | |
| 	handle_gdb_break(regs, TRAP_BRKPT);
 | |
| }
 | |
| 
 | |
| static void default_trap(int code, struct pt_regs *regs)
 | |
| {
 | |
| 	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
 | |
| 	show_regs(regs);
 | |
| }
 | |
| 
 | |
| void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
 | |
| 
 | |
| 
 | |
| void transfer_pim_to_trap_frame(struct pt_regs *regs)
 | |
| {
 | |
|     register int i;
 | |
|     extern unsigned int hpmc_pim_data[];
 | |
|     struct pdc_hpmc_pim_11 *pim_narrow;
 | |
|     struct pdc_hpmc_pim_20 *pim_wide;
 | |
| 
 | |
|     if (boot_cpu_data.cpu_type >= pcxu) {
 | |
| 
 | |
| 	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: The following code will probably generate a
 | |
| 	 * bunch of truncation error warnings from the compiler.
 | |
| 	 * Could be handled with an ifdef, but perhaps there
 | |
| 	 * is a better way.
 | |
| 	 */
 | |
| 
 | |
| 	regs->gr[0] = pim_wide->cr[22];
 | |
| 
 | |
| 	for (i = 1; i < 32; i++)
 | |
| 	    regs->gr[i] = pim_wide->gr[i];
 | |
| 
 | |
| 	for (i = 0; i < 32; i++)
 | |
| 	    regs->fr[i] = pim_wide->fr[i];
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 	    regs->sr[i] = pim_wide->sr[i];
 | |
| 
 | |
| 	regs->iasq[0] = pim_wide->cr[17];
 | |
| 	regs->iasq[1] = pim_wide->iasq_back;
 | |
| 	regs->iaoq[0] = pim_wide->cr[18];
 | |
| 	regs->iaoq[1] = pim_wide->iaoq_back;
 | |
| 
 | |
| 	regs->sar  = pim_wide->cr[11];
 | |
| 	regs->iir  = pim_wide->cr[19];
 | |
| 	regs->isr  = pim_wide->cr[20];
 | |
| 	regs->ior  = pim_wide->cr[21];
 | |
|     }
 | |
|     else {
 | |
| 	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
 | |
| 
 | |
| 	regs->gr[0] = pim_narrow->cr[22];
 | |
| 
 | |
| 	for (i = 1; i < 32; i++)
 | |
| 	    regs->gr[i] = pim_narrow->gr[i];
 | |
| 
 | |
| 	for (i = 0; i < 32; i++)
 | |
| 	    regs->fr[i] = pim_narrow->fr[i];
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 	    regs->sr[i] = pim_narrow->sr[i];
 | |
| 
 | |
| 	regs->iasq[0] = pim_narrow->cr[17];
 | |
| 	regs->iasq[1] = pim_narrow->iasq_back;
 | |
| 	regs->iaoq[0] = pim_narrow->cr[18];
 | |
| 	regs->iaoq[1] = pim_narrow->iaoq_back;
 | |
| 
 | |
| 	regs->sar  = pim_narrow->cr[11];
 | |
| 	regs->iir  = pim_narrow->cr[19];
 | |
| 	regs->isr  = pim_narrow->cr[20];
 | |
| 	regs->ior  = pim_narrow->cr[21];
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The following fields only have meaning if we came through
 | |
|      * another path. So just zero them here.
 | |
|      */
 | |
| 
 | |
|     regs->ksp = 0;
 | |
|     regs->kpc = 0;
 | |
|     regs->orig_r28 = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This routine is called as a last resort when everything else
 | |
|  * has gone clearly wrong. We get called for faults in kernel space,
 | |
|  * and HPMC's.
 | |
|  */
 | |
| void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(terminate_lock);
 | |
| 
 | |
| 	oops_in_progress = 1;
 | |
| 
 | |
| 	set_eiem(0);
 | |
| 	local_irq_disable();
 | |
| 	spin_lock(&terminate_lock);
 | |
| 
 | |
| 	/* unlock the pdc lock if necessary */
 | |
| 	pdc_emergency_unlock();
 | |
| 
 | |
| 	/* restart pdc console if necessary */
 | |
| 	if (!console_drivers)
 | |
| 		pdc_console_restart();
 | |
| 
 | |
| 	/* Not all paths will gutter the processor... */
 | |
| 	switch(code){
 | |
| 
 | |
| 	case 1:
 | |
| 		transfer_pim_to_trap_frame(regs);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		/* Fall through */
 | |
| 		break;
 | |
| 
 | |
| 	}
 | |
| 	    
 | |
| 	{
 | |
| 		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
 | |
| 		struct unwind_frame_info info;
 | |
| 		unwind_frame_init(&info, current, regs);
 | |
| 		do_show_stack(&info);
 | |
| 	}
 | |
| 
 | |
| 	printk("\n");
 | |
| 	printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n",
 | |
| 			msg, code, regs, offset);
 | |
| 	show_regs(regs);
 | |
| 
 | |
| 	spin_unlock(&terminate_lock);
 | |
| 
 | |
| 	/* put soft power button back under hardware control;
 | |
| 	 * if the user had pressed it once at any time, the 
 | |
| 	 * system will shut down immediately right here. */
 | |
| 	pdc_soft_power_button(0);
 | |
| 	
 | |
| 	/* Call kernel panic() so reboot timeouts work properly 
 | |
| 	 * FIXME: This function should be on the list of
 | |
| 	 * panic notifiers, and we should call panic
 | |
| 	 * directly from the location that we wish. 
 | |
| 	 * e.g. We should not call panic from
 | |
| 	 * parisc_terminate, but rather the oter way around.
 | |
| 	 * This hack works, prints the panic message twice,
 | |
| 	 * and it enables reboot timers!
 | |
| 	 */
 | |
| 	panic(msg);
 | |
| }
 | |
| 
 | |
| void notrace handle_interruption(int code, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long fault_address = 0;
 | |
| 	unsigned long fault_space = 0;
 | |
| 	struct siginfo si;
 | |
| 
 | |
| 	if (code == 1)
 | |
| 	    pdc_console_restart();  /* switch back to pdc if HPMC */
 | |
| 	else
 | |
| 	    local_irq_enable();
 | |
| 
 | |
| 	/* Security check:
 | |
| 	 * If the priority level is still user, and the
 | |
| 	 * faulting space is not equal to the active space
 | |
| 	 * then the user is attempting something in a space
 | |
| 	 * that does not belong to them. Kill the process.
 | |
| 	 *
 | |
| 	 * This is normally the situation when the user
 | |
| 	 * attempts to jump into the kernel space at the
 | |
| 	 * wrong offset, be it at the gateway page or a
 | |
| 	 * random location.
 | |
| 	 *
 | |
| 	 * We cannot normally signal the process because it
 | |
| 	 * could *be* on the gateway page, and processes
 | |
| 	 * executing on the gateway page can't have signals
 | |
| 	 * delivered.
 | |
| 	 * 
 | |
| 	 * We merely readjust the address into the users
 | |
| 	 * space, at a destination address of zero, and
 | |
| 	 * allow processing to continue.
 | |
| 	 */
 | |
| 	if (((unsigned long)regs->iaoq[0] & 3) &&
 | |
| 	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
 | |
| 		/* Kill the user process later */
 | |
| 		regs->iaoq[0] = 0 | 3;
 | |
| 		regs->iaoq[1] = regs->iaoq[0] + 4;
 | |
| 		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
 | |
| 		regs->gr[0] &= ~PSW_B;
 | |
| 		return;
 | |
| 	}
 | |
| 	
 | |
| #if 0
 | |
| 	printk(KERN_CRIT "Interruption # %d\n", code);
 | |
| #endif
 | |
| 
 | |
| 	switch(code) {
 | |
| 
 | |
| 	case  1:
 | |
| 		/* High-priority machine check (HPMC) */
 | |
| 		
 | |
| 		/* set up a new led state on systems shipped with a LED State panel */
 | |
| 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
 | |
| 
 | |
| 		parisc_terminate("High Priority Machine Check (HPMC)",
 | |
| 				regs, code, 0);
 | |
| 		/* NOT REACHED */
 | |
| 		
 | |
| 	case  2:
 | |
| 		/* Power failure interrupt */
 | |
| 		printk(KERN_CRIT "Power failure interrupt !\n");
 | |
| 		return;
 | |
| 
 | |
| 	case  3:
 | |
| 		/* Recovery counter trap */
 | |
| 		regs->gr[0] &= ~PSW_R;
 | |
| 		if (user_space(regs))
 | |
| 			handle_gdb_break(regs, TRAP_TRACE);
 | |
| 		/* else this must be the start of a syscall - just let it run */
 | |
| 		return;
 | |
| 
 | |
| 	case  5:
 | |
| 		/* Low-priority machine check */
 | |
| 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
 | |
| 		
 | |
| 		flush_cache_all();
 | |
| 		flush_tlb_all();
 | |
| 		cpu_lpmc(5, regs);
 | |
| 		return;
 | |
| 
 | |
| 	case  6:
 | |
| 		/* Instruction TLB miss fault/Instruction page fault */
 | |
| 		fault_address = regs->iaoq[0];
 | |
| 		fault_space   = regs->iasq[0];
 | |
| 		break;
 | |
| 
 | |
| 	case  8:
 | |
| 		/* Illegal instruction trap */
 | |
| 		die_if_kernel("Illegal instruction", regs, code);
 | |
| 		si.si_code = ILL_ILLOPC;
 | |
| 		goto give_sigill;
 | |
| 
 | |
| 	case  9:
 | |
| 		/* Break instruction trap */
 | |
| 		handle_break(regs);
 | |
| 		return;
 | |
| 
 | |
| 	case 10:
 | |
| 		/* Privileged operation trap */
 | |
| 		die_if_kernel("Privileged operation", regs, code);
 | |
| 		si.si_code = ILL_PRVOPC;
 | |
| 		goto give_sigill;
 | |
| 
 | |
| 	case 11:
 | |
| 		/* Privileged register trap */
 | |
| 		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
 | |
| 
 | |
| 			/* This is a MFCTL cr26/cr27 to gr instruction.
 | |
| 			 * PCXS traps on this, so we need to emulate it.
 | |
| 			 */
 | |
| 
 | |
| 			if (regs->iir & 0x00200000)
 | |
| 				regs->gr[regs->iir & 0x1f] = mfctl(27);
 | |
| 			else
 | |
| 				regs->gr[regs->iir & 0x1f] = mfctl(26);
 | |
| 
 | |
| 			regs->iaoq[0] = regs->iaoq[1];
 | |
| 			regs->iaoq[1] += 4;
 | |
| 			regs->iasq[0] = regs->iasq[1];
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		die_if_kernel("Privileged register usage", regs, code);
 | |
| 		si.si_code = ILL_PRVREG;
 | |
| 	give_sigill:
 | |
| 		si.si_signo = SIGILL;
 | |
| 		si.si_errno = 0;
 | |
| 		si.si_addr = (void __user *) regs->iaoq[0];
 | |
| 		force_sig_info(SIGILL, &si, current);
 | |
| 		return;
 | |
| 
 | |
| 	case 12:
 | |
| 		/* Overflow Trap, let the userland signal handler do the cleanup */
 | |
| 		si.si_signo = SIGFPE;
 | |
| 		si.si_code = FPE_INTOVF;
 | |
| 		si.si_addr = (void __user *) regs->iaoq[0];
 | |
| 		force_sig_info(SIGFPE, &si, current);
 | |
| 		return;
 | |
| 		
 | |
| 	case 13:
 | |
| 		/* Conditional Trap
 | |
| 		   The condition succeeds in an instruction which traps
 | |
| 		   on condition  */
 | |
| 		if(user_mode(regs)){
 | |
| 			si.si_signo = SIGFPE;
 | |
| 			/* Set to zero, and let the userspace app figure it out from
 | |
| 			   the insn pointed to by si_addr */
 | |
| 			si.si_code = 0;
 | |
| 			si.si_addr = (void __user *) regs->iaoq[0];
 | |
| 			force_sig_info(SIGFPE, &si, current);
 | |
| 			return;
 | |
| 		} 
 | |
| 		/* The kernel doesn't want to handle condition codes */
 | |
| 		break;
 | |
| 		
 | |
| 	case 14:
 | |
| 		/* Assist Exception Trap, i.e. floating point exception. */
 | |
| 		die_if_kernel("Floating point exception", regs, 0); /* quiet */
 | |
| 		__inc_irq_stat(irq_fpassist_count);
 | |
| 		handle_fpe(regs);
 | |
| 		return;
 | |
| 
 | |
| 	case 15:
 | |
| 		/* Data TLB miss fault/Data page fault */
 | |
| 		/* Fall through */
 | |
| 	case 16:
 | |
| 		/* Non-access instruction TLB miss fault */
 | |
| 		/* The instruction TLB entry needed for the target address of the FIC
 | |
| 		   is absent, and hardware can't find it, so we get to cleanup */
 | |
| 		/* Fall through */
 | |
| 	case 17:
 | |
| 		/* Non-access data TLB miss fault/Non-access data page fault */
 | |
| 		/* FIXME: 
 | |
| 			 Still need to add slow path emulation code here!
 | |
| 			 If the insn used a non-shadow register, then the tlb
 | |
| 			 handlers could not have their side-effect (e.g. probe
 | |
| 			 writing to a target register) emulated since rfir would
 | |
| 			 erase the changes to said register. Instead we have to
 | |
| 			 setup everything, call this function we are in, and emulate
 | |
| 			 by hand. Technically we need to emulate:
 | |
| 			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
 | |
| 		*/
 | |
| 		fault_address = regs->ior;
 | |
| 		fault_space = regs->isr;
 | |
| 		break;
 | |
| 
 | |
| 	case 18:
 | |
| 		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
 | |
| 		/* Check for unaligned access */
 | |
| 		if (check_unaligned(regs)) {
 | |
| 			handle_unaligned(regs);
 | |
| 			return;
 | |
| 		}
 | |
| 		/* Fall Through */
 | |
| 	case 26: 
 | |
| 		/* PCXL: Data memory access rights trap */
 | |
| 		fault_address = regs->ior;
 | |
| 		fault_space   = regs->isr;
 | |
| 		break;
 | |
| 
 | |
| 	case 19:
 | |
| 		/* Data memory break trap */
 | |
| 		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
 | |
| 		/* fall thru */
 | |
| 	case 21:
 | |
| 		/* Page reference trap */
 | |
| 		handle_gdb_break(regs, TRAP_HWBKPT);
 | |
| 		return;
 | |
| 
 | |
| 	case 25:
 | |
| 		/* Taken branch trap */
 | |
| 		regs->gr[0] &= ~PSW_T;
 | |
| 		if (user_space(regs))
 | |
| 			handle_gdb_break(regs, TRAP_BRANCH);
 | |
| 		/* else this must be the start of a syscall - just let it
 | |
| 		 * run.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	case  7:  
 | |
| 		/* Instruction access rights */
 | |
| 		/* PCXL: Instruction memory protection trap */
 | |
| 
 | |
| 		/*
 | |
| 		 * This could be caused by either: 1) a process attempting
 | |
| 		 * to execute within a vma that does not have execute
 | |
| 		 * permission, or 2) an access rights violation caused by a
 | |
| 		 * flush only translation set up by ptep_get_and_clear().
 | |
| 		 * So we check the vma permissions to differentiate the two.
 | |
| 		 * If the vma indicates we have execute permission, then
 | |
| 		 * the cause is the latter one. In this case, we need to
 | |
| 		 * call do_page_fault() to fix the problem.
 | |
| 		 */
 | |
| 
 | |
| 		if (user_mode(regs)) {
 | |
| 			struct vm_area_struct *vma;
 | |
| 
 | |
| 			down_read(¤t->mm->mmap_sem);
 | |
| 			vma = find_vma(current->mm,regs->iaoq[0]);
 | |
| 			if (vma && (regs->iaoq[0] >= vma->vm_start)
 | |
| 				&& (vma->vm_flags & VM_EXEC)) {
 | |
| 
 | |
| 				fault_address = regs->iaoq[0];
 | |
| 				fault_space = regs->iasq[0];
 | |
| 
 | |
| 				up_read(¤t->mm->mmap_sem);
 | |
| 				break; /* call do_page_fault() */
 | |
| 			}
 | |
| 			up_read(¤t->mm->mmap_sem);
 | |
| 		}
 | |
| 		/* Fall Through */
 | |
| 	case 27: 
 | |
| 		/* Data memory protection ID trap */
 | |
| 		if (code == 27 && !user_mode(regs) &&
 | |
| 			fixup_exception(regs))
 | |
| 			return;
 | |
| 
 | |
| 		die_if_kernel("Protection id trap", regs, code);
 | |
| 		si.si_code = SEGV_MAPERR;
 | |
| 		si.si_signo = SIGSEGV;
 | |
| 		si.si_errno = 0;
 | |
| 		if (code == 7)
 | |
| 		    si.si_addr = (void __user *) regs->iaoq[0];
 | |
| 		else
 | |
| 		    si.si_addr = (void __user *) regs->ior;
 | |
| 		force_sig_info(SIGSEGV, &si, current);
 | |
| 		return;
 | |
| 
 | |
| 	case 28: 
 | |
| 		/* Unaligned data reference trap */
 | |
| 		handle_unaligned(regs);
 | |
| 		return;
 | |
| 
 | |
| 	default:
 | |
| 		if (user_mode(regs)) {
 | |
| 			parisc_printk_ratelimited(0, regs, KERN_DEBUG
 | |
| 				"handle_interruption() pid=%d command='%s'\n",
 | |
| 				task_pid_nr(current), current->comm);
 | |
| 			/* SIGBUS, for lack of a better one. */
 | |
| 			si.si_signo = SIGBUS;
 | |
| 			si.si_code = BUS_OBJERR;
 | |
| 			si.si_errno = 0;
 | |
| 			si.si_addr = (void __user *) regs->ior;
 | |
| 			force_sig_info(SIGBUS, &si, current);
 | |
| 			return;
 | |
| 		}
 | |
| 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
 | |
| 		
 | |
| 		parisc_terminate("Unexpected interruption", regs, code, 0);
 | |
| 		/* NOT REACHED */
 | |
| 	}
 | |
| 
 | |
| 	if (user_mode(regs)) {
 | |
| 	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
 | |
| 		parisc_printk_ratelimited(0, regs, KERN_DEBUG
 | |
| 				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
 | |
| 				code, fault_space,
 | |
| 				task_pid_nr(current), current->comm);
 | |
| 		si.si_signo = SIGSEGV;
 | |
| 		si.si_errno = 0;
 | |
| 		si.si_code = SEGV_MAPERR;
 | |
| 		si.si_addr = (void __user *) regs->ior;
 | |
| 		force_sig_info(SIGSEGV, &si, current);
 | |
| 		return;
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 
 | |
| 	    /*
 | |
| 	     * The kernel should never fault on its own address space,
 | |
| 	     * unless pagefault_disable() was called before.
 | |
| 	     */
 | |
| 
 | |
| 	    if (fault_space == 0 && !faulthandler_disabled())
 | |
| 	    {
 | |
| 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
 | |
| 		parisc_terminate("Kernel Fault", regs, code, fault_address);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	do_page_fault(regs, code, fault_address);
 | |
| }
 | |
| 
 | |
| 
 | |
| int __init check_ivt(void *iva)
 | |
| {
 | |
| 	extern u32 os_hpmc_size;
 | |
| 	extern const u32 os_hpmc[];
 | |
| 
 | |
| 	int i;
 | |
| 	u32 check = 0;
 | |
| 	u32 *ivap;
 | |
| 	u32 *hpmcp;
 | |
| 	u32 length;
 | |
| 
 | |
| 	if (strcmp((char *)iva, "cows can fly"))
 | |
| 		return -1;
 | |
| 
 | |
| 	ivap = (u32 *)iva;
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 	    *ivap++ = 0;
 | |
| 
 | |
| 	/* Compute Checksum for HPMC handler */
 | |
| 	length = os_hpmc_size;
 | |
| 	ivap[7] = length;
 | |
| 
 | |
| 	hpmcp = (u32 *)os_hpmc;
 | |
| 
 | |
| 	for (i=0; i<length/4; i++)
 | |
| 	    check += *hpmcp++;
 | |
| 
 | |
| 	for (i=0; i<8; i++)
 | |
| 	    check += ivap[i];
 | |
| 
 | |
| 	ivap[5] = -check;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 	
 | |
| #ifndef CONFIG_64BIT
 | |
| extern const void fault_vector_11;
 | |
| #endif
 | |
| extern const void fault_vector_20;
 | |
| 
 | |
| void __init trap_init(void)
 | |
| {
 | |
| 	void *iva;
 | |
| 
 | |
| 	if (boot_cpu_data.cpu_type >= pcxu)
 | |
| 		iva = (void *) &fault_vector_20;
 | |
| 	else
 | |
| #ifdef CONFIG_64BIT
 | |
| 		panic("Can't boot 64-bit OS on PA1.1 processor!");
 | |
| #else
 | |
| 		iva = (void *) &fault_vector_11;
 | |
| #endif
 | |
| 
 | |
| 	if (check_ivt(iva))
 | |
| 		panic("IVT invalid");
 | |
| }
 |