 1e51714c81
			
		
	
	
	1e51714c81
	
	
	
		
			
			This replaces the plain loop over the sglist array with for_each_sg() macro which consists of sg_next() function calls. Since MIPS doesn't select ARCH_HAS_SG_CHAIN, it is not necessary to use for_each_sg() in order to loop over each sg element. But this can help find problems with drivers that do not properly initialize their sg tables when CONFIG_DEBUG_SG is enabled. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: akpm@linux-foundation.org Cc: linux-mips@linux-mips.org Cc: linux-arch@vger.kernel.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/9930/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			406 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			406 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
 | |
|  * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
 | |
|  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/dma-contiguous.h>
 | |
| 
 | |
| #include <asm/cache.h>
 | |
| #include <asm/cpu-type.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include <dma-coherence.h>
 | |
| 
 | |
| #ifdef CONFIG_DMA_MAYBE_COHERENT
 | |
| int coherentio = 0;	/* User defined DMA coherency from command line. */
 | |
| EXPORT_SYMBOL_GPL(coherentio);
 | |
| int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
 | |
| 
 | |
| static int __init setcoherentio(char *str)
 | |
| {
 | |
| 	coherentio = 1;
 | |
| 	pr_info("Hardware DMA cache coherency (command line)\n");
 | |
| 	return 0;
 | |
| }
 | |
| early_param("coherentio", setcoherentio);
 | |
| 
 | |
| static int __init setnocoherentio(char *str)
 | |
| {
 | |
| 	coherentio = 0;
 | |
| 	pr_info("Software DMA cache coherency (command line)\n");
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nocoherentio", setnocoherentio);
 | |
| #endif
 | |
| 
 | |
| static inline struct page *dma_addr_to_page(struct device *dev,
 | |
| 	dma_addr_t dma_addr)
 | |
| {
 | |
| 	return pfn_to_page(
 | |
| 		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 | |
|  * speculatively fill random cachelines with stale data at any time,
 | |
|  * requiring an extra flush post-DMA.
 | |
|  *
 | |
|  * Warning on the terminology - Linux calls an uncached area coherent;
 | |
|  * MIPS terminology calls memory areas with hardware maintained coherency
 | |
|  * coherent.
 | |
|  *
 | |
|  * Note that the R14000 and R16000 should also be checked for in this
 | |
|  * condition.  However this function is only called on non-I/O-coherent
 | |
|  * systems and only the R10000 and R12000 are used in such systems, the
 | |
|  * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
 | |
|  */
 | |
| static inline int cpu_needs_post_dma_flush(struct device *dev)
 | |
| {
 | |
| 	return !plat_device_is_coherent(dev) &&
 | |
| 	       (boot_cpu_type() == CPU_R10000 ||
 | |
| 		boot_cpu_type() == CPU_R12000 ||
 | |
| 		boot_cpu_type() == CPU_BMIPS5000);
 | |
| }
 | |
| 
 | |
| static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 | |
| {
 | |
| 	gfp_t dma_flag;
 | |
| 
 | |
| 	/* ignore region specifiers */
 | |
| 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 | |
| 
 | |
| #ifdef CONFIG_ISA
 | |
| 	if (dev == NULL)
 | |
| 		dma_flag = __GFP_DMA;
 | |
| 	else
 | |
| #endif
 | |
| #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 | |
| 	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 | |
| 			dma_flag = __GFP_DMA;
 | |
| 	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 | |
| 			dma_flag = __GFP_DMA32;
 | |
| 	else
 | |
| #endif
 | |
| #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 | |
| 	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 | |
| 		dma_flag = __GFP_DMA32;
 | |
| 	else
 | |
| #endif
 | |
| #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 | |
| 	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 | |
| 		dma_flag = __GFP_DMA;
 | |
| 	else
 | |
| #endif
 | |
| 		dma_flag = 0;
 | |
| 
 | |
| 	/* Don't invoke OOM killer */
 | |
| 	gfp |= __GFP_NORETRY;
 | |
| 
 | |
| 	return gfp | dma_flag;
 | |
| }
 | |
| 
 | |
| void *dma_alloc_noncoherent(struct device *dev, size_t size,
 | |
| 	dma_addr_t * dma_handle, gfp_t gfp)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	gfp = massage_gfp_flags(dev, gfp);
 | |
| 
 | |
| 	ret = (void *) __get_free_pages(gfp, get_order(size));
 | |
| 
 | |
| 	if (ret != NULL) {
 | |
| 		memset(ret, 0, size);
 | |
| 		*dma_handle = plat_map_dma_mem(dev, ret, size);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_alloc_noncoherent);
 | |
| 
 | |
| static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
 | |
| 	dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
 | |
| {
 | |
| 	void *ret;
 | |
| 	struct page *page = NULL;
 | |
| 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	gfp = massage_gfp_flags(dev, gfp);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DMA_CMA) && !(gfp & GFP_ATOMIC))
 | |
| 		page = dma_alloc_from_contiguous(dev,
 | |
| 					count, get_order(size));
 | |
| 	if (!page)
 | |
| 		page = alloc_pages(gfp, get_order(size));
 | |
| 
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = page_address(page);
 | |
| 	memset(ret, 0, size);
 | |
| 	*dma_handle = plat_map_dma_mem(dev, ret, size);
 | |
| 	if (!plat_device_is_coherent(dev)) {
 | |
| 		dma_cache_wback_inv((unsigned long) ret, size);
 | |
| 		if (!hw_coherentio)
 | |
| 			ret = UNCAC_ADDR(ret);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
 | |
| 	dma_addr_t dma_handle)
 | |
| {
 | |
| 	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 | |
| 	free_pages((unsigned long) vaddr, get_order(size));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_free_noncoherent);
 | |
| 
 | |
| static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
 | |
| 	dma_addr_t dma_handle, struct dma_attrs *attrs)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) vaddr;
 | |
| 	int order = get_order(size);
 | |
| 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	if (dma_release_from_coherent(dev, order, vaddr))
 | |
| 		return;
 | |
| 
 | |
| 	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev) && !hw_coherentio)
 | |
| 		addr = CAC_ADDR(addr);
 | |
| 
 | |
| 	page = virt_to_page((void *) addr);
 | |
| 
 | |
| 	if (!dma_release_from_contiguous(dev, page, count))
 | |
| 		__free_pages(page, get_order(size));
 | |
| }
 | |
| 
 | |
| static inline void __dma_sync_virtual(void *addr, size_t size,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	switch (direction) {
 | |
| 	case DMA_TO_DEVICE:
 | |
| 		dma_cache_wback((unsigned long)addr, size);
 | |
| 		break;
 | |
| 
 | |
| 	case DMA_FROM_DEVICE:
 | |
| 		dma_cache_inv((unsigned long)addr, size);
 | |
| 		break;
 | |
| 
 | |
| 	case DMA_BIDIRECTIONAL:
 | |
| 		dma_cache_wback_inv((unsigned long)addr, size);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A single sg entry may refer to multiple physically contiguous
 | |
|  * pages. But we still need to process highmem pages individually.
 | |
|  * If highmem is not configured then the bulk of this loop gets
 | |
|  * optimized out.
 | |
|  */
 | |
| static inline void __dma_sync(struct page *page,
 | |
| 	unsigned long offset, size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	size_t left = size;
 | |
| 
 | |
| 	do {
 | |
| 		size_t len = left;
 | |
| 
 | |
| 		if (PageHighMem(page)) {
 | |
| 			void *addr;
 | |
| 
 | |
| 			if (offset + len > PAGE_SIZE) {
 | |
| 				if (offset >= PAGE_SIZE) {
 | |
| 					page += offset >> PAGE_SHIFT;
 | |
| 					offset &= ~PAGE_MASK;
 | |
| 				}
 | |
| 				len = PAGE_SIZE - offset;
 | |
| 			}
 | |
| 
 | |
| 			addr = kmap_atomic(page);
 | |
| 			__dma_sync_virtual(addr + offset, len, direction);
 | |
| 			kunmap_atomic(addr);
 | |
| 		} else
 | |
| 			__dma_sync_virtual(page_address(page) + offset,
 | |
| 					   size, direction);
 | |
| 		offset = 0;
 | |
| 		page++;
 | |
| 		left -= len;
 | |
| 	} while (left);
 | |
| }
 | |
| 
 | |
| static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
 | |
| 	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
 | |
| {
 | |
| 	if (cpu_needs_post_dma_flush(dev))
 | |
| 		__dma_sync(dma_addr_to_page(dev, dma_addr),
 | |
| 			   dma_addr & ~PAGE_MASK, size, direction);
 | |
| 	plat_post_dma_flush(dev);
 | |
| 	plat_unmap_dma_mem(dev, dma_addr, size, direction);
 | |
| }
 | |
| 
 | |
| static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
 | |
| 	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
 | |
| {
 | |
| 	int i;
 | |
| 	struct scatterlist *sg;
 | |
| 
 | |
| 	for_each_sg(sglist, sg, nents, i) {
 | |
| 		if (!plat_device_is_coherent(dev))
 | |
| 			__dma_sync(sg_page(sg), sg->offset, sg->length,
 | |
| 				   direction);
 | |
| #ifdef CONFIG_NEED_SG_DMA_LENGTH
 | |
| 		sg->dma_length = sg->length;
 | |
| #endif
 | |
| 		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
 | |
| 				  sg->offset;
 | |
| 	}
 | |
| 
 | |
| 	return nents;
 | |
| }
 | |
| 
 | |
| static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
 | |
| 	unsigned long offset, size_t size, enum dma_data_direction direction,
 | |
| 	struct dma_attrs *attrs)
 | |
| {
 | |
| 	if (!plat_device_is_coherent(dev))
 | |
| 		__dma_sync(page, offset, size, direction);
 | |
| 
 | |
| 	return plat_map_dma_mem_page(dev, page) + offset;
 | |
| }
 | |
| 
 | |
| static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
 | |
| 	int nhwentries, enum dma_data_direction direction,
 | |
| 	struct dma_attrs *attrs)
 | |
| {
 | |
| 	int i;
 | |
| 	struct scatterlist *sg;
 | |
| 
 | |
| 	for_each_sg(sglist, sg, nhwentries, i) {
 | |
| 		if (!plat_device_is_coherent(dev) &&
 | |
| 		    direction != DMA_TO_DEVICE)
 | |
| 			__dma_sync(sg_page(sg), sg->offset, sg->length,
 | |
| 				   direction);
 | |
| 		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mips_dma_sync_single_for_cpu(struct device *dev,
 | |
| 	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	if (cpu_needs_post_dma_flush(dev))
 | |
| 		__dma_sync(dma_addr_to_page(dev, dma_handle),
 | |
| 			   dma_handle & ~PAGE_MASK, size, direction);
 | |
| 	plat_post_dma_flush(dev);
 | |
| }
 | |
| 
 | |
| static void mips_dma_sync_single_for_device(struct device *dev,
 | |
| 	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
 | |
| {
 | |
| 	if (!plat_device_is_coherent(dev))
 | |
| 		__dma_sync(dma_addr_to_page(dev, dma_handle),
 | |
| 			   dma_handle & ~PAGE_MASK, size, direction);
 | |
| }
 | |
| 
 | |
| static void mips_dma_sync_sg_for_cpu(struct device *dev,
 | |
| 	struct scatterlist *sglist, int nelems,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	int i;
 | |
| 	struct scatterlist *sg;
 | |
| 
 | |
| 	if (cpu_needs_post_dma_flush(dev)) {
 | |
| 		for_each_sg(sglist, sg, nelems, i) {
 | |
| 			__dma_sync(sg_page(sg), sg->offset, sg->length,
 | |
| 				   direction);
 | |
| 		}
 | |
| 	}
 | |
| 	plat_post_dma_flush(dev);
 | |
| }
 | |
| 
 | |
| static void mips_dma_sync_sg_for_device(struct device *dev,
 | |
| 	struct scatterlist *sglist, int nelems,
 | |
| 	enum dma_data_direction direction)
 | |
| {
 | |
| 	int i;
 | |
| 	struct scatterlist *sg;
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev)) {
 | |
| 		for_each_sg(sglist, sg, nelems, i) {
 | |
| 			__dma_sync(sg_page(sg), sg->offset, sg->length,
 | |
| 				   direction);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mips_dma_supported(struct device *dev, u64 mask)
 | |
| {
 | |
| 	return plat_dma_supported(dev, mask);
 | |
| }
 | |
| 
 | |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 | |
| 			 enum dma_data_direction direction)
 | |
| {
 | |
| 	BUG_ON(direction == DMA_NONE);
 | |
| 
 | |
| 	if (!plat_device_is_coherent(dev))
 | |
| 		__dma_sync_virtual(vaddr, size, direction);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dma_cache_sync);
 | |
| 
 | |
| static struct dma_map_ops mips_default_dma_map_ops = {
 | |
| 	.alloc = mips_dma_alloc_coherent,
 | |
| 	.free = mips_dma_free_coherent,
 | |
| 	.map_page = mips_dma_map_page,
 | |
| 	.unmap_page = mips_dma_unmap_page,
 | |
| 	.map_sg = mips_dma_map_sg,
 | |
| 	.unmap_sg = mips_dma_unmap_sg,
 | |
| 	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
 | |
| 	.sync_single_for_device = mips_dma_sync_single_for_device,
 | |
| 	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
 | |
| 	.sync_sg_for_device = mips_dma_sync_sg_for_device,
 | |
| 	.mapping_error = mips_dma_mapping_error,
 | |
| 	.dma_supported = mips_dma_supported
 | |
| };
 | |
| 
 | |
| struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
 | |
| EXPORT_SYMBOL(mips_dma_map_ops);
 | |
| 
 | |
| #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
 | |
| 
 | |
| static int __init mips_dma_init(void)
 | |
| {
 | |
| 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(mips_dma_init);
 |