 ed9244e6c5
			
		
	
	
	ed9244e6c5
	
	
	
		
			
			Fix possible unintended sign extension in unsigned MMIO loads by casting to uint16_t in the case of mmio_needed != 2. Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org> Reviewed-by: James Hogan <james.hogan@imgtec.com> Tested-by: James Hogan <james.hogan@imgtec.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: kvm@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/9985/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			2631 lines
		
	
	
	
		
			69 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2631 lines
		
	
	
	
		
			69 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * KVM/MIPS: Instruction/Exception emulation
 | |
|  *
 | |
|  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 | |
|  * Authors: Sanjay Lal <sanjayl@kymasys.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/random.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cpu-info.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/inst.h>
 | |
| 
 | |
| #undef CONFIG_MIPS_MT
 | |
| #include <asm/r4kcache.h>
 | |
| #define CONFIG_MIPS_MT
 | |
| 
 | |
| #include "opcode.h"
 | |
| #include "interrupt.h"
 | |
| #include "commpage.h"
 | |
| 
 | |
| #include "trace.h"
 | |
| 
 | |
| /*
 | |
|  * Compute the return address and do emulate branch simulation, if required.
 | |
|  * This function should be called only in branch delay slot active.
 | |
|  */
 | |
| unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
 | |
| 	unsigned long instpc)
 | |
| {
 | |
| 	unsigned int dspcontrol;
 | |
| 	union mips_instruction insn;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	long epc = instpc;
 | |
| 	long nextpc = KVM_INVALID_INST;
 | |
| 
 | |
| 	if (epc & 3)
 | |
| 		goto unaligned;
 | |
| 
 | |
| 	/* Read the instruction */
 | |
| 	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
 | |
| 
 | |
| 	if (insn.word == KVM_INVALID_INST)
 | |
| 		return KVM_INVALID_INST;
 | |
| 
 | |
| 	switch (insn.i_format.opcode) {
 | |
| 		/* jr and jalr are in r_format format. */
 | |
| 	case spec_op:
 | |
| 		switch (insn.r_format.func) {
 | |
| 		case jalr_op:
 | |
| 			arch->gprs[insn.r_format.rd] = epc + 8;
 | |
| 			/* Fall through */
 | |
| 		case jr_op:
 | |
| 			nextpc = arch->gprs[insn.r_format.rs];
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 		/*
 | |
| 		 * This group contains:
 | |
| 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
 | |
| 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
 | |
| 		 */
 | |
| 	case bcond_op:
 | |
| 		switch (insn.i_format.rt) {
 | |
| 		case bltz_op:
 | |
| 		case bltzl_op:
 | |
| 			if ((long)arch->gprs[insn.i_format.rs] < 0)
 | |
| 				epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				epc += 8;
 | |
| 			nextpc = epc;
 | |
| 			break;
 | |
| 
 | |
| 		case bgez_op:
 | |
| 		case bgezl_op:
 | |
| 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
 | |
| 				epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				epc += 8;
 | |
| 			nextpc = epc;
 | |
| 			break;
 | |
| 
 | |
| 		case bltzal_op:
 | |
| 		case bltzall_op:
 | |
| 			arch->gprs[31] = epc + 8;
 | |
| 			if ((long)arch->gprs[insn.i_format.rs] < 0)
 | |
| 				epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				epc += 8;
 | |
| 			nextpc = epc;
 | |
| 			break;
 | |
| 
 | |
| 		case bgezal_op:
 | |
| 		case bgezall_op:
 | |
| 			arch->gprs[31] = epc + 8;
 | |
| 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
 | |
| 				epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				epc += 8;
 | |
| 			nextpc = epc;
 | |
| 			break;
 | |
| 		case bposge32_op:
 | |
| 			if (!cpu_has_dsp)
 | |
| 				goto sigill;
 | |
| 
 | |
| 			dspcontrol = rddsp(0x01);
 | |
| 
 | |
| 			if (dspcontrol >= 32)
 | |
| 				epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 			else
 | |
| 				epc += 8;
 | |
| 			nextpc = epc;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 		/* These are unconditional and in j_format. */
 | |
| 	case jal_op:
 | |
| 		arch->gprs[31] = instpc + 8;
 | |
| 	case j_op:
 | |
| 		epc += 4;
 | |
| 		epc >>= 28;
 | |
| 		epc <<= 28;
 | |
| 		epc |= (insn.j_format.target << 2);
 | |
| 		nextpc = epc;
 | |
| 		break;
 | |
| 
 | |
| 		/* These are conditional and in i_format. */
 | |
| 	case beq_op:
 | |
| 	case beql_op:
 | |
| 		if (arch->gprs[insn.i_format.rs] ==
 | |
| 		    arch->gprs[insn.i_format.rt])
 | |
| 			epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			epc += 8;
 | |
| 		nextpc = epc;
 | |
| 		break;
 | |
| 
 | |
| 	case bne_op:
 | |
| 	case bnel_op:
 | |
| 		if (arch->gprs[insn.i_format.rs] !=
 | |
| 		    arch->gprs[insn.i_format.rt])
 | |
| 			epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			epc += 8;
 | |
| 		nextpc = epc;
 | |
| 		break;
 | |
| 
 | |
| 	case blez_op:		/* not really i_format */
 | |
| 	case blezl_op:
 | |
| 		/* rt field assumed to be zero */
 | |
| 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
 | |
| 			epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			epc += 8;
 | |
| 		nextpc = epc;
 | |
| 		break;
 | |
| 
 | |
| 	case bgtz_op:
 | |
| 	case bgtzl_op:
 | |
| 		/* rt field assumed to be zero */
 | |
| 		if ((long)arch->gprs[insn.i_format.rs] > 0)
 | |
| 			epc = epc + 4 + (insn.i_format.simmediate << 2);
 | |
| 		else
 | |
| 			epc += 8;
 | |
| 		nextpc = epc;
 | |
| 		break;
 | |
| 
 | |
| 		/* And now the FPA/cp1 branch instructions. */
 | |
| 	case cop1_op:
 | |
| 		kvm_err("%s: unsupported cop1_op\n", __func__);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return nextpc;
 | |
| 
 | |
| unaligned:
 | |
| 	kvm_err("%s: unaligned epc\n", __func__);
 | |
| 	return nextpc;
 | |
| 
 | |
| sigill:
 | |
| 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
 | |
| 	return nextpc;
 | |
| }
 | |
| 
 | |
| enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
 | |
| {
 | |
| 	unsigned long branch_pc;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if (cause & CAUSEF_BD) {
 | |
| 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
 | |
| 		if (branch_pc == KVM_INVALID_INST) {
 | |
| 			er = EMULATE_FAIL;
 | |
| 		} else {
 | |
| 			vcpu->arch.pc = branch_pc;
 | |
| 			kvm_debug("BD update_pc(): New PC: %#lx\n",
 | |
| 				  vcpu->arch.pc);
 | |
| 		}
 | |
| 	} else
 | |
| 		vcpu->arch.pc += 4;
 | |
| 
 | |
| 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Returns:	1 if the CP0_Count timer is disabled by either the guest
 | |
|  *		CP0_Cause.DC bit or the count_ctl.DC bit.
 | |
|  *		0 otherwise (in which case CP0_Count timer is running).
 | |
|  */
 | |
| static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 
 | |
| 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
 | |
| 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 | |
|  *
 | |
|  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 | |
|  *
 | |
|  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 | |
|  */
 | |
| static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
 | |
| {
 | |
| 	s64 now_ns, periods;
 | |
| 	u64 delta;
 | |
| 
 | |
| 	now_ns = ktime_to_ns(now);
 | |
| 	delta = now_ns + vcpu->arch.count_dyn_bias;
 | |
| 
 | |
| 	if (delta >= vcpu->arch.count_period) {
 | |
| 		/* If delta is out of safe range the bias needs adjusting */
 | |
| 		periods = div64_s64(now_ns, vcpu->arch.count_period);
 | |
| 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
 | |
| 		/* Recalculate delta with new bias */
 | |
| 		delta = now_ns + vcpu->arch.count_dyn_bias;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We've ensured that:
 | |
| 	 *   delta < count_period
 | |
| 	 *
 | |
| 	 * Therefore the intermediate delta*count_hz will never overflow since
 | |
| 	 * at the boundary condition:
 | |
| 	 *   delta = count_period
 | |
| 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
 | |
| 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
 | |
| 	 */
 | |
| 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_count_time() - Get effective current time.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 | |
|  * except when the master disable bit is set in count_ctl, in which case it is
 | |
|  * count_resume, i.e. the time that the count was disabled.
 | |
|  *
 | |
|  * Returns:	Effective monotonic ktime for CP0_Count.
 | |
|  */
 | |
| static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 | |
| 		return vcpu->arch.count_resume;
 | |
| 
 | |
| 	return ktime_get();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_read_count_running() - Read the current count value as if running.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @now:	Kernel time to read CP0_Count at.
 | |
|  *
 | |
|  * Returns the current guest CP0_Count register at time @now and handles if the
 | |
|  * timer interrupt is pending and hasn't been handled yet.
 | |
|  *
 | |
|  * Returns:	The current value of the guest CP0_Count register.
 | |
|  */
 | |
| static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
 | |
| {
 | |
| 	ktime_t expires;
 | |
| 	int running;
 | |
| 
 | |
| 	/* Is the hrtimer pending? */
 | |
| 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
 | |
| 	if (ktime_compare(now, expires) >= 0) {
 | |
| 		/*
 | |
| 		 * Cancel it while we handle it so there's no chance of
 | |
| 		 * interference with the timeout handler.
 | |
| 		 */
 | |
| 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
 | |
| 
 | |
| 		/* Nothing should be waiting on the timeout */
 | |
| 		kvm_mips_callbacks->queue_timer_int(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Restart the timer if it was running based on the expiry time
 | |
| 		 * we read, so that we don't push it back 2 periods.
 | |
| 		 */
 | |
| 		if (running) {
 | |
| 			expires = ktime_add_ns(expires,
 | |
| 					       vcpu->arch.count_period);
 | |
| 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
 | |
| 				      HRTIMER_MODE_ABS);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Return the biased and scaled guest CP0_Count */
 | |
| 	return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_read_count() - Read the current count value.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Read the current guest CP0_Count value, taking into account whether the timer
 | |
|  * is stopped.
 | |
|  *
 | |
|  * Returns:	The current guest CP0_Count value.
 | |
|  */
 | |
| uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 
 | |
| 	/* If count disabled just read static copy of count */
 | |
| 	if (kvm_mips_count_disabled(vcpu))
 | |
| 		return kvm_read_c0_guest_count(cop0);
 | |
| 
 | |
| 	return kvm_mips_read_count_running(vcpu, ktime_get());
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @count:	Output pointer for CP0_Count value at point of freeze.
 | |
|  *
 | |
|  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 | |
|  * at the point it was frozen. It is guaranteed that any pending interrupts at
 | |
|  * the point it was frozen are handled, and none after that point.
 | |
|  *
 | |
|  * This is useful where the time/CP0_Count is needed in the calculation of the
 | |
|  * new parameters.
 | |
|  *
 | |
|  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 | |
|  *
 | |
|  * Returns:	The ktime at the point of freeze.
 | |
|  */
 | |
| static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
 | |
| 				       uint32_t *count)
 | |
| {
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	/* stop hrtimer before finding time */
 | |
| 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 | |
| 	now = ktime_get();
 | |
| 
 | |
| 	/* find count at this point and handle pending hrtimer */
 | |
| 	*count = kvm_mips_read_count_running(vcpu, now);
 | |
| 
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @now:	ktime at point of resume.
 | |
|  * @count:	CP0_Count at point of resume.
 | |
|  *
 | |
|  * Resumes the timer and updates the timer expiry based on @now and @count.
 | |
|  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 | |
|  * parameters need to be changed.
 | |
|  *
 | |
|  * It is guaranteed that a timer interrupt immediately after resume will be
 | |
|  * handled, but not if CP_Compare is exactly at @count. That case is already
 | |
|  * handled by kvm_mips_freeze_timer().
 | |
|  *
 | |
|  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 | |
|  */
 | |
| static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
 | |
| 				    ktime_t now, uint32_t count)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	uint32_t compare;
 | |
| 	u64 delta;
 | |
| 	ktime_t expire;
 | |
| 
 | |
| 	/* Calculate timeout (wrap 0 to 2^32) */
 | |
| 	compare = kvm_read_c0_guest_compare(cop0);
 | |
| 	delta = (u64)(uint32_t)(compare - count - 1) + 1;
 | |
| 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 | |
| 	expire = ktime_add_ns(now, delta);
 | |
| 
 | |
| 	/* Update hrtimer to use new timeout */
 | |
| 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 | |
| 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Recalculates and updates the expiry time of the hrtimer. This can be used
 | |
|  * after timer parameters have been altered which do not depend on the time that
 | |
|  * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
 | |
|  * kvm_mips_resume_hrtimer() are used directly).
 | |
|  *
 | |
|  * It is guaranteed that no timer interrupts will be lost in the process.
 | |
|  *
 | |
|  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 | |
|  */
 | |
| static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ktime_t now;
 | |
| 	uint32_t count;
 | |
| 
 | |
| 	/*
 | |
| 	 * freeze_hrtimer takes care of a timer interrupts <= count, and
 | |
| 	 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
 | |
| 	 */
 | |
| 	now = kvm_mips_freeze_hrtimer(vcpu, &count);
 | |
| 	kvm_mips_resume_hrtimer(vcpu, now, count);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_write_count() - Modify the count and update timer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @count:	Guest CP0_Count value to set.
 | |
|  *
 | |
|  * Sets the CP0_Count value and updates the timer accordingly.
 | |
|  */
 | |
| void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	/* Calculate bias */
 | |
| 	now = kvm_mips_count_time(vcpu);
 | |
| 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 | |
| 
 | |
| 	if (kvm_mips_count_disabled(vcpu))
 | |
| 		/* The timer's disabled, adjust the static count */
 | |
| 		kvm_write_c0_guest_count(cop0, count);
 | |
| 	else
 | |
| 		/* Update timeout */
 | |
| 		kvm_mips_resume_hrtimer(vcpu, now, count);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_init_count() - Initialise timer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
 | |
|  * it going if it's enabled.
 | |
|  */
 | |
| void kvm_mips_init_count(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* 100 MHz */
 | |
| 	vcpu->arch.count_hz = 100*1000*1000;
 | |
| 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
 | |
| 					  vcpu->arch.count_hz);
 | |
| 	vcpu->arch.count_dyn_bias = 0;
 | |
| 
 | |
| 	/* Starting at 0 */
 | |
| 	kvm_mips_write_count(vcpu, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_set_count_hz() - Update the frequency of the timer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @count_hz:	Frequency of CP0_Count timer in Hz.
 | |
|  *
 | |
|  * Change the frequency of the CP0_Count timer. This is done atomically so that
 | |
|  * CP0_Count is continuous and no timer interrupt is lost.
 | |
|  *
 | |
|  * Returns:	-EINVAL if @count_hz is out of range.
 | |
|  *		0 on success.
 | |
|  */
 | |
| int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	int dc;
 | |
| 	ktime_t now;
 | |
| 	u32 count;
 | |
| 
 | |
| 	/* ensure the frequency is in a sensible range... */
 | |
| 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
 | |
| 		return -EINVAL;
 | |
| 	/* ... and has actually changed */
 | |
| 	if (vcpu->arch.count_hz == count_hz)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Safely freeze timer so we can keep it continuous */
 | |
| 	dc = kvm_mips_count_disabled(vcpu);
 | |
| 	if (dc) {
 | |
| 		now = kvm_mips_count_time(vcpu);
 | |
| 		count = kvm_read_c0_guest_count(cop0);
 | |
| 	} else {
 | |
| 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 | |
| 	}
 | |
| 
 | |
| 	/* Update the frequency */
 | |
| 	vcpu->arch.count_hz = count_hz;
 | |
| 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 | |
| 	vcpu->arch.count_dyn_bias = 0;
 | |
| 
 | |
| 	/* Calculate adjusted bias so dynamic count is unchanged */
 | |
| 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 | |
| 
 | |
| 	/* Update and resume hrtimer */
 | |
| 	if (!dc)
 | |
| 		kvm_mips_resume_hrtimer(vcpu, now, count);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_write_compare() - Modify compare and update timer.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @compare:	New CP0_Compare value.
 | |
|  *
 | |
|  * Update CP0_Compare to a new value and update the timeout.
 | |
|  */
 | |
| void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 
 | |
| 	/* if unchanged, must just be an ack */
 | |
| 	if (kvm_read_c0_guest_compare(cop0) == compare)
 | |
| 		return;
 | |
| 
 | |
| 	/* Update compare */
 | |
| 	kvm_write_c0_guest_compare(cop0, compare);
 | |
| 
 | |
| 	/* Update timeout if count enabled */
 | |
| 	if (!kvm_mips_count_disabled(vcpu))
 | |
| 		kvm_mips_update_hrtimer(vcpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_count_disable() - Disable count.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 | |
|  * time will be handled but not after.
 | |
|  *
 | |
|  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 | |
|  * count_ctl.DC has been set (count disabled).
 | |
|  *
 | |
|  * Returns:	The time that the timer was stopped.
 | |
|  */
 | |
| static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	uint32_t count;
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	/* Stop hrtimer */
 | |
| 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 | |
| 
 | |
| 	/* Set the static count from the dynamic count, handling pending TI */
 | |
| 	now = ktime_get();
 | |
| 	count = kvm_mips_read_count_running(vcpu, now);
 | |
| 	kvm_write_c0_guest_count(cop0, count);
 | |
| 
 | |
| 	return now;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 | |
|  * before the final stop time will be handled if the timer isn't disabled by
 | |
|  * count_ctl.DC, but not after.
 | |
|  *
 | |
|  * Assumes CP0_Cause.DC is clear (count enabled).
 | |
|  */
 | |
| void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 
 | |
| 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
 | |
| 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 | |
| 		kvm_mips_count_disable(vcpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 | |
|  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 | |
|  * potentially before even returning, so the caller should be careful with
 | |
|  * ordering of CP0_Cause modifications so as not to lose it.
 | |
|  *
 | |
|  * Assumes CP0_Cause.DC is set (count disabled).
 | |
|  */
 | |
| void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	uint32_t count;
 | |
| 
 | |
| 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the dynamic count to match the static count.
 | |
| 	 * This starts the hrtimer if count_ctl.DC allows it.
 | |
| 	 * Otherwise it conveniently updates the biases.
 | |
| 	 */
 | |
| 	count = kvm_read_c0_guest_count(cop0);
 | |
| 	kvm_mips_write_count(vcpu, count);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_set_count_ctl() - Update the count control KVM register.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  * @count_ctl:	Count control register new value.
 | |
|  *
 | |
|  * Set the count control KVM register. The timer is updated accordingly.
 | |
|  *
 | |
|  * Returns:	-EINVAL if reserved bits are set.
 | |
|  *		0 on success.
 | |
|  */
 | |
| int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
 | |
| 	s64 delta;
 | |
| 	ktime_t expire, now;
 | |
| 	uint32_t count, compare;
 | |
| 
 | |
| 	/* Only allow defined bits to be changed */
 | |
| 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Apply new value */
 | |
| 	vcpu->arch.count_ctl = count_ctl;
 | |
| 
 | |
| 	/* Master CP0_Count disable */
 | |
| 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
 | |
| 		/* Is CP0_Cause.DC already disabling CP0_Count? */
 | |
| 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
 | |
| 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
 | |
| 				/* Just record the current time */
 | |
| 				vcpu->arch.count_resume = ktime_get();
 | |
| 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
 | |
| 			/* disable timer and record current time */
 | |
| 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Calculate timeout relative to static count at resume
 | |
| 			 * time (wrap 0 to 2^32).
 | |
| 			 */
 | |
| 			count = kvm_read_c0_guest_count(cop0);
 | |
| 			compare = kvm_read_c0_guest_compare(cop0);
 | |
| 			delta = (u64)(uint32_t)(compare - count - 1) + 1;
 | |
| 			delta = div_u64(delta * NSEC_PER_SEC,
 | |
| 					vcpu->arch.count_hz);
 | |
| 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
 | |
| 
 | |
| 			/* Handle pending interrupt */
 | |
| 			now = ktime_get();
 | |
| 			if (ktime_compare(now, expire) >= 0)
 | |
| 				/* Nothing should be waiting on the timeout */
 | |
| 				kvm_mips_callbacks->queue_timer_int(vcpu);
 | |
| 
 | |
| 			/* Resume hrtimer without changing bias */
 | |
| 			count = kvm_mips_read_count_running(vcpu, now);
 | |
| 			kvm_mips_resume_hrtimer(vcpu, now, count);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_set_count_resume() - Update the count resume KVM register.
 | |
|  * @vcpu:		Virtual CPU.
 | |
|  * @count_resume:	Count resume register new value.
 | |
|  *
 | |
|  * Set the count resume KVM register.
 | |
|  *
 | |
|  * Returns:	-EINVAL if out of valid range (0..now).
 | |
|  *		0 on success.
 | |
|  */
 | |
| int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
 | |
| {
 | |
| 	/*
 | |
| 	 * It doesn't make sense for the resume time to be in the future, as it
 | |
| 	 * would be possible for the next interrupt to be more than a full
 | |
| 	 * period in the future.
 | |
| 	 */
 | |
| 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_count_timeout() - Push timer forward on timeout.
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Handle an hrtimer event by push the hrtimer forward a period.
 | |
|  *
 | |
|  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 | |
|  */
 | |
| enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Add the Count period to the current expiry time */
 | |
| 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
 | |
| 			       vcpu->arch.count_period);
 | |
| 	return HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
 | |
| 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
 | |
| 			  kvm_read_c0_guest_epc(cop0));
 | |
| 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
 | |
| 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
 | |
| 
 | |
| 	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
 | |
| 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
 | |
| 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
 | |
| 	} else {
 | |
| 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
 | |
| 			vcpu->arch.pc);
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
 | |
| 		  vcpu->arch.pending_exceptions);
 | |
| 
 | |
| 	++vcpu->stat.wait_exits;
 | |
| 	trace_kvm_exit(vcpu, WAIT_EXITS);
 | |
| 	if (!vcpu->arch.pending_exceptions) {
 | |
| 		vcpu->arch.wait = 1;
 | |
| 		kvm_vcpu_block(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * We we are runnable, then definitely go off to user space to
 | |
| 		 * check if any I/O interrupts are pending.
 | |
| 		 */
 | |
| 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
 | |
| 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
 | |
|  * we can catch this, if things ever change
 | |
|  */
 | |
| enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	uint32_t pc = vcpu->arch.pc;
 | |
| 
 | |
| 	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
 | |
| 	return EMULATE_FAIL;
 | |
| }
 | |
| 
 | |
| /* Write Guest TLB Entry @ Index */
 | |
| enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	int index = kvm_read_c0_guest_index(cop0);
 | |
| 	struct kvm_mips_tlb *tlb = NULL;
 | |
| 	uint32_t pc = vcpu->arch.pc;
 | |
| 
 | |
| 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
 | |
| 		kvm_debug("%s: illegal index: %d\n", __func__, index);
 | |
| 		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
 | |
| 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
 | |
| 			  kvm_read_c0_guest_entrylo0(cop0),
 | |
| 			  kvm_read_c0_guest_entrylo1(cop0),
 | |
| 			  kvm_read_c0_guest_pagemask(cop0));
 | |
| 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	tlb = &vcpu->arch.guest_tlb[index];
 | |
| 	/*
 | |
| 	 * Probe the shadow host TLB for the entry being overwritten, if one
 | |
| 	 * matches, invalidate it
 | |
| 	 */
 | |
| 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
 | |
| 
 | |
| 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
 | |
| 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
 | |
| 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
 | |
| 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
 | |
| 
 | |
| 	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
 | |
| 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
 | |
| 		  kvm_read_c0_guest_entrylo0(cop0),
 | |
| 		  kvm_read_c0_guest_entrylo1(cop0),
 | |
| 		  kvm_read_c0_guest_pagemask(cop0));
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| /* Write Guest TLB Entry @ Random Index */
 | |
| enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_mips_tlb *tlb = NULL;
 | |
| 	uint32_t pc = vcpu->arch.pc;
 | |
| 	int index;
 | |
| 
 | |
| 	get_random_bytes(&index, sizeof(index));
 | |
| 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
 | |
| 
 | |
| 	tlb = &vcpu->arch.guest_tlb[index];
 | |
| 
 | |
| 	/*
 | |
| 	 * Probe the shadow host TLB for the entry being overwritten, if one
 | |
| 	 * matches, invalidate it
 | |
| 	 */
 | |
| 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
 | |
| 
 | |
| 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
 | |
| 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
 | |
| 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
 | |
| 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
 | |
| 
 | |
| 	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
 | |
| 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
 | |
| 		  kvm_read_c0_guest_entrylo0(cop0),
 | |
| 		  kvm_read_c0_guest_entrylo1(cop0));
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
 | |
| 	uint32_t pc = vcpu->arch.pc;
 | |
| 	int index = -1;
 | |
| 
 | |
| 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
 | |
| 
 | |
| 	kvm_write_c0_guest_index(cop0, index);
 | |
| 
 | |
| 	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
 | |
| 		  index);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Finds the mask of bits which are writable in the guest's Config1 CP0
 | |
|  * register, by userland (currently read-only to the guest).
 | |
|  */
 | |
| unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int mask = 0;
 | |
| 
 | |
| 	/* Permit FPU to be present if FPU is supported */
 | |
| 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
 | |
| 		mask |= MIPS_CONF1_FP;
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Finds the mask of bits which are writable in the guest's Config3 CP0
 | |
|  * register, by userland (currently read-only to the guest).
 | |
|  */
 | |
| unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Config4 is optional */
 | |
| 	unsigned int mask = MIPS_CONF_M;
 | |
| 
 | |
| 	/* Permit MSA to be present if MSA is supported */
 | |
| 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 | |
| 		mask |= MIPS_CONF3_MSA;
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Finds the mask of bits which are writable in the guest's Config4 CP0
 | |
|  * register, by userland (currently read-only to the guest).
 | |
|  */
 | |
| unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Config5 is optional */
 | |
| 	return MIPS_CONF_M;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
 | |
|  * @vcpu:	Virtual CPU.
 | |
|  *
 | |
|  * Finds the mask of bits which are writable in the guest's Config5 CP0
 | |
|  * register, by the guest itself.
 | |
|  */
 | |
| unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int mask = 0;
 | |
| 
 | |
| 	/* Permit MSAEn changes if MSA supported and enabled */
 | |
| 	if (kvm_mips_guest_has_msa(&vcpu->arch))
 | |
| 		mask |= MIPS_CONF5_MSAEN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
 | |
| 	 * feature exists according to FIR register.
 | |
| 	 */
 | |
| 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
 | |
| 		if (cpu_has_fre)
 | |
| 			mask |= MIPS_CONF5_FRE;
 | |
| 		/* We don't support UFR or UFE */
 | |
| 	}
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
 | |
| 					   uint32_t cause, struct kvm_run *run,
 | |
| 					   struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	int32_t rt, rd, copz, sel, co_bit, op;
 | |
| 	uint32_t pc = vcpu->arch.pc;
 | |
| 	unsigned long curr_pc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	copz = (inst >> 21) & 0x1f;
 | |
| 	rt = (inst >> 16) & 0x1f;
 | |
| 	rd = (inst >> 11) & 0x1f;
 | |
| 	sel = inst & 0x7;
 | |
| 	co_bit = (inst >> 25) & 1;
 | |
| 
 | |
| 	if (co_bit) {
 | |
| 		op = (inst) & 0xff;
 | |
| 
 | |
| 		switch (op) {
 | |
| 		case tlbr_op:	/*  Read indexed TLB entry  */
 | |
| 			er = kvm_mips_emul_tlbr(vcpu);
 | |
| 			break;
 | |
| 		case tlbwi_op:	/*  Write indexed  */
 | |
| 			er = kvm_mips_emul_tlbwi(vcpu);
 | |
| 			break;
 | |
| 		case tlbwr_op:	/*  Write random  */
 | |
| 			er = kvm_mips_emul_tlbwr(vcpu);
 | |
| 			break;
 | |
| 		case tlbp_op:	/* TLB Probe */
 | |
| 			er = kvm_mips_emul_tlbp(vcpu);
 | |
| 			break;
 | |
| 		case rfe_op:
 | |
| 			kvm_err("!!!COP0_RFE!!!\n");
 | |
| 			break;
 | |
| 		case eret_op:
 | |
| 			er = kvm_mips_emul_eret(vcpu);
 | |
| 			goto dont_update_pc;
 | |
| 			break;
 | |
| 		case wait_op:
 | |
| 			er = kvm_mips_emul_wait(vcpu);
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (copz) {
 | |
| 		case mfc_op:
 | |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 | |
| 			cop0->stat[rd][sel]++;
 | |
| #endif
 | |
| 			/* Get reg */
 | |
| 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
 | |
| 				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
 | |
| 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
 | |
| 				vcpu->arch.gprs[rt] = 0x0;
 | |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS
 | |
| 				kvm_mips_trans_mfc0(inst, opc, vcpu);
 | |
| #endif
 | |
| 			} else {
 | |
| 				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
 | |
| 
 | |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS
 | |
| 				kvm_mips_trans_mfc0(inst, opc, vcpu);
 | |
| #endif
 | |
| 			}
 | |
| 
 | |
| 			kvm_debug
 | |
| 			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
 | |
| 			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case dmfc_op:
 | |
| 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
 | |
| 			break;
 | |
| 
 | |
| 		case mtc_op:
 | |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 | |
| 			cop0->stat[rd][sel]++;
 | |
| #endif
 | |
| 			if ((rd == MIPS_CP0_TLB_INDEX)
 | |
| 			    && (vcpu->arch.gprs[rt] >=
 | |
| 				KVM_MIPS_GUEST_TLB_SIZE)) {
 | |
| 				kvm_err("Invalid TLB Index: %ld",
 | |
| 					vcpu->arch.gprs[rt]);
 | |
| 				er = EMULATE_FAIL;
 | |
| 				break;
 | |
| 			}
 | |
| #define C0_EBASE_CORE_MASK 0xff
 | |
| 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
 | |
| 				/* Preserve CORE number */
 | |
| 				kvm_change_c0_guest_ebase(cop0,
 | |
| 							  ~(C0_EBASE_CORE_MASK),
 | |
| 							  vcpu->arch.gprs[rt]);
 | |
| 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
 | |
| 					kvm_read_c0_guest_ebase(cop0));
 | |
| 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
 | |
| 				uint32_t nasid =
 | |
| 					vcpu->arch.gprs[rt] & ASID_MASK;
 | |
| 				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
 | |
| 				    ((kvm_read_c0_guest_entryhi(cop0) &
 | |
| 				      ASID_MASK) != nasid)) {
 | |
| 					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
 | |
| 						kvm_read_c0_guest_entryhi(cop0)
 | |
| 						& ASID_MASK,
 | |
| 						vcpu->arch.gprs[rt]
 | |
| 						& ASID_MASK);
 | |
| 
 | |
| 					/* Blow away the shadow host TLBs */
 | |
| 					kvm_mips_flush_host_tlb(1);
 | |
| 				}
 | |
| 				kvm_write_c0_guest_entryhi(cop0,
 | |
| 							   vcpu->arch.gprs[rt]);
 | |
| 			}
 | |
| 			/* Are we writing to COUNT */
 | |
| 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
 | |
| 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
 | |
| 				goto done;
 | |
| 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
 | |
| 				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
 | |
| 					  pc, kvm_read_c0_guest_compare(cop0),
 | |
| 					  vcpu->arch.gprs[rt]);
 | |
| 
 | |
| 				/* If we are writing to COMPARE */
 | |
| 				/* Clear pending timer interrupt, if any */
 | |
| 				kvm_mips_callbacks->dequeue_timer_int(vcpu);
 | |
| 				kvm_mips_write_compare(vcpu,
 | |
| 						       vcpu->arch.gprs[rt]);
 | |
| 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
 | |
| 				unsigned int old_val, val, change;
 | |
| 
 | |
| 				old_val = kvm_read_c0_guest_status(cop0);
 | |
| 				val = vcpu->arch.gprs[rt];
 | |
| 				change = val ^ old_val;
 | |
| 
 | |
| 				/* Make sure that the NMI bit is never set */
 | |
| 				val &= ~ST0_NMI;
 | |
| 
 | |
| 				/*
 | |
| 				 * Don't allow CU1 or FR to be set unless FPU
 | |
| 				 * capability enabled and exists in guest
 | |
| 				 * configuration.
 | |
| 				 */
 | |
| 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 | |
| 					val &= ~(ST0_CU1 | ST0_FR);
 | |
| 
 | |
| 				/*
 | |
| 				 * Also don't allow FR to be set if host doesn't
 | |
| 				 * support it.
 | |
| 				 */
 | |
| 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
 | |
| 					val &= ~ST0_FR;
 | |
| 
 | |
| 
 | |
| 				/* Handle changes in FPU mode */
 | |
| 				preempt_disable();
 | |
| 
 | |
| 				/*
 | |
| 				 * FPU and Vector register state is made
 | |
| 				 * UNPREDICTABLE by a change of FR, so don't
 | |
| 				 * even bother saving it.
 | |
| 				 */
 | |
| 				if (change & ST0_FR)
 | |
| 					kvm_drop_fpu(vcpu);
 | |
| 
 | |
| 				/*
 | |
| 				 * If MSA state is already live, it is undefined
 | |
| 				 * how it interacts with FR=0 FPU state, and we
 | |
| 				 * don't want to hit reserved instruction
 | |
| 				 * exceptions trying to save the MSA state later
 | |
| 				 * when CU=1 && FR=1, so play it safe and save
 | |
| 				 * it first.
 | |
| 				 */
 | |
| 				if (change & ST0_CU1 && !(val & ST0_FR) &&
 | |
| 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
 | |
| 					kvm_lose_fpu(vcpu);
 | |
| 
 | |
| 				/*
 | |
| 				 * Propagate CU1 (FPU enable) changes
 | |
| 				 * immediately if the FPU context is already
 | |
| 				 * loaded. When disabling we leave the context
 | |
| 				 * loaded so it can be quickly enabled again in
 | |
| 				 * the near future.
 | |
| 				 */
 | |
| 				if (change & ST0_CU1 &&
 | |
| 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
 | |
| 					change_c0_status(ST0_CU1, val);
 | |
| 
 | |
| 				preempt_enable();
 | |
| 
 | |
| 				kvm_write_c0_guest_status(cop0, val);
 | |
| 
 | |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS
 | |
| 				/*
 | |
| 				 * If FPU present, we need CU1/FR bits to take
 | |
| 				 * effect fairly soon.
 | |
| 				 */
 | |
| 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 | |
| 					kvm_mips_trans_mtc0(inst, opc, vcpu);
 | |
| #endif
 | |
| 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
 | |
| 				unsigned int old_val, val, change, wrmask;
 | |
| 
 | |
| 				old_val = kvm_read_c0_guest_config5(cop0);
 | |
| 				val = vcpu->arch.gprs[rt];
 | |
| 
 | |
| 				/* Only a few bits are writable in Config5 */
 | |
| 				wrmask = kvm_mips_config5_wrmask(vcpu);
 | |
| 				change = (val ^ old_val) & wrmask;
 | |
| 				val = old_val ^ change;
 | |
| 
 | |
| 
 | |
| 				/* Handle changes in FPU/MSA modes */
 | |
| 				preempt_disable();
 | |
| 
 | |
| 				/*
 | |
| 				 * Propagate FRE changes immediately if the FPU
 | |
| 				 * context is already loaded.
 | |
| 				 */
 | |
| 				if (change & MIPS_CONF5_FRE &&
 | |
| 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
 | |
| 					change_c0_config5(MIPS_CONF5_FRE, val);
 | |
| 
 | |
| 				/*
 | |
| 				 * Propagate MSAEn changes immediately if the
 | |
| 				 * MSA context is already loaded. When disabling
 | |
| 				 * we leave the context loaded so it can be
 | |
| 				 * quickly enabled again in the near future.
 | |
| 				 */
 | |
| 				if (change & MIPS_CONF5_MSAEN &&
 | |
| 				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
 | |
| 					change_c0_config5(MIPS_CONF5_MSAEN,
 | |
| 							  val);
 | |
| 
 | |
| 				preempt_enable();
 | |
| 
 | |
| 				kvm_write_c0_guest_config5(cop0, val);
 | |
| 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
 | |
| 				uint32_t old_cause, new_cause;
 | |
| 
 | |
| 				old_cause = kvm_read_c0_guest_cause(cop0);
 | |
| 				new_cause = vcpu->arch.gprs[rt];
 | |
| 				/* Update R/W bits */
 | |
| 				kvm_change_c0_guest_cause(cop0, 0x08800300,
 | |
| 							  new_cause);
 | |
| 				/* DC bit enabling/disabling timer? */
 | |
| 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
 | |
| 					if (new_cause & CAUSEF_DC)
 | |
| 						kvm_mips_count_disable_cause(vcpu);
 | |
| 					else
 | |
| 						kvm_mips_count_enable_cause(vcpu);
 | |
| 				}
 | |
| 			} else {
 | |
| 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
 | |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS
 | |
| 				kvm_mips_trans_mtc0(inst, opc, vcpu);
 | |
| #endif
 | |
| 			}
 | |
| 
 | |
| 			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
 | |
| 				  rd, sel, cop0->reg[rd][sel]);
 | |
| 			break;
 | |
| 
 | |
| 		case dmtc_op:
 | |
| 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
 | |
| 				vcpu->arch.pc, rt, rd, sel);
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 
 | |
| 		case mfmcz_op:
 | |
| #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
 | |
| 			cop0->stat[MIPS_CP0_STATUS][0]++;
 | |
| #endif
 | |
| 			if (rt != 0) {
 | |
| 				vcpu->arch.gprs[rt] =
 | |
| 				    kvm_read_c0_guest_status(cop0);
 | |
| 			}
 | |
| 			/* EI */
 | |
| 			if (inst & 0x20) {
 | |
| 				kvm_debug("[%#lx] mfmcz_op: EI\n",
 | |
| 					  vcpu->arch.pc);
 | |
| 				kvm_set_c0_guest_status(cop0, ST0_IE);
 | |
| 			} else {
 | |
| 				kvm_debug("[%#lx] mfmcz_op: DI\n",
 | |
| 					  vcpu->arch.pc);
 | |
| 				kvm_clear_c0_guest_status(cop0, ST0_IE);
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 
 | |
| 		case wrpgpr_op:
 | |
| 			{
 | |
| 				uint32_t css =
 | |
| 				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
 | |
| 				uint32_t pss =
 | |
| 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
 | |
| 				/*
 | |
| 				 * We don't support any shadow register sets, so
 | |
| 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
 | |
| 				 */
 | |
| 				if (css || pss) {
 | |
| 					er = EMULATE_FAIL;
 | |
| 					break;
 | |
| 				}
 | |
| 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
 | |
| 					  vcpu->arch.gprs[rt]);
 | |
| 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
 | |
| 				vcpu->arch.pc, copz);
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	/* Rollback PC only if emulation was unsuccessful */
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		vcpu->arch.pc = curr_pc;
 | |
| 
 | |
| dont_update_pc:
 | |
| 	/*
 | |
| 	 * This is for special instructions whose emulation
 | |
| 	 * updates the PC, so do not overwrite the PC under
 | |
| 	 * any circumstances
 | |
| 	 */
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
 | |
| 					     struct kvm_run *run,
 | |
| 					     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DO_MMIO;
 | |
| 	int32_t op, base, rt, offset;
 | |
| 	uint32_t bytes;
 | |
| 	void *data = run->mmio.data;
 | |
| 	unsigned long curr_pc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	rt = (inst >> 16) & 0x1f;
 | |
| 	base = (inst >> 21) & 0x1f;
 | |
| 	offset = inst & 0xffff;
 | |
| 	op = (inst >> 26) & 0x3f;
 | |
| 
 | |
| 	switch (op) {
 | |
| 	case sb_op:
 | |
| 		bytes = 1;
 | |
| 		if (bytes > sizeof(run->mmio.data)) {
 | |
| 			kvm_err("%s: bad MMIO length: %d\n", __func__,
 | |
| 			       run->mmio.len);
 | |
| 		}
 | |
| 		run->mmio.phys_addr =
 | |
| 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
 | |
| 						   host_cp0_badvaddr);
 | |
| 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 		run->mmio.len = bytes;
 | |
| 		run->mmio.is_write = 1;
 | |
| 		vcpu->mmio_needed = 1;
 | |
| 		vcpu->mmio_is_write = 1;
 | |
| 		*(u8 *) data = vcpu->arch.gprs[rt];
 | |
| 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
 | |
| 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
 | |
| 			  *(uint8_t *) data);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case sw_op:
 | |
| 		bytes = 4;
 | |
| 		if (bytes > sizeof(run->mmio.data)) {
 | |
| 			kvm_err("%s: bad MMIO length: %d\n", __func__,
 | |
| 			       run->mmio.len);
 | |
| 		}
 | |
| 		run->mmio.phys_addr =
 | |
| 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
 | |
| 						   host_cp0_badvaddr);
 | |
| 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		run->mmio.len = bytes;
 | |
| 		run->mmio.is_write = 1;
 | |
| 		vcpu->mmio_needed = 1;
 | |
| 		vcpu->mmio_is_write = 1;
 | |
| 		*(uint32_t *) data = vcpu->arch.gprs[rt];
 | |
| 
 | |
| 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
 | |
| 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
 | |
| 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
 | |
| 		break;
 | |
| 
 | |
| 	case sh_op:
 | |
| 		bytes = 2;
 | |
| 		if (bytes > sizeof(run->mmio.data)) {
 | |
| 			kvm_err("%s: bad MMIO length: %d\n", __func__,
 | |
| 			       run->mmio.len);
 | |
| 		}
 | |
| 		run->mmio.phys_addr =
 | |
| 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
 | |
| 						   host_cp0_badvaddr);
 | |
| 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		run->mmio.len = bytes;
 | |
| 		run->mmio.is_write = 1;
 | |
| 		vcpu->mmio_needed = 1;
 | |
| 		vcpu->mmio_is_write = 1;
 | |
| 		*(uint16_t *) data = vcpu->arch.gprs[rt];
 | |
| 
 | |
| 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
 | |
| 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
 | |
| 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		kvm_err("Store not yet supported");
 | |
| 		er = EMULATE_FAIL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Rollback PC if emulation was unsuccessful */
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		vcpu->arch.pc = curr_pc;
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
 | |
| 					    struct kvm_run *run,
 | |
| 					    struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DO_MMIO;
 | |
| 	int32_t op, base, rt, offset;
 | |
| 	uint32_t bytes;
 | |
| 
 | |
| 	rt = (inst >> 16) & 0x1f;
 | |
| 	base = (inst >> 21) & 0x1f;
 | |
| 	offset = inst & 0xffff;
 | |
| 	op = (inst >> 26) & 0x3f;
 | |
| 
 | |
| 	vcpu->arch.pending_load_cause = cause;
 | |
| 	vcpu->arch.io_gpr = rt;
 | |
| 
 | |
| 	switch (op) {
 | |
| 	case lw_op:
 | |
| 		bytes = 4;
 | |
| 		if (bytes > sizeof(run->mmio.data)) {
 | |
| 			kvm_err("%s: bad MMIO length: %d\n", __func__,
 | |
| 			       run->mmio.len);
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 		run->mmio.phys_addr =
 | |
| 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
 | |
| 						   host_cp0_badvaddr);
 | |
| 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		run->mmio.len = bytes;
 | |
| 		run->mmio.is_write = 0;
 | |
| 		vcpu->mmio_needed = 1;
 | |
| 		vcpu->mmio_is_write = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case lh_op:
 | |
| 	case lhu_op:
 | |
| 		bytes = 2;
 | |
| 		if (bytes > sizeof(run->mmio.data)) {
 | |
| 			kvm_err("%s: bad MMIO length: %d\n", __func__,
 | |
| 			       run->mmio.len);
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 		run->mmio.phys_addr =
 | |
| 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
 | |
| 						   host_cp0_badvaddr);
 | |
| 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		run->mmio.len = bytes;
 | |
| 		run->mmio.is_write = 0;
 | |
| 		vcpu->mmio_needed = 1;
 | |
| 		vcpu->mmio_is_write = 0;
 | |
| 
 | |
| 		if (op == lh_op)
 | |
| 			vcpu->mmio_needed = 2;
 | |
| 		else
 | |
| 			vcpu->mmio_needed = 1;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case lbu_op:
 | |
| 	case lb_op:
 | |
| 		bytes = 1;
 | |
| 		if (bytes > sizeof(run->mmio.data)) {
 | |
| 			kvm_err("%s: bad MMIO length: %d\n", __func__,
 | |
| 			       run->mmio.len);
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 		run->mmio.phys_addr =
 | |
| 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
 | |
| 						   host_cp0_badvaddr);
 | |
| 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
 | |
| 			er = EMULATE_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		run->mmio.len = bytes;
 | |
| 		run->mmio.is_write = 0;
 | |
| 		vcpu->mmio_is_write = 0;
 | |
| 
 | |
| 		if (op == lb_op)
 | |
| 			vcpu->mmio_needed = 2;
 | |
| 		else
 | |
| 			vcpu->mmio_needed = 1;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		kvm_err("Load not yet supported");
 | |
| 		er = EMULATE_FAIL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long offset = (va & ~PAGE_MASK);
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	unsigned long pa;
 | |
| 	gfn_t gfn;
 | |
| 	pfn_t pfn;
 | |
| 
 | |
| 	gfn = va >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (gfn >= kvm->arch.guest_pmap_npages) {
 | |
| 		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
 | |
| 		kvm_mips_dump_host_tlbs();
 | |
| 		kvm_arch_vcpu_dump_regs(vcpu);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	pfn = kvm->arch.guest_pmap[gfn];
 | |
| 	pa = (pfn << PAGE_SHIFT) | offset;
 | |
| 
 | |
| 	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
 | |
| 		  CKSEG0ADDR(pa));
 | |
| 
 | |
| 	local_flush_icache_range(CKSEG0ADDR(pa), 32);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define MIPS_CACHE_OP_INDEX_INV         0x0
 | |
| #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
 | |
| #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
 | |
| #define MIPS_CACHE_OP_IMP               0x3
 | |
| #define MIPS_CACHE_OP_HIT_INV           0x4
 | |
| #define MIPS_CACHE_OP_FILL_WB_INV       0x5
 | |
| #define MIPS_CACHE_OP_HIT_HB            0x6
 | |
| #define MIPS_CACHE_OP_FETCH_LOCK        0x7
 | |
| 
 | |
| #define MIPS_CACHE_ICACHE               0x0
 | |
| #define MIPS_CACHE_DCACHE               0x1
 | |
| #define MIPS_CACHE_SEC                  0x3
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
 | |
| 					     uint32_t cause,
 | |
| 					     struct kvm_run *run,
 | |
| 					     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	int32_t offset, cache, op_inst, op, base;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	unsigned long va;
 | |
| 	unsigned long curr_pc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	base = (inst >> 21) & 0x1f;
 | |
| 	op_inst = (inst >> 16) & 0x1f;
 | |
| 	offset = inst & 0xffff;
 | |
| 	cache = (inst >> 16) & 0x3;
 | |
| 	op = (inst >> 18) & 0x7;
 | |
| 
 | |
| 	va = arch->gprs[base] + offset;
 | |
| 
 | |
| 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
 | |
| 		  cache, op, base, arch->gprs[base], offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
 | |
| 	 * invalidate the caches entirely by stepping through all the
 | |
| 	 * ways/indexes
 | |
| 	 */
 | |
| 	if (op == MIPS_CACHE_OP_INDEX_INV) {
 | |
| 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
 | |
| 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
 | |
| 			  arch->gprs[base], offset);
 | |
| 
 | |
| 		if (cache == MIPS_CACHE_DCACHE)
 | |
| 			r4k_blast_dcache();
 | |
| 		else if (cache == MIPS_CACHE_ICACHE)
 | |
| 			r4k_blast_icache();
 | |
| 		else {
 | |
| 			kvm_err("%s: unsupported CACHE INDEX operation\n",
 | |
| 				__func__);
 | |
| 			return EMULATE_FAIL;
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS
 | |
| 		kvm_mips_trans_cache_index(inst, opc, vcpu);
 | |
| #endif
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
 | |
| 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
 | |
| 			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
 | |
| 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
 | |
| 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
 | |
| 		int index;
 | |
| 
 | |
| 		/* If an entry already exists then skip */
 | |
| 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
 | |
| 			goto skip_fault;
 | |
| 
 | |
| 		/*
 | |
| 		 * If address not in the guest TLB, then give the guest a fault,
 | |
| 		 * the resulting handler will do the right thing
 | |
| 		 */
 | |
| 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
 | |
| 						  (kvm_read_c0_guest_entryhi
 | |
| 						   (cop0) & ASID_MASK));
 | |
| 
 | |
| 		if (index < 0) {
 | |
| 			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
 | |
| 			vcpu->arch.host_cp0_badvaddr = va;
 | |
| 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
 | |
| 							 vcpu);
 | |
| 			preempt_enable();
 | |
| 			goto dont_update_pc;
 | |
| 		} else {
 | |
| 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
 | |
| 			/*
 | |
| 			 * Check if the entry is valid, if not then setup a TLB
 | |
| 			 * invalid exception to the guest
 | |
| 			 */
 | |
| 			if (!TLB_IS_VALID(*tlb, va)) {
 | |
| 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
 | |
| 								run, vcpu);
 | |
| 				preempt_enable();
 | |
| 				goto dont_update_pc;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * We fault an entry from the guest tlb to the
 | |
| 				 * shadow host TLB
 | |
| 				 */
 | |
| 				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
 | |
| 								     NULL,
 | |
| 								     NULL);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
 | |
| 			cache, op, base, arch->gprs[base], offset);
 | |
| 		er = EMULATE_FAIL;
 | |
| 		preempt_enable();
 | |
| 		goto dont_update_pc;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| skip_fault:
 | |
| 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
 | |
| 	if (cache == MIPS_CACHE_DCACHE
 | |
| 	    && (op == MIPS_CACHE_OP_FILL_WB_INV
 | |
| 		|| op == MIPS_CACHE_OP_HIT_INV)) {
 | |
| 		flush_dcache_line(va);
 | |
| 
 | |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS
 | |
| 		/*
 | |
| 		 * Replace the CACHE instruction, with a SYNCI, not the same,
 | |
| 		 * but avoids a trap
 | |
| 		 */
 | |
| 		kvm_mips_trans_cache_va(inst, opc, vcpu);
 | |
| #endif
 | |
| 	} else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
 | |
| 		flush_dcache_line(va);
 | |
| 		flush_icache_line(va);
 | |
| 
 | |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS
 | |
| 		/* Replace the CACHE instruction, with a SYNCI */
 | |
| 		kvm_mips_trans_cache_va(inst, opc, vcpu);
 | |
| #endif
 | |
| 	} else {
 | |
| 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
 | |
| 			cache, op, base, arch->gprs[base], offset);
 | |
| 		er = EMULATE_FAIL;
 | |
| 		preempt_enable();
 | |
| 		goto dont_update_pc;
 | |
| 	}
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| dont_update_pc:
 | |
| 	/* Rollback PC */
 | |
| 	vcpu->arch.pc = curr_pc;
 | |
| done:
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
 | |
| 					    struct kvm_run *run,
 | |
| 					    struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	uint32_t inst;
 | |
| 
 | |
| 	/* Fetch the instruction. */
 | |
| 	if (cause & CAUSEF_BD)
 | |
| 		opc += 1;
 | |
| 
 | |
| 	inst = kvm_get_inst(opc, vcpu);
 | |
| 
 | |
| 	switch (((union mips_instruction)inst).r_format.opcode) {
 | |
| 	case cop0_op:
 | |
| 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
 | |
| 		break;
 | |
| 	case sb_op:
 | |
| 	case sh_op:
 | |
| 	case sw_op:
 | |
| 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
 | |
| 		break;
 | |
| 	case lb_op:
 | |
| 	case lbu_op:
 | |
| 	case lhu_op:
 | |
| 	case lh_op:
 | |
| 	case lw_op:
 | |
| 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
 | |
| 		break;
 | |
| 
 | |
| 	case cache_op:
 | |
| 		++vcpu->stat.cache_exits;
 | |
| 		trace_kvm_exit(vcpu, CACHE_EXITS);
 | |
| 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
 | |
| 			inst);
 | |
| 		kvm_arch_vcpu_dump_regs(vcpu);
 | |
| 		er = EMULATE_FAIL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
 | |
| 					       uint32_t *opc,
 | |
| 					       struct kvm_run *run,
 | |
| 					       struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (T_SYSCALL << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
 | |
| 						  uint32_t *opc,
 | |
| 						  struct kvm_run *run,
 | |
| 						  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
 | |
| 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 
 | |
| 		/* set pc to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 	}
 | |
| 
 | |
| 	kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
 | |
| 
 | |
| 	/* setup badvaddr, context and entryhi registers for the guest */
 | |
| 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
 | |
| 	/* XXXKYMA: is the context register used by linux??? */
 | |
| 	kvm_write_c0_guest_entryhi(cop0, entryhi);
 | |
| 	/* Blow away the shadow host TLBs */
 | |
| 	kvm_mips_flush_host_tlb(1);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
 | |
| 						 uint32_t *opc,
 | |
| 						 struct kvm_run *run,
 | |
| 						 struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	unsigned long entryhi =
 | |
| 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
 | |
| 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 
 | |
| 		/* set pc to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 	}
 | |
| 
 | |
| 	kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
 | |
| 
 | |
| 	/* setup badvaddr, context and entryhi registers for the guest */
 | |
| 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
 | |
| 	/* XXXKYMA: is the context register used by linux??? */
 | |
| 	kvm_write_c0_guest_entryhi(cop0, entryhi);
 | |
| 	/* Blow away the shadow host TLBs */
 | |
| 	kvm_mips_flush_host_tlb(1);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
 | |
| 						  uint32_t *opc,
 | |
| 						  struct kvm_run *run,
 | |
| 						  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
 | |
| 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
 | |
| 	} else {
 | |
| 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 	}
 | |
| 
 | |
| 	kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
 | |
| 
 | |
| 	/* setup badvaddr, context and entryhi registers for the guest */
 | |
| 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
 | |
| 	/* XXXKYMA: is the context register used by linux??? */
 | |
| 	kvm_write_c0_guest_entryhi(cop0, entryhi);
 | |
| 	/* Blow away the shadow host TLBs */
 | |
| 	kvm_mips_flush_host_tlb(1);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
 | |
| 						 uint32_t *opc,
 | |
| 						 struct kvm_run *run,
 | |
| 						 struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
 | |
| 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 	} else {
 | |
| 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 	}
 | |
| 
 | |
| 	kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
 | |
| 
 | |
| 	/* setup badvaddr, context and entryhi registers for the guest */
 | |
| 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
 | |
| 	/* XXXKYMA: is the context register used by linux??? */
 | |
| 	kvm_write_c0_guest_entryhi(cop0, entryhi);
 | |
| 	/* Blow away the shadow host TLBs */
 | |
| 	kvm_mips_flush_host_tlb(1);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| /* TLBMOD: store into address matching TLB with Dirty bit off */
 | |
| enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
 | |
| 					     struct kvm_run *run,
 | |
| 					     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| #ifdef DEBUG
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
 | |
| 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
 | |
| 	int index;
 | |
| 
 | |
| 	/* If address not in the guest TLB, then we are in trouble */
 | |
| 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
 | |
| 	if (index < 0) {
 | |
| 		/* XXXKYMA Invalidate and retry */
 | |
| 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
 | |
| 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
 | |
| 		     __func__, entryhi);
 | |
| 		kvm_mips_dump_guest_tlbs(vcpu);
 | |
| 		kvm_mips_dump_host_tlbs();
 | |
| 		return EMULATE_FAIL;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
 | |
| 					      uint32_t *opc,
 | |
| 					      struct kvm_run *run,
 | |
| 					      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
 | |
| 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 	} else {
 | |
| 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
 | |
| 			  arch->pc);
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 	}
 | |
| 
 | |
| 	kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
 | |
| 
 | |
| 	/* setup badvaddr, context and entryhi registers for the guest */
 | |
| 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
 | |
| 	/* XXXKYMA: is the context register used by linux??? */
 | |
| 	kvm_write_c0_guest_entryhi(cop0, entryhi);
 | |
| 	/* Blow away the shadow host TLBs */
 | |
| 	kvm_mips_flush_host_tlb(1);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
 | |
| 					       uint32_t *opc,
 | |
| 					       struct kvm_run *run,
 | |
| 					       struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 				  (T_COP_UNUSABLE << CAUSEB_EXCCODE));
 | |
| 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
 | |
| 					      uint32_t *opc,
 | |
| 					      struct kvm_run *run,
 | |
| 					      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (T_RES_INST << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver RI when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
 | |
| 					      uint32_t *opc,
 | |
| 					      struct kvm_run *run,
 | |
| 					      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (T_BREAK << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver BP when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
 | |
| 						uint32_t *opc,
 | |
| 						struct kvm_run *run,
 | |
| 						struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (T_TRAP << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
 | |
| 						  uint32_t *opc,
 | |
| 						  struct kvm_run *run,
 | |
| 						  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (T_MSAFPE << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
 | |
| 					       uint32_t *opc,
 | |
| 					       struct kvm_run *run,
 | |
| 					       struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (T_FPE << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver FPE when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
 | |
| 						  uint32_t *opc,
 | |
| 						  struct kvm_run *run,
 | |
| 						  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (T_MSADIS << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| /* ll/sc, rdhwr, sync emulation */
 | |
| 
 | |
| #define OPCODE 0xfc000000
 | |
| #define BASE   0x03e00000
 | |
| #define RT     0x001f0000
 | |
| #define OFFSET 0x0000ffff
 | |
| #define LL     0xc0000000
 | |
| #define SC     0xe0000000
 | |
| #define SPEC0  0x00000000
 | |
| #define SPEC3  0x7c000000
 | |
| #define RD     0x0000f800
 | |
| #define FUNC   0x0000003f
 | |
| #define SYNC   0x0000000f
 | |
| #define RDHWR  0x0000003b
 | |
| 
 | |
| enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
 | |
| 					 struct kvm_run *run,
 | |
| 					 struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	unsigned long curr_pc;
 | |
| 	uint32_t inst;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update PC and hold onto current PC in case there is
 | |
| 	 * an error and we want to rollback the PC
 | |
| 	 */
 | |
| 	curr_pc = vcpu->arch.pc;
 | |
| 	er = update_pc(vcpu, cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	/* Fetch the instruction. */
 | |
| 	if (cause & CAUSEF_BD)
 | |
| 		opc += 1;
 | |
| 
 | |
| 	inst = kvm_get_inst(opc, vcpu);
 | |
| 
 | |
| 	if (inst == KVM_INVALID_INST) {
 | |
| 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
 | |
| 		return EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
 | |
| 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
 | |
| 		int rd = (inst & RD) >> 11;
 | |
| 		int rt = (inst & RT) >> 16;
 | |
| 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
 | |
| 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
 | |
| 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
 | |
| 				  rd, opc);
 | |
| 			goto emulate_ri;
 | |
| 		}
 | |
| 		switch (rd) {
 | |
| 		case 0:	/* CPU number */
 | |
| 			arch->gprs[rt] = 0;
 | |
| 			break;
 | |
| 		case 1:	/* SYNCI length */
 | |
| 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
 | |
| 					     current_cpu_data.icache.linesz);
 | |
| 			break;
 | |
| 		case 2:	/* Read count register */
 | |
| 			arch->gprs[rt] = kvm_mips_read_count(vcpu);
 | |
| 			break;
 | |
| 		case 3:	/* Count register resolution */
 | |
| 			switch (current_cpu_data.cputype) {
 | |
| 			case CPU_20KC:
 | |
| 			case CPU_25KF:
 | |
| 				arch->gprs[rt] = 1;
 | |
| 				break;
 | |
| 			default:
 | |
| 				arch->gprs[rt] = 2;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 29:
 | |
| 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
 | |
| 			goto emulate_ri;
 | |
| 		}
 | |
| 	} else {
 | |
| 		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
 | |
| 		goto emulate_ri;
 | |
| 	}
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| 
 | |
| emulate_ri:
 | |
| 	/*
 | |
| 	 * Rollback PC (if in branch delay slot then the PC already points to
 | |
| 	 * branch target), and pass the RI exception to the guest OS.
 | |
| 	 */
 | |
| 	vcpu->arch.pc = curr_pc;
 | |
| 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
 | |
| 						  struct kvm_run *run)
 | |
| {
 | |
| 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if (run->mmio.len > sizeof(*gpr)) {
 | |
| 		kvm_err("Bad MMIO length: %d", run->mmio.len);
 | |
| 		er = EMULATE_FAIL;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
 | |
| 	if (er == EMULATE_FAIL)
 | |
| 		return er;
 | |
| 
 | |
| 	switch (run->mmio.len) {
 | |
| 	case 4:
 | |
| 		*gpr = *(int32_t *) run->mmio.data;
 | |
| 		break;
 | |
| 
 | |
| 	case 2:
 | |
| 		if (vcpu->mmio_needed == 2)
 | |
| 			*gpr = *(int16_t *) run->mmio.data;
 | |
| 		else
 | |
| 			*gpr = *(uint16_t *)run->mmio.data;
 | |
| 
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		if (vcpu->mmio_needed == 2)
 | |
| 			*gpr = *(int8_t *) run->mmio.data;
 | |
| 		else
 | |
| 			*gpr = *(u8 *) run->mmio.data;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
 | |
| 		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
 | |
| 			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
 | |
| 			  vcpu->mmio_needed);
 | |
| 
 | |
| done:
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
 | |
| 						  uint32_t *opc,
 | |
| 						  struct kvm_run *run,
 | |
| 						  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
 | |
| 	struct mips_coproc *cop0 = vcpu->arch.cop0;
 | |
| 	struct kvm_vcpu_arch *arch = &vcpu->arch;
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 
 | |
| 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
 | |
| 		/* save old pc */
 | |
| 		kvm_write_c0_guest_epc(cop0, arch->pc);
 | |
| 		kvm_set_c0_guest_status(cop0, ST0_EXL);
 | |
| 
 | |
| 		if (cause & CAUSEF_BD)
 | |
| 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 		else
 | |
| 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
 | |
| 
 | |
| 		kvm_change_c0_guest_cause(cop0, (0xff),
 | |
| 					  (exccode << CAUSEB_EXCCODE));
 | |
| 
 | |
| 		/* Set PC to the exception entry point */
 | |
| 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
 | |
| 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
 | |
| 
 | |
| 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
 | |
| 			  exccode, kvm_read_c0_guest_epc(cop0),
 | |
| 			  kvm_read_c0_guest_badvaddr(cop0));
 | |
| 	} else {
 | |
| 		kvm_err("Trying to deliver EXC when EXL is already set\n");
 | |
| 		er = EMULATE_FAIL;
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| enum emulation_result kvm_mips_check_privilege(unsigned long cause,
 | |
| 					       uint32_t *opc,
 | |
| 					       struct kvm_run *run,
 | |
| 					       struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
 | |
| 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
 | |
| 
 | |
| 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
 | |
| 
 | |
| 	if (usermode) {
 | |
| 		switch (exccode) {
 | |
| 		case T_INT:
 | |
| 		case T_SYSCALL:
 | |
| 		case T_BREAK:
 | |
| 		case T_RES_INST:
 | |
| 		case T_TRAP:
 | |
| 		case T_MSAFPE:
 | |
| 		case T_FPE:
 | |
| 		case T_MSADIS:
 | |
| 			break;
 | |
| 
 | |
| 		case T_COP_UNUSABLE:
 | |
| 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
 | |
| 				er = EMULATE_PRIV_FAIL;
 | |
| 			break;
 | |
| 
 | |
| 		case T_TLB_MOD:
 | |
| 			break;
 | |
| 
 | |
| 		case T_TLB_LD_MISS:
 | |
| 			/*
 | |
| 			 * We we are accessing Guest kernel space, then send an
 | |
| 			 * address error exception to the guest
 | |
| 			 */
 | |
| 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
 | |
| 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
 | |
| 					  badvaddr);
 | |
| 				cause &= ~0xff;
 | |
| 				cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
 | |
| 				er = EMULATE_PRIV_FAIL;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case T_TLB_ST_MISS:
 | |
| 			/*
 | |
| 			 * We we are accessing Guest kernel space, then send an
 | |
| 			 * address error exception to the guest
 | |
| 			 */
 | |
| 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
 | |
| 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
 | |
| 					  badvaddr);
 | |
| 				cause &= ~0xff;
 | |
| 				cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
 | |
| 				er = EMULATE_PRIV_FAIL;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case T_ADDR_ERR_ST:
 | |
| 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
 | |
| 				  badvaddr);
 | |
| 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
 | |
| 				cause &= ~0xff;
 | |
| 				cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
 | |
| 			}
 | |
| 			er = EMULATE_PRIV_FAIL;
 | |
| 			break;
 | |
| 		case T_ADDR_ERR_LD:
 | |
| 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
 | |
| 				  badvaddr);
 | |
| 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
 | |
| 				cause &= ~0xff;
 | |
| 				cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
 | |
| 			}
 | |
| 			er = EMULATE_PRIV_FAIL;
 | |
| 			break;
 | |
| 		default:
 | |
| 			er = EMULATE_PRIV_FAIL;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (er == EMULATE_PRIV_FAIL)
 | |
| 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
 | |
| 
 | |
| 	return er;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User Address (UA) fault, this could happen if
 | |
|  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
 | |
|  *     case we pass on the fault to the guest kernel and let it handle it.
 | |
|  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
 | |
|  *     case we inject the TLB from the Guest TLB into the shadow host TLB
 | |
|  */
 | |
| enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
 | |
| 					      uint32_t *opc,
 | |
| 					      struct kvm_run *run,
 | |
| 					      struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	enum emulation_result er = EMULATE_DONE;
 | |
| 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
 | |
| 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
 | |
| 	int index;
 | |
| 
 | |
| 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
 | |
| 		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM would not have got the exception if this entry was valid in the
 | |
| 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
 | |
| 	 * send the guest an exception. The guest exc handler should then inject
 | |
| 	 * an entry into the guest TLB.
 | |
| 	 */
 | |
| 	index = kvm_mips_guest_tlb_lookup(vcpu,
 | |
| 					  (va & VPN2_MASK) |
 | |
| 					  (kvm_read_c0_guest_entryhi
 | |
| 					   (vcpu->arch.cop0) & ASID_MASK));
 | |
| 	if (index < 0) {
 | |
| 		if (exccode == T_TLB_LD_MISS) {
 | |
| 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
 | |
| 		} else if (exccode == T_TLB_ST_MISS) {
 | |
| 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
 | |
| 		} else {
 | |
| 			kvm_err("%s: invalid exc code: %d\n", __func__,
 | |
| 				exccode);
 | |
| 			er = EMULATE_FAIL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
 | |
| 
 | |
| 		/*
 | |
| 		 * Check if the entry is valid, if not then setup a TLB invalid
 | |
| 		 * exception to the guest
 | |
| 		 */
 | |
| 		if (!TLB_IS_VALID(*tlb, va)) {
 | |
| 			if (exccode == T_TLB_LD_MISS) {
 | |
| 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
 | |
| 								vcpu);
 | |
| 			} else if (exccode == T_TLB_ST_MISS) {
 | |
| 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
 | |
| 								vcpu);
 | |
| 			} else {
 | |
| 				kvm_err("%s: invalid exc code: %d\n", __func__,
 | |
| 					exccode);
 | |
| 				er = EMULATE_FAIL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
 | |
| 				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
 | |
| 			/*
 | |
| 			 * OK we have a Guest TLB entry, now inject it into the
 | |
| 			 * shadow host TLB
 | |
| 			 */
 | |
| 			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
 | |
| 							     NULL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return er;
 | |
| }
 |