 c90e49f264
			
		
	
	
	c90e49f264
	
	
	
		
			
			When determining the VPE ID of a CPU, make use of the cpu_vpe_id macro
which will return 0 in a non-MT kernel build. Most code is already doing
so but a couple of places weren't. Fixing this prevents a build failure
for non-MT kernels where struct cpuinfo_mips does not contain the vpe_id
field:
  arch/mips/kernel/pm-cps.c: In function 'cps_pm_enter_state':
  arch/mips/kernel/pm-cps.c:153:51: error: 'struct cpuinfo_mips' has no
      member named 'vpe_id'
    vpe_cfg = &core_cfg->vpe_config[current_cpu_data.vpe_id];
  arch/mips/kernel/smp-cps.c: In function 'wait_for_sibling_halt':
  arch/mips/kernel/smp-cps.c:363:33: error: 'struct cpuinfo_mips' has no
      member named 'vpe_id'
    unsigned vpe_id = cpu_data[cpu].vpe_id;
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Reviewed-by: Markos Chandras <markos.chandras@imgtec.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
	
			
		
			
				
	
	
		
			724 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			724 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2014 Imagination Technologies
 | |
|  * Author: Paul Burton <paul.burton@imgtec.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation;  either version 2 of the  License, or (at your
 | |
|  * option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/asm-offsets.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cacheops.h>
 | |
| #include <asm/idle.h>
 | |
| #include <asm/mips-cm.h>
 | |
| #include <asm/mips-cpc.h>
 | |
| #include <asm/mipsmtregs.h>
 | |
| #include <asm/pm.h>
 | |
| #include <asm/pm-cps.h>
 | |
| #include <asm/smp-cps.h>
 | |
| #include <asm/uasm.h>
 | |
| 
 | |
| /*
 | |
|  * cps_nc_entry_fn - type of a generated non-coherent state entry function
 | |
|  * @online: the count of online coupled VPEs
 | |
|  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
 | |
|  *
 | |
|  * The code entering & exiting non-coherent states is generated at runtime
 | |
|  * using uasm, in order to ensure that the compiler cannot insert a stray
 | |
|  * memory access at an unfortunate time and to allow the generation of optimal
 | |
|  * core-specific code particularly for cache routines. If coupled_coherence
 | |
|  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
 | |
|  * returns the number of VPEs that were in the wait state at the point this
 | |
|  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
 | |
|  * the entry function for CPS_PM_NC_WAIT.
 | |
|  */
 | |
| typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
 | |
| 
 | |
| /*
 | |
|  * The entry point of the generated non-coherent idle state entry/exit
 | |
|  * functions. Actually per-core rather than per-CPU.
 | |
|  */
 | |
| static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
 | |
| 				  nc_asm_enter);
 | |
| 
 | |
| /* Bitmap indicating which states are supported by the system */
 | |
| DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
 | |
| 
 | |
| /*
 | |
|  * Indicates the number of coupled VPEs ready to operate in a non-coherent
 | |
|  * state. Actually per-core rather than per-CPU.
 | |
|  */
 | |
| static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
 | |
| static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
 | |
| 
 | |
| /* Indicates online CPUs coupled with the current CPU */
 | |
| static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
 | |
| 
 | |
| /*
 | |
|  * Used to synchronize entry to deep idle states. Actually per-core rather
 | |
|  * than per-CPU.
 | |
|  */
 | |
| static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
 | |
| 
 | |
| /* Saved CPU state across the CPS_PM_POWER_GATED state */
 | |
| DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
 | |
| 
 | |
| /* A somewhat arbitrary number of labels & relocs for uasm */
 | |
| static struct uasm_label labels[32] __initdata;
 | |
| static struct uasm_reloc relocs[32] __initdata;
 | |
| 
 | |
| /* CPU dependant sync types */
 | |
| static unsigned stype_intervention;
 | |
| static unsigned stype_memory;
 | |
| static unsigned stype_ordering;
 | |
| 
 | |
| enum mips_reg {
 | |
| 	zero, at, v0, v1, a0, a1, a2, a3,
 | |
| 	t0, t1, t2, t3, t4, t5, t6, t7,
 | |
| 	s0, s1, s2, s3, s4, s5, s6, s7,
 | |
| 	t8, t9, k0, k1, gp, sp, fp, ra,
 | |
| };
 | |
| 
 | |
| bool cps_pm_support_state(enum cps_pm_state state)
 | |
| {
 | |
| 	return test_bit(state, state_support);
 | |
| }
 | |
| 
 | |
| static void coupled_barrier(atomic_t *a, unsigned online)
 | |
| {
 | |
| 	/*
 | |
| 	 * This function is effectively the same as
 | |
| 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
 | |
| 	 * there's no cpuidle device.
 | |
| 	 */
 | |
| 
 | |
| 	if (!coupled_coherence)
 | |
| 		return;
 | |
| 
 | |
| 	smp_mb__before_atomic();
 | |
| 	atomic_inc(a);
 | |
| 
 | |
| 	while (atomic_read(a) < online)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	if (atomic_inc_return(a) == online * 2) {
 | |
| 		atomic_set(a, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (atomic_read(a) > online)
 | |
| 		cpu_relax();
 | |
| }
 | |
| 
 | |
| int cps_pm_enter_state(enum cps_pm_state state)
 | |
| {
 | |
| 	unsigned cpu = smp_processor_id();
 | |
| 	unsigned core = current_cpu_data.core;
 | |
| 	unsigned online, left;
 | |
| 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
 | |
| 	u32 *core_ready_count, *nc_core_ready_count;
 | |
| 	void *nc_addr;
 | |
| 	cps_nc_entry_fn entry;
 | |
| 	struct core_boot_config *core_cfg;
 | |
| 	struct vpe_boot_config *vpe_cfg;
 | |
| 
 | |
| 	/* Check that there is an entry function for this state */
 | |
| 	entry = per_cpu(nc_asm_enter, core)[state];
 | |
| 	if (!entry)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Calculate which coupled CPUs (VPEs) are online */
 | |
| #ifdef CONFIG_MIPS_MT
 | |
| 	if (cpu_online(cpu)) {
 | |
| 		cpumask_and(coupled_mask, cpu_online_mask,
 | |
| 			    &cpu_sibling_map[cpu]);
 | |
| 		online = cpumask_weight(coupled_mask);
 | |
| 		cpumask_clear_cpu(cpu, coupled_mask);
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		cpumask_clear(coupled_mask);
 | |
| 		online = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the VPE to run mips_cps_pm_restore when started again */
 | |
| 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
 | |
| 		/* Power gating relies upon CPS SMP */
 | |
| 		if (!mips_cps_smp_in_use())
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		core_cfg = &mips_cps_core_bootcfg[core];
 | |
| 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)];
 | |
| 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
 | |
| 		vpe_cfg->gp = (unsigned long)current_thread_info();
 | |
| 		vpe_cfg->sp = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Indicate that this CPU might not be coherent */
 | |
| 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	/* Create a non-coherent mapping of the core ready_count */
 | |
| 	core_ready_count = per_cpu(ready_count, core);
 | |
| 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
 | |
| 				   (unsigned long)core_ready_count);
 | |
| 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
 | |
| 	nc_core_ready_count = nc_addr;
 | |
| 
 | |
| 	/* Ensure ready_count is zero-initialised before the assembly runs */
 | |
| 	ACCESS_ONCE(*nc_core_ready_count) = 0;
 | |
| 	coupled_barrier(&per_cpu(pm_barrier, core), online);
 | |
| 
 | |
| 	/* Run the generated entry code */
 | |
| 	left = entry(online, nc_core_ready_count);
 | |
| 
 | |
| 	/* Remove the non-coherent mapping of ready_count */
 | |
| 	kunmap_noncoherent();
 | |
| 
 | |
| 	/* Indicate that this CPU is definitely coherent */
 | |
| 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this VPE is the first to leave the non-coherent wait state then
 | |
| 	 * it needs to wake up any coupled VPEs still running their wait
 | |
| 	 * instruction so that they return to cpuidle, which can then complete
 | |
| 	 * coordination between the coupled VPEs & provide the governor with
 | |
| 	 * a chance to reflect on the length of time the VPEs were in the
 | |
| 	 * idle state.
 | |
| 	 */
 | |
| 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
 | |
| 		arch_send_call_function_ipi_mask(coupled_mask);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
 | |
| 					 struct uasm_reloc **pr,
 | |
| 					 const struct cache_desc *cache,
 | |
| 					 unsigned op, int lbl)
 | |
| {
 | |
| 	unsigned cache_size = cache->ways << cache->waybit;
 | |
| 	unsigned i;
 | |
| 	const unsigned unroll_lines = 32;
 | |
| 
 | |
| 	/* If the cache isn't present this function has it easy */
 | |
| 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
 | |
| 		return;
 | |
| 
 | |
| 	/* Load base address */
 | |
| 	UASM_i_LA(pp, t0, (long)CKSEG0);
 | |
| 
 | |
| 	/* Calculate end address */
 | |
| 	if (cache_size < 0x8000)
 | |
| 		uasm_i_addiu(pp, t1, t0, cache_size);
 | |
| 	else
 | |
| 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
 | |
| 
 | |
| 	/* Start of cache op loop */
 | |
| 	uasm_build_label(pl, *pp, lbl);
 | |
| 
 | |
| 	/* Generate the cache ops */
 | |
| 	for (i = 0; i < unroll_lines; i++)
 | |
| 		uasm_i_cache(pp, op, i * cache->linesz, t0);
 | |
| 
 | |
| 	/* Update the base address */
 | |
| 	uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
 | |
| 
 | |
| 	/* Loop if we haven't reached the end address yet */
 | |
| 	uasm_il_bne(pp, pr, t0, t1, lbl);
 | |
| 	uasm_i_nop(pp);
 | |
| }
 | |
| 
 | |
| static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
 | |
| 				    struct uasm_reloc **pr,
 | |
| 				    const struct cpuinfo_mips *cpu_info,
 | |
| 				    int lbl)
 | |
| {
 | |
| 	unsigned i, fsb_size = 8;
 | |
| 	unsigned num_loads = (fsb_size * 3) / 2;
 | |
| 	unsigned line_stride = 2;
 | |
| 	unsigned line_size = cpu_info->dcache.linesz;
 | |
| 	unsigned perf_counter, perf_event;
 | |
| 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine whether this CPU requires an FSB flush, and if so which
 | |
| 	 * performance counter/event reflect stalls due to a full FSB.
 | |
| 	 */
 | |
| 	switch (__get_cpu_type(cpu_info->cputype)) {
 | |
| 	case CPU_INTERAPTIV:
 | |
| 		perf_counter = 1;
 | |
| 		perf_event = 51;
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_PROAPTIV:
 | |
| 		/* Newer proAptiv cores don't require this workaround */
 | |
| 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* On older ones it's unavailable */
 | |
| 		return -1;
 | |
| 
 | |
| 	/* CPUs which do not require the workaround */
 | |
| 	case CPU_P5600:
 | |
| 		return 0;
 | |
| 
 | |
| 	default:
 | |
| 		WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the fill/store buffer (FSB) is not holding the results
 | |
| 	 * of a prefetch, since if it is then the CPC sequencer may become
 | |
| 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
 | |
| 	 */
 | |
| 
 | |
| 	/* Preserve perf counter setup */
 | |
| 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
 | |
| 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
 | |
| 
 | |
| 	/* Setup perf counter to count FSB full pipeline stalls */
 | |
| 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
 | |
| 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
 | |
| 	uasm_i_ehb(pp);
 | |
| 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
 | |
| 	uasm_i_ehb(pp);
 | |
| 
 | |
| 	/* Base address for loads */
 | |
| 	UASM_i_LA(pp, t0, (long)CKSEG0);
 | |
| 
 | |
| 	/* Start of clear loop */
 | |
| 	uasm_build_label(pl, *pp, lbl);
 | |
| 
 | |
| 	/* Perform some loads to fill the FSB */
 | |
| 	for (i = 0; i < num_loads; i++)
 | |
| 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalidate the new D-cache entries so that the cache will need
 | |
| 	 * refilling (via the FSB) if the loop is executed again.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_loads; i++) {
 | |
| 		uasm_i_cache(pp, Hit_Invalidate_D,
 | |
| 			     i * line_size * line_stride, t0);
 | |
| 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
 | |
| 			     i * line_size * line_stride, t0);
 | |
| 	}
 | |
| 
 | |
| 	/* Completion barrier */
 | |
| 	uasm_i_sync(pp, stype_memory);
 | |
| 	uasm_i_ehb(pp);
 | |
| 
 | |
| 	/* Check whether the pipeline stalled due to the FSB being full */
 | |
| 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
 | |
| 
 | |
| 	/* Loop if it didn't */
 | |
| 	uasm_il_beqz(pp, pr, t1, lbl);
 | |
| 	uasm_i_nop(pp);
 | |
| 
 | |
| 	/* Restore perf counter 1. The count may well now be wrong... */
 | |
| 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
 | |
| 	uasm_i_ehb(pp);
 | |
| 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
 | |
| 	uasm_i_ehb(pp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
 | |
| 				       struct uasm_reloc **pr,
 | |
| 				       unsigned r_addr, int lbl)
 | |
| {
 | |
| 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
 | |
| 	uasm_build_label(pl, *pp, lbl);
 | |
| 	uasm_i_ll(pp, t1, 0, r_addr);
 | |
| 	uasm_i_or(pp, t1, t1, t0);
 | |
| 	uasm_i_sc(pp, t1, 0, r_addr);
 | |
| 	uasm_il_beqz(pp, pr, t1, lbl);
 | |
| 	uasm_i_nop(pp);
 | |
| }
 | |
| 
 | |
| static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
 | |
| {
 | |
| 	struct uasm_label *l = labels;
 | |
| 	struct uasm_reloc *r = relocs;
 | |
| 	u32 *buf, *p;
 | |
| 	const unsigned r_online = a0;
 | |
| 	const unsigned r_nc_count = a1;
 | |
| 	const unsigned r_pcohctl = t7;
 | |
| 	const unsigned max_instrs = 256;
 | |
| 	unsigned cpc_cmd;
 | |
| 	int err;
 | |
| 	enum {
 | |
| 		lbl_incready = 1,
 | |
| 		lbl_poll_cont,
 | |
| 		lbl_secondary_hang,
 | |
| 		lbl_disable_coherence,
 | |
| 		lbl_flush_fsb,
 | |
| 		lbl_invicache,
 | |
| 		lbl_flushdcache,
 | |
| 		lbl_hang,
 | |
| 		lbl_set_cont,
 | |
| 		lbl_secondary_cont,
 | |
| 		lbl_decready,
 | |
| 	};
 | |
| 
 | |
| 	/* Allocate a buffer to hold the generated code */
 | |
| 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Clear labels & relocs ready for (re)use */
 | |
| 	memset(labels, 0, sizeof(labels));
 | |
| 	memset(relocs, 0, sizeof(relocs));
 | |
| 
 | |
| 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
 | |
| 		/* Power gating relies upon CPS SMP */
 | |
| 		if (!mips_cps_smp_in_use())
 | |
| 			goto out_err;
 | |
| 
 | |
| 		/*
 | |
| 		 * Save CPU state. Note the non-standard calling convention
 | |
| 		 * with the return address placed in v0 to avoid clobbering
 | |
| 		 * the ra register before it is saved.
 | |
| 		 */
 | |
| 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
 | |
| 		uasm_i_jalr(&p, v0, t0);
 | |
| 		uasm_i_nop(&p);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Load addresses of required CM & CPC registers. This is done early
 | |
| 	 * because they're needed in both the enable & disable coherence steps
 | |
| 	 * but in the coupled case the enable step will only run on one VPE.
 | |
| 	 */
 | |
| 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
 | |
| 
 | |
| 	if (coupled_coherence) {
 | |
| 		/* Increment ready_count */
 | |
| 		uasm_i_sync(&p, stype_ordering);
 | |
| 		uasm_build_label(&l, p, lbl_incready);
 | |
| 		uasm_i_ll(&p, t1, 0, r_nc_count);
 | |
| 		uasm_i_addiu(&p, t2, t1, 1);
 | |
| 		uasm_i_sc(&p, t2, 0, r_nc_count);
 | |
| 		uasm_il_beqz(&p, &r, t2, lbl_incready);
 | |
| 		uasm_i_addiu(&p, t1, t1, 1);
 | |
| 
 | |
| 		/* Ordering barrier */
 | |
| 		uasm_i_sync(&p, stype_ordering);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this is the last VPE to become ready for non-coherence
 | |
| 		 * then it should branch below.
 | |
| 		 */
 | |
| 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
 | |
| 		uasm_i_nop(&p);
 | |
| 
 | |
| 		if (state < CPS_PM_POWER_GATED) {
 | |
| 			/*
 | |
| 			 * Otherwise this is not the last VPE to become ready
 | |
| 			 * for non-coherence. It needs to wait until coherence
 | |
| 			 * has been disabled before proceeding, which it will do
 | |
| 			 * by polling for the top bit of ready_count being set.
 | |
| 			 */
 | |
| 			uasm_i_addiu(&p, t1, zero, -1);
 | |
| 			uasm_build_label(&l, p, lbl_poll_cont);
 | |
| 			uasm_i_lw(&p, t0, 0, r_nc_count);
 | |
| 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
 | |
| 			uasm_i_ehb(&p);
 | |
| 			uasm_i_yield(&p, zero, t1);
 | |
| 			uasm_il_b(&p, &r, lbl_poll_cont);
 | |
| 			uasm_i_nop(&p);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The core will lose power & this VPE will not continue
 | |
| 			 * so it can simply halt here.
 | |
| 			 */
 | |
| 			uasm_i_addiu(&p, t0, zero, TCHALT_H);
 | |
| 			uasm_i_mtc0(&p, t0, 2, 4);
 | |
| 			uasm_build_label(&l, p, lbl_secondary_hang);
 | |
| 			uasm_il_b(&p, &r, lbl_secondary_hang);
 | |
| 			uasm_i_nop(&p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is the point of no return - this VPE will now proceed to
 | |
| 	 * disable coherence. At this point we *must* be sure that no other
 | |
| 	 * VPE within the core will interfere with the L1 dcache.
 | |
| 	 */
 | |
| 	uasm_build_label(&l, p, lbl_disable_coherence);
 | |
| 
 | |
| 	/* Invalidate the L1 icache */
 | |
| 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
 | |
| 			      Index_Invalidate_I, lbl_invicache);
 | |
| 
 | |
| 	/* Writeback & invalidate the L1 dcache */
 | |
| 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
 | |
| 			      Index_Writeback_Inv_D, lbl_flushdcache);
 | |
| 
 | |
| 	/* Completion barrier */
 | |
| 	uasm_i_sync(&p, stype_memory);
 | |
| 	uasm_i_ehb(&p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable all but self interventions. The load from COHCTL is defined
 | |
| 	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
 | |
| 	 * resulting from the preceeding store is complete.
 | |
| 	 */
 | |
| 	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
 | |
| 	uasm_i_sw(&p, t0, 0, r_pcohctl);
 | |
| 	uasm_i_lw(&p, t0, 0, r_pcohctl);
 | |
| 
 | |
| 	/* Sync to ensure previous interventions are complete */
 | |
| 	uasm_i_sync(&p, stype_intervention);
 | |
| 	uasm_i_ehb(&p);
 | |
| 
 | |
| 	/* Disable coherence */
 | |
| 	uasm_i_sw(&p, zero, 0, r_pcohctl);
 | |
| 	uasm_i_lw(&p, t0, 0, r_pcohctl);
 | |
| 
 | |
| 	if (state >= CPS_PM_CLOCK_GATED) {
 | |
| 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
 | |
| 					lbl_flush_fsb);
 | |
| 		if (err)
 | |
| 			goto out_err;
 | |
| 
 | |
| 		/* Determine the CPC command to issue */
 | |
| 		switch (state) {
 | |
| 		case CPS_PM_CLOCK_GATED:
 | |
| 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
 | |
| 			break;
 | |
| 		case CPS_PM_POWER_GATED:
 | |
| 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 
 | |
| 		/* Issue the CPC command */
 | |
| 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
 | |
| 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
 | |
| 		uasm_i_sw(&p, t1, 0, t0);
 | |
| 
 | |
| 		if (state == CPS_PM_POWER_GATED) {
 | |
| 			/* If anything goes wrong just hang */
 | |
| 			uasm_build_label(&l, p, lbl_hang);
 | |
| 			uasm_il_b(&p, &r, lbl_hang);
 | |
| 			uasm_i_nop(&p);
 | |
| 
 | |
| 			/*
 | |
| 			 * There's no point generating more code, the core is
 | |
| 			 * powered down & if powered back up will run from the
 | |
| 			 * reset vector not from here.
 | |
| 			 */
 | |
| 			goto gen_done;
 | |
| 		}
 | |
| 
 | |
| 		/* Completion barrier */
 | |
| 		uasm_i_sync(&p, stype_memory);
 | |
| 		uasm_i_ehb(&p);
 | |
| 	}
 | |
| 
 | |
| 	if (state == CPS_PM_NC_WAIT) {
 | |
| 		/*
 | |
| 		 * At this point it is safe for all VPEs to proceed with
 | |
| 		 * execution. This VPE will set the top bit of ready_count
 | |
| 		 * to indicate to the other VPEs that they may continue.
 | |
| 		 */
 | |
| 		if (coupled_coherence)
 | |
| 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
 | |
| 					    lbl_set_cont);
 | |
| 
 | |
| 		/*
 | |
| 		 * VPEs which did not disable coherence will continue
 | |
| 		 * executing, after coherence has been disabled, from this
 | |
| 		 * point.
 | |
| 		 */
 | |
| 		uasm_build_label(&l, p, lbl_secondary_cont);
 | |
| 
 | |
| 		/* Now perform our wait */
 | |
| 		uasm_i_wait(&p, 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
 | |
| 	 * will run this. The first will actually re-enable coherence & the
 | |
| 	 * rest will just be performing a rather unusual nop.
 | |
| 	 */
 | |
| 	uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
 | |
| 	uasm_i_sw(&p, t0, 0, r_pcohctl);
 | |
| 	uasm_i_lw(&p, t0, 0, r_pcohctl);
 | |
| 
 | |
| 	/* Completion barrier */
 | |
| 	uasm_i_sync(&p, stype_memory);
 | |
| 	uasm_i_ehb(&p);
 | |
| 
 | |
| 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
 | |
| 		/* Decrement ready_count */
 | |
| 		uasm_build_label(&l, p, lbl_decready);
 | |
| 		uasm_i_sync(&p, stype_ordering);
 | |
| 		uasm_i_ll(&p, t1, 0, r_nc_count);
 | |
| 		uasm_i_addiu(&p, t2, t1, -1);
 | |
| 		uasm_i_sc(&p, t2, 0, r_nc_count);
 | |
| 		uasm_il_beqz(&p, &r, t2, lbl_decready);
 | |
| 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
 | |
| 
 | |
| 		/* Ordering barrier */
 | |
| 		uasm_i_sync(&p, stype_ordering);
 | |
| 	}
 | |
| 
 | |
| 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
 | |
| 		/*
 | |
| 		 * At this point it is safe for all VPEs to proceed with
 | |
| 		 * execution. This VPE will set the top bit of ready_count
 | |
| 		 * to indicate to the other VPEs that they may continue.
 | |
| 		 */
 | |
| 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
 | |
| 
 | |
| 		/*
 | |
| 		 * This core will be reliant upon another core sending a
 | |
| 		 * power-up command to the CPC in order to resume operation.
 | |
| 		 * Thus an arbitrary VPE can't trigger the core leaving the
 | |
| 		 * idle state and the one that disables coherence might as well
 | |
| 		 * be the one to re-enable it. The rest will continue from here
 | |
| 		 * after that has been done.
 | |
| 		 */
 | |
| 		uasm_build_label(&l, p, lbl_secondary_cont);
 | |
| 
 | |
| 		/* Ordering barrier */
 | |
| 		uasm_i_sync(&p, stype_ordering);
 | |
| 	}
 | |
| 
 | |
| 	/* The core is coherent, time to return to C code */
 | |
| 	uasm_i_jr(&p, ra);
 | |
| 	uasm_i_nop(&p);
 | |
| 
 | |
| gen_done:
 | |
| 	/* Ensure the code didn't exceed the resources allocated for it */
 | |
| 	BUG_ON((p - buf) > max_instrs);
 | |
| 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
 | |
| 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
 | |
| 
 | |
| 	/* Patch branch offsets */
 | |
| 	uasm_resolve_relocs(relocs, labels);
 | |
| 
 | |
| 	/* Flush the icache */
 | |
| 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
 | |
| 
 | |
| 	return buf;
 | |
| out_err:
 | |
| 	kfree(buf);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int __init cps_gen_core_entries(unsigned cpu)
 | |
| {
 | |
| 	enum cps_pm_state state;
 | |
| 	unsigned core = cpu_data[cpu].core;
 | |
| 	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
 | |
| 	void *entry_fn, *core_rc;
 | |
| 
 | |
| 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
 | |
| 		if (per_cpu(nc_asm_enter, core)[state])
 | |
| 			continue;
 | |
| 		if (!test_bit(state, state_support))
 | |
| 			continue;
 | |
| 
 | |
| 		entry_fn = cps_gen_entry_code(cpu, state);
 | |
| 		if (!entry_fn) {
 | |
| 			pr_err("Failed to generate core %u state %u entry\n",
 | |
| 			       core, state);
 | |
| 			clear_bit(state, state_support);
 | |
| 		}
 | |
| 
 | |
| 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
 | |
| 	}
 | |
| 
 | |
| 	if (!per_cpu(ready_count, core)) {
 | |
| 		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
 | |
| 		if (!core_rc) {
 | |
| 			pr_err("Failed allocate core %u ready_count\n", core);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		per_cpu(ready_count_alloc, core) = core_rc;
 | |
| 
 | |
| 		/* Ensure ready_count is aligned to a cacheline boundary */
 | |
| 		core_rc += dlinesz - 1;
 | |
| 		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
 | |
| 		per_cpu(ready_count, core) = core_rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init cps_pm_init(void)
 | |
| {
 | |
| 	unsigned cpu;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Detect appropriate sync types for the system */
 | |
| 	switch (current_cpu_data.cputype) {
 | |
| 	case CPU_INTERAPTIV:
 | |
| 	case CPU_PROAPTIV:
 | |
| 	case CPU_M5150:
 | |
| 	case CPU_P5600:
 | |
| 		stype_intervention = 0x2;
 | |
| 		stype_memory = 0x3;
 | |
| 		stype_ordering = 0x10;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		pr_warn("Power management is using heavyweight sync 0\n");
 | |
| 	}
 | |
| 
 | |
| 	/* A CM is required for all non-coherent states */
 | |
| 	if (!mips_cm_present()) {
 | |
| 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If interrupts were enabled whilst running a wait instruction on a
 | |
| 	 * non-coherent core then the VPE may end up processing interrupts
 | |
| 	 * whilst non-coherent. That would be bad.
 | |
| 	 */
 | |
| 	if (cpu_wait == r4k_wait_irqoff)
 | |
| 		set_bit(CPS_PM_NC_WAIT, state_support);
 | |
| 	else
 | |
| 		pr_warn("pm-cps: non-coherent wait unavailable\n");
 | |
| 
 | |
| 	/* Detect whether a CPC is present */
 | |
| 	if (mips_cpc_present()) {
 | |
| 		/* Detect whether clock gating is implemented */
 | |
| 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
 | |
| 			set_bit(CPS_PM_CLOCK_GATED, state_support);
 | |
| 		else
 | |
| 			pr_warn("pm-cps: CPC does not support clock gating\n");
 | |
| 
 | |
| 		/* Power gating is available with CPS SMP & any CPC */
 | |
| 		if (mips_cps_smp_in_use())
 | |
| 			set_bit(CPS_PM_POWER_GATED, state_support);
 | |
| 		else
 | |
| 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
 | |
| 	} else {
 | |
| 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
 | |
| 	}
 | |
| 
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		err = cps_gen_core_entries(cpu);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| out:
 | |
| 	return 0;
 | |
| }
 | |
| arch_initcall(cps_pm_init);
 |