The expression '(1 << 32)' happens to evaluate as 0 on ARM, but it evaluates as 1 on xtensa and x86_64. This zeros sched_clock_mask, and breaks sched_clock(). Set the type of 1 to 'unsigned long long' to get the value we need. Reported-by: Max Filippov <jcmvbkbc@gmail.com> Tested-by: Max Filippov <jcmvbkbc@gmail.com> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Baruch Siach <baruch@tkos.co.il> Signed-off-by: John Stultz <john.stultz@linaro.org>
		
			
				
	
	
		
			212 lines
		
	
	
	
		
			4.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
	
		
			4.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * sched_clock.c: support for extending counters to full 64-bit ns counter
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License version 2 as
 | 
						|
 * published by the Free Software Foundation.
 | 
						|
 */
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/moduleparam.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/syscore_ops.h>
 | 
						|
#include <linux/timer.h>
 | 
						|
#include <linux/sched_clock.h>
 | 
						|
 | 
						|
struct clock_data {
 | 
						|
	u64 epoch_ns;
 | 
						|
	u32 epoch_cyc;
 | 
						|
	u32 epoch_cyc_copy;
 | 
						|
	unsigned long rate;
 | 
						|
	u32 mult;
 | 
						|
	u32 shift;
 | 
						|
	bool suspended;
 | 
						|
};
 | 
						|
 | 
						|
static void sched_clock_poll(unsigned long wrap_ticks);
 | 
						|
static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
 | 
						|
static int irqtime = -1;
 | 
						|
 | 
						|
core_param(irqtime, irqtime, int, 0400);
 | 
						|
 | 
						|
static struct clock_data cd = {
 | 
						|
	.mult	= NSEC_PER_SEC / HZ,
 | 
						|
};
 | 
						|
 | 
						|
static u32 __read_mostly sched_clock_mask = 0xffffffff;
 | 
						|
 | 
						|
static u32 notrace jiffy_sched_clock_read(void)
 | 
						|
{
 | 
						|
	return (u32)(jiffies - INITIAL_JIFFIES);
 | 
						|
}
 | 
						|
 | 
						|
static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
 | 
						|
 | 
						|
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
 | 
						|
{
 | 
						|
	return (cyc * mult) >> shift;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long long notrace sched_clock_32(void)
 | 
						|
{
 | 
						|
	u64 epoch_ns;
 | 
						|
	u32 epoch_cyc;
 | 
						|
	u32 cyc;
 | 
						|
 | 
						|
	if (cd.suspended)
 | 
						|
		return cd.epoch_ns;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Load the epoch_cyc and epoch_ns atomically.  We do this by
 | 
						|
	 * ensuring that we always write epoch_cyc, epoch_ns and
 | 
						|
	 * epoch_cyc_copy in strict order, and read them in strict order.
 | 
						|
	 * If epoch_cyc and epoch_cyc_copy are not equal, then we're in
 | 
						|
	 * the middle of an update, and we should repeat the load.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		epoch_cyc = cd.epoch_cyc;
 | 
						|
		smp_rmb();
 | 
						|
		epoch_ns = cd.epoch_ns;
 | 
						|
		smp_rmb();
 | 
						|
	} while (epoch_cyc != cd.epoch_cyc_copy);
 | 
						|
 | 
						|
	cyc = read_sched_clock();
 | 
						|
	cyc = (cyc - epoch_cyc) & sched_clock_mask;
 | 
						|
	return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Atomically update the sched_clock epoch.
 | 
						|
 */
 | 
						|
static void notrace update_sched_clock(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	u32 cyc;
 | 
						|
	u64 ns;
 | 
						|
 | 
						|
	cyc = read_sched_clock();
 | 
						|
	ns = cd.epoch_ns +
 | 
						|
		cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
 | 
						|
			  cd.mult, cd.shift);
 | 
						|
	/*
 | 
						|
	 * Write epoch_cyc and epoch_ns in a way that the update is
 | 
						|
	 * detectable in cyc_to_fixed_sched_clock().
 | 
						|
	 */
 | 
						|
	raw_local_irq_save(flags);
 | 
						|
	cd.epoch_cyc_copy = cyc;
 | 
						|
	smp_wmb();
 | 
						|
	cd.epoch_ns = ns;
 | 
						|
	smp_wmb();
 | 
						|
	cd.epoch_cyc = cyc;
 | 
						|
	raw_local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static void sched_clock_poll(unsigned long wrap_ticks)
 | 
						|
{
 | 
						|
	mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
 | 
						|
	update_sched_clock();
 | 
						|
}
 | 
						|
 | 
						|
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
 | 
						|
{
 | 
						|
	unsigned long r, w;
 | 
						|
	u64 res, wrap;
 | 
						|
	char r_unit;
 | 
						|
 | 
						|
	if (cd.rate > rate)
 | 
						|
		return;
 | 
						|
 | 
						|
	BUG_ON(bits > 32);
 | 
						|
	WARN_ON(!irqs_disabled());
 | 
						|
	read_sched_clock = read;
 | 
						|
	sched_clock_mask = (1ULL << bits) - 1;
 | 
						|
	cd.rate = rate;
 | 
						|
 | 
						|
	/* calculate the mult/shift to convert counter ticks to ns. */
 | 
						|
	clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0);
 | 
						|
 | 
						|
	r = rate;
 | 
						|
	if (r >= 4000000) {
 | 
						|
		r /= 1000000;
 | 
						|
		r_unit = 'M';
 | 
						|
	} else if (r >= 1000) {
 | 
						|
		r /= 1000;
 | 
						|
		r_unit = 'k';
 | 
						|
	} else
 | 
						|
		r_unit = ' ';
 | 
						|
 | 
						|
	/* calculate how many ns until we wrap */
 | 
						|
	wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
 | 
						|
	do_div(wrap, NSEC_PER_MSEC);
 | 
						|
	w = wrap;
 | 
						|
 | 
						|
	/* calculate the ns resolution of this counter */
 | 
						|
	res = cyc_to_ns(1ULL, cd.mult, cd.shift);
 | 
						|
	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
 | 
						|
		bits, r, r_unit, res, w);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Start the timer to keep sched_clock() properly updated and
 | 
						|
	 * sets the initial epoch.
 | 
						|
	 */
 | 
						|
	sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
 | 
						|
	update_sched_clock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ensure that sched_clock() starts off at 0ns
 | 
						|
	 */
 | 
						|
	cd.epoch_ns = 0;
 | 
						|
 | 
						|
	/* Enable IRQ time accounting if we have a fast enough sched_clock */
 | 
						|
	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
 | 
						|
		enable_sched_clock_irqtime();
 | 
						|
 | 
						|
	pr_debug("Registered %pF as sched_clock source\n", read);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32;
 | 
						|
 | 
						|
unsigned long long notrace sched_clock(void)
 | 
						|
{
 | 
						|
	return sched_clock_func();
 | 
						|
}
 | 
						|
 | 
						|
void __init sched_clock_postinit(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If no sched_clock function has been provided at that point,
 | 
						|
	 * make it the final one one.
 | 
						|
	 */
 | 
						|
	if (read_sched_clock == jiffy_sched_clock_read)
 | 
						|
		setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
 | 
						|
 | 
						|
	sched_clock_poll(sched_clock_timer.data);
 | 
						|
}
 | 
						|
 | 
						|
static int sched_clock_suspend(void)
 | 
						|
{
 | 
						|
	sched_clock_poll(sched_clock_timer.data);
 | 
						|
	cd.suspended = true;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void sched_clock_resume(void)
 | 
						|
{
 | 
						|
	cd.epoch_cyc = read_sched_clock();
 | 
						|
	cd.epoch_cyc_copy = cd.epoch_cyc;
 | 
						|
	cd.suspended = false;
 | 
						|
}
 | 
						|
 | 
						|
static struct syscore_ops sched_clock_ops = {
 | 
						|
	.suspend = sched_clock_suspend,
 | 
						|
	.resume = sched_clock_resume,
 | 
						|
};
 | 
						|
 | 
						|
static int __init sched_clock_syscore_init(void)
 | 
						|
{
 | 
						|
	register_syscore_ops(&sched_clock_ops);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
device_initcall(sched_clock_syscore_init);
 |