 cffb9be80f
			
		
	
	
	cffb9be80f
	
	
	
		
			
			Lately (with the use of uas / bulk-streams) we have been seeing several cases where this error triggers (which should never happen). Add some extra logging to make debugging these errors easier. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			3983 lines
		
	
	
	
		
			122 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3983 lines
		
	
	
	
		
			122 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * xHCI host controller driver
 | |
|  *
 | |
|  * Copyright (C) 2008 Intel Corp.
 | |
|  *
 | |
|  * Author: Sarah Sharp
 | |
|  * Some code borrowed from the Linux EHCI driver.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 | |
|  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  * for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Ring initialization rules:
 | |
|  * 1. Each segment is initialized to zero, except for link TRBs.
 | |
|  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
 | |
|  *    Consumer Cycle State (CCS), depending on ring function.
 | |
|  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
 | |
|  *
 | |
|  * Ring behavior rules:
 | |
|  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
 | |
|  *    least one free TRB in the ring.  This is useful if you want to turn that
 | |
|  *    into a link TRB and expand the ring.
 | |
|  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
 | |
|  *    link TRB, then load the pointer with the address in the link TRB.  If the
 | |
|  *    link TRB had its toggle bit set, you may need to update the ring cycle
 | |
|  *    state (see cycle bit rules).  You may have to do this multiple times
 | |
|  *    until you reach a non-link TRB.
 | |
|  * 3. A ring is full if enqueue++ (for the definition of increment above)
 | |
|  *    equals the dequeue pointer.
 | |
|  *
 | |
|  * Cycle bit rules:
 | |
|  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
 | |
|  *    in a link TRB, it must toggle the ring cycle state.
 | |
|  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
 | |
|  *    in a link TRB, it must toggle the ring cycle state.
 | |
|  *
 | |
|  * Producer rules:
 | |
|  * 1. Check if ring is full before you enqueue.
 | |
|  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
 | |
|  *    Update enqueue pointer between each write (which may update the ring
 | |
|  *    cycle state).
 | |
|  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
 | |
|  *    and endpoint rings.  If HC is the producer for the event ring,
 | |
|  *    and it generates an interrupt according to interrupt modulation rules.
 | |
|  *
 | |
|  * Consumer rules:
 | |
|  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
 | |
|  *    the TRB is owned by the consumer.
 | |
|  * 2. Update dequeue pointer (which may update the ring cycle state) and
 | |
|  *    continue processing TRBs until you reach a TRB which is not owned by you.
 | |
|  * 3. Notify the producer.  SW is the consumer for the event ring, and it
 | |
|  *   updates event ring dequeue pointer.  HC is the consumer for the command and
 | |
|  *   endpoint rings; it generates events on the event ring for these.
 | |
|  */
 | |
| 
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/slab.h>
 | |
| #include "xhci.h"
 | |
| #include "xhci-trace.h"
 | |
| 
 | |
| /*
 | |
|  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
 | |
|  * address of the TRB.
 | |
|  */
 | |
| dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
 | |
| 		union xhci_trb *trb)
 | |
| {
 | |
| 	unsigned long segment_offset;
 | |
| 
 | |
| 	if (!seg || !trb || trb < seg->trbs)
 | |
| 		return 0;
 | |
| 	/* offset in TRBs */
 | |
| 	segment_offset = trb - seg->trbs;
 | |
| 	if (segment_offset > TRBS_PER_SEGMENT)
 | |
| 		return 0;
 | |
| 	return seg->dma + (segment_offset * sizeof(*trb));
 | |
| }
 | |
| 
 | |
| /* Does this link TRB point to the first segment in a ring,
 | |
|  * or was the previous TRB the last TRB on the last segment in the ERST?
 | |
|  */
 | |
| static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
 | |
| 		struct xhci_segment *seg, union xhci_trb *trb)
 | |
| {
 | |
| 	if (ring == xhci->event_ring)
 | |
| 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
 | |
| 			(seg->next == xhci->event_ring->first_seg);
 | |
| 	else
 | |
| 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
 | |
| }
 | |
| 
 | |
| /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
 | |
|  * segment?  I.e. would the updated event TRB pointer step off the end of the
 | |
|  * event seg?
 | |
|  */
 | |
| static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
 | |
| 		struct xhci_segment *seg, union xhci_trb *trb)
 | |
| {
 | |
| 	if (ring == xhci->event_ring)
 | |
| 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
 | |
| 	else
 | |
| 		return TRB_TYPE_LINK_LE32(trb->link.control);
 | |
| }
 | |
| 
 | |
| static int enqueue_is_link_trb(struct xhci_ring *ring)
 | |
| {
 | |
| 	struct xhci_link_trb *link = &ring->enqueue->link;
 | |
| 	return TRB_TYPE_LINK_LE32(link->control);
 | |
| }
 | |
| 
 | |
| /* Updates trb to point to the next TRB in the ring, and updates seg if the next
 | |
|  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
 | |
|  * effect the ring dequeue or enqueue pointers.
 | |
|  */
 | |
| static void next_trb(struct xhci_hcd *xhci,
 | |
| 		struct xhci_ring *ring,
 | |
| 		struct xhci_segment **seg,
 | |
| 		union xhci_trb **trb)
 | |
| {
 | |
| 	if (last_trb(xhci, ring, *seg, *trb)) {
 | |
| 		*seg = (*seg)->next;
 | |
| 		*trb = ((*seg)->trbs);
 | |
| 	} else {
 | |
| 		(*trb)++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See Cycle bit rules. SW is the consumer for the event ring only.
 | |
|  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
 | |
|  */
 | |
| static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
 | |
| {
 | |
| 	ring->deq_updates++;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is not event ring, and the dequeue pointer
 | |
| 	 * is not on a link TRB, there is one more usable TRB
 | |
| 	 */
 | |
| 	if (ring->type != TYPE_EVENT &&
 | |
| 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
 | |
| 		ring->num_trbs_free++;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Update the dequeue pointer further if that was a link TRB or
 | |
| 		 * we're at the end of an event ring segment (which doesn't have
 | |
| 		 * link TRBS)
 | |
| 		 */
 | |
| 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
 | |
| 			if (ring->type == TYPE_EVENT &&
 | |
| 					last_trb_on_last_seg(xhci, ring,
 | |
| 						ring->deq_seg, ring->dequeue)) {
 | |
| 				ring->cycle_state ^= 1;
 | |
| 			}
 | |
| 			ring->deq_seg = ring->deq_seg->next;
 | |
| 			ring->dequeue = ring->deq_seg->trbs;
 | |
| 		} else {
 | |
| 			ring->dequeue++;
 | |
| 		}
 | |
| 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See Cycle bit rules. SW is the consumer for the event ring only.
 | |
|  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
 | |
|  *
 | |
|  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
 | |
|  * chain bit is set), then set the chain bit in all the following link TRBs.
 | |
|  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
 | |
|  * have their chain bit cleared (so that each Link TRB is a separate TD).
 | |
|  *
 | |
|  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
 | |
|  * set, but other sections talk about dealing with the chain bit set.  This was
 | |
|  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
 | |
|  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
 | |
|  *
 | |
|  * @more_trbs_coming:	Will you enqueue more TRBs before calling
 | |
|  *			prepare_transfer()?
 | |
|  */
 | |
| static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
 | |
| 			bool more_trbs_coming)
 | |
| {
 | |
| 	u32 chain;
 | |
| 	union xhci_trb *next;
 | |
| 
 | |
| 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
 | |
| 	/* If this is not event ring, there is one less usable TRB */
 | |
| 	if (ring->type != TYPE_EVENT &&
 | |
| 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
 | |
| 		ring->num_trbs_free--;
 | |
| 	next = ++(ring->enqueue);
 | |
| 
 | |
| 	ring->enq_updates++;
 | |
| 	/* Update the dequeue pointer further if that was a link TRB or we're at
 | |
| 	 * the end of an event ring segment (which doesn't have link TRBS)
 | |
| 	 */
 | |
| 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
 | |
| 		if (ring->type != TYPE_EVENT) {
 | |
| 			/*
 | |
| 			 * If the caller doesn't plan on enqueueing more
 | |
| 			 * TDs before ringing the doorbell, then we
 | |
| 			 * don't want to give the link TRB to the
 | |
| 			 * hardware just yet.  We'll give the link TRB
 | |
| 			 * back in prepare_ring() just before we enqueue
 | |
| 			 * the TD at the top of the ring.
 | |
| 			 */
 | |
| 			if (!chain && !more_trbs_coming)
 | |
| 				break;
 | |
| 
 | |
| 			/* If we're not dealing with 0.95 hardware or
 | |
| 			 * isoc rings on AMD 0.96 host,
 | |
| 			 * carry over the chain bit of the previous TRB
 | |
| 			 * (which may mean the chain bit is cleared).
 | |
| 			 */
 | |
| 			if (!(ring->type == TYPE_ISOC &&
 | |
| 					(xhci->quirks & XHCI_AMD_0x96_HOST))
 | |
| 						&& !xhci_link_trb_quirk(xhci)) {
 | |
| 				next->link.control &=
 | |
| 					cpu_to_le32(~TRB_CHAIN);
 | |
| 				next->link.control |=
 | |
| 					cpu_to_le32(chain);
 | |
| 			}
 | |
| 			/* Give this link TRB to the hardware */
 | |
| 			wmb();
 | |
| 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
 | |
| 
 | |
| 			/* Toggle the cycle bit after the last ring segment. */
 | |
| 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
 | |
| 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
 | |
| 			}
 | |
| 		}
 | |
| 		ring->enq_seg = ring->enq_seg->next;
 | |
| 		ring->enqueue = ring->enq_seg->trbs;
 | |
| 		next = ring->enqueue;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if there's room to enqueue num_trbs on the ring and make sure
 | |
|  * enqueue pointer will not advance into dequeue segment. See rules above.
 | |
|  */
 | |
| static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
 | |
| 		unsigned int num_trbs)
 | |
| {
 | |
| 	int num_trbs_in_deq_seg;
 | |
| 
 | |
| 	if (ring->num_trbs_free < num_trbs)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
 | |
| 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
 | |
| 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Ring the host controller doorbell after placing a command on the ring */
 | |
| void xhci_ring_cmd_db(struct xhci_hcd *xhci)
 | |
| {
 | |
| 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
 | |
| 		return;
 | |
| 
 | |
| 	xhci_dbg(xhci, "// Ding dong!\n");
 | |
| 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
 | |
| 	/* Flush PCI posted writes */
 | |
| 	readl(&xhci->dba->doorbell[0]);
 | |
| }
 | |
| 
 | |
| static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
 | |
| {
 | |
| 	u64 temp_64;
 | |
| 	int ret;
 | |
| 
 | |
| 	xhci_dbg(xhci, "Abort command ring\n");
 | |
| 
 | |
| 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 | |
| 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
 | |
| 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
 | |
| 			&xhci->op_regs->cmd_ring);
 | |
| 
 | |
| 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
 | |
| 	 * time the completion od all xHCI commands, including
 | |
| 	 * the Command Abort operation. If software doesn't see
 | |
| 	 * CRR negated in a timely manner (e.g. longer than 5
 | |
| 	 * seconds), then it should assume that the there are
 | |
| 	 * larger problems with the xHC and assert HCRST.
 | |
| 	 */
 | |
| 	ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
 | |
| 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
 | |
| 	if (ret < 0) {
 | |
| 		xhci_err(xhci, "Stopped the command ring failed, "
 | |
| 				"maybe the host is dead\n");
 | |
| 		xhci->xhc_state |= XHCI_STATE_DYING;
 | |
| 		xhci_quiesce(xhci);
 | |
| 		xhci_halt(xhci);
 | |
| 		return -ESHUTDOWN;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
 | |
| 		unsigned int slot_id,
 | |
| 		unsigned int ep_index,
 | |
| 		unsigned int stream_id)
 | |
| {
 | |
| 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
 | |
| 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
 | |
| 	unsigned int ep_state = ep->ep_state;
 | |
| 
 | |
| 	/* Don't ring the doorbell for this endpoint if there are pending
 | |
| 	 * cancellations because we don't want to interrupt processing.
 | |
| 	 * We don't want to restart any stream rings if there's a set dequeue
 | |
| 	 * pointer command pending because the device can choose to start any
 | |
| 	 * stream once the endpoint is on the HW schedule.
 | |
| 	 */
 | |
| 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
 | |
| 	    (ep_state & EP_HALTED))
 | |
| 		return;
 | |
| 	writel(DB_VALUE(ep_index, stream_id), db_addr);
 | |
| 	/* The CPU has better things to do at this point than wait for a
 | |
| 	 * write-posting flush.  It'll get there soon enough.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /* Ring the doorbell for any rings with pending URBs */
 | |
| static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
 | |
| 		unsigned int slot_id,
 | |
| 		unsigned int ep_index)
 | |
| {
 | |
| 	unsigned int stream_id;
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 
 | |
| 	ep = &xhci->devs[slot_id]->eps[ep_index];
 | |
| 
 | |
| 	/* A ring has pending URBs if its TD list is not empty */
 | |
| 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
 | |
| 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
 | |
| 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
 | |
| 			stream_id++) {
 | |
| 		struct xhci_stream_info *stream_info = ep->stream_info;
 | |
| 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
 | |
| 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
 | |
| 						stream_id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
 | |
| 		unsigned int slot_id, unsigned int ep_index,
 | |
| 		unsigned int stream_id)
 | |
| {
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 
 | |
| 	ep = &xhci->devs[slot_id]->eps[ep_index];
 | |
| 	/* Common case: no streams */
 | |
| 	if (!(ep->ep_state & EP_HAS_STREAMS))
 | |
| 		return ep->ring;
 | |
| 
 | |
| 	if (stream_id == 0) {
 | |
| 		xhci_warn(xhci,
 | |
| 				"WARN: Slot ID %u, ep index %u has streams, "
 | |
| 				"but URB has no stream ID.\n",
 | |
| 				slot_id, ep_index);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (stream_id < ep->stream_info->num_streams)
 | |
| 		return ep->stream_info->stream_rings[stream_id];
 | |
| 
 | |
| 	xhci_warn(xhci,
 | |
| 			"WARN: Slot ID %u, ep index %u has "
 | |
| 			"stream IDs 1 to %u allocated, "
 | |
| 			"but stream ID %u is requested.\n",
 | |
| 			slot_id, ep_index,
 | |
| 			ep->stream_info->num_streams - 1,
 | |
| 			stream_id);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Get the right ring for the given URB.
 | |
|  * If the endpoint supports streams, boundary check the URB's stream ID.
 | |
|  * If the endpoint doesn't support streams, return the singular endpoint ring.
 | |
|  */
 | |
| static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
 | |
| 		struct urb *urb)
 | |
| {
 | |
| 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
 | |
| 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move the xHC's endpoint ring dequeue pointer past cur_td.
 | |
|  * Record the new state of the xHC's endpoint ring dequeue segment,
 | |
|  * dequeue pointer, and new consumer cycle state in state.
 | |
|  * Update our internal representation of the ring's dequeue pointer.
 | |
|  *
 | |
|  * We do this in three jumps:
 | |
|  *  - First we update our new ring state to be the same as when the xHC stopped.
 | |
|  *  - Then we traverse the ring to find the segment that contains
 | |
|  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
 | |
|  *    any link TRBs with the toggle cycle bit set.
 | |
|  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
 | |
|  *    if we've moved it past a link TRB with the toggle cycle bit set.
 | |
|  *
 | |
|  * Some of the uses of xhci_generic_trb are grotty, but if they're done
 | |
|  * with correct __le32 accesses they should work fine.  Only users of this are
 | |
|  * in here.
 | |
|  */
 | |
| void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
 | |
| 		unsigned int slot_id, unsigned int ep_index,
 | |
| 		unsigned int stream_id, struct xhci_td *cur_td,
 | |
| 		struct xhci_dequeue_state *state)
 | |
| {
 | |
| 	struct xhci_virt_device *dev = xhci->devs[slot_id];
 | |
| 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct xhci_segment *new_seg;
 | |
| 	union xhci_trb *new_deq;
 | |
| 	dma_addr_t addr;
 | |
| 	u64 hw_dequeue;
 | |
| 	bool cycle_found = false;
 | |
| 	bool td_last_trb_found = false;
 | |
| 
 | |
| 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
 | |
| 			ep_index, stream_id);
 | |
| 	if (!ep_ring) {
 | |
| 		xhci_warn(xhci, "WARN can't find new dequeue state "
 | |
| 				"for invalid stream ID %u.\n",
 | |
| 				stream_id);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 			"Finding endpoint context");
 | |
| 	/* 4.6.9 the css flag is written to the stream context for streams */
 | |
| 	if (ep->ep_state & EP_HAS_STREAMS) {
 | |
| 		struct xhci_stream_ctx *ctx =
 | |
| 			&ep->stream_info->stream_ctx_array[stream_id];
 | |
| 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
 | |
| 	} else {
 | |
| 		struct xhci_ep_ctx *ep_ctx
 | |
| 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
 | |
| 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
 | |
| 	}
 | |
| 
 | |
| 	new_seg = ep_ring->deq_seg;
 | |
| 	new_deq = ep_ring->dequeue;
 | |
| 	state->new_cycle_state = hw_dequeue & 0x1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to find the pointer, segment and cycle state of the new trb
 | |
| 	 * (the one after current TD's last_trb). We know the cycle state at
 | |
| 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
 | |
| 	 * found.
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
 | |
| 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
 | |
| 			cycle_found = true;
 | |
| 			if (td_last_trb_found)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (new_deq == cur_td->last_trb)
 | |
| 			td_last_trb_found = true;
 | |
| 
 | |
| 		if (cycle_found &&
 | |
| 		    TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
 | |
| 		    new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
 | |
| 			state->new_cycle_state ^= 0x1;
 | |
| 
 | |
| 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
 | |
| 
 | |
| 		/* Search wrapped around, bail out */
 | |
| 		if (new_deq == ep->ring->dequeue) {
 | |
| 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
 | |
| 			state->new_deq_seg = NULL;
 | |
| 			state->new_deq_ptr = NULL;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 	} while (!cycle_found || !td_last_trb_found);
 | |
| 
 | |
| 	state->new_deq_seg = new_seg;
 | |
| 	state->new_deq_ptr = new_deq;
 | |
| 
 | |
| 	/* Don't update the ring cycle state for the producer (us). */
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 			"Cycle state = 0x%x", state->new_cycle_state);
 | |
| 
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 			"New dequeue segment = %p (virtual)",
 | |
| 			state->new_deq_seg);
 | |
| 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 			"New dequeue pointer = 0x%llx (DMA)",
 | |
| 			(unsigned long long) addr);
 | |
| }
 | |
| 
 | |
| /* flip_cycle means flip the cycle bit of all but the first and last TRB.
 | |
|  * (The last TRB actually points to the ring enqueue pointer, which is not part
 | |
|  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
 | |
|  */
 | |
| static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
 | |
| 		struct xhci_td *cur_td, bool flip_cycle)
 | |
| {
 | |
| 	struct xhci_segment *cur_seg;
 | |
| 	union xhci_trb *cur_trb;
 | |
| 
 | |
| 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
 | |
| 			true;
 | |
| 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
 | |
| 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
 | |
| 			/* Unchain any chained Link TRBs, but
 | |
| 			 * leave the pointers intact.
 | |
| 			 */
 | |
| 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
 | |
| 			/* Flip the cycle bit (link TRBs can't be the first
 | |
| 			 * or last TRB).
 | |
| 			 */
 | |
| 			if (flip_cycle)
 | |
| 				cur_trb->generic.field[3] ^=
 | |
| 					cpu_to_le32(TRB_CYCLE);
 | |
| 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 					"Cancel (unchain) link TRB");
 | |
| 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 					"Address = %p (0x%llx dma); "
 | |
| 					"in seg %p (0x%llx dma)",
 | |
| 					cur_trb,
 | |
| 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
 | |
| 					cur_seg,
 | |
| 					(unsigned long long)cur_seg->dma);
 | |
| 		} else {
 | |
| 			cur_trb->generic.field[0] = 0;
 | |
| 			cur_trb->generic.field[1] = 0;
 | |
| 			cur_trb->generic.field[2] = 0;
 | |
| 			/* Preserve only the cycle bit of this TRB */
 | |
| 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
 | |
| 			/* Flip the cycle bit except on the first or last TRB */
 | |
| 			if (flip_cycle && cur_trb != cur_td->first_trb &&
 | |
| 					cur_trb != cur_td->last_trb)
 | |
| 				cur_trb->generic.field[3] ^=
 | |
| 					cpu_to_le32(TRB_CYCLE);
 | |
| 			cur_trb->generic.field[3] |= cpu_to_le32(
 | |
| 				TRB_TYPE(TRB_TR_NOOP));
 | |
| 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 					"TRB to noop at offset 0x%llx",
 | |
| 					(unsigned long long)
 | |
| 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
 | |
| 		}
 | |
| 		if (cur_trb == cur_td->last_trb)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
 | |
| 		struct xhci_virt_ep *ep)
 | |
| {
 | |
| 	ep->ep_state &= ~EP_HALT_PENDING;
 | |
| 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
 | |
| 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
 | |
| 	 * (since we didn't successfully stop the watchdog timer).
 | |
| 	 */
 | |
| 	if (del_timer(&ep->stop_cmd_timer))
 | |
| 		ep->stop_cmds_pending--;
 | |
| }
 | |
| 
 | |
| /* Must be called with xhci->lock held in interrupt context */
 | |
| static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
 | |
| 		struct xhci_td *cur_td, int status)
 | |
| {
 | |
| 	struct usb_hcd *hcd;
 | |
| 	struct urb	*urb;
 | |
| 	struct urb_priv	*urb_priv;
 | |
| 
 | |
| 	urb = cur_td->urb;
 | |
| 	urb_priv = urb->hcpriv;
 | |
| 	urb_priv->td_cnt++;
 | |
| 	hcd = bus_to_hcd(urb->dev->bus);
 | |
| 
 | |
| 	/* Only giveback urb when this is the last td in urb */
 | |
| 	if (urb_priv->td_cnt == urb_priv->length) {
 | |
| 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
 | |
| 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
 | |
| 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
 | |
| 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
 | |
| 					usb_amd_quirk_pll_enable();
 | |
| 			}
 | |
| 		}
 | |
| 		usb_hcd_unlink_urb_from_ep(hcd, urb);
 | |
| 
 | |
| 		spin_unlock(&xhci->lock);
 | |
| 		usb_hcd_giveback_urb(hcd, urb, status);
 | |
| 		xhci_urb_free_priv(xhci, urb_priv);
 | |
| 		spin_lock(&xhci->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we get a command completion for a Stop Endpoint Command, we need to
 | |
|  * unlink any cancelled TDs from the ring.  There are two ways to do that:
 | |
|  *
 | |
|  *  1. If the HW was in the middle of processing the TD that needs to be
 | |
|  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
 | |
|  *     in the TD with a Set Dequeue Pointer Command.
 | |
|  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
 | |
|  *     bit cleared) so that the HW will skip over them.
 | |
|  */
 | |
| static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
 | |
| 		union xhci_trb *trb, struct xhci_event_cmd *event)
 | |
| {
 | |
| 	unsigned int ep_index;
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 	struct list_head *entry;
 | |
| 	struct xhci_td *cur_td = NULL;
 | |
| 	struct xhci_td *last_unlinked_td;
 | |
| 
 | |
| 	struct xhci_dequeue_state deq_state;
 | |
| 
 | |
| 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
 | |
| 		if (!xhci->devs[slot_id])
 | |
| 			xhci_warn(xhci, "Stop endpoint command "
 | |
| 				"completion for disabled slot %u\n",
 | |
| 				slot_id);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memset(&deq_state, 0, sizeof(deq_state));
 | |
| 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
 | |
| 	ep = &xhci->devs[slot_id]->eps[ep_index];
 | |
| 
 | |
| 	if (list_empty(&ep->cancelled_td_list)) {
 | |
| 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
 | |
| 		ep->stopped_td = NULL;
 | |
| 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
 | |
| 	 * We have the xHCI lock, so nothing can modify this list until we drop
 | |
| 	 * it.  We're also in the event handler, so we can't get re-interrupted
 | |
| 	 * if another Stop Endpoint command completes
 | |
| 	 */
 | |
| 	list_for_each(entry, &ep->cancelled_td_list) {
 | |
| 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 				"Removing canceled TD starting at 0x%llx (dma).",
 | |
| 				(unsigned long long)xhci_trb_virt_to_dma(
 | |
| 					cur_td->start_seg, cur_td->first_trb));
 | |
| 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
 | |
| 		if (!ep_ring) {
 | |
| 			/* This shouldn't happen unless a driver is mucking
 | |
| 			 * with the stream ID after submission.  This will
 | |
| 			 * leave the TD on the hardware ring, and the hardware
 | |
| 			 * will try to execute it, and may access a buffer
 | |
| 			 * that has already been freed.  In the best case, the
 | |
| 			 * hardware will execute it, and the event handler will
 | |
| 			 * ignore the completion event for that TD, since it was
 | |
| 			 * removed from the td_list for that endpoint.  In
 | |
| 			 * short, don't muck with the stream ID after
 | |
| 			 * submission.
 | |
| 			 */
 | |
| 			xhci_warn(xhci, "WARN Cancelled URB %p "
 | |
| 					"has invalid stream ID %u.\n",
 | |
| 					cur_td->urb,
 | |
| 					cur_td->urb->stream_id);
 | |
| 			goto remove_finished_td;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If we stopped on the TD we need to cancel, then we have to
 | |
| 		 * move the xHC endpoint ring dequeue pointer past this TD.
 | |
| 		 */
 | |
| 		if (cur_td == ep->stopped_td)
 | |
| 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
 | |
| 					cur_td->urb->stream_id,
 | |
| 					cur_td, &deq_state);
 | |
| 		else
 | |
| 			td_to_noop(xhci, ep_ring, cur_td, false);
 | |
| remove_finished_td:
 | |
| 		/*
 | |
| 		 * The event handler won't see a completion for this TD anymore,
 | |
| 		 * so remove it from the endpoint ring's TD list.  Keep it in
 | |
| 		 * the cancelled TD list for URB completion later.
 | |
| 		 */
 | |
| 		list_del_init(&cur_td->td_list);
 | |
| 	}
 | |
| 	last_unlinked_td = cur_td;
 | |
| 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
 | |
| 
 | |
| 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
 | |
| 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
 | |
| 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
 | |
| 				ep->stopped_td->urb->stream_id, &deq_state);
 | |
| 		xhci_ring_cmd_db(xhci);
 | |
| 	} else {
 | |
| 		/* Otherwise ring the doorbell(s) to restart queued transfers */
 | |
| 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear stopped_td if endpoint is not halted */
 | |
| 	if (!(ep->ep_state & EP_HALTED))
 | |
| 		ep->stopped_td = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop the lock and complete the URBs in the cancelled TD list.
 | |
| 	 * New TDs to be cancelled might be added to the end of the list before
 | |
| 	 * we can complete all the URBs for the TDs we already unlinked.
 | |
| 	 * So stop when we've completed the URB for the last TD we unlinked.
 | |
| 	 */
 | |
| 	do {
 | |
| 		cur_td = list_entry(ep->cancelled_td_list.next,
 | |
| 				struct xhci_td, cancelled_td_list);
 | |
| 		list_del_init(&cur_td->cancelled_td_list);
 | |
| 
 | |
| 		/* Clean up the cancelled URB */
 | |
| 		/* Doesn't matter what we pass for status, since the core will
 | |
| 		 * just overwrite it (because the URB has been unlinked).
 | |
| 		 */
 | |
| 		xhci_giveback_urb_in_irq(xhci, cur_td, 0);
 | |
| 
 | |
| 		/* Stop processing the cancelled list if the watchdog timer is
 | |
| 		 * running.
 | |
| 		 */
 | |
| 		if (xhci->xhc_state & XHCI_STATE_DYING)
 | |
| 			return;
 | |
| 	} while (cur_td != last_unlinked_td);
 | |
| 
 | |
| 	/* Return to the event handler with xhci->lock re-acquired */
 | |
| }
 | |
| 
 | |
| static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
 | |
| {
 | |
| 	struct xhci_td *cur_td;
 | |
| 
 | |
| 	while (!list_empty(&ring->td_list)) {
 | |
| 		cur_td = list_first_entry(&ring->td_list,
 | |
| 				struct xhci_td, td_list);
 | |
| 		list_del_init(&cur_td->td_list);
 | |
| 		if (!list_empty(&cur_td->cancelled_td_list))
 | |
| 			list_del_init(&cur_td->cancelled_td_list);
 | |
| 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
 | |
| 		int slot_id, int ep_index)
 | |
| {
 | |
| 	struct xhci_td *cur_td;
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 	struct xhci_ring *ring;
 | |
| 
 | |
| 	ep = &xhci->devs[slot_id]->eps[ep_index];
 | |
| 	if ((ep->ep_state & EP_HAS_STREAMS) ||
 | |
| 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
 | |
| 		int stream_id;
 | |
| 
 | |
| 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
 | |
| 				stream_id++) {
 | |
| 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 					"Killing URBs for slot ID %u, ep index %u, stream %u",
 | |
| 					slot_id, ep_index, stream_id + 1);
 | |
| 			xhci_kill_ring_urbs(xhci,
 | |
| 					ep->stream_info->stream_rings[stream_id]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		ring = ep->ring;
 | |
| 		if (!ring)
 | |
| 			return;
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 				"Killing URBs for slot ID %u, ep index %u",
 | |
| 				slot_id, ep_index);
 | |
| 		xhci_kill_ring_urbs(xhci, ring);
 | |
| 	}
 | |
| 	while (!list_empty(&ep->cancelled_td_list)) {
 | |
| 		cur_td = list_first_entry(&ep->cancelled_td_list,
 | |
| 				struct xhci_td, cancelled_td_list);
 | |
| 		list_del_init(&cur_td->cancelled_td_list);
 | |
| 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Watchdog timer function for when a stop endpoint command fails to complete.
 | |
|  * In this case, we assume the host controller is broken or dying or dead.  The
 | |
|  * host may still be completing some other events, so we have to be careful to
 | |
|  * let the event ring handler and the URB dequeueing/enqueueing functions know
 | |
|  * through xhci->state.
 | |
|  *
 | |
|  * The timer may also fire if the host takes a very long time to respond to the
 | |
|  * command, and the stop endpoint command completion handler cannot delete the
 | |
|  * timer before the timer function is called.  Another endpoint cancellation may
 | |
|  * sneak in before the timer function can grab the lock, and that may queue
 | |
|  * another stop endpoint command and add the timer back.  So we cannot use a
 | |
|  * simple flag to say whether there is a pending stop endpoint command for a
 | |
|  * particular endpoint.
 | |
|  *
 | |
|  * Instead we use a combination of that flag and a counter for the number of
 | |
|  * pending stop endpoint commands.  If the timer is the tail end of the last
 | |
|  * stop endpoint command, and the endpoint's command is still pending, we assume
 | |
|  * the host is dying.
 | |
|  */
 | |
| void xhci_stop_endpoint_command_watchdog(unsigned long arg)
 | |
| {
 | |
| 	struct xhci_hcd *xhci;
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 	int ret, i, j;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ep = (struct xhci_virt_ep *) arg;
 | |
| 	xhci = ep->xhci;
 | |
| 
 | |
| 	spin_lock_irqsave(&xhci->lock, flags);
 | |
| 
 | |
| 	ep->stop_cmds_pending--;
 | |
| 	if (xhci->xhc_state & XHCI_STATE_DYING) {
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 				"Stop EP timer ran, but another timer marked "
 | |
| 				"xHCI as DYING, exiting.");
 | |
| 		spin_unlock_irqrestore(&xhci->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 				"Stop EP timer ran, but no command pending, "
 | |
| 				"exiting.");
 | |
| 		spin_unlock_irqrestore(&xhci->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
 | |
| 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
 | |
| 	/* Oops, HC is dead or dying or at least not responding to the stop
 | |
| 	 * endpoint command.
 | |
| 	 */
 | |
| 	xhci->xhc_state |= XHCI_STATE_DYING;
 | |
| 	/* Disable interrupts from the host controller and start halting it */
 | |
| 	xhci_quiesce(xhci);
 | |
| 	spin_unlock_irqrestore(&xhci->lock, flags);
 | |
| 
 | |
| 	ret = xhci_halt(xhci);
 | |
| 
 | |
| 	spin_lock_irqsave(&xhci->lock, flags);
 | |
| 	if (ret < 0) {
 | |
| 		/* This is bad; the host is not responding to commands and it's
 | |
| 		 * not allowing itself to be halted.  At least interrupts are
 | |
| 		 * disabled. If we call usb_hc_died(), it will attempt to
 | |
| 		 * disconnect all device drivers under this host.  Those
 | |
| 		 * disconnect() methods will wait for all URBs to be unlinked,
 | |
| 		 * so we must complete them.
 | |
| 		 */
 | |
| 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
 | |
| 		xhci_warn(xhci, "Completing active URBs anyway.\n");
 | |
| 		/* We could turn all TDs on the rings to no-ops.  This won't
 | |
| 		 * help if the host has cached part of the ring, and is slow if
 | |
| 		 * we want to preserve the cycle bit.  Skip it and hope the host
 | |
| 		 * doesn't touch the memory.
 | |
| 		 */
 | |
| 	}
 | |
| 	for (i = 0; i < MAX_HC_SLOTS; i++) {
 | |
| 		if (!xhci->devs[i])
 | |
| 			continue;
 | |
| 		for (j = 0; j < 31; j++)
 | |
| 			xhci_kill_endpoint_urbs(xhci, i, j);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&xhci->lock, flags);
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 			"Calling usb_hc_died()");
 | |
| 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 			"xHCI host controller is dead.");
 | |
| }
 | |
| 
 | |
| 
 | |
| static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
 | |
| 		struct xhci_virt_device *dev,
 | |
| 		struct xhci_ring *ep_ring,
 | |
| 		unsigned int ep_index)
 | |
| {
 | |
| 	union xhci_trb *dequeue_temp;
 | |
| 	int num_trbs_free_temp;
 | |
| 	bool revert = false;
 | |
| 
 | |
| 	num_trbs_free_temp = ep_ring->num_trbs_free;
 | |
| 	dequeue_temp = ep_ring->dequeue;
 | |
| 
 | |
| 	/* If we get two back-to-back stalls, and the first stalled transfer
 | |
| 	 * ends just before a link TRB, the dequeue pointer will be left on
 | |
| 	 * the link TRB by the code in the while loop.  So we have to update
 | |
| 	 * the dequeue pointer one segment further, or we'll jump off
 | |
| 	 * the segment into la-la-land.
 | |
| 	 */
 | |
| 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
 | |
| 		ep_ring->deq_seg = ep_ring->deq_seg->next;
 | |
| 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
 | |
| 	}
 | |
| 
 | |
| 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
 | |
| 		/* We have more usable TRBs */
 | |
| 		ep_ring->num_trbs_free++;
 | |
| 		ep_ring->dequeue++;
 | |
| 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
 | |
| 				ep_ring->dequeue)) {
 | |
| 			if (ep_ring->dequeue ==
 | |
| 					dev->eps[ep_index].queued_deq_ptr)
 | |
| 				break;
 | |
| 			ep_ring->deq_seg = ep_ring->deq_seg->next;
 | |
| 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
 | |
| 		}
 | |
| 		if (ep_ring->dequeue == dequeue_temp) {
 | |
| 			revert = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (revert) {
 | |
| 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
 | |
| 		ep_ring->num_trbs_free = num_trbs_free_temp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
 | |
|  * we need to clear the set deq pending flag in the endpoint ring state, so that
 | |
|  * the TD queueing code can ring the doorbell again.  We also need to ring the
 | |
|  * endpoint doorbell to restart the ring, but only if there aren't more
 | |
|  * cancellations pending.
 | |
|  */
 | |
| static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
 | |
| 		union xhci_trb *trb, u32 cmd_comp_code)
 | |
| {
 | |
| 	unsigned int ep_index;
 | |
| 	unsigned int stream_id;
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct xhci_virt_device *dev;
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 	struct xhci_ep_ctx *ep_ctx;
 | |
| 	struct xhci_slot_ctx *slot_ctx;
 | |
| 
 | |
| 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
 | |
| 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
 | |
| 	dev = xhci->devs[slot_id];
 | |
| 	ep = &dev->eps[ep_index];
 | |
| 
 | |
| 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
 | |
| 	if (!ep_ring) {
 | |
| 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
 | |
| 				stream_id);
 | |
| 		/* XXX: Harmless??? */
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
 | |
| 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
 | |
| 
 | |
| 	if (cmd_comp_code != COMP_SUCCESS) {
 | |
| 		unsigned int ep_state;
 | |
| 		unsigned int slot_state;
 | |
| 
 | |
| 		switch (cmd_comp_code) {
 | |
| 		case COMP_TRB_ERR:
 | |
| 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
 | |
| 			break;
 | |
| 		case COMP_CTX_STATE:
 | |
| 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
 | |
| 			ep_state = le32_to_cpu(ep_ctx->ep_info);
 | |
| 			ep_state &= EP_STATE_MASK;
 | |
| 			slot_state = le32_to_cpu(slot_ctx->dev_state);
 | |
| 			slot_state = GET_SLOT_STATE(slot_state);
 | |
| 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 					"Slot state = %u, EP state = %u",
 | |
| 					slot_state, ep_state);
 | |
| 			break;
 | |
| 		case COMP_EBADSLT:
 | |
| 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
 | |
| 					slot_id);
 | |
| 			break;
 | |
| 		default:
 | |
| 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
 | |
| 					cmd_comp_code);
 | |
| 			break;
 | |
| 		}
 | |
| 		/* OK what do we do now?  The endpoint state is hosed, and we
 | |
| 		 * should never get to this point if the synchronization between
 | |
| 		 * queueing, and endpoint state are correct.  This might happen
 | |
| 		 * if the device gets disconnected after we've finished
 | |
| 		 * cancelling URBs, which might not be an error...
 | |
| 		 */
 | |
| 	} else {
 | |
| 		u64 deq;
 | |
| 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
 | |
| 		if (ep->ep_state & EP_HAS_STREAMS) {
 | |
| 			struct xhci_stream_ctx *ctx =
 | |
| 				&ep->stream_info->stream_ctx_array[stream_id];
 | |
| 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
 | |
| 		} else {
 | |
| 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
 | |
| 		}
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
 | |
| 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
 | |
| 					 ep->queued_deq_ptr) == deq) {
 | |
| 			/* Update the ring's dequeue segment and dequeue pointer
 | |
| 			 * to reflect the new position.
 | |
| 			 */
 | |
| 			update_ring_for_set_deq_completion(xhci, dev,
 | |
| 				ep_ring, ep_index);
 | |
| 		} else {
 | |
| 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
 | |
| 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
 | |
| 				  ep->queued_deq_seg, ep->queued_deq_ptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| cleanup:
 | |
| 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
 | |
| 	dev->eps[ep_index].queued_deq_seg = NULL;
 | |
| 	dev->eps[ep_index].queued_deq_ptr = NULL;
 | |
| 	/* Restart any rings with pending URBs */
 | |
| 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 | |
| }
 | |
| 
 | |
| static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
 | |
| 		union xhci_trb *trb, u32 cmd_comp_code)
 | |
| {
 | |
| 	unsigned int ep_index;
 | |
| 
 | |
| 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
 | |
| 	/* This command will only fail if the endpoint wasn't halted,
 | |
| 	 * but we don't care.
 | |
| 	 */
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
 | |
| 		"Ignoring reset ep completion code of %u", cmd_comp_code);
 | |
| 
 | |
| 	/* HW with the reset endpoint quirk needs to have a configure endpoint
 | |
| 	 * command complete before the endpoint can be used.  Queue that here
 | |
| 	 * because the HW can't handle two commands being queued in a row.
 | |
| 	 */
 | |
| 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
 | |
| 		struct xhci_command *command;
 | |
| 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
 | |
| 		if (!command) {
 | |
| 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
 | |
| 			return;
 | |
| 		}
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 | |
| 				"Queueing configure endpoint command");
 | |
| 		xhci_queue_configure_endpoint(xhci, command,
 | |
| 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
 | |
| 				false);
 | |
| 		xhci_ring_cmd_db(xhci);
 | |
| 	} else {
 | |
| 		/* Clear our internal halted state and restart the ring(s) */
 | |
| 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
 | |
| 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
 | |
| 		u32 cmd_comp_code)
 | |
| {
 | |
| 	if (cmd_comp_code == COMP_SUCCESS)
 | |
| 		xhci->slot_id = slot_id;
 | |
| 	else
 | |
| 		xhci->slot_id = 0;
 | |
| }
 | |
| 
 | |
| static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
 | |
| {
 | |
| 	struct xhci_virt_device *virt_dev;
 | |
| 
 | |
| 	virt_dev = xhci->devs[slot_id];
 | |
| 	if (!virt_dev)
 | |
| 		return;
 | |
| 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
 | |
| 		/* Delete default control endpoint resources */
 | |
| 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
 | |
| 	xhci_free_virt_device(xhci, slot_id);
 | |
| }
 | |
| 
 | |
| static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
 | |
| 		struct xhci_event_cmd *event, u32 cmd_comp_code)
 | |
| {
 | |
| 	struct xhci_virt_device *virt_dev;
 | |
| 	struct xhci_input_control_ctx *ctrl_ctx;
 | |
| 	unsigned int ep_index;
 | |
| 	unsigned int ep_state;
 | |
| 	u32 add_flags, drop_flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure endpoint commands can come from the USB core
 | |
| 	 * configuration or alt setting changes, or because the HW
 | |
| 	 * needed an extra configure endpoint command after a reset
 | |
| 	 * endpoint command or streams were being configured.
 | |
| 	 * If the command was for a halted endpoint, the xHCI driver
 | |
| 	 * is not waiting on the configure endpoint command.
 | |
| 	 */
 | |
| 	virt_dev = xhci->devs[slot_id];
 | |
| 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
 | |
| 	if (!ctrl_ctx) {
 | |
| 		xhci_warn(xhci, "Could not get input context, bad type.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
 | |
| 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
 | |
| 	/* Input ctx add_flags are the endpoint index plus one */
 | |
| 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
 | |
| 
 | |
| 	/* A usb_set_interface() call directly after clearing a halted
 | |
| 	 * condition may race on this quirky hardware.  Not worth
 | |
| 	 * worrying about, since this is prototype hardware.  Not sure
 | |
| 	 * if this will work for streams, but streams support was
 | |
| 	 * untested on this prototype.
 | |
| 	 */
 | |
| 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
 | |
| 			ep_index != (unsigned int) -1 &&
 | |
| 			add_flags - SLOT_FLAG == drop_flags) {
 | |
| 		ep_state = virt_dev->eps[ep_index].ep_state;
 | |
| 		if (!(ep_state & EP_HALTED))
 | |
| 			return;
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 | |
| 				"Completed config ep cmd - "
 | |
| 				"last ep index = %d, state = %d",
 | |
| 				ep_index, ep_state);
 | |
| 		/* Clear internal halted state and restart ring(s) */
 | |
| 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
 | |
| 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 | |
| 		return;
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
 | |
| 		struct xhci_event_cmd *event)
 | |
| {
 | |
| 	xhci_dbg(xhci, "Completed reset device command.\n");
 | |
| 	if (!xhci->devs[slot_id])
 | |
| 		xhci_warn(xhci, "Reset device command completion "
 | |
| 				"for disabled slot %u\n", slot_id);
 | |
| }
 | |
| 
 | |
| static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
 | |
| 		struct xhci_event_cmd *event)
 | |
| {
 | |
| 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
 | |
| 		xhci->error_bitmask |= 1 << 6;
 | |
| 		return;
 | |
| 	}
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 | |
| 			"NEC firmware version %2x.%02x",
 | |
| 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
 | |
| 			NEC_FW_MINOR(le32_to_cpu(event->status)));
 | |
| }
 | |
| 
 | |
| static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
 | |
| {
 | |
| 	list_del(&cmd->cmd_list);
 | |
| 
 | |
| 	if (cmd->completion) {
 | |
| 		cmd->status = status;
 | |
| 		complete(cmd->completion);
 | |
| 	} else {
 | |
| 		kfree(cmd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
 | |
| {
 | |
| 	struct xhci_command *cur_cmd, *tmp_cmd;
 | |
| 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
 | |
| 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
 | |
|  * If there are other commands waiting then restart the ring and kick the timer.
 | |
|  * This must be called with command ring stopped and xhci->lock held.
 | |
|  */
 | |
| static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
 | |
| 					 struct xhci_command *cur_cmd)
 | |
| {
 | |
| 	struct xhci_command *i_cmd, *tmp_cmd;
 | |
| 	u32 cycle_state;
 | |
| 
 | |
| 	/* Turn all aborted commands in list to no-ops, then restart */
 | |
| 	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
 | |
| 				 cmd_list) {
 | |
| 
 | |
| 		if (i_cmd->status != COMP_CMD_ABORT)
 | |
| 			continue;
 | |
| 
 | |
| 		i_cmd->status = COMP_CMD_STOP;
 | |
| 
 | |
| 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
 | |
| 			 i_cmd->command_trb);
 | |
| 		/* get cycle state from the original cmd trb */
 | |
| 		cycle_state = le32_to_cpu(
 | |
| 			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
 | |
| 		/* modify the command trb to no-op command */
 | |
| 		i_cmd->command_trb->generic.field[0] = 0;
 | |
| 		i_cmd->command_trb->generic.field[1] = 0;
 | |
| 		i_cmd->command_trb->generic.field[2] = 0;
 | |
| 		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
 | |
| 			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
 | |
| 
 | |
| 		/*
 | |
| 		 * caller waiting for completion is called when command
 | |
| 		 *  completion event is received for these no-op commands
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 | |
| 
 | |
| 	/* ring command ring doorbell to restart the command ring */
 | |
| 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
 | |
| 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
 | |
| 		xhci->current_cmd = cur_cmd;
 | |
| 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
 | |
| 		xhci_ring_cmd_db(xhci);
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| void xhci_handle_command_timeout(unsigned long data)
 | |
| {
 | |
| 	struct xhci_hcd *xhci;
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 	u64 hw_ring_state;
 | |
| 	struct xhci_command *cur_cmd = NULL;
 | |
| 	xhci = (struct xhci_hcd *) data;
 | |
| 
 | |
| 	/* mark this command to be cancelled */
 | |
| 	spin_lock_irqsave(&xhci->lock, flags);
 | |
| 	if (xhci->current_cmd) {
 | |
| 		cur_cmd = xhci->current_cmd;
 | |
| 		cur_cmd->status = COMP_CMD_ABORT;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Make sure command ring is running before aborting it */
 | |
| 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 | |
| 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
 | |
| 	    (hw_ring_state & CMD_RING_RUNNING))  {
 | |
| 
 | |
| 		spin_unlock_irqrestore(&xhci->lock, flags);
 | |
| 		xhci_dbg(xhci, "Command timeout\n");
 | |
| 		ret = xhci_abort_cmd_ring(xhci);
 | |
| 		if (unlikely(ret == -ESHUTDOWN)) {
 | |
| 			xhci_err(xhci, "Abort command ring failed\n");
 | |
| 			xhci_cleanup_command_queue(xhci);
 | |
| 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
 | |
| 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 	/* command timeout on stopped ring, ring can't be aborted */
 | |
| 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
 | |
| 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
 | |
| 	spin_unlock_irqrestore(&xhci->lock, flags);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void handle_cmd_completion(struct xhci_hcd *xhci,
 | |
| 		struct xhci_event_cmd *event)
 | |
| {
 | |
| 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
 | |
| 	u64 cmd_dma;
 | |
| 	dma_addr_t cmd_dequeue_dma;
 | |
| 	u32 cmd_comp_code;
 | |
| 	union xhci_trb *cmd_trb;
 | |
| 	struct xhci_command *cmd;
 | |
| 	u32 cmd_type;
 | |
| 
 | |
| 	cmd_dma = le64_to_cpu(event->cmd_trb);
 | |
| 	cmd_trb = xhci->cmd_ring->dequeue;
 | |
| 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 | |
| 			cmd_trb);
 | |
| 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
 | |
| 	if (cmd_dequeue_dma == 0) {
 | |
| 		xhci->error_bitmask |= 1 << 4;
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Does the DMA address match our internal dequeue pointer address? */
 | |
| 	if (cmd_dma != (u64) cmd_dequeue_dma) {
 | |
| 		xhci->error_bitmask |= 1 << 5;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
 | |
| 
 | |
| 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
 | |
| 		xhci_err(xhci,
 | |
| 			 "Command completion event does not match command\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	del_timer(&xhci->cmd_timer);
 | |
| 
 | |
| 	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
 | |
| 
 | |
| 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
 | |
| 
 | |
| 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
 | |
| 	if (cmd_comp_code == COMP_CMD_STOP) {
 | |
| 		xhci_handle_stopped_cmd_ring(xhci, cmd);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Host aborted the command ring, check if the current command was
 | |
| 	 * supposed to be aborted, otherwise continue normally.
 | |
| 	 * The command ring is stopped now, but the xHC will issue a Command
 | |
| 	 * Ring Stopped event which will cause us to restart it.
 | |
| 	 */
 | |
| 	if (cmd_comp_code == COMP_CMD_ABORT) {
 | |
| 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 | |
| 		if (cmd->status == COMP_CMD_ABORT)
 | |
| 			goto event_handled;
 | |
| 	}
 | |
| 
 | |
| 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
 | |
| 	switch (cmd_type) {
 | |
| 	case TRB_ENABLE_SLOT:
 | |
| 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
 | |
| 		break;
 | |
| 	case TRB_DISABLE_SLOT:
 | |
| 		xhci_handle_cmd_disable_slot(xhci, slot_id);
 | |
| 		break;
 | |
| 	case TRB_CONFIG_EP:
 | |
| 		if (!cmd->completion)
 | |
| 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
 | |
| 						  cmd_comp_code);
 | |
| 		break;
 | |
| 	case TRB_EVAL_CONTEXT:
 | |
| 		break;
 | |
| 	case TRB_ADDR_DEV:
 | |
| 		break;
 | |
| 	case TRB_STOP_RING:
 | |
| 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
 | |
| 				le32_to_cpu(cmd_trb->generic.field[3])));
 | |
| 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
 | |
| 		break;
 | |
| 	case TRB_SET_DEQ:
 | |
| 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
 | |
| 				le32_to_cpu(cmd_trb->generic.field[3])));
 | |
| 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
 | |
| 		break;
 | |
| 	case TRB_CMD_NOOP:
 | |
| 		/* Is this an aborted command turned to NO-OP? */
 | |
| 		if (cmd->status == COMP_CMD_STOP)
 | |
| 			cmd_comp_code = COMP_CMD_STOP;
 | |
| 		break;
 | |
| 	case TRB_RESET_EP:
 | |
| 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
 | |
| 				le32_to_cpu(cmd_trb->generic.field[3])));
 | |
| 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
 | |
| 		break;
 | |
| 	case TRB_RESET_DEV:
 | |
| 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
 | |
| 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
 | |
| 		 */
 | |
| 		slot_id = TRB_TO_SLOT_ID(
 | |
| 				le32_to_cpu(cmd_trb->generic.field[3]));
 | |
| 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
 | |
| 		break;
 | |
| 	case TRB_NEC_GET_FW:
 | |
| 		xhci_handle_cmd_nec_get_fw(xhci, event);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Skip over unknown commands on the event ring */
 | |
| 		xhci->error_bitmask |= 1 << 6;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* restart timer if this wasn't the last command */
 | |
| 	if (cmd->cmd_list.next != &xhci->cmd_list) {
 | |
| 		xhci->current_cmd = list_entry(cmd->cmd_list.next,
 | |
| 					       struct xhci_command, cmd_list);
 | |
| 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
 | |
| 	}
 | |
| 
 | |
| event_handled:
 | |
| 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
 | |
| 
 | |
| 	inc_deq(xhci, xhci->cmd_ring);
 | |
| }
 | |
| 
 | |
| static void handle_vendor_event(struct xhci_hcd *xhci,
 | |
| 		union xhci_trb *event)
 | |
| {
 | |
| 	u32 trb_type;
 | |
| 
 | |
| 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
 | |
| 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
 | |
| 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
 | |
| 		handle_cmd_completion(xhci, &event->event_cmd);
 | |
| }
 | |
| 
 | |
| /* @port_id: the one-based port ID from the hardware (indexed from array of all
 | |
|  * port registers -- USB 3.0 and USB 2.0).
 | |
|  *
 | |
|  * Returns a zero-based port number, which is suitable for indexing into each of
 | |
|  * the split roothubs' port arrays and bus state arrays.
 | |
|  * Add one to it in order to call xhci_find_slot_id_by_port.
 | |
|  */
 | |
| static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
 | |
| 		struct xhci_hcd *xhci, u32 port_id)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int num_similar_speed_ports = 0;
 | |
| 
 | |
| 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
 | |
| 	 * and usb2_ports are 0-based indexes.  Count the number of similar
 | |
| 	 * speed ports, up to 1 port before this port.
 | |
| 	 */
 | |
| 	for (i = 0; i < (port_id - 1); i++) {
 | |
| 		u8 port_speed = xhci->port_array[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip ports that don't have known speeds, or have duplicate
 | |
| 		 * Extended Capabilities port speed entries.
 | |
| 		 */
 | |
| 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
 | |
| 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
 | |
| 		 * matches the device speed, it's a similar speed port.
 | |
| 		 */
 | |
| 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
 | |
| 			num_similar_speed_ports++;
 | |
| 	}
 | |
| 	return num_similar_speed_ports;
 | |
| }
 | |
| 
 | |
| static void handle_device_notification(struct xhci_hcd *xhci,
 | |
| 		union xhci_trb *event)
 | |
| {
 | |
| 	u32 slot_id;
 | |
| 	struct usb_device *udev;
 | |
| 
 | |
| 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
 | |
| 	if (!xhci->devs[slot_id]) {
 | |
| 		xhci_warn(xhci, "Device Notification event for "
 | |
| 				"unused slot %u\n", slot_id);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
 | |
| 			slot_id);
 | |
| 	udev = xhci->devs[slot_id]->udev;
 | |
| 	if (udev && udev->parent)
 | |
| 		usb_wakeup_notification(udev->parent, udev->portnum);
 | |
| }
 | |
| 
 | |
| static void handle_port_status(struct xhci_hcd *xhci,
 | |
| 		union xhci_trb *event)
 | |
| {
 | |
| 	struct usb_hcd *hcd;
 | |
| 	u32 port_id;
 | |
| 	u32 temp, temp1;
 | |
| 	int max_ports;
 | |
| 	int slot_id;
 | |
| 	unsigned int faked_port_index;
 | |
| 	u8 major_revision;
 | |
| 	struct xhci_bus_state *bus_state;
 | |
| 	__le32 __iomem **port_array;
 | |
| 	bool bogus_port_status = false;
 | |
| 
 | |
| 	/* Port status change events always have a successful completion code */
 | |
| 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
 | |
| 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
 | |
| 		xhci->error_bitmask |= 1 << 8;
 | |
| 	}
 | |
| 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
 | |
| 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
 | |
| 
 | |
| 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
 | |
| 	if ((port_id <= 0) || (port_id > max_ports)) {
 | |
| 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
 | |
| 		inc_deq(xhci, xhci->event_ring);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Figure out which usb_hcd this port is attached to:
 | |
| 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
 | |
| 	 */
 | |
| 	major_revision = xhci->port_array[port_id - 1];
 | |
| 
 | |
| 	/* Find the right roothub. */
 | |
| 	hcd = xhci_to_hcd(xhci);
 | |
| 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
 | |
| 		hcd = xhci->shared_hcd;
 | |
| 
 | |
| 	if (major_revision == 0) {
 | |
| 		xhci_warn(xhci, "Event for port %u not in "
 | |
| 				"Extended Capabilities, ignoring.\n",
 | |
| 				port_id);
 | |
| 		bogus_port_status = true;
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 	if (major_revision == DUPLICATE_ENTRY) {
 | |
| 		xhci_warn(xhci, "Event for port %u duplicated in"
 | |
| 				"Extended Capabilities, ignoring.\n",
 | |
| 				port_id);
 | |
| 		bogus_port_status = true;
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Hardware port IDs reported by a Port Status Change Event include USB
 | |
| 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
 | |
| 	 * resume event, but we first need to translate the hardware port ID
 | |
| 	 * into the index into the ports on the correct split roothub, and the
 | |
| 	 * correct bus_state structure.
 | |
| 	 */
 | |
| 	bus_state = &xhci->bus_state[hcd_index(hcd)];
 | |
| 	if (hcd->speed == HCD_USB3)
 | |
| 		port_array = xhci->usb3_ports;
 | |
| 	else
 | |
| 		port_array = xhci->usb2_ports;
 | |
| 	/* Find the faked port hub number */
 | |
| 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
 | |
| 			port_id);
 | |
| 
 | |
| 	temp = readl(port_array[faked_port_index]);
 | |
| 	if (hcd->state == HC_STATE_SUSPENDED) {
 | |
| 		xhci_dbg(xhci, "resume root hub\n");
 | |
| 		usb_hcd_resume_root_hub(hcd);
 | |
| 	}
 | |
| 
 | |
| 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
 | |
| 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
 | |
| 
 | |
| 		temp1 = readl(&xhci->op_regs->command);
 | |
| 		if (!(temp1 & CMD_RUN)) {
 | |
| 			xhci_warn(xhci, "xHC is not running.\n");
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		if (DEV_SUPERSPEED(temp)) {
 | |
| 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
 | |
| 			/* Set a flag to say the port signaled remote wakeup,
 | |
| 			 * so we can tell the difference between the end of
 | |
| 			 * device and host initiated resume.
 | |
| 			 */
 | |
| 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
 | |
| 			xhci_test_and_clear_bit(xhci, port_array,
 | |
| 					faked_port_index, PORT_PLC);
 | |
| 			xhci_set_link_state(xhci, port_array, faked_port_index,
 | |
| 						XDEV_U0);
 | |
| 			/* Need to wait until the next link state change
 | |
| 			 * indicates the device is actually in U0.
 | |
| 			 */
 | |
| 			bogus_port_status = true;
 | |
| 			goto cleanup;
 | |
| 		} else {
 | |
| 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
 | |
| 			bus_state->resume_done[faked_port_index] = jiffies +
 | |
| 				msecs_to_jiffies(20);
 | |
| 			set_bit(faked_port_index, &bus_state->resuming_ports);
 | |
| 			mod_timer(&hcd->rh_timer,
 | |
| 				  bus_state->resume_done[faked_port_index]);
 | |
| 			/* Do the rest in GetPortStatus */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
 | |
| 			DEV_SUPERSPEED(temp)) {
 | |
| 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
 | |
| 		/* We've just brought the device into U0 through either the
 | |
| 		 * Resume state after a device remote wakeup, or through the
 | |
| 		 * U3Exit state after a host-initiated resume.  If it's a device
 | |
| 		 * initiated remote wake, don't pass up the link state change,
 | |
| 		 * so the roothub behavior is consistent with external
 | |
| 		 * USB 3.0 hub behavior.
 | |
| 		 */
 | |
| 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
 | |
| 				faked_port_index + 1);
 | |
| 		if (slot_id && xhci->devs[slot_id])
 | |
| 			xhci_ring_device(xhci, slot_id);
 | |
| 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
 | |
| 			bus_state->port_remote_wakeup &=
 | |
| 				~(1 << faked_port_index);
 | |
| 			xhci_test_and_clear_bit(xhci, port_array,
 | |
| 					faked_port_index, PORT_PLC);
 | |
| 			usb_wakeup_notification(hcd->self.root_hub,
 | |
| 					faked_port_index + 1);
 | |
| 			bogus_port_status = true;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
 | |
| 	 * RExit to a disconnect state).  If so, let the the driver know it's
 | |
| 	 * out of the RExit state.
 | |
| 	 */
 | |
| 	if (!DEV_SUPERSPEED(temp) &&
 | |
| 			test_and_clear_bit(faked_port_index,
 | |
| 				&bus_state->rexit_ports)) {
 | |
| 		complete(&bus_state->rexit_done[faked_port_index]);
 | |
| 		bogus_port_status = true;
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	if (hcd->speed != HCD_USB3)
 | |
| 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
 | |
| 					PORT_PLC);
 | |
| 
 | |
| cleanup:
 | |
| 	/* Update event ring dequeue pointer before dropping the lock */
 | |
| 	inc_deq(xhci, xhci->event_ring);
 | |
| 
 | |
| 	/* Don't make the USB core poll the roothub if we got a bad port status
 | |
| 	 * change event.  Besides, at that point we can't tell which roothub
 | |
| 	 * (USB 2.0 or USB 3.0) to kick.
 | |
| 	 */
 | |
| 	if (bogus_port_status)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * xHCI port-status-change events occur when the "or" of all the
 | |
| 	 * status-change bits in the portsc register changes from 0 to 1.
 | |
| 	 * New status changes won't cause an event if any other change
 | |
| 	 * bits are still set.  When an event occurs, switch over to
 | |
| 	 * polling to avoid losing status changes.
 | |
| 	 */
 | |
| 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
 | |
| 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 | |
| 	spin_unlock(&xhci->lock);
 | |
| 	/* Pass this up to the core */
 | |
| 	usb_hcd_poll_rh_status(hcd);
 | |
| 	spin_lock(&xhci->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
 | |
|  * at end_trb, which may be in another segment.  If the suspect DMA address is a
 | |
|  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
 | |
|  * returns 0.
 | |
|  */
 | |
| struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
 | |
| 		struct xhci_segment *start_seg,
 | |
| 		union xhci_trb	*start_trb,
 | |
| 		union xhci_trb	*end_trb,
 | |
| 		dma_addr_t	suspect_dma,
 | |
| 		bool		debug)
 | |
| {
 | |
| 	dma_addr_t start_dma;
 | |
| 	dma_addr_t end_seg_dma;
 | |
| 	dma_addr_t end_trb_dma;
 | |
| 	struct xhci_segment *cur_seg;
 | |
| 
 | |
| 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
 | |
| 	cur_seg = start_seg;
 | |
| 
 | |
| 	do {
 | |
| 		if (start_dma == 0)
 | |
| 			return NULL;
 | |
| 		/* We may get an event for a Link TRB in the middle of a TD */
 | |
| 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
 | |
| 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
 | |
| 		/* If the end TRB isn't in this segment, this is set to 0 */
 | |
| 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
 | |
| 
 | |
| 		if (debug)
 | |
| 			xhci_warn(xhci,
 | |
| 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
 | |
| 				(unsigned long long)suspect_dma,
 | |
| 				(unsigned long long)start_dma,
 | |
| 				(unsigned long long)end_trb_dma,
 | |
| 				(unsigned long long)cur_seg->dma,
 | |
| 				(unsigned long long)end_seg_dma);
 | |
| 
 | |
| 		if (end_trb_dma > 0) {
 | |
| 			/* The end TRB is in this segment, so suspect should be here */
 | |
| 			if (start_dma <= end_trb_dma) {
 | |
| 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
 | |
| 					return cur_seg;
 | |
| 			} else {
 | |
| 				/* Case for one segment with
 | |
| 				 * a TD wrapped around to the top
 | |
| 				 */
 | |
| 				if ((suspect_dma >= start_dma &&
 | |
| 							suspect_dma <= end_seg_dma) ||
 | |
| 						(suspect_dma >= cur_seg->dma &&
 | |
| 						 suspect_dma <= end_trb_dma))
 | |
| 					return cur_seg;
 | |
| 			}
 | |
| 			return NULL;
 | |
| 		} else {
 | |
| 			/* Might still be somewhere in this segment */
 | |
| 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
 | |
| 				return cur_seg;
 | |
| 		}
 | |
| 		cur_seg = cur_seg->next;
 | |
| 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
 | |
| 	} while (cur_seg != start_seg);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
 | |
| 		unsigned int slot_id, unsigned int ep_index,
 | |
| 		unsigned int stream_id,
 | |
| 		struct xhci_td *td, union xhci_trb *event_trb)
 | |
| {
 | |
| 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
 | |
| 	struct xhci_command *command;
 | |
| 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
 | |
| 	if (!command)
 | |
| 		return;
 | |
| 
 | |
| 	ep->ep_state |= EP_HALTED;
 | |
| 	ep->stopped_td = td;
 | |
| 	ep->stopped_stream = stream_id;
 | |
| 
 | |
| 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
 | |
| 	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
 | |
| 
 | |
| 	ep->stopped_td = NULL;
 | |
| 	ep->stopped_stream = 0;
 | |
| 
 | |
| 	xhci_ring_cmd_db(xhci);
 | |
| }
 | |
| 
 | |
| /* Check if an error has halted the endpoint ring.  The class driver will
 | |
|  * cleanup the halt for a non-default control endpoint if we indicate a stall.
 | |
|  * However, a babble and other errors also halt the endpoint ring, and the class
 | |
|  * driver won't clear the halt in that case, so we need to issue a Set Transfer
 | |
|  * Ring Dequeue Pointer command manually.
 | |
|  */
 | |
| static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
 | |
| 		struct xhci_ep_ctx *ep_ctx,
 | |
| 		unsigned int trb_comp_code)
 | |
| {
 | |
| 	/* TRB completion codes that may require a manual halt cleanup */
 | |
| 	if (trb_comp_code == COMP_TX_ERR ||
 | |
| 			trb_comp_code == COMP_BABBLE ||
 | |
| 			trb_comp_code == COMP_SPLIT_ERR)
 | |
| 		/* The 0.96 spec says a babbling control endpoint
 | |
| 		 * is not halted. The 0.96 spec says it is.  Some HW
 | |
| 		 * claims to be 0.95 compliant, but it halts the control
 | |
| 		 * endpoint anyway.  Check if a babble halted the
 | |
| 		 * endpoint.
 | |
| 		 */
 | |
| 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
 | |
| 		    cpu_to_le32(EP_STATE_HALTED))
 | |
| 			return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
 | |
| {
 | |
| 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
 | |
| 		/* Vendor defined "informational" completion code,
 | |
| 		 * treat as not-an-error.
 | |
| 		 */
 | |
| 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
 | |
| 				trb_comp_code);
 | |
| 		xhci_dbg(xhci, "Treating code as success.\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finish the td processing, remove the td from td list;
 | |
|  * Return 1 if the urb can be given back.
 | |
|  */
 | |
| static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
 | |
| 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
 | |
| 	struct xhci_virt_ep *ep, int *status, bool skip)
 | |
| {
 | |
| 	struct xhci_virt_device *xdev;
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	unsigned int slot_id;
 | |
| 	int ep_index;
 | |
| 	struct urb *urb = NULL;
 | |
| 	struct xhci_ep_ctx *ep_ctx;
 | |
| 	int ret = 0;
 | |
| 	struct urb_priv	*urb_priv;
 | |
| 	u32 trb_comp_code;
 | |
| 
 | |
| 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
 | |
| 	xdev = xhci->devs[slot_id];
 | |
| 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
 | |
| 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
 | |
| 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
 | |
| 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
 | |
| 
 | |
| 	if (skip)
 | |
| 		goto td_cleanup;
 | |
| 
 | |
| 	if (trb_comp_code == COMP_STOP_INVAL ||
 | |
| 			trb_comp_code == COMP_STOP) {
 | |
| 		/* The Endpoint Stop Command completion will take care of any
 | |
| 		 * stopped TDs.  A stopped TD may be restarted, so don't update
 | |
| 		 * the ring dequeue pointer or take this TD off any lists yet.
 | |
| 		 */
 | |
| 		ep->stopped_td = td;
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		if (trb_comp_code == COMP_STALL) {
 | |
| 			/* The transfer is completed from the driver's
 | |
| 			 * perspective, but we need to issue a set dequeue
 | |
| 			 * command for this stalled endpoint to move the dequeue
 | |
| 			 * pointer past the TD.  We can't do that here because
 | |
| 			 * the halt condition must be cleared first.  Let the
 | |
| 			 * USB class driver clear the stall later.
 | |
| 			 */
 | |
| 			ep->stopped_td = td;
 | |
| 			ep->stopped_stream = ep_ring->stream_id;
 | |
| 		} else if (xhci_requires_manual_halt_cleanup(xhci,
 | |
| 					ep_ctx, trb_comp_code)) {
 | |
| 			/* Other types of errors halt the endpoint, but the
 | |
| 			 * class driver doesn't call usb_reset_endpoint() unless
 | |
| 			 * the error is -EPIPE.  Clear the halted status in the
 | |
| 			 * xHCI hardware manually.
 | |
| 			 */
 | |
| 			xhci_cleanup_halted_endpoint(xhci,
 | |
| 					slot_id, ep_index, ep_ring->stream_id,
 | |
| 					td, event_trb);
 | |
| 		} else {
 | |
| 			/* Update ring dequeue pointer */
 | |
| 			while (ep_ring->dequeue != td->last_trb)
 | |
| 				inc_deq(xhci, ep_ring);
 | |
| 			inc_deq(xhci, ep_ring);
 | |
| 		}
 | |
| 
 | |
| td_cleanup:
 | |
| 		/* Clean up the endpoint's TD list */
 | |
| 		urb = td->urb;
 | |
| 		urb_priv = urb->hcpriv;
 | |
| 
 | |
| 		/* Do one last check of the actual transfer length.
 | |
| 		 * If the host controller said we transferred more data than
 | |
| 		 * the buffer length, urb->actual_length will be a very big
 | |
| 		 * number (since it's unsigned).  Play it safe and say we didn't
 | |
| 		 * transfer anything.
 | |
| 		 */
 | |
| 		if (urb->actual_length > urb->transfer_buffer_length) {
 | |
| 			xhci_warn(xhci, "URB transfer length is wrong, "
 | |
| 					"xHC issue? req. len = %u, "
 | |
| 					"act. len = %u\n",
 | |
| 					urb->transfer_buffer_length,
 | |
| 					urb->actual_length);
 | |
| 			urb->actual_length = 0;
 | |
| 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 				*status = -EREMOTEIO;
 | |
| 			else
 | |
| 				*status = 0;
 | |
| 		}
 | |
| 		list_del_init(&td->td_list);
 | |
| 		/* Was this TD slated to be cancelled but completed anyway? */
 | |
| 		if (!list_empty(&td->cancelled_td_list))
 | |
| 			list_del_init(&td->cancelled_td_list);
 | |
| 
 | |
| 		urb_priv->td_cnt++;
 | |
| 		/* Giveback the urb when all the tds are completed */
 | |
| 		if (urb_priv->td_cnt == urb_priv->length) {
 | |
| 			ret = 1;
 | |
| 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
 | |
| 				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
 | |
| 				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
 | |
| 					== 0) {
 | |
| 					if (xhci->quirks & XHCI_AMD_PLL_FIX)
 | |
| 						usb_amd_quirk_pll_enable();
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process control tds, update urb status and actual_length.
 | |
|  */
 | |
| static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
 | |
| 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
 | |
| 	struct xhci_virt_ep *ep, int *status)
 | |
| {
 | |
| 	struct xhci_virt_device *xdev;
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	unsigned int slot_id;
 | |
| 	int ep_index;
 | |
| 	struct xhci_ep_ctx *ep_ctx;
 | |
| 	u32 trb_comp_code;
 | |
| 
 | |
| 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
 | |
| 	xdev = xhci->devs[slot_id];
 | |
| 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
 | |
| 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
 | |
| 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
 | |
| 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
 | |
| 
 | |
| 	switch (trb_comp_code) {
 | |
| 	case COMP_SUCCESS:
 | |
| 		if (event_trb == ep_ring->dequeue) {
 | |
| 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
 | |
| 					"without IOC set??\n");
 | |
| 			*status = -ESHUTDOWN;
 | |
| 		} else if (event_trb != td->last_trb) {
 | |
| 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
 | |
| 					"without IOC set??\n");
 | |
| 			*status = -ESHUTDOWN;
 | |
| 		} else {
 | |
| 			*status = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case COMP_SHORT_TX:
 | |
| 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 			*status = -EREMOTEIO;
 | |
| 		else
 | |
| 			*status = 0;
 | |
| 		break;
 | |
| 	case COMP_STOP_INVAL:
 | |
| 	case COMP_STOP:
 | |
| 		return finish_td(xhci, td, event_trb, event, ep, status, false);
 | |
| 	default:
 | |
| 		if (!xhci_requires_manual_halt_cleanup(xhci,
 | |
| 					ep_ctx, trb_comp_code))
 | |
| 			break;
 | |
| 		xhci_dbg(xhci, "TRB error code %u, "
 | |
| 				"halted endpoint index = %u\n",
 | |
| 				trb_comp_code, ep_index);
 | |
| 		/* else fall through */
 | |
| 	case COMP_STALL:
 | |
| 		/* Did we transfer part of the data (middle) phase? */
 | |
| 		if (event_trb != ep_ring->dequeue &&
 | |
| 				event_trb != td->last_trb)
 | |
| 			td->urb->actual_length =
 | |
| 				td->urb->transfer_buffer_length -
 | |
| 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
 | |
| 		else
 | |
| 			td->urb->actual_length = 0;
 | |
| 
 | |
| 		xhci_cleanup_halted_endpoint(xhci,
 | |
| 			slot_id, ep_index, 0, td, event_trb);
 | |
| 		return finish_td(xhci, td, event_trb, event, ep, status, true);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Did we transfer any data, despite the errors that might have
 | |
| 	 * happened?  I.e. did we get past the setup stage?
 | |
| 	 */
 | |
| 	if (event_trb != ep_ring->dequeue) {
 | |
| 		/* The event was for the status stage */
 | |
| 		if (event_trb == td->last_trb) {
 | |
| 			if (td->urb->actual_length != 0) {
 | |
| 				/* Don't overwrite a previously set error code
 | |
| 				 */
 | |
| 				if ((*status == -EINPROGRESS || *status == 0) &&
 | |
| 						(td->urb->transfer_flags
 | |
| 						 & URB_SHORT_NOT_OK))
 | |
| 					/* Did we already see a short data
 | |
| 					 * stage? */
 | |
| 					*status = -EREMOTEIO;
 | |
| 			} else {
 | |
| 				td->urb->actual_length =
 | |
| 					td->urb->transfer_buffer_length;
 | |
| 			}
 | |
| 		} else {
 | |
| 		/* Maybe the event was for the data stage? */
 | |
| 			td->urb->actual_length =
 | |
| 				td->urb->transfer_buffer_length -
 | |
| 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
 | |
| 			xhci_dbg(xhci, "Waiting for status "
 | |
| 					"stage event\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return finish_td(xhci, td, event_trb, event, ep, status, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process isochronous tds, update urb packet status and actual_length.
 | |
|  */
 | |
| static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
 | |
| 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
 | |
| 	struct xhci_virt_ep *ep, int *status)
 | |
| {
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	int idx;
 | |
| 	int len = 0;
 | |
| 	union xhci_trb *cur_trb;
 | |
| 	struct xhci_segment *cur_seg;
 | |
| 	struct usb_iso_packet_descriptor *frame;
 | |
| 	u32 trb_comp_code;
 | |
| 	bool skip_td = false;
 | |
| 
 | |
| 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
 | |
| 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
 | |
| 	urb_priv = td->urb->hcpriv;
 | |
| 	idx = urb_priv->td_cnt;
 | |
| 	frame = &td->urb->iso_frame_desc[idx];
 | |
| 
 | |
| 	/* handle completion code */
 | |
| 	switch (trb_comp_code) {
 | |
| 	case COMP_SUCCESS:
 | |
| 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
 | |
| 			frame->status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
 | |
| 			trb_comp_code = COMP_SHORT_TX;
 | |
| 	case COMP_SHORT_TX:
 | |
| 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
 | |
| 				-EREMOTEIO : 0;
 | |
| 		break;
 | |
| 	case COMP_BW_OVER:
 | |
| 		frame->status = -ECOMM;
 | |
| 		skip_td = true;
 | |
| 		break;
 | |
| 	case COMP_BUFF_OVER:
 | |
| 	case COMP_BABBLE:
 | |
| 		frame->status = -EOVERFLOW;
 | |
| 		skip_td = true;
 | |
| 		break;
 | |
| 	case COMP_DEV_ERR:
 | |
| 	case COMP_STALL:
 | |
| 	case COMP_TX_ERR:
 | |
| 		frame->status = -EPROTO;
 | |
| 		skip_td = true;
 | |
| 		break;
 | |
| 	case COMP_STOP:
 | |
| 	case COMP_STOP_INVAL:
 | |
| 		break;
 | |
| 	default:
 | |
| 		frame->status = -1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
 | |
| 		frame->actual_length = frame->length;
 | |
| 		td->urb->actual_length += frame->length;
 | |
| 	} else {
 | |
| 		for (cur_trb = ep_ring->dequeue,
 | |
| 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
 | |
| 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
 | |
| 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
 | |
| 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
 | |
| 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
 | |
| 		}
 | |
| 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
 | |
| 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
 | |
| 
 | |
| 		if (trb_comp_code != COMP_STOP_INVAL) {
 | |
| 			frame->actual_length = len;
 | |
| 			td->urb->actual_length += len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return finish_td(xhci, td, event_trb, event, ep, status, false);
 | |
| }
 | |
| 
 | |
| static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
 | |
| 			struct xhci_transfer_event *event,
 | |
| 			struct xhci_virt_ep *ep, int *status)
 | |
| {
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	struct usb_iso_packet_descriptor *frame;
 | |
| 	int idx;
 | |
| 
 | |
| 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
 | |
| 	urb_priv = td->urb->hcpriv;
 | |
| 	idx = urb_priv->td_cnt;
 | |
| 	frame = &td->urb->iso_frame_desc[idx];
 | |
| 
 | |
| 	/* The transfer is partly done. */
 | |
| 	frame->status = -EXDEV;
 | |
| 
 | |
| 	/* calc actual length */
 | |
| 	frame->actual_length = 0;
 | |
| 
 | |
| 	/* Update ring dequeue pointer */
 | |
| 	while (ep_ring->dequeue != td->last_trb)
 | |
| 		inc_deq(xhci, ep_ring);
 | |
| 	inc_deq(xhci, ep_ring);
 | |
| 
 | |
| 	return finish_td(xhci, td, NULL, event, ep, status, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process bulk and interrupt tds, update urb status and actual_length.
 | |
|  */
 | |
| static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
 | |
| 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
 | |
| 	struct xhci_virt_ep *ep, int *status)
 | |
| {
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	union xhci_trb *cur_trb;
 | |
| 	struct xhci_segment *cur_seg;
 | |
| 	u32 trb_comp_code;
 | |
| 
 | |
| 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
 | |
| 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
 | |
| 
 | |
| 	switch (trb_comp_code) {
 | |
| 	case COMP_SUCCESS:
 | |
| 		/* Double check that the HW transferred everything. */
 | |
| 		if (event_trb != td->last_trb ||
 | |
| 		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
 | |
| 			xhci_warn(xhci, "WARN Successful completion "
 | |
| 					"on short TX\n");
 | |
| 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 				*status = -EREMOTEIO;
 | |
| 			else
 | |
| 				*status = 0;
 | |
| 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
 | |
| 				trb_comp_code = COMP_SHORT_TX;
 | |
| 		} else {
 | |
| 			*status = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case COMP_SHORT_TX:
 | |
| 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 			*status = -EREMOTEIO;
 | |
| 		else
 | |
| 			*status = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Others already handled above */
 | |
| 		break;
 | |
| 	}
 | |
| 	if (trb_comp_code == COMP_SHORT_TX)
 | |
| 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
 | |
| 				"%d bytes untransferred\n",
 | |
| 				td->urb->ep->desc.bEndpointAddress,
 | |
| 				td->urb->transfer_buffer_length,
 | |
| 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
 | |
| 	/* Fast path - was this the last TRB in the TD for this URB? */
 | |
| 	if (event_trb == td->last_trb) {
 | |
| 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
 | |
| 			td->urb->actual_length =
 | |
| 				td->urb->transfer_buffer_length -
 | |
| 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
 | |
| 			if (td->urb->transfer_buffer_length <
 | |
| 					td->urb->actual_length) {
 | |
| 				xhci_warn(xhci, "HC gave bad length "
 | |
| 						"of %d bytes left\n",
 | |
| 					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
 | |
| 				td->urb->actual_length = 0;
 | |
| 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 					*status = -EREMOTEIO;
 | |
| 				else
 | |
| 					*status = 0;
 | |
| 			}
 | |
| 			/* Don't overwrite a previously set error code */
 | |
| 			if (*status == -EINPROGRESS) {
 | |
| 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 					*status = -EREMOTEIO;
 | |
| 				else
 | |
| 					*status = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			td->urb->actual_length =
 | |
| 				td->urb->transfer_buffer_length;
 | |
| 			/* Ignore a short packet completion if the
 | |
| 			 * untransferred length was zero.
 | |
| 			 */
 | |
| 			if (*status == -EREMOTEIO)
 | |
| 				*status = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Slow path - walk the list, starting from the dequeue
 | |
| 		 * pointer, to get the actual length transferred.
 | |
| 		 */
 | |
| 		td->urb->actual_length = 0;
 | |
| 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
 | |
| 				cur_trb != event_trb;
 | |
| 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
 | |
| 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
 | |
| 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
 | |
| 				td->urb->actual_length +=
 | |
| 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
 | |
| 		}
 | |
| 		/* If the ring didn't stop on a Link or No-op TRB, add
 | |
| 		 * in the actual bytes transferred from the Normal TRB
 | |
| 		 */
 | |
| 		if (trb_comp_code != COMP_STOP_INVAL)
 | |
| 			td->urb->actual_length +=
 | |
| 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
 | |
| 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
 | |
| 	}
 | |
| 
 | |
| 	return finish_td(xhci, td, event_trb, event, ep, status, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If this function returns an error condition, it means it got a Transfer
 | |
|  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
 | |
|  * At this point, the host controller is probably hosed and should be reset.
 | |
|  */
 | |
| static int handle_tx_event(struct xhci_hcd *xhci,
 | |
| 		struct xhci_transfer_event *event)
 | |
| 	__releases(&xhci->lock)
 | |
| 	__acquires(&xhci->lock)
 | |
| {
 | |
| 	struct xhci_virt_device *xdev;
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	unsigned int slot_id;
 | |
| 	int ep_index;
 | |
| 	struct xhci_td *td = NULL;
 | |
| 	dma_addr_t event_dma;
 | |
| 	struct xhci_segment *event_seg;
 | |
| 	union xhci_trb *event_trb;
 | |
| 	struct urb *urb = NULL;
 | |
| 	int status = -EINPROGRESS;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	struct xhci_ep_ctx *ep_ctx;
 | |
| 	struct list_head *tmp;
 | |
| 	u32 trb_comp_code;
 | |
| 	int ret = 0;
 | |
| 	int td_num = 0;
 | |
| 
 | |
| 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
 | |
| 	xdev = xhci->devs[slot_id];
 | |
| 	if (!xdev) {
 | |
| 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
 | |
| 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
 | |
| 			 (unsigned long long) xhci_trb_virt_to_dma(
 | |
| 				 xhci->event_ring->deq_seg,
 | |
| 				 xhci->event_ring->dequeue),
 | |
| 			 lower_32_bits(le64_to_cpu(event->buffer)),
 | |
| 			 upper_32_bits(le64_to_cpu(event->buffer)),
 | |
| 			 le32_to_cpu(event->transfer_len),
 | |
| 			 le32_to_cpu(event->flags));
 | |
| 		xhci_dbg(xhci, "Event ring:\n");
 | |
| 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Endpoint ID is 1 based, our index is zero based */
 | |
| 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
 | |
| 	ep = &xdev->eps[ep_index];
 | |
| 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
 | |
| 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
 | |
| 	if (!ep_ring ||
 | |
| 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
 | |
| 	    EP_STATE_DISABLED) {
 | |
| 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
 | |
| 				"or incorrect stream ring\n");
 | |
| 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
 | |
| 			 (unsigned long long) xhci_trb_virt_to_dma(
 | |
| 				 xhci->event_ring->deq_seg,
 | |
| 				 xhci->event_ring->dequeue),
 | |
| 			 lower_32_bits(le64_to_cpu(event->buffer)),
 | |
| 			 upper_32_bits(le64_to_cpu(event->buffer)),
 | |
| 			 le32_to_cpu(event->transfer_len),
 | |
| 			 le32_to_cpu(event->flags));
 | |
| 		xhci_dbg(xhci, "Event ring:\n");
 | |
| 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Count current td numbers if ep->skip is set */
 | |
| 	if (ep->skip) {
 | |
| 		list_for_each(tmp, &ep_ring->td_list)
 | |
| 			td_num++;
 | |
| 	}
 | |
| 
 | |
| 	event_dma = le64_to_cpu(event->buffer);
 | |
| 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
 | |
| 	/* Look for common error cases */
 | |
| 	switch (trb_comp_code) {
 | |
| 	/* Skip codes that require special handling depending on
 | |
| 	 * transfer type
 | |
| 	 */
 | |
| 	case COMP_SUCCESS:
 | |
| 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
 | |
| 			break;
 | |
| 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
 | |
| 			trb_comp_code = COMP_SHORT_TX;
 | |
| 		else
 | |
| 			xhci_warn_ratelimited(xhci,
 | |
| 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
 | |
| 	case COMP_SHORT_TX:
 | |
| 		break;
 | |
| 	case COMP_STOP:
 | |
| 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
 | |
| 		break;
 | |
| 	case COMP_STOP_INVAL:
 | |
| 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
 | |
| 		break;
 | |
| 	case COMP_STALL:
 | |
| 		xhci_dbg(xhci, "Stalled endpoint\n");
 | |
| 		ep->ep_state |= EP_HALTED;
 | |
| 		status = -EPIPE;
 | |
| 		break;
 | |
| 	case COMP_TRB_ERR:
 | |
| 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
 | |
| 		status = -EILSEQ;
 | |
| 		break;
 | |
| 	case COMP_SPLIT_ERR:
 | |
| 	case COMP_TX_ERR:
 | |
| 		xhci_dbg(xhci, "Transfer error on endpoint\n");
 | |
| 		status = -EPROTO;
 | |
| 		break;
 | |
| 	case COMP_BABBLE:
 | |
| 		xhci_dbg(xhci, "Babble error on endpoint\n");
 | |
| 		status = -EOVERFLOW;
 | |
| 		break;
 | |
| 	case COMP_DB_ERR:
 | |
| 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
 | |
| 		status = -ENOSR;
 | |
| 		break;
 | |
| 	case COMP_BW_OVER:
 | |
| 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
 | |
| 		break;
 | |
| 	case COMP_BUFF_OVER:
 | |
| 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
 | |
| 		break;
 | |
| 	case COMP_UNDERRUN:
 | |
| 		/*
 | |
| 		 * When the Isoch ring is empty, the xHC will generate
 | |
| 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
 | |
| 		 * Underrun Event for OUT Isoch endpoint.
 | |
| 		 */
 | |
| 		xhci_dbg(xhci, "underrun event on endpoint\n");
 | |
| 		if (!list_empty(&ep_ring->td_list))
 | |
| 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
 | |
| 					"still with TDs queued?\n",
 | |
| 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
 | |
| 				 ep_index);
 | |
| 		goto cleanup;
 | |
| 	case COMP_OVERRUN:
 | |
| 		xhci_dbg(xhci, "overrun event on endpoint\n");
 | |
| 		if (!list_empty(&ep_ring->td_list))
 | |
| 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
 | |
| 					"still with TDs queued?\n",
 | |
| 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
 | |
| 				 ep_index);
 | |
| 		goto cleanup;
 | |
| 	case COMP_DEV_ERR:
 | |
| 		xhci_warn(xhci, "WARN: detect an incompatible device");
 | |
| 		status = -EPROTO;
 | |
| 		break;
 | |
| 	case COMP_MISSED_INT:
 | |
| 		/*
 | |
| 		 * When encounter missed service error, one or more isoc tds
 | |
| 		 * may be missed by xHC.
 | |
| 		 * Set skip flag of the ep_ring; Complete the missed tds as
 | |
| 		 * short transfer when process the ep_ring next time.
 | |
| 		 */
 | |
| 		ep->skip = true;
 | |
| 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
 | |
| 		goto cleanup;
 | |
| 	default:
 | |
| 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
 | |
| 			status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
 | |
| 				"busted\n");
 | |
| 		goto cleanup;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		/* This TRB should be in the TD at the head of this ring's
 | |
| 		 * TD list.
 | |
| 		 */
 | |
| 		if (list_empty(&ep_ring->td_list)) {
 | |
| 			/*
 | |
| 			 * A stopped endpoint may generate an extra completion
 | |
| 			 * event if the device was suspended.  Don't print
 | |
| 			 * warnings.
 | |
| 			 */
 | |
| 			if (!(trb_comp_code == COMP_STOP ||
 | |
| 						trb_comp_code == COMP_STOP_INVAL)) {
 | |
| 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
 | |
| 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
 | |
| 						ep_index);
 | |
| 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
 | |
| 						(le32_to_cpu(event->flags) &
 | |
| 						 TRB_TYPE_BITMASK)>>10);
 | |
| 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
 | |
| 			}
 | |
| 			if (ep->skip) {
 | |
| 				ep->skip = false;
 | |
| 				xhci_dbg(xhci, "td_list is empty while skip "
 | |
| 						"flag set. Clear skip flag.\n");
 | |
| 			}
 | |
| 			ret = 0;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		/* We've skipped all the TDs on the ep ring when ep->skip set */
 | |
| 		if (ep->skip && td_num == 0) {
 | |
| 			ep->skip = false;
 | |
| 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
 | |
| 						"Clear skip flag.\n");
 | |
| 			ret = 0;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
 | |
| 		if (ep->skip)
 | |
| 			td_num--;
 | |
| 
 | |
| 		/* Is this a TRB in the currently executing TD? */
 | |
| 		event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
 | |
| 				td->last_trb, event_dma, false);
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
 | |
| 		 * is not in the current TD pointed by ep_ring->dequeue because
 | |
| 		 * that the hardware dequeue pointer still at the previous TRB
 | |
| 		 * of the current TD. The previous TRB maybe a Link TD or the
 | |
| 		 * last TRB of the previous TD. The command completion handle
 | |
| 		 * will take care the rest.
 | |
| 		 */
 | |
| 		if (!event_seg && (trb_comp_code == COMP_STOP ||
 | |
| 				   trb_comp_code == COMP_STOP_INVAL)) {
 | |
| 			ret = 0;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		if (!event_seg) {
 | |
| 			if (!ep->skip ||
 | |
| 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
 | |
| 				/* Some host controllers give a spurious
 | |
| 				 * successful event after a short transfer.
 | |
| 				 * Ignore it.
 | |
| 				 */
 | |
| 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
 | |
| 						ep_ring->last_td_was_short) {
 | |
| 					ep_ring->last_td_was_short = false;
 | |
| 					ret = 0;
 | |
| 					goto cleanup;
 | |
| 				}
 | |
| 				/* HC is busted, give up! */
 | |
| 				xhci_err(xhci,
 | |
| 					"ERROR Transfer event TRB DMA ptr not "
 | |
| 					"part of current TD ep_index %d "
 | |
| 					"comp_code %u\n", ep_index,
 | |
| 					trb_comp_code);
 | |
| 				trb_in_td(xhci, ep_ring->deq_seg,
 | |
| 					  ep_ring->dequeue, td->last_trb,
 | |
| 					  event_dma, true);
 | |
| 				return -ESHUTDOWN;
 | |
| 			}
 | |
| 
 | |
| 			ret = skip_isoc_td(xhci, td, event, ep, &status);
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 		if (trb_comp_code == COMP_SHORT_TX)
 | |
| 			ep_ring->last_td_was_short = true;
 | |
| 		else
 | |
| 			ep_ring->last_td_was_short = false;
 | |
| 
 | |
| 		if (ep->skip) {
 | |
| 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
 | |
| 			ep->skip = false;
 | |
| 		}
 | |
| 
 | |
| 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
 | |
| 						sizeof(*event_trb)];
 | |
| 		/*
 | |
| 		 * No-op TRB should not trigger interrupts.
 | |
| 		 * If event_trb is a no-op TRB, it means the
 | |
| 		 * corresponding TD has been cancelled. Just ignore
 | |
| 		 * the TD.
 | |
| 		 */
 | |
| 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
 | |
| 			xhci_dbg(xhci,
 | |
| 				 "event_trb is a no-op TRB. Skip it\n");
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		/* Now update the urb's actual_length and give back to
 | |
| 		 * the core
 | |
| 		 */
 | |
| 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
 | |
| 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
 | |
| 						 &status);
 | |
| 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
 | |
| 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
 | |
| 						 &status);
 | |
| 		else
 | |
| 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
 | |
| 						 ep, &status);
 | |
| 
 | |
| cleanup:
 | |
| 		/*
 | |
| 		 * Do not update event ring dequeue pointer if ep->skip is set.
 | |
| 		 * Will roll back to continue process missed tds.
 | |
| 		 */
 | |
| 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
 | |
| 			inc_deq(xhci, xhci->event_ring);
 | |
| 		}
 | |
| 
 | |
| 		if (ret) {
 | |
| 			urb = td->urb;
 | |
| 			urb_priv = urb->hcpriv;
 | |
| 			/* Leave the TD around for the reset endpoint function
 | |
| 			 * to use(but only if it's not a control endpoint,
 | |
| 			 * since we already queued the Set TR dequeue pointer
 | |
| 			 * command for stalled control endpoints).
 | |
| 			 */
 | |
| 			if (usb_endpoint_xfer_control(&urb->ep->desc) ||
 | |
| 				(trb_comp_code != COMP_STALL &&
 | |
| 					trb_comp_code != COMP_BABBLE))
 | |
| 				xhci_urb_free_priv(xhci, urb_priv);
 | |
| 			else
 | |
| 				kfree(urb_priv);
 | |
| 
 | |
| 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
 | |
| 			if ((urb->actual_length != urb->transfer_buffer_length &&
 | |
| 						(urb->transfer_flags &
 | |
| 						 URB_SHORT_NOT_OK)) ||
 | |
| 					(status != 0 &&
 | |
| 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
 | |
| 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
 | |
| 						"expected = %d, status = %d\n",
 | |
| 						urb, urb->actual_length,
 | |
| 						urb->transfer_buffer_length,
 | |
| 						status);
 | |
| 			spin_unlock(&xhci->lock);
 | |
| 			/* EHCI, UHCI, and OHCI always unconditionally set the
 | |
| 			 * urb->status of an isochronous endpoint to 0.
 | |
| 			 */
 | |
| 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
 | |
| 				status = 0;
 | |
| 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
 | |
| 			spin_lock(&xhci->lock);
 | |
| 		}
 | |
| 
 | |
| 	/*
 | |
| 	 * If ep->skip is set, it means there are missed tds on the
 | |
| 	 * endpoint ring need to take care of.
 | |
| 	 * Process them as short transfer until reach the td pointed by
 | |
| 	 * the event.
 | |
| 	 */
 | |
| 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function handles all OS-owned events on the event ring.  It may drop
 | |
|  * xhci->lock between event processing (e.g. to pass up port status changes).
 | |
|  * Returns >0 for "possibly more events to process" (caller should call again),
 | |
|  * otherwise 0 if done.  In future, <0 returns should indicate error code.
 | |
|  */
 | |
| static int xhci_handle_event(struct xhci_hcd *xhci)
 | |
| {
 | |
| 	union xhci_trb *event;
 | |
| 	int update_ptrs = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
 | |
| 		xhci->error_bitmask |= 1 << 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	event = xhci->event_ring->dequeue;
 | |
| 	/* Does the HC or OS own the TRB? */
 | |
| 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
 | |
| 	    xhci->event_ring->cycle_state) {
 | |
| 		xhci->error_bitmask |= 1 << 2;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
 | |
| 	 * speculative reads of the event's flags/data below.
 | |
| 	 */
 | |
| 	rmb();
 | |
| 	/* FIXME: Handle more event types. */
 | |
| 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
 | |
| 	case TRB_TYPE(TRB_COMPLETION):
 | |
| 		handle_cmd_completion(xhci, &event->event_cmd);
 | |
| 		break;
 | |
| 	case TRB_TYPE(TRB_PORT_STATUS):
 | |
| 		handle_port_status(xhci, event);
 | |
| 		update_ptrs = 0;
 | |
| 		break;
 | |
| 	case TRB_TYPE(TRB_TRANSFER):
 | |
| 		ret = handle_tx_event(xhci, &event->trans_event);
 | |
| 		if (ret < 0)
 | |
| 			xhci->error_bitmask |= 1 << 9;
 | |
| 		else
 | |
| 			update_ptrs = 0;
 | |
| 		break;
 | |
| 	case TRB_TYPE(TRB_DEV_NOTE):
 | |
| 		handle_device_notification(xhci, event);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
 | |
| 		    TRB_TYPE(48))
 | |
| 			handle_vendor_event(xhci, event);
 | |
| 		else
 | |
| 			xhci->error_bitmask |= 1 << 3;
 | |
| 	}
 | |
| 	/* Any of the above functions may drop and re-acquire the lock, so check
 | |
| 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
 | |
| 	 */
 | |
| 	if (xhci->xhc_state & XHCI_STATE_DYING) {
 | |
| 		xhci_dbg(xhci, "xHCI host dying, returning from "
 | |
| 				"event handler.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (update_ptrs)
 | |
| 		/* Update SW event ring dequeue pointer */
 | |
| 		inc_deq(xhci, xhci->event_ring);
 | |
| 
 | |
| 	/* Are there more items on the event ring?  Caller will call us again to
 | |
| 	 * check.
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
 | |
|  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
 | |
|  * indicators of an event TRB error, but we check the status *first* to be safe.
 | |
|  */
 | |
| irqreturn_t xhci_irq(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 | |
| 	u32 status;
 | |
| 	u64 temp_64;
 | |
| 	union xhci_trb *event_ring_deq;
 | |
| 	dma_addr_t deq;
 | |
| 
 | |
| 	spin_lock(&xhci->lock);
 | |
| 	/* Check if the xHC generated the interrupt, or the irq is shared */
 | |
| 	status = readl(&xhci->op_regs->status);
 | |
| 	if (status == 0xffffffff)
 | |
| 		goto hw_died;
 | |
| 
 | |
| 	if (!(status & STS_EINT)) {
 | |
| 		spin_unlock(&xhci->lock);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 	if (status & STS_FATAL) {
 | |
| 		xhci_warn(xhci, "WARNING: Host System Error\n");
 | |
| 		xhci_halt(xhci);
 | |
| hw_died:
 | |
| 		spin_unlock(&xhci->lock);
 | |
| 		return -ESHUTDOWN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the op reg interrupt status first,
 | |
| 	 * so we can receive interrupts from other MSI-X interrupters.
 | |
| 	 * Write 1 to clear the interrupt status.
 | |
| 	 */
 | |
| 	status |= STS_EINT;
 | |
| 	writel(status, &xhci->op_regs->status);
 | |
| 	/* FIXME when MSI-X is supported and there are multiple vectors */
 | |
| 	/* Clear the MSI-X event interrupt status */
 | |
| 
 | |
| 	if (hcd->irq) {
 | |
| 		u32 irq_pending;
 | |
| 		/* Acknowledge the PCI interrupt */
 | |
| 		irq_pending = readl(&xhci->ir_set->irq_pending);
 | |
| 		irq_pending |= IMAN_IP;
 | |
| 		writel(irq_pending, &xhci->ir_set->irq_pending);
 | |
| 	}
 | |
| 
 | |
| 	if (xhci->xhc_state & XHCI_STATE_DYING) {
 | |
| 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
 | |
| 				"Shouldn't IRQs be disabled?\n");
 | |
| 		/* Clear the event handler busy flag (RW1C);
 | |
| 		 * the event ring should be empty.
 | |
| 		 */
 | |
| 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 | |
| 		xhci_write_64(xhci, temp_64 | ERST_EHB,
 | |
| 				&xhci->ir_set->erst_dequeue);
 | |
| 		spin_unlock(&xhci->lock);
 | |
| 
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	event_ring_deq = xhci->event_ring->dequeue;
 | |
| 	/* FIXME this should be a delayed service routine
 | |
| 	 * that clears the EHB.
 | |
| 	 */
 | |
| 	while (xhci_handle_event(xhci) > 0) {}
 | |
| 
 | |
| 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 | |
| 	/* If necessary, update the HW's version of the event ring deq ptr. */
 | |
| 	if (event_ring_deq != xhci->event_ring->dequeue) {
 | |
| 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
 | |
| 				xhci->event_ring->dequeue);
 | |
| 		if (deq == 0)
 | |
| 			xhci_warn(xhci, "WARN something wrong with SW event "
 | |
| 					"ring dequeue ptr.\n");
 | |
| 		/* Update HC event ring dequeue pointer */
 | |
| 		temp_64 &= ERST_PTR_MASK;
 | |
| 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
 | |
| 	temp_64 |= ERST_EHB;
 | |
| 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
 | |
| 
 | |
| 	spin_unlock(&xhci->lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| irqreturn_t xhci_msi_irq(int irq, void *hcd)
 | |
| {
 | |
| 	return xhci_irq(hcd);
 | |
| }
 | |
| 
 | |
| /****		Endpoint Ring Operations	****/
 | |
| 
 | |
| /*
 | |
|  * Generic function for queueing a TRB on a ring.
 | |
|  * The caller must have checked to make sure there's room on the ring.
 | |
|  *
 | |
|  * @more_trbs_coming:	Will you enqueue more TRBs before calling
 | |
|  *			prepare_transfer()?
 | |
|  */
 | |
| static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
 | |
| 		bool more_trbs_coming,
 | |
| 		u32 field1, u32 field2, u32 field3, u32 field4)
 | |
| {
 | |
| 	struct xhci_generic_trb *trb;
 | |
| 
 | |
| 	trb = &ring->enqueue->generic;
 | |
| 	trb->field[0] = cpu_to_le32(field1);
 | |
| 	trb->field[1] = cpu_to_le32(field2);
 | |
| 	trb->field[2] = cpu_to_le32(field3);
 | |
| 	trb->field[3] = cpu_to_le32(field4);
 | |
| 	inc_enq(xhci, ring, more_trbs_coming);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
 | |
|  * FIXME allocate segments if the ring is full.
 | |
|  */
 | |
| static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
 | |
| 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
 | |
| {
 | |
| 	unsigned int num_trbs_needed;
 | |
| 
 | |
| 	/* Make sure the endpoint has been added to xHC schedule */
 | |
| 	switch (ep_state) {
 | |
| 	case EP_STATE_DISABLED:
 | |
| 		/*
 | |
| 		 * USB core changed config/interfaces without notifying us,
 | |
| 		 * or hardware is reporting the wrong state.
 | |
| 		 */
 | |
| 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
 | |
| 		return -ENOENT;
 | |
| 	case EP_STATE_ERROR:
 | |
| 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
 | |
| 		/* FIXME event handling code for error needs to clear it */
 | |
| 		/* XXX not sure if this should be -ENOENT or not */
 | |
| 		return -EINVAL;
 | |
| 	case EP_STATE_HALTED:
 | |
| 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
 | |
| 	case EP_STATE_STOPPED:
 | |
| 	case EP_STATE_RUNNING:
 | |
| 		break;
 | |
| 	default:
 | |
| 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
 | |
| 		/*
 | |
| 		 * FIXME issue Configure Endpoint command to try to get the HC
 | |
| 		 * back into a known state.
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (room_on_ring(xhci, ep_ring, num_trbs))
 | |
| 			break;
 | |
| 
 | |
| 		if (ep_ring == xhci->cmd_ring) {
 | |
| 			xhci_err(xhci, "Do not support expand command ring\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 | |
| 				"ERROR no room on ep ring, try ring expansion");
 | |
| 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
 | |
| 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
 | |
| 					mem_flags)) {
 | |
| 			xhci_err(xhci, "Ring expansion failed\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (enqueue_is_link_trb(ep_ring)) {
 | |
| 		struct xhci_ring *ring = ep_ring;
 | |
| 		union xhci_trb *next;
 | |
| 
 | |
| 		next = ring->enqueue;
 | |
| 
 | |
| 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
 | |
| 			/* If we're not dealing with 0.95 hardware or isoc rings
 | |
| 			 * on AMD 0.96 host, clear the chain bit.
 | |
| 			 */
 | |
| 			if (!xhci_link_trb_quirk(xhci) &&
 | |
| 					!(ring->type == TYPE_ISOC &&
 | |
| 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 | |
| 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
 | |
| 			else
 | |
| 				next->link.control |= cpu_to_le32(TRB_CHAIN);
 | |
| 
 | |
| 			wmb();
 | |
| 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
 | |
| 
 | |
| 			/* Toggle the cycle bit after the last ring segment. */
 | |
| 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
 | |
| 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
 | |
| 			}
 | |
| 			ring->enq_seg = ring->enq_seg->next;
 | |
| 			ring->enqueue = ring->enq_seg->trbs;
 | |
| 			next = ring->enqueue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int prepare_transfer(struct xhci_hcd *xhci,
 | |
| 		struct xhci_virt_device *xdev,
 | |
| 		unsigned int ep_index,
 | |
| 		unsigned int stream_id,
 | |
| 		unsigned int num_trbs,
 | |
| 		struct urb *urb,
 | |
| 		unsigned int td_index,
 | |
| 		gfp_t mem_flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	struct xhci_td	*td;
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
 | |
| 
 | |
| 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
 | |
| 	if (!ep_ring) {
 | |
| 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
 | |
| 				stream_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = prepare_ring(xhci, ep_ring,
 | |
| 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
 | |
| 			   num_trbs, mem_flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	urb_priv = urb->hcpriv;
 | |
| 	td = urb_priv->td[td_index];
 | |
| 
 | |
| 	INIT_LIST_HEAD(&td->td_list);
 | |
| 	INIT_LIST_HEAD(&td->cancelled_td_list);
 | |
| 
 | |
| 	if (td_index == 0) {
 | |
| 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
 | |
| 		if (unlikely(ret))
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	td->urb = urb;
 | |
| 	/* Add this TD to the tail of the endpoint ring's TD list */
 | |
| 	list_add_tail(&td->td_list, &ep_ring->td_list);
 | |
| 	td->start_seg = ep_ring->enq_seg;
 | |
| 	td->first_trb = ep_ring->enqueue;
 | |
| 
 | |
| 	urb_priv->td[td_index] = td;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
 | |
| {
 | |
| 	int num_sgs, num_trbs, running_total, temp, i;
 | |
| 	struct scatterlist *sg;
 | |
| 
 | |
| 	sg = NULL;
 | |
| 	num_sgs = urb->num_mapped_sgs;
 | |
| 	temp = urb->transfer_buffer_length;
 | |
| 
 | |
| 	num_trbs = 0;
 | |
| 	for_each_sg(urb->sg, sg, num_sgs, i) {
 | |
| 		unsigned int len = sg_dma_len(sg);
 | |
| 
 | |
| 		/* Scatter gather list entries may cross 64KB boundaries */
 | |
| 		running_total = TRB_MAX_BUFF_SIZE -
 | |
| 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
 | |
| 		running_total &= TRB_MAX_BUFF_SIZE - 1;
 | |
| 		if (running_total != 0)
 | |
| 			num_trbs++;
 | |
| 
 | |
| 		/* How many more 64KB chunks to transfer, how many more TRBs? */
 | |
| 		while (running_total < sg_dma_len(sg) && running_total < temp) {
 | |
| 			num_trbs++;
 | |
| 			running_total += TRB_MAX_BUFF_SIZE;
 | |
| 		}
 | |
| 		len = min_t(int, len, temp);
 | |
| 		temp -= len;
 | |
| 		if (temp == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	return num_trbs;
 | |
| }
 | |
| 
 | |
| static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
 | |
| {
 | |
| 	if (num_trbs != 0)
 | |
| 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
 | |
| 				"TRBs, %d left\n", __func__,
 | |
| 				urb->ep->desc.bEndpointAddress, num_trbs);
 | |
| 	if (running_total != urb->transfer_buffer_length)
 | |
| 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
 | |
| 				"queued %#x (%d), asked for %#x (%d)\n",
 | |
| 				__func__,
 | |
| 				urb->ep->desc.bEndpointAddress,
 | |
| 				running_total, running_total,
 | |
| 				urb->transfer_buffer_length,
 | |
| 				urb->transfer_buffer_length);
 | |
| }
 | |
| 
 | |
| static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
 | |
| 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
 | |
| 		struct xhci_generic_trb *start_trb)
 | |
| {
 | |
| 	/*
 | |
| 	 * Pass all the TRBs to the hardware at once and make sure this write
 | |
| 	 * isn't reordered.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 	if (start_cycle)
 | |
| 		start_trb->field[3] |= cpu_to_le32(start_cycle);
 | |
| 	else
 | |
| 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
 | |
| 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
 | |
|  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
 | |
|  * (comprised of sg list entries) can take several service intervals to
 | |
|  * transmit.
 | |
|  */
 | |
| int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
 | |
| 		struct urb *urb, int slot_id, unsigned int ep_index)
 | |
| {
 | |
| 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
 | |
| 			xhci->devs[slot_id]->out_ctx, ep_index);
 | |
| 	int xhci_interval;
 | |
| 	int ep_interval;
 | |
| 
 | |
| 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
 | |
| 	ep_interval = urb->interval;
 | |
| 	/* Convert to microframes */
 | |
| 	if (urb->dev->speed == USB_SPEED_LOW ||
 | |
| 			urb->dev->speed == USB_SPEED_FULL)
 | |
| 		ep_interval *= 8;
 | |
| 	/* FIXME change this to a warning and a suggestion to use the new API
 | |
| 	 * to set the polling interval (once the API is added).
 | |
| 	 */
 | |
| 	if (xhci_interval != ep_interval) {
 | |
| 		dev_dbg_ratelimited(&urb->dev->dev,
 | |
| 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
 | |
| 				ep_interval, ep_interval == 1 ? "" : "s",
 | |
| 				xhci_interval, xhci_interval == 1 ? "" : "s");
 | |
| 		urb->interval = xhci_interval;
 | |
| 		/* Convert back to frames for LS/FS devices */
 | |
| 		if (urb->dev->speed == USB_SPEED_LOW ||
 | |
| 				urb->dev->speed == USB_SPEED_FULL)
 | |
| 			urb->interval /= 8;
 | |
| 	}
 | |
| 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The TD size is the number of bytes remaining in the TD (including this TRB),
 | |
|  * right shifted by 10.
 | |
|  * It must fit in bits 21:17, so it can't be bigger than 31.
 | |
|  */
 | |
| static u32 xhci_td_remainder(unsigned int remainder)
 | |
| {
 | |
| 	u32 max = (1 << (21 - 17 + 1)) - 1;
 | |
| 
 | |
| 	if ((remainder >> 10) >= max)
 | |
| 		return max << 17;
 | |
| 	else
 | |
| 		return (remainder >> 10) << 17;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
 | |
|  * packets remaining in the TD (*not* including this TRB).
 | |
|  *
 | |
|  * Total TD packet count = total_packet_count =
 | |
|  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
 | |
|  *
 | |
|  * Packets transferred up to and including this TRB = packets_transferred =
 | |
|  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
 | |
|  *
 | |
|  * TD size = total_packet_count - packets_transferred
 | |
|  *
 | |
|  * It must fit in bits 21:17, so it can't be bigger than 31.
 | |
|  * The last TRB in a TD must have the TD size set to zero.
 | |
|  */
 | |
| static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
 | |
| 		unsigned int total_packet_count, struct urb *urb,
 | |
| 		unsigned int num_trbs_left)
 | |
| {
 | |
| 	int packets_transferred;
 | |
| 
 | |
| 	/* One TRB with a zero-length data packet. */
 | |
| 	if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* All the TRB queueing functions don't count the current TRB in
 | |
| 	 * running_total.
 | |
| 	 */
 | |
| 	packets_transferred = (running_total + trb_buff_len) /
 | |
| 		GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
 | |
| 
 | |
| 	if ((total_packet_count - packets_transferred) > 31)
 | |
| 		return 31 << 17;
 | |
| 	return (total_packet_count - packets_transferred) << 17;
 | |
| }
 | |
| 
 | |
| static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
 | |
| 		struct urb *urb, int slot_id, unsigned int ep_index)
 | |
| {
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	unsigned int num_trbs;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	struct xhci_td *td;
 | |
| 	struct scatterlist *sg;
 | |
| 	int num_sgs;
 | |
| 	int trb_buff_len, this_sg_len, running_total;
 | |
| 	unsigned int total_packet_count;
 | |
| 	bool first_trb;
 | |
| 	u64 addr;
 | |
| 	bool more_trbs_coming;
 | |
| 
 | |
| 	struct xhci_generic_trb *start_trb;
 | |
| 	int start_cycle;
 | |
| 
 | |
| 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
 | |
| 	if (!ep_ring)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	num_trbs = count_sg_trbs_needed(xhci, urb);
 | |
| 	num_sgs = urb->num_mapped_sgs;
 | |
| 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
 | |
| 			usb_endpoint_maxp(&urb->ep->desc));
 | |
| 
 | |
| 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
 | |
| 			ep_index, urb->stream_id,
 | |
| 			num_trbs, urb, 0, mem_flags);
 | |
| 	if (trb_buff_len < 0)
 | |
| 		return trb_buff_len;
 | |
| 
 | |
| 	urb_priv = urb->hcpriv;
 | |
| 	td = urb_priv->td[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
 | |
| 	 * until we've finished creating all the other TRBs.  The ring's cycle
 | |
| 	 * state may change as we enqueue the other TRBs, so save it too.
 | |
| 	 */
 | |
| 	start_trb = &ep_ring->enqueue->generic;
 | |
| 	start_cycle = ep_ring->cycle_state;
 | |
| 
 | |
| 	running_total = 0;
 | |
| 	/*
 | |
| 	 * How much data is in the first TRB?
 | |
| 	 *
 | |
| 	 * There are three forces at work for TRB buffer pointers and lengths:
 | |
| 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
 | |
| 	 * 2. The transfer length that the driver requested may be smaller than
 | |
| 	 *    the amount of memory allocated for this scatter-gather list.
 | |
| 	 * 3. TRBs buffers can't cross 64KB boundaries.
 | |
| 	 */
 | |
| 	sg = urb->sg;
 | |
| 	addr = (u64) sg_dma_address(sg);
 | |
| 	this_sg_len = sg_dma_len(sg);
 | |
| 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
 | |
| 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
 | |
| 	if (trb_buff_len > urb->transfer_buffer_length)
 | |
| 		trb_buff_len = urb->transfer_buffer_length;
 | |
| 
 | |
| 	first_trb = true;
 | |
| 	/* Queue the first TRB, even if it's zero-length */
 | |
| 	do {
 | |
| 		u32 field = 0;
 | |
| 		u32 length_field = 0;
 | |
| 		u32 remainder = 0;
 | |
| 
 | |
| 		/* Don't change the cycle bit of the first TRB until later */
 | |
| 		if (first_trb) {
 | |
| 			first_trb = false;
 | |
| 			if (start_cycle == 0)
 | |
| 				field |= 0x1;
 | |
| 		} else
 | |
| 			field |= ep_ring->cycle_state;
 | |
| 
 | |
| 		/* Chain all the TRBs together; clear the chain bit in the last
 | |
| 		 * TRB to indicate it's the last TRB in the chain.
 | |
| 		 */
 | |
| 		if (num_trbs > 1) {
 | |
| 			field |= TRB_CHAIN;
 | |
| 		} else {
 | |
| 			/* FIXME - add check for ZERO_PACKET flag before this */
 | |
| 			td->last_trb = ep_ring->enqueue;
 | |
| 			field |= TRB_IOC;
 | |
| 		}
 | |
| 
 | |
| 		/* Only set interrupt on short packet for IN endpoints */
 | |
| 		if (usb_urb_dir_in(urb))
 | |
| 			field |= TRB_ISP;
 | |
| 
 | |
| 		if (TRB_MAX_BUFF_SIZE -
 | |
| 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
 | |
| 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
 | |
| 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
 | |
| 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
 | |
| 					(unsigned int) addr + trb_buff_len);
 | |
| 		}
 | |
| 
 | |
| 		/* Set the TRB length, TD size, and interrupter fields. */
 | |
| 		if (xhci->hci_version < 0x100) {
 | |
| 			remainder = xhci_td_remainder(
 | |
| 					urb->transfer_buffer_length -
 | |
| 					running_total);
 | |
| 		} else {
 | |
| 			remainder = xhci_v1_0_td_remainder(running_total,
 | |
| 					trb_buff_len, total_packet_count, urb,
 | |
| 					num_trbs - 1);
 | |
| 		}
 | |
| 		length_field = TRB_LEN(trb_buff_len) |
 | |
| 			remainder |
 | |
| 			TRB_INTR_TARGET(0);
 | |
| 
 | |
| 		if (num_trbs > 1)
 | |
| 			more_trbs_coming = true;
 | |
| 		else
 | |
| 			more_trbs_coming = false;
 | |
| 		queue_trb(xhci, ep_ring, more_trbs_coming,
 | |
| 				lower_32_bits(addr),
 | |
| 				upper_32_bits(addr),
 | |
| 				length_field,
 | |
| 				field | TRB_TYPE(TRB_NORMAL));
 | |
| 		--num_trbs;
 | |
| 		running_total += trb_buff_len;
 | |
| 
 | |
| 		/* Calculate length for next transfer --
 | |
| 		 * Are we done queueing all the TRBs for this sg entry?
 | |
| 		 */
 | |
| 		this_sg_len -= trb_buff_len;
 | |
| 		if (this_sg_len == 0) {
 | |
| 			--num_sgs;
 | |
| 			if (num_sgs == 0)
 | |
| 				break;
 | |
| 			sg = sg_next(sg);
 | |
| 			addr = (u64) sg_dma_address(sg);
 | |
| 			this_sg_len = sg_dma_len(sg);
 | |
| 		} else {
 | |
| 			addr += trb_buff_len;
 | |
| 		}
 | |
| 
 | |
| 		trb_buff_len = TRB_MAX_BUFF_SIZE -
 | |
| 			(addr & (TRB_MAX_BUFF_SIZE - 1));
 | |
| 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
 | |
| 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
 | |
| 			trb_buff_len =
 | |
| 				urb->transfer_buffer_length - running_total;
 | |
| 	} while (running_total < urb->transfer_buffer_length);
 | |
| 
 | |
| 	check_trb_math(urb, num_trbs, running_total);
 | |
| 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
 | |
| 			start_cycle, start_trb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This is very similar to what ehci-q.c qtd_fill() does */
 | |
| int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
 | |
| 		struct urb *urb, int slot_id, unsigned int ep_index)
 | |
| {
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	struct xhci_td *td;
 | |
| 	int num_trbs;
 | |
| 	struct xhci_generic_trb *start_trb;
 | |
| 	bool first_trb;
 | |
| 	bool more_trbs_coming;
 | |
| 	int start_cycle;
 | |
| 	u32 field, length_field;
 | |
| 
 | |
| 	int running_total, trb_buff_len, ret;
 | |
| 	unsigned int total_packet_count;
 | |
| 	u64 addr;
 | |
| 
 | |
| 	if (urb->num_sgs)
 | |
| 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
 | |
| 
 | |
| 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
 | |
| 	if (!ep_ring)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	num_trbs = 0;
 | |
| 	/* How much data is (potentially) left before the 64KB boundary? */
 | |
| 	running_total = TRB_MAX_BUFF_SIZE -
 | |
| 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
 | |
| 	running_total &= TRB_MAX_BUFF_SIZE - 1;
 | |
| 
 | |
| 	/* If there's some data on this 64KB chunk, or we have to send a
 | |
| 	 * zero-length transfer, we need at least one TRB
 | |
| 	 */
 | |
| 	if (running_total != 0 || urb->transfer_buffer_length == 0)
 | |
| 		num_trbs++;
 | |
| 	/* How many more 64KB chunks to transfer, how many more TRBs? */
 | |
| 	while (running_total < urb->transfer_buffer_length) {
 | |
| 		num_trbs++;
 | |
| 		running_total += TRB_MAX_BUFF_SIZE;
 | |
| 	}
 | |
| 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
 | |
| 
 | |
| 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
 | |
| 			ep_index, urb->stream_id,
 | |
| 			num_trbs, urb, 0, mem_flags);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	urb_priv = urb->hcpriv;
 | |
| 	td = urb_priv->td[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
 | |
| 	 * until we've finished creating all the other TRBs.  The ring's cycle
 | |
| 	 * state may change as we enqueue the other TRBs, so save it too.
 | |
| 	 */
 | |
| 	start_trb = &ep_ring->enqueue->generic;
 | |
| 	start_cycle = ep_ring->cycle_state;
 | |
| 
 | |
| 	running_total = 0;
 | |
| 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
 | |
| 			usb_endpoint_maxp(&urb->ep->desc));
 | |
| 	/* How much data is in the first TRB? */
 | |
| 	addr = (u64) urb->transfer_dma;
 | |
| 	trb_buff_len = TRB_MAX_BUFF_SIZE -
 | |
| 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
 | |
| 	if (trb_buff_len > urb->transfer_buffer_length)
 | |
| 		trb_buff_len = urb->transfer_buffer_length;
 | |
| 
 | |
| 	first_trb = true;
 | |
| 
 | |
| 	/* Queue the first TRB, even if it's zero-length */
 | |
| 	do {
 | |
| 		u32 remainder = 0;
 | |
| 		field = 0;
 | |
| 
 | |
| 		/* Don't change the cycle bit of the first TRB until later */
 | |
| 		if (first_trb) {
 | |
| 			first_trb = false;
 | |
| 			if (start_cycle == 0)
 | |
| 				field |= 0x1;
 | |
| 		} else
 | |
| 			field |= ep_ring->cycle_state;
 | |
| 
 | |
| 		/* Chain all the TRBs together; clear the chain bit in the last
 | |
| 		 * TRB to indicate it's the last TRB in the chain.
 | |
| 		 */
 | |
| 		if (num_trbs > 1) {
 | |
| 			field |= TRB_CHAIN;
 | |
| 		} else {
 | |
| 			/* FIXME - add check for ZERO_PACKET flag before this */
 | |
| 			td->last_trb = ep_ring->enqueue;
 | |
| 			field |= TRB_IOC;
 | |
| 		}
 | |
| 
 | |
| 		/* Only set interrupt on short packet for IN endpoints */
 | |
| 		if (usb_urb_dir_in(urb))
 | |
| 			field |= TRB_ISP;
 | |
| 
 | |
| 		/* Set the TRB length, TD size, and interrupter fields. */
 | |
| 		if (xhci->hci_version < 0x100) {
 | |
| 			remainder = xhci_td_remainder(
 | |
| 					urb->transfer_buffer_length -
 | |
| 					running_total);
 | |
| 		} else {
 | |
| 			remainder = xhci_v1_0_td_remainder(running_total,
 | |
| 					trb_buff_len, total_packet_count, urb,
 | |
| 					num_trbs - 1);
 | |
| 		}
 | |
| 		length_field = TRB_LEN(trb_buff_len) |
 | |
| 			remainder |
 | |
| 			TRB_INTR_TARGET(0);
 | |
| 
 | |
| 		if (num_trbs > 1)
 | |
| 			more_trbs_coming = true;
 | |
| 		else
 | |
| 			more_trbs_coming = false;
 | |
| 		queue_trb(xhci, ep_ring, more_trbs_coming,
 | |
| 				lower_32_bits(addr),
 | |
| 				upper_32_bits(addr),
 | |
| 				length_field,
 | |
| 				field | TRB_TYPE(TRB_NORMAL));
 | |
| 		--num_trbs;
 | |
| 		running_total += trb_buff_len;
 | |
| 
 | |
| 		/* Calculate length for next transfer */
 | |
| 		addr += trb_buff_len;
 | |
| 		trb_buff_len = urb->transfer_buffer_length - running_total;
 | |
| 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
 | |
| 			trb_buff_len = TRB_MAX_BUFF_SIZE;
 | |
| 	} while (running_total < urb->transfer_buffer_length);
 | |
| 
 | |
| 	check_trb_math(urb, num_trbs, running_total);
 | |
| 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
 | |
| 			start_cycle, start_trb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Caller must have locked xhci->lock */
 | |
| int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
 | |
| 		struct urb *urb, int slot_id, unsigned int ep_index)
 | |
| {
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	int num_trbs;
 | |
| 	int ret;
 | |
| 	struct usb_ctrlrequest *setup;
 | |
| 	struct xhci_generic_trb *start_trb;
 | |
| 	int start_cycle;
 | |
| 	u32 field, length_field;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	struct xhci_td *td;
 | |
| 
 | |
| 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
 | |
| 	if (!ep_ring)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to copy setup packet into setup TRB, so we can't use the setup
 | |
| 	 * DMA address.
 | |
| 	 */
 | |
| 	if (!urb->setup_packet)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* 1 TRB for setup, 1 for status */
 | |
| 	num_trbs = 2;
 | |
| 	/*
 | |
| 	 * Don't need to check if we need additional event data and normal TRBs,
 | |
| 	 * since data in control transfers will never get bigger than 16MB
 | |
| 	 * XXX: can we get a buffer that crosses 64KB boundaries?
 | |
| 	 */
 | |
| 	if (urb->transfer_buffer_length > 0)
 | |
| 		num_trbs++;
 | |
| 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
 | |
| 			ep_index, urb->stream_id,
 | |
| 			num_trbs, urb, 0, mem_flags);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	urb_priv = urb->hcpriv;
 | |
| 	td = urb_priv->td[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
 | |
| 	 * until we've finished creating all the other TRBs.  The ring's cycle
 | |
| 	 * state may change as we enqueue the other TRBs, so save it too.
 | |
| 	 */
 | |
| 	start_trb = &ep_ring->enqueue->generic;
 | |
| 	start_cycle = ep_ring->cycle_state;
 | |
| 
 | |
| 	/* Queue setup TRB - see section 6.4.1.2.1 */
 | |
| 	/* FIXME better way to translate setup_packet into two u32 fields? */
 | |
| 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
 | |
| 	field = 0;
 | |
| 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
 | |
| 	if (start_cycle == 0)
 | |
| 		field |= 0x1;
 | |
| 
 | |
| 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
 | |
| 	if (xhci->hci_version == 0x100) {
 | |
| 		if (urb->transfer_buffer_length > 0) {
 | |
| 			if (setup->bRequestType & USB_DIR_IN)
 | |
| 				field |= TRB_TX_TYPE(TRB_DATA_IN);
 | |
| 			else
 | |
| 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	queue_trb(xhci, ep_ring, true,
 | |
| 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
 | |
| 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
 | |
| 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
 | |
| 		  /* Immediate data in pointer */
 | |
| 		  field);
 | |
| 
 | |
| 	/* If there's data, queue data TRBs */
 | |
| 	/* Only set interrupt on short packet for IN endpoints */
 | |
| 	if (usb_urb_dir_in(urb))
 | |
| 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
 | |
| 	else
 | |
| 		field = TRB_TYPE(TRB_DATA);
 | |
| 
 | |
| 	length_field = TRB_LEN(urb->transfer_buffer_length) |
 | |
| 		xhci_td_remainder(urb->transfer_buffer_length) |
 | |
| 		TRB_INTR_TARGET(0);
 | |
| 	if (urb->transfer_buffer_length > 0) {
 | |
| 		if (setup->bRequestType & USB_DIR_IN)
 | |
| 			field |= TRB_DIR_IN;
 | |
| 		queue_trb(xhci, ep_ring, true,
 | |
| 				lower_32_bits(urb->transfer_dma),
 | |
| 				upper_32_bits(urb->transfer_dma),
 | |
| 				length_field,
 | |
| 				field | ep_ring->cycle_state);
 | |
| 	}
 | |
| 
 | |
| 	/* Save the DMA address of the last TRB in the TD */
 | |
| 	td->last_trb = ep_ring->enqueue;
 | |
| 
 | |
| 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
 | |
| 	/* If the device sent data, the status stage is an OUT transfer */
 | |
| 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
 | |
| 		field = 0;
 | |
| 	else
 | |
| 		field = TRB_DIR_IN;
 | |
| 	queue_trb(xhci, ep_ring, false,
 | |
| 			0,
 | |
| 			0,
 | |
| 			TRB_INTR_TARGET(0),
 | |
| 			/* Event on completion */
 | |
| 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
 | |
| 
 | |
| 	giveback_first_trb(xhci, slot_id, ep_index, 0,
 | |
| 			start_cycle, start_trb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
 | |
| 		struct urb *urb, int i)
 | |
| {
 | |
| 	int num_trbs = 0;
 | |
| 	u64 addr, td_len;
 | |
| 
 | |
| 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
 | |
| 	td_len = urb->iso_frame_desc[i].length;
 | |
| 
 | |
| 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
 | |
| 			TRB_MAX_BUFF_SIZE);
 | |
| 	if (num_trbs == 0)
 | |
| 		num_trbs++;
 | |
| 
 | |
| 	return num_trbs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The transfer burst count field of the isochronous TRB defines the number of
 | |
|  * bursts that are required to move all packets in this TD.  Only SuperSpeed
 | |
|  * devices can burst up to bMaxBurst number of packets per service interval.
 | |
|  * This field is zero based, meaning a value of zero in the field means one
 | |
|  * burst.  Basically, for everything but SuperSpeed devices, this field will be
 | |
|  * zero.  Only xHCI 1.0 host controllers support this field.
 | |
|  */
 | |
| static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
 | |
| 		struct usb_device *udev,
 | |
| 		struct urb *urb, unsigned int total_packet_count)
 | |
| {
 | |
| 	unsigned int max_burst;
 | |
| 
 | |
| 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
 | |
| 		return 0;
 | |
| 
 | |
| 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
 | |
| 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of packets in the last "burst" of packets.  This field is
 | |
|  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
 | |
|  * the last burst packet count is equal to the total number of packets in the
 | |
|  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
 | |
|  * must contain (bMaxBurst + 1) number of packets, but the last burst can
 | |
|  * contain 1 to (bMaxBurst + 1) packets.
 | |
|  */
 | |
| static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
 | |
| 		struct usb_device *udev,
 | |
| 		struct urb *urb, unsigned int total_packet_count)
 | |
| {
 | |
| 	unsigned int max_burst;
 | |
| 	unsigned int residue;
 | |
| 
 | |
| 	if (xhci->hci_version < 0x100)
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (udev->speed) {
 | |
| 	case USB_SPEED_SUPER:
 | |
| 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
 | |
| 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
 | |
| 		residue = total_packet_count % (max_burst + 1);
 | |
| 		/* If residue is zero, the last burst contains (max_burst + 1)
 | |
| 		 * number of packets, but the TLBPC field is zero-based.
 | |
| 		 */
 | |
| 		if (residue == 0)
 | |
| 			return max_burst;
 | |
| 		return residue - 1;
 | |
| 	default:
 | |
| 		if (total_packet_count == 0)
 | |
| 			return 0;
 | |
| 		return total_packet_count - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This is for isoc transfer */
 | |
| static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
 | |
| 		struct urb *urb, int slot_id, unsigned int ep_index)
 | |
| {
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct urb_priv *urb_priv;
 | |
| 	struct xhci_td *td;
 | |
| 	int num_tds, trbs_per_td;
 | |
| 	struct xhci_generic_trb *start_trb;
 | |
| 	bool first_trb;
 | |
| 	int start_cycle;
 | |
| 	u32 field, length_field;
 | |
| 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
 | |
| 	u64 start_addr, addr;
 | |
| 	int i, j;
 | |
| 	bool more_trbs_coming;
 | |
| 
 | |
| 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
 | |
| 
 | |
| 	num_tds = urb->number_of_packets;
 | |
| 	if (num_tds < 1) {
 | |
| 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	start_addr = (u64) urb->transfer_dma;
 | |
| 	start_trb = &ep_ring->enqueue->generic;
 | |
| 	start_cycle = ep_ring->cycle_state;
 | |
| 
 | |
| 	urb_priv = urb->hcpriv;
 | |
| 	/* Queue the first TRB, even if it's zero-length */
 | |
| 	for (i = 0; i < num_tds; i++) {
 | |
| 		unsigned int total_packet_count;
 | |
| 		unsigned int burst_count;
 | |
| 		unsigned int residue;
 | |
| 
 | |
| 		first_trb = true;
 | |
| 		running_total = 0;
 | |
| 		addr = start_addr + urb->iso_frame_desc[i].offset;
 | |
| 		td_len = urb->iso_frame_desc[i].length;
 | |
| 		td_remain_len = td_len;
 | |
| 		total_packet_count = DIV_ROUND_UP(td_len,
 | |
| 				GET_MAX_PACKET(
 | |
| 					usb_endpoint_maxp(&urb->ep->desc)));
 | |
| 		/* A zero-length transfer still involves at least one packet. */
 | |
| 		if (total_packet_count == 0)
 | |
| 			total_packet_count++;
 | |
| 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
 | |
| 				total_packet_count);
 | |
| 		residue = xhci_get_last_burst_packet_count(xhci,
 | |
| 				urb->dev, urb, total_packet_count);
 | |
| 
 | |
| 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
 | |
| 
 | |
| 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
 | |
| 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
 | |
| 		if (ret < 0) {
 | |
| 			if (i == 0)
 | |
| 				return ret;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 
 | |
| 		td = urb_priv->td[i];
 | |
| 		for (j = 0; j < trbs_per_td; j++) {
 | |
| 			u32 remainder = 0;
 | |
| 			field = 0;
 | |
| 
 | |
| 			if (first_trb) {
 | |
| 				field = TRB_TBC(burst_count) |
 | |
| 					TRB_TLBPC(residue);
 | |
| 				/* Queue the isoc TRB */
 | |
| 				field |= TRB_TYPE(TRB_ISOC);
 | |
| 				/* Assume URB_ISO_ASAP is set */
 | |
| 				field |= TRB_SIA;
 | |
| 				if (i == 0) {
 | |
| 					if (start_cycle == 0)
 | |
| 						field |= 0x1;
 | |
| 				} else
 | |
| 					field |= ep_ring->cycle_state;
 | |
| 				first_trb = false;
 | |
| 			} else {
 | |
| 				/* Queue other normal TRBs */
 | |
| 				field |= TRB_TYPE(TRB_NORMAL);
 | |
| 				field |= ep_ring->cycle_state;
 | |
| 			}
 | |
| 
 | |
| 			/* Only set interrupt on short packet for IN EPs */
 | |
| 			if (usb_urb_dir_in(urb))
 | |
| 				field |= TRB_ISP;
 | |
| 
 | |
| 			/* Chain all the TRBs together; clear the chain bit in
 | |
| 			 * the last TRB to indicate it's the last TRB in the
 | |
| 			 * chain.
 | |
| 			 */
 | |
| 			if (j < trbs_per_td - 1) {
 | |
| 				field |= TRB_CHAIN;
 | |
| 				more_trbs_coming = true;
 | |
| 			} else {
 | |
| 				td->last_trb = ep_ring->enqueue;
 | |
| 				field |= TRB_IOC;
 | |
| 				if (xhci->hci_version == 0x100 &&
 | |
| 						!(xhci->quirks &
 | |
| 							XHCI_AVOID_BEI)) {
 | |
| 					/* Set BEI bit except for the last td */
 | |
| 					if (i < num_tds - 1)
 | |
| 						field |= TRB_BEI;
 | |
| 				}
 | |
| 				more_trbs_coming = false;
 | |
| 			}
 | |
| 
 | |
| 			/* Calculate TRB length */
 | |
| 			trb_buff_len = TRB_MAX_BUFF_SIZE -
 | |
| 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
 | |
| 			if (trb_buff_len > td_remain_len)
 | |
| 				trb_buff_len = td_remain_len;
 | |
| 
 | |
| 			/* Set the TRB length, TD size, & interrupter fields. */
 | |
| 			if (xhci->hci_version < 0x100) {
 | |
| 				remainder = xhci_td_remainder(
 | |
| 						td_len - running_total);
 | |
| 			} else {
 | |
| 				remainder = xhci_v1_0_td_remainder(
 | |
| 						running_total, trb_buff_len,
 | |
| 						total_packet_count, urb,
 | |
| 						(trbs_per_td - j - 1));
 | |
| 			}
 | |
| 			length_field = TRB_LEN(trb_buff_len) |
 | |
| 				remainder |
 | |
| 				TRB_INTR_TARGET(0);
 | |
| 
 | |
| 			queue_trb(xhci, ep_ring, more_trbs_coming,
 | |
| 				lower_32_bits(addr),
 | |
| 				upper_32_bits(addr),
 | |
| 				length_field,
 | |
| 				field);
 | |
| 			running_total += trb_buff_len;
 | |
| 
 | |
| 			addr += trb_buff_len;
 | |
| 			td_remain_len -= trb_buff_len;
 | |
| 		}
 | |
| 
 | |
| 		/* Check TD length */
 | |
| 		if (running_total != td_len) {
 | |
| 			xhci_err(xhci, "ISOC TD length unmatch\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto cleanup;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
 | |
| 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
 | |
| 			usb_amd_quirk_pll_disable();
 | |
| 	}
 | |
| 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
 | |
| 
 | |
| 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
 | |
| 			start_cycle, start_trb);
 | |
| 	return 0;
 | |
| cleanup:
 | |
| 	/* Clean up a partially enqueued isoc transfer. */
 | |
| 
 | |
| 	for (i--; i >= 0; i--)
 | |
| 		list_del_init(&urb_priv->td[i]->td_list);
 | |
| 
 | |
| 	/* Use the first TD as a temporary variable to turn the TDs we've queued
 | |
| 	 * into No-ops with a software-owned cycle bit. That way the hardware
 | |
| 	 * won't accidentally start executing bogus TDs when we partially
 | |
| 	 * overwrite them.  td->first_trb and td->start_seg are already set.
 | |
| 	 */
 | |
| 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
 | |
| 	/* Every TRB except the first & last will have its cycle bit flipped. */
 | |
| 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
 | |
| 
 | |
| 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
 | |
| 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
 | |
| 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
 | |
| 	ep_ring->cycle_state = start_cycle;
 | |
| 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
 | |
| 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check transfer ring to guarantee there is enough room for the urb.
 | |
|  * Update ISO URB start_frame and interval.
 | |
|  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
 | |
|  * update the urb->start_frame by now.
 | |
|  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
 | |
|  */
 | |
| int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
 | |
| 		struct urb *urb, int slot_id, unsigned int ep_index)
 | |
| {
 | |
| 	struct xhci_virt_device *xdev;
 | |
| 	struct xhci_ring *ep_ring;
 | |
| 	struct xhci_ep_ctx *ep_ctx;
 | |
| 	int start_frame;
 | |
| 	int xhci_interval;
 | |
| 	int ep_interval;
 | |
| 	int num_tds, num_trbs, i;
 | |
| 	int ret;
 | |
| 
 | |
| 	xdev = xhci->devs[slot_id];
 | |
| 	ep_ring = xdev->eps[ep_index].ring;
 | |
| 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
 | |
| 
 | |
| 	num_trbs = 0;
 | |
| 	num_tds = urb->number_of_packets;
 | |
| 	for (i = 0; i < num_tds; i++)
 | |
| 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
 | |
| 
 | |
| 	/* Check the ring to guarantee there is enough room for the whole urb.
 | |
| 	 * Do not insert any td of the urb to the ring if the check failed.
 | |
| 	 */
 | |
| 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
 | |
| 			   num_trbs, mem_flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	start_frame = readl(&xhci->run_regs->microframe_index);
 | |
| 	start_frame &= 0x3fff;
 | |
| 
 | |
| 	urb->start_frame = start_frame;
 | |
| 	if (urb->dev->speed == USB_SPEED_LOW ||
 | |
| 			urb->dev->speed == USB_SPEED_FULL)
 | |
| 		urb->start_frame >>= 3;
 | |
| 
 | |
| 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
 | |
| 	ep_interval = urb->interval;
 | |
| 	/* Convert to microframes */
 | |
| 	if (urb->dev->speed == USB_SPEED_LOW ||
 | |
| 			urb->dev->speed == USB_SPEED_FULL)
 | |
| 		ep_interval *= 8;
 | |
| 	/* FIXME change this to a warning and a suggestion to use the new API
 | |
| 	 * to set the polling interval (once the API is added).
 | |
| 	 */
 | |
| 	if (xhci_interval != ep_interval) {
 | |
| 		dev_dbg_ratelimited(&urb->dev->dev,
 | |
| 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
 | |
| 				ep_interval, ep_interval == 1 ? "" : "s",
 | |
| 				xhci_interval, xhci_interval == 1 ? "" : "s");
 | |
| 		urb->interval = xhci_interval;
 | |
| 		/* Convert back to frames for LS/FS devices */
 | |
| 		if (urb->dev->speed == USB_SPEED_LOW ||
 | |
| 				urb->dev->speed == USB_SPEED_FULL)
 | |
| 			urb->interval /= 8;
 | |
| 	}
 | |
| 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
 | |
| 
 | |
| 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
 | |
| }
 | |
| 
 | |
| /****		Command Ring Operations		****/
 | |
| 
 | |
| /* Generic function for queueing a command TRB on the command ring.
 | |
|  * Check to make sure there's room on the command ring for one command TRB.
 | |
|  * Also check that there's room reserved for commands that must not fail.
 | |
|  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
 | |
|  * then only check for the number of reserved spots.
 | |
|  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
 | |
|  * because the command event handler may want to resubmit a failed command.
 | |
|  */
 | |
| static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 			 u32 field1, u32 field2,
 | |
| 			 u32 field3, u32 field4, bool command_must_succeed)
 | |
| {
 | |
| 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
 | |
| 	int ret;
 | |
| 	if (xhci->xhc_state & XHCI_STATE_DYING)
 | |
| 		return -ESHUTDOWN;
 | |
| 
 | |
| 	if (!command_must_succeed)
 | |
| 		reserved_trbs++;
 | |
| 
 | |
| 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
 | |
| 			reserved_trbs, GFP_ATOMIC);
 | |
| 	if (ret < 0) {
 | |
| 		xhci_err(xhci, "ERR: No room for command on command ring\n");
 | |
| 		if (command_must_succeed)
 | |
| 			xhci_err(xhci, "ERR: Reserved TRB counting for "
 | |
| 					"unfailable commands failed.\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cmd->command_trb = xhci->cmd_ring->enqueue;
 | |
| 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
 | |
| 
 | |
| 	/* if there are no other commands queued we start the timeout timer */
 | |
| 	if (xhci->cmd_list.next == &cmd->cmd_list &&
 | |
| 	    !timer_pending(&xhci->cmd_timer)) {
 | |
| 		xhci->current_cmd = cmd;
 | |
| 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
 | |
| 	}
 | |
| 
 | |
| 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
 | |
| 			field4 | xhci->cmd_ring->cycle_state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Queue a slot enable or disable request on the command ring */
 | |
| int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 		u32 trb_type, u32 slot_id)
 | |
| {
 | |
| 	return queue_command(xhci, cmd, 0, 0, 0,
 | |
| 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
 | |
| }
 | |
| 
 | |
| /* Queue an address device command TRB */
 | |
| int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
 | |
| {
 | |
| 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
 | |
| 			upper_32_bits(in_ctx_ptr), 0,
 | |
| 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
 | |
| 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
 | |
| }
 | |
| 
 | |
| int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 		u32 field1, u32 field2, u32 field3, u32 field4)
 | |
| {
 | |
| 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
 | |
| }
 | |
| 
 | |
| /* Queue a reset device command TRB */
 | |
| int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 		u32 slot_id)
 | |
| {
 | |
| 	return queue_command(xhci, cmd, 0, 0, 0,
 | |
| 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
 | |
| 			false);
 | |
| }
 | |
| 
 | |
| /* Queue a configure endpoint command TRB */
 | |
| int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
 | |
| 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
 | |
| 		u32 slot_id, bool command_must_succeed)
 | |
| {
 | |
| 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
 | |
| 			upper_32_bits(in_ctx_ptr), 0,
 | |
| 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
 | |
| 			command_must_succeed);
 | |
| }
 | |
| 
 | |
| /* Queue an evaluate context command TRB */
 | |
| int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
 | |
| {
 | |
| 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
 | |
| 			upper_32_bits(in_ctx_ptr), 0,
 | |
| 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
 | |
| 			command_must_succeed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
 | |
|  * activity on an endpoint that is about to be suspended.
 | |
|  */
 | |
| int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 			     int slot_id, unsigned int ep_index, int suspend)
 | |
| {
 | |
| 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
 | |
| 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
 | |
| 	u32 type = TRB_TYPE(TRB_STOP_RING);
 | |
| 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
 | |
| 
 | |
| 	return queue_command(xhci, cmd, 0, 0, 0,
 | |
| 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
 | |
| }
 | |
| 
 | |
| /* Set Transfer Ring Dequeue Pointer command */
 | |
| void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
 | |
| 		unsigned int slot_id, unsigned int ep_index,
 | |
| 		unsigned int stream_id,
 | |
| 		struct xhci_dequeue_state *deq_state)
 | |
| {
 | |
| 	dma_addr_t addr;
 | |
| 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
 | |
| 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
 | |
| 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
 | |
| 	u32 trb_sct = 0;
 | |
| 	u32 type = TRB_TYPE(TRB_SET_DEQ);
 | |
| 	struct xhci_virt_ep *ep;
 | |
| 	struct xhci_command *cmd;
 | |
| 	int ret;
 | |
| 
 | |
| 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 | |
| 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
 | |
| 		deq_state->new_deq_seg,
 | |
| 		(unsigned long long)deq_state->new_deq_seg->dma,
 | |
| 		deq_state->new_deq_ptr,
 | |
| 		(unsigned long long)xhci_trb_virt_to_dma(
 | |
| 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
 | |
| 		deq_state->new_cycle_state);
 | |
| 
 | |
| 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
 | |
| 				    deq_state->new_deq_ptr);
 | |
| 	if (addr == 0) {
 | |
| 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
 | |
| 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
 | |
| 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 	ep = &xhci->devs[slot_id]->eps[ep_index];
 | |
| 	if ((ep->ep_state & SET_DEQ_PENDING)) {
 | |
| 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
 | |
| 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* This function gets called from contexts where it cannot sleep */
 | |
| 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
 | |
| 	if (!cmd) {
 | |
| 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ep->queued_deq_seg = deq_state->new_deq_seg;
 | |
| 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
 | |
| 	if (stream_id)
 | |
| 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
 | |
| 	ret = queue_command(xhci, cmd,
 | |
| 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
 | |
| 		upper_32_bits(addr), trb_stream_id,
 | |
| 		trb_slot_id | trb_ep_index | type, false);
 | |
| 	if (ret < 0) {
 | |
| 		xhci_free_command(xhci, cmd);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Stop the TD queueing code from ringing the doorbell until
 | |
| 	 * this command completes.  The HC won't set the dequeue pointer
 | |
| 	 * if the ring is running, and ringing the doorbell starts the
 | |
| 	 * ring running.
 | |
| 	 */
 | |
| 	ep->ep_state |= SET_DEQ_PENDING;
 | |
| }
 | |
| 
 | |
| int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
 | |
| 			int slot_id, unsigned int ep_index)
 | |
| {
 | |
| 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
 | |
| 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
 | |
| 	u32 type = TRB_TYPE(TRB_RESET_EP);
 | |
| 
 | |
| 	return queue_command(xhci, cmd, 0, 0, 0,
 | |
| 			trb_slot_id | trb_ep_index | type, false);
 | |
| }
 |