 9baa3c34ac
			
		
	
	
	9baa3c34ac
	
	
	
		
			
			We should prefer `struct pci_device_id` over `DEFINE_PCI_DEVICE_TABLE` to meet kernel coding style guidelines. This issue was reported by checkpatch. A simplified version of the semantic patch that makes this change is as follows (http://coccinelle.lip6.fr/): // <smpl> @@ identifier i; declarer name DEFINE_PCI_DEVICE_TABLE; initializer z; @@ - DEFINE_PCI_DEVICE_TABLE(i) + const struct pci_device_id i[] = z; // </smpl> [bhelgaas: add semantic patch] Signed-off-by: Benoit Taine <benoit.taine@lip6.fr> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
		
			
				
	
	
		
			688 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			688 lines
		
	
	
	
		
			18 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
 | |
|  *
 | |
|  * (C) Copyright 2008-2010 Intel Corporation
 | |
|  * Author: Sreedhara DS (sreedhara.ds@intel.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; version 2
 | |
|  * of the License.
 | |
|  *
 | |
|  * SCU running in ARC processor communicates with other entity running in IA
 | |
|  * core through IPC mechanism which in turn messaging between IA core ad SCU.
 | |
|  * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
 | |
|  * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
 | |
|  * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
 | |
|  * along with other APIs.
 | |
|  */
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/sfi.h>
 | |
| #include <linux/module.h>
 | |
| #include <asm/intel-mid.h>
 | |
| #include <asm/intel_scu_ipc.h>
 | |
| 
 | |
| /* IPC defines the following message types */
 | |
| #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
 | |
| #define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
 | |
| #define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
 | |
| #define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
 | |
| #define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
 | |
| 
 | |
| /* Command id associated with message IPCMSG_PCNTRL */
 | |
| #define IPC_CMD_PCNTRL_W      0 /* Register write */
 | |
| #define IPC_CMD_PCNTRL_R      1 /* Register read */
 | |
| #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
 | |
| 
 | |
| /*
 | |
|  * IPC register summary
 | |
|  *
 | |
|  * IPC register blocks are memory mapped at fixed address of 0xFF11C000
 | |
|  * To read or write information to the SCU, driver writes to IPC-1 memory
 | |
|  * mapped registers (base address 0xFF11C000). The following is the IPC
 | |
|  * mechanism
 | |
|  *
 | |
|  * 1. IA core cDMI interface claims this transaction and converts it to a
 | |
|  *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
 | |
|  *
 | |
|  * 2. South Complex cDMI block receives this message and writes it to
 | |
|  *    the IPC-1 register block, causing an interrupt to the SCU
 | |
|  *
 | |
|  * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
 | |
|  *    message handler is called within firmware.
 | |
|  */
 | |
| 
 | |
| #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
 | |
| #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
 | |
| #define IPC_IOC	          0x100		/* IPC command register IOC bit */
 | |
| 
 | |
| #define PCI_DEVICE_ID_LINCROFT		0x082a
 | |
| #define PCI_DEVICE_ID_PENWELL		0x080e
 | |
| #define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
 | |
| #define PCI_DEVICE_ID_TANGIER		0x11a0
 | |
| 
 | |
| /* intel scu ipc driver data*/
 | |
| struct intel_scu_ipc_pdata_t {
 | |
| 	u32 ipc_base;
 | |
| 	u32 i2c_base;
 | |
| 	u32 ipc_len;
 | |
| 	u32 i2c_len;
 | |
| 	u8 irq_mode;
 | |
| };
 | |
| 
 | |
| static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
 | |
| 	.ipc_base = 0xff11c000,
 | |
| 	.i2c_base = 0xff12b000,
 | |
| 	.ipc_len = 0x100,
 | |
| 	.i2c_len = 0x10,
 | |
| 	.irq_mode = 0,
 | |
| };
 | |
| 
 | |
| /* Penwell and Cloverview */
 | |
| static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
 | |
| 	.ipc_base = 0xff11c000,
 | |
| 	.i2c_base = 0xff12b000,
 | |
| 	.ipc_len = 0x100,
 | |
| 	.i2c_len = 0x10,
 | |
| 	.irq_mode = 1,
 | |
| };
 | |
| 
 | |
| static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
 | |
| 	.ipc_base = 0xff009000,
 | |
| 	.i2c_base  = 0xff00d000,
 | |
| 	.ipc_len  = 0x100,
 | |
| 	.i2c_len = 0x10,
 | |
| 	.irq_mode = 0,
 | |
| };
 | |
| 
 | |
| static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
 | |
| static void ipc_remove(struct pci_dev *pdev);
 | |
| 
 | |
| struct intel_scu_ipc_dev {
 | |
| 	struct pci_dev *pdev;
 | |
| 	void __iomem *ipc_base;
 | |
| 	void __iomem *i2c_base;
 | |
| 	struct completion cmd_complete;
 | |
| 	u8 irq_mode;
 | |
| };
 | |
| 
 | |
| static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
 | |
| 
 | |
| static int platform;		/* Platform type */
 | |
| 
 | |
| /*
 | |
|  * IPC Read Buffer (Read Only):
 | |
|  * 16 byte buffer for receiving data from SCU, if IPC command
 | |
|  * processing results in response data
 | |
|  */
 | |
| #define IPC_READ_BUFFER		0x90
 | |
| 
 | |
| #define IPC_I2C_CNTRL_ADDR	0
 | |
| #define I2C_DATA_ADDR		0x04
 | |
| 
 | |
| static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
 | |
| 
 | |
| /*
 | |
|  * Command Register (Write Only):
 | |
|  * A write to this register results in an interrupt to the SCU core processor
 | |
|  * Format:
 | |
|  * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
 | |
|  */
 | |
| static inline void ipc_command(u32 cmd) /* Send ipc command */
 | |
| {
 | |
| 	if (ipcdev.irq_mode) {
 | |
| 		reinit_completion(&ipcdev.cmd_complete);
 | |
| 		writel(cmd | IPC_IOC, ipcdev.ipc_base);
 | |
| 	}
 | |
| 	writel(cmd, ipcdev.ipc_base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IPC Write Buffer (Write Only):
 | |
|  * 16-byte buffer for sending data associated with IPC command to
 | |
|  * SCU. Size of the data is specified in the IPC_COMMAND_REG register
 | |
|  */
 | |
| static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
 | |
| {
 | |
| 	writel(data, ipcdev.ipc_base + 0x80 + offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Status Register (Read Only):
 | |
|  * Driver will read this register to get the ready/busy status of the IPC
 | |
|  * block and error status of the IPC command that was just processed by SCU
 | |
|  * Format:
 | |
|  * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
 | |
|  */
 | |
| 
 | |
| static inline u8 ipc_read_status(void)
 | |
| {
 | |
| 	return __raw_readl(ipcdev.ipc_base + 0x04);
 | |
| }
 | |
| 
 | |
| static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
 | |
| {
 | |
| 	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
 | |
| }
 | |
| 
 | |
| static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
 | |
| {
 | |
| 	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
 | |
| }
 | |
| 
 | |
| static inline int busy_loop(void) /* Wait till scu status is busy */
 | |
| {
 | |
| 	u32 status = 0;
 | |
| 	u32 loop_count = 0;
 | |
| 
 | |
| 	status = ipc_read_status();
 | |
| 	while (status & 1) {
 | |
| 		udelay(1); /* scu processing time is in few u secods */
 | |
| 		status = ipc_read_status();
 | |
| 		loop_count++;
 | |
| 		/* break if scu doesn't reset busy bit after huge retry */
 | |
| 		if (loop_count > 100000) {
 | |
| 			dev_err(&ipcdev.pdev->dev, "IPC timed out");
 | |
| 			return -ETIMEDOUT;
 | |
| 		}
 | |
| 	}
 | |
| 	if ((status >> 1) & 1)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
 | |
| static inline int ipc_wait_for_interrupt(void)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	if (!wait_for_completion_timeout(&ipcdev.cmd_complete, 3 * HZ)) {
 | |
| 		struct device *dev = &ipcdev.pdev->dev;
 | |
| 		dev_err(dev, "IPC timed out\n");
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	status = ipc_read_status();
 | |
| 
 | |
| 	if ((status >> 1) & 1)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int intel_scu_ipc_check_status(void)
 | |
| {
 | |
| 	return ipcdev.irq_mode ? ipc_wait_for_interrupt() : busy_loop();
 | |
| }
 | |
| 
 | |
| /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
 | |
| static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
 | |
| {
 | |
| 	int nc;
 | |
| 	u32 offset = 0;
 | |
| 	int err;
 | |
| 	u8 cbuf[IPC_WWBUF_SIZE] = { };
 | |
| 	u32 *wbuf = (u32 *)&cbuf;
 | |
| 
 | |
| 	mutex_lock(&ipclock);
 | |
| 
 | |
| 	memset(cbuf, 0, sizeof(cbuf));
 | |
| 
 | |
| 	if (ipcdev.pdev == NULL) {
 | |
| 		mutex_unlock(&ipclock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	for (nc = 0; nc < count; nc++, offset += 2) {
 | |
| 		cbuf[offset] = addr[nc];
 | |
| 		cbuf[offset + 1] = addr[nc] >> 8;
 | |
| 	}
 | |
| 
 | |
| 	if (id == IPC_CMD_PCNTRL_R) {
 | |
| 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
 | |
| 			ipc_data_writel(wbuf[nc], offset);
 | |
| 		ipc_command((count*2) << 16 |  id << 12 | 0 << 8 | op);
 | |
| 	} else if (id == IPC_CMD_PCNTRL_W) {
 | |
| 		for (nc = 0; nc < count; nc++, offset += 1)
 | |
| 			cbuf[offset] = data[nc];
 | |
| 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
 | |
| 			ipc_data_writel(wbuf[nc], offset);
 | |
| 		ipc_command((count*3) << 16 |  id << 12 | 0 << 8 | op);
 | |
| 	} else if (id == IPC_CMD_PCNTRL_M) {
 | |
| 		cbuf[offset] = data[0];
 | |
| 		cbuf[offset + 1] = data[1];
 | |
| 		ipc_data_writel(wbuf[0], 0); /* Write wbuff */
 | |
| 		ipc_command(4 << 16 |  id << 12 | 0 << 8 | op);
 | |
| 	}
 | |
| 
 | |
| 	err = intel_scu_ipc_check_status();
 | |
| 	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
 | |
| 		/* Workaround: values are read as 0 without memcpy_fromio */
 | |
| 		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
 | |
| 		for (nc = 0; nc < count; nc++)
 | |
| 			data[nc] = ipc_data_readb(nc);
 | |
| 	}
 | |
| 	mutex_unlock(&ipclock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_ioread8		-	read a word via the SCU
 | |
|  *	@addr: register on SCU
 | |
|  *	@data: return pointer for read byte
 | |
|  *
 | |
|  *	Read a single register. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  */
 | |
| int intel_scu_ipc_ioread8(u16 addr, u8 *data)
 | |
| {
 | |
| 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_ioread8);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_ioread16		-	read a word via the SCU
 | |
|  *	@addr: register on SCU
 | |
|  *	@data: return pointer for read word
 | |
|  *
 | |
|  *	Read a register pair. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  */
 | |
| int intel_scu_ipc_ioread16(u16 addr, u16 *data)
 | |
| {
 | |
| 	u16 x[2] = {addr, addr + 1 };
 | |
| 	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_ioread16);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_ioread32		-	read a dword via the SCU
 | |
|  *	@addr: register on SCU
 | |
|  *	@data: return pointer for read dword
 | |
|  *
 | |
|  *	Read four registers. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  */
 | |
| int intel_scu_ipc_ioread32(u16 addr, u32 *data)
 | |
| {
 | |
| 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
 | |
| 	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_ioread32);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
 | |
|  *	@addr: register on SCU
 | |
|  *	@data: byte to write
 | |
|  *
 | |
|  *	Write a single register. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  */
 | |
| int intel_scu_ipc_iowrite8(u16 addr, u8 data)
 | |
| {
 | |
| 	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_iowrite16		-	write a word via the SCU
 | |
|  *	@addr: register on SCU
 | |
|  *	@data: word to write
 | |
|  *
 | |
|  *	Write two registers. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  */
 | |
| int intel_scu_ipc_iowrite16(u16 addr, u16 data)
 | |
| {
 | |
| 	u16 x[2] = {addr, addr + 1 };
 | |
| 	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
 | |
|  *	@addr: register on SCU
 | |
|  *	@data: dword to write
 | |
|  *
 | |
|  *	Write four registers. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  */
 | |
| int intel_scu_ipc_iowrite32(u16 addr, u32 data)
 | |
| {
 | |
| 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
 | |
| 	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_readvv		-	read a set of registers
 | |
|  *	@addr: register list
 | |
|  *	@data: bytes to return
 | |
|  *	@len: length of array
 | |
|  *
 | |
|  *	Read registers. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	The largest array length permitted by the hardware is 5 items.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  */
 | |
| int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
 | |
| {
 | |
| 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_readv);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_writev		-	write a set of registers
 | |
|  *	@addr: register list
 | |
|  *	@data: bytes to write
 | |
|  *	@len: length of array
 | |
|  *
 | |
|  *	Write registers. Returns 0 on success or an error code. All
 | |
|  *	locking between SCU accesses is handled for the caller.
 | |
|  *
 | |
|  *	The largest array length permitted by the hardware is 5 items.
 | |
|  *
 | |
|  *	This function may sleep.
 | |
|  *
 | |
|  */
 | |
| int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
 | |
| {
 | |
| 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_writev);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_update_register	-	r/m/w a register
 | |
|  *	@addr: register address
 | |
|  *	@bits: bits to update
 | |
|  *	@mask: mask of bits to update
 | |
|  *
 | |
|  *	Read-modify-write power control unit register. The first data argument
 | |
|  *	must be register value and second is mask value
 | |
|  *	mask is a bitmap that indicates which bits to update.
 | |
|  *	0 = masked. Don't modify this bit, 1 = modify this bit.
 | |
|  *	returns 0 on success or an error code.
 | |
|  *
 | |
|  *	This function may sleep. Locking between SCU accesses is handled
 | |
|  *	for the caller.
 | |
|  */
 | |
| int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
 | |
| {
 | |
| 	u8 data[2] = { bits, mask };
 | |
| 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_update_register);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_simple_command	-	send a simple command
 | |
|  *	@cmd: command
 | |
|  *	@sub: sub type
 | |
|  *
 | |
|  *	Issue a simple command to the SCU. Do not use this interface if
 | |
|  *	you must then access data as any data values may be overwritten
 | |
|  *	by another SCU access by the time this function returns.
 | |
|  *
 | |
|  *	This function may sleep. Locking for SCU accesses is handled for
 | |
|  *	the caller.
 | |
|  */
 | |
| int intel_scu_ipc_simple_command(int cmd, int sub)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&ipclock);
 | |
| 	if (ipcdev.pdev == NULL) {
 | |
| 		mutex_unlock(&ipclock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	ipc_command(sub << 12 | cmd);
 | |
| 	err = intel_scu_ipc_check_status();
 | |
| 	mutex_unlock(&ipclock);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_simple_command);
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_command	-	command with data
 | |
|  *	@cmd: command
 | |
|  *	@sub: sub type
 | |
|  *	@in: input data
 | |
|  *	@inlen: input length in dwords
 | |
|  *	@out: output data
 | |
|  *	@outlein: output length in dwords
 | |
|  *
 | |
|  *	Issue a command to the SCU which involves data transfers. Do the
 | |
|  *	data copies under the lock but leave it for the caller to interpret
 | |
|  */
 | |
| 
 | |
| int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
 | |
| 							u32 *out, int outlen)
 | |
| {
 | |
| 	int i, err;
 | |
| 
 | |
| 	mutex_lock(&ipclock);
 | |
| 	if (ipcdev.pdev == NULL) {
 | |
| 		mutex_unlock(&ipclock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < inlen; i++)
 | |
| 		ipc_data_writel(*in++, 4 * i);
 | |
| 
 | |
| 	ipc_command((inlen << 16) | (sub << 12) | cmd);
 | |
| 	err = intel_scu_ipc_check_status();
 | |
| 
 | |
| 	if (!err) {
 | |
| 		for (i = 0; i < outlen; i++)
 | |
| 			*out++ = ipc_data_readl(4 * i);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&ipclock);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_command);
 | |
| 
 | |
| /*I2C commands */
 | |
| #define IPC_I2C_WRITE 1 /* I2C Write command */
 | |
| #define IPC_I2C_READ  2 /* I2C Read command */
 | |
| 
 | |
| /**
 | |
|  *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
 | |
|  *	@addr: I2C address + command bits
 | |
|  *	@data: data to read/write
 | |
|  *
 | |
|  *	Perform an an I2C read/write operation via the SCU. All locking is
 | |
|  *	handled for the caller. This function may sleep.
 | |
|  *
 | |
|  *	Returns an error code or 0 on success.
 | |
|  *
 | |
|  *	This has to be in the IPC driver for the locking.
 | |
|  */
 | |
| int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
 | |
| {
 | |
| 	u32 cmd = 0;
 | |
| 
 | |
| 	mutex_lock(&ipclock);
 | |
| 	if (ipcdev.pdev == NULL) {
 | |
| 		mutex_unlock(&ipclock);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	cmd = (addr >> 24) & 0xFF;
 | |
| 	if (cmd == IPC_I2C_READ) {
 | |
| 		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
 | |
| 		/* Write not getting updated without delay */
 | |
| 		mdelay(1);
 | |
| 		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
 | |
| 	} else if (cmd == IPC_I2C_WRITE) {
 | |
| 		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
 | |
| 		mdelay(1);
 | |
| 		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
 | |
| 	} else {
 | |
| 		dev_err(&ipcdev.pdev->dev,
 | |
| 			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
 | |
| 
 | |
| 		mutex_unlock(&ipclock);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	mutex_unlock(&ipclock);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
 | |
| 
 | |
| /*
 | |
|  * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
 | |
|  * When ioc bit is set to 1, caller api must wait for interrupt handler called
 | |
|  * which in turn unlocks the caller api. Currently this is not used
 | |
|  *
 | |
|  * This is edge triggered so we need take no action to clear anything
 | |
|  */
 | |
| static irqreturn_t ioc(int irq, void *dev_id)
 | |
| {
 | |
| 	if (ipcdev.irq_mode)
 | |
| 		complete(&ipcdev.cmd_complete);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ipc_probe	-	probe an Intel SCU IPC
 | |
|  *	@dev: the PCI device matching
 | |
|  *	@id: entry in the match table
 | |
|  *
 | |
|  *	Enable and install an intel SCU IPC. This appears in the PCI space
 | |
|  *	but uses some hard coded addresses as well.
 | |
|  */
 | |
| static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
 | |
| {
 | |
| 	int err;
 | |
| 	struct intel_scu_ipc_pdata_t *pdata;
 | |
| 	resource_size_t pci_resource;
 | |
| 
 | |
| 	if (ipcdev.pdev)		/* We support only one SCU */
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
 | |
| 
 | |
| 	ipcdev.pdev = pci_dev_get(dev);
 | |
| 	ipcdev.irq_mode = pdata->irq_mode;
 | |
| 
 | |
| 	err = pci_enable_device(dev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = pci_request_regions(dev, "intel_scu_ipc");
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	pci_resource = pci_resource_start(dev, 0);
 | |
| 	if (!pci_resource)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	init_completion(&ipcdev.cmd_complete);
 | |
| 
 | |
| 	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	ipcdev.ipc_base = ioremap_nocache(pdata->ipc_base, pdata->ipc_len);
 | |
| 	if (!ipcdev.ipc_base)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
 | |
| 	if (!ipcdev.i2c_base) {
 | |
| 		iounmap(ipcdev.ipc_base);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	intel_scu_devices_create();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ipc_remove	-	remove a bound IPC device
 | |
|  *	@pdev: PCI device
 | |
|  *
 | |
|  *	In practice the SCU is not removable but this function is also
 | |
|  *	called for each device on a module unload or cleanup which is the
 | |
|  *	path that will get used.
 | |
|  *
 | |
|  *	Free up the mappings and release the PCI resources
 | |
|  */
 | |
| static void ipc_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	free_irq(pdev->irq, &ipcdev);
 | |
| 	pci_release_regions(pdev);
 | |
| 	pci_dev_put(ipcdev.pdev);
 | |
| 	iounmap(ipcdev.ipc_base);
 | |
| 	iounmap(ipcdev.i2c_base);
 | |
| 	ipcdev.pdev = NULL;
 | |
| 	intel_scu_devices_destroy();
 | |
| }
 | |
| 
 | |
| static const struct pci_device_id pci_ids[] = {
 | |
| 	{
 | |
| 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
 | |
| 		(kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
 | |
| 	}, {
 | |
| 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
 | |
| 		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
 | |
| 	}, {
 | |
| 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
 | |
| 		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
 | |
| 	}, {
 | |
| 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
 | |
| 		(kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
 | |
| 	}, {
 | |
| 		0,
 | |
| 	}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, pci_ids);
 | |
| 
 | |
| static struct pci_driver ipc_driver = {
 | |
| 	.name = "intel_scu_ipc",
 | |
| 	.id_table = pci_ids,
 | |
| 	.probe = ipc_probe,
 | |
| 	.remove = ipc_remove,
 | |
| };
 | |
| 
 | |
| 
 | |
| static int __init intel_scu_ipc_init(void)
 | |
| {
 | |
| 	platform = intel_mid_identify_cpu();
 | |
| 	if (platform == 0)
 | |
| 		return -ENODEV;
 | |
| 	return  pci_register_driver(&ipc_driver);
 | |
| }
 | |
| 
 | |
| static void __exit intel_scu_ipc_exit(void)
 | |
| {
 | |
| 	pci_unregister_driver(&ipc_driver);
 | |
| }
 | |
| 
 | |
| MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
 | |
| MODULE_DESCRIPTION("Intel SCU IPC driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| module_init(intel_scu_ipc_init);
 | |
| module_exit(intel_scu_ipc_exit);
 |