 84fb029faa
			
		
	
	
	84fb029faa
	
	
	
		
			
			Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net>
		
			
				
	
	
		
			1651 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1651 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| /*
 | |
|  * This driver supports the sensor part of the first and second revision of
 | |
|  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
 | |
|  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/hwmon.h>
 | |
| #include <linux/hwmon-sysfs.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| /* Banks */
 | |
| #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
 | |
| #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
 | |
| #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
 | |
| #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
 | |
| /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
 | |
| #define ABIT_UGURU_MAX_BANK1_SENSORS		16
 | |
| /*
 | |
|  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
 | |
|  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
 | |
|  */
 | |
| /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
 | |
| #define ABIT_UGURU_MAX_BANK2_SENSORS		6
 | |
| /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
 | |
| #define ABIT_UGURU_MAX_PWMS			5
 | |
| /* uGuru sensor bank 1 flags */			     /* Alarm if: */
 | |
| #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
 | |
| #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
 | |
| #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
 | |
| #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
 | |
| #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
 | |
| #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
 | |
| /* uGuru sensor bank 2 flags */			     /* Alarm if: */
 | |
| #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
 | |
| /* uGuru sensor bank common flags */
 | |
| #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
 | |
| #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
 | |
| /* uGuru fan PWM (speed control) flags */
 | |
| #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
 | |
| /* Values used for conversion */
 | |
| #define ABIT_UGURU_FAN_MAX			15300 /* RPM */
 | |
| /* Bank1 sensor types */
 | |
| #define ABIT_UGURU_IN_SENSOR			0
 | |
| #define ABIT_UGURU_TEMP_SENSOR			1
 | |
| #define ABIT_UGURU_NC				2
 | |
| /*
 | |
|  * In many cases we need to wait for the uGuru to reach a certain status, most
 | |
|  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
 | |
|  * can best busy wait. This define gives the total amount of reads to try.
 | |
|  */
 | |
| #define ABIT_UGURU_WAIT_TIMEOUT			125
 | |
| /*
 | |
|  * However sometimes older versions of the uGuru seem to be distracted and they
 | |
|  * do not respond for a long time. To handle this we sleep before each of the
 | |
|  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
 | |
|  */
 | |
| #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
 | |
| /*
 | |
|  * Normally all expected status in abituguru_ready, are reported after the
 | |
|  * first read, but sometimes not and we need to poll.
 | |
|  */
 | |
| #define ABIT_UGURU_READY_TIMEOUT		5
 | |
| /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
 | |
| #define ABIT_UGURU_MAX_RETRIES			3
 | |
| #define ABIT_UGURU_RETRY_DELAY			(HZ/5)
 | |
| /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
 | |
| #define ABIT_UGURU_MAX_TIMEOUTS			2
 | |
| /* utility macros */
 | |
| #define ABIT_UGURU_NAME				"abituguru"
 | |
| #define ABIT_UGURU_DEBUG(level, format, arg...)		\
 | |
| 	do {						\
 | |
| 		if (level <= verbose)			\
 | |
| 			pr_debug(format , ## arg);	\
 | |
| 	} while (0)
 | |
| 
 | |
| /* Macros to help calculate the sysfs_names array length */
 | |
| /*
 | |
|  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
 | |
|  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
 | |
|  */
 | |
| #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
 | |
| /*
 | |
|  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
 | |
|  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
 | |
|  */
 | |
| #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
 | |
| /*
 | |
|  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
 | |
|  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
 | |
|  */
 | |
| #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
 | |
| /*
 | |
|  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
 | |
|  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
 | |
|  */
 | |
| #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
 | |
| /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
 | |
| #define ABITUGURU_SYSFS_NAMES_LENGTH	( \
 | |
| 	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
 | |
| 	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
 | |
| 	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
 | |
| 
 | |
| /*
 | |
|  * All the macros below are named identical to the oguru and oguru2 programs
 | |
|  * reverse engineered by Olle Sandberg, hence the names might not be 100%
 | |
|  * logical. I could come up with better names, but I prefer keeping the names
 | |
|  * identical so that this driver can be compared with his work more easily.
 | |
|  */
 | |
| /* Two i/o-ports are used by uGuru */
 | |
| #define ABIT_UGURU_BASE				0x00E0
 | |
| /* Used to tell uGuru what to read and to read the actual data */
 | |
| #define ABIT_UGURU_CMD				0x00
 | |
| /* Mostly used to check if uGuru is busy */
 | |
| #define ABIT_UGURU_DATA				0x04
 | |
| #define ABIT_UGURU_REGION_LENGTH		5
 | |
| /* uGuru status' */
 | |
| #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
 | |
| #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
 | |
| #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
 | |
| #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
 | |
| 
 | |
| /* Constants */
 | |
| /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
 | |
| static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
 | |
| /*
 | |
|  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
 | |
|  * correspond to 300-3000 RPM
 | |
|  */
 | |
| static const u8 abituguru_bank2_min_threshold = 5;
 | |
| static const u8 abituguru_bank2_max_threshold = 50;
 | |
| /*
 | |
|  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
 | |
|  * are temperature trip points.
 | |
|  */
 | |
| static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
 | |
| /*
 | |
|  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
 | |
|  * special case the minimum allowed pwm% setting for this is 30% (77) on
 | |
|  * some MB's this special case is handled in the code!
 | |
|  */
 | |
| static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
 | |
| static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
 | |
| 
 | |
| 
 | |
| /* Insmod parameters */
 | |
| static bool force;
 | |
| module_param(force, bool, 0);
 | |
| MODULE_PARM_DESC(force, "Set to one to force detection.");
 | |
| static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
 | |
| 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
 | |
| module_param_array(bank1_types, int, NULL, 0);
 | |
| MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
 | |
| 	"   -1 autodetect\n"
 | |
| 	"    0 volt sensor\n"
 | |
| 	"    1 temp sensor\n"
 | |
| 	"    2 not connected");
 | |
| static int fan_sensors;
 | |
| module_param(fan_sensors, int, 0);
 | |
| MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
 | |
| 	"(0 = autodetect)");
 | |
| static int pwms;
 | |
| module_param(pwms, int, 0);
 | |
| MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
 | |
| 	"(0 = autodetect)");
 | |
| 
 | |
| /* Default verbose is 2, since this driver is still in the testing phase */
 | |
| static int verbose = 2;
 | |
| module_param(verbose, int, 0644);
 | |
| MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
 | |
| 	"   0 normal output\n"
 | |
| 	"   1 + verbose error reporting\n"
 | |
| 	"   2 + sensors type probing info\n"
 | |
| 	"   3 + retryable error reporting");
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * For the Abit uGuru, we need to keep some data in memory.
 | |
|  * The structure is dynamically allocated, at the same time when a new
 | |
|  * abituguru device is allocated.
 | |
|  */
 | |
| struct abituguru_data {
 | |
| 	struct device *hwmon_dev;	/* hwmon registered device */
 | |
| 	struct mutex update_lock;	/* protect access to data and uGuru */
 | |
| 	unsigned long last_updated;	/* In jiffies */
 | |
| 	unsigned short addr;		/* uguru base address */
 | |
| 	char uguru_ready;		/* is the uguru in ready state? */
 | |
| 	unsigned char update_timeouts;	/*
 | |
| 					 * number of update timeouts since last
 | |
| 					 * successful update
 | |
| 					 */
 | |
| 
 | |
| 	/*
 | |
| 	 * The sysfs attr and their names are generated automatically, for bank1
 | |
| 	 * we cannot use a predefined array because we don't know beforehand
 | |
| 	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
 | |
| 	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
 | |
| 	 * sysfs entries per sensor, for bank2 and pwms 6.
 | |
| 	 */
 | |
| 	struct sensor_device_attribute_2 sysfs_attr[
 | |
| 		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
 | |
| 		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
 | |
| 	/* Buffer to store the dynamically generated sysfs names */
 | |
| 	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
 | |
| 
 | |
| 	/* Bank 1 data */
 | |
| 	/* number of and addresses of [0] in, [1] temp sensors */
 | |
| 	u8 bank1_sensors[2];
 | |
| 	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
 | |
| 	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 | |
| 	/*
 | |
| 	 * This array holds 3 entries per sensor for the bank 1 sensor settings
 | |
| 	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
 | |
| 	 */
 | |
| 	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
 | |
| 	/*
 | |
| 	 * Maximum value for each sensor used for scaling in mV/millidegrees
 | |
| 	 * Celsius.
 | |
| 	 */
 | |
| 	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
 | |
| 
 | |
| 	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
 | |
| 	u8 bank2_sensors; /* actual number of bank2 sensors found */
 | |
| 	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
 | |
| 	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
 | |
| 
 | |
| 	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
 | |
| 	u8 alarms[3];
 | |
| 
 | |
| 	/* Fan PWM (speed control) 5 bytes per PWM */
 | |
| 	u8 pwms; /* actual number of pwms found */
 | |
| 	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
 | |
| };
 | |
| 
 | |
| static const char *never_happen = "This should never happen.";
 | |
| static const char *report_this =
 | |
| 	"Please report this to the abituguru maintainer (see MAINTAINERS)";
 | |
| 
 | |
| /* wait till the uguru is in the specified state */
 | |
| static int abituguru_wait(struct abituguru_data *data, u8 state)
 | |
| {
 | |
| 	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
 | |
| 
 | |
| 	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
 | |
| 		timeout--;
 | |
| 		if (timeout == 0)
 | |
| 			return -EBUSY;
 | |
| 		/*
 | |
| 		 * sleep a bit before our last few tries, see the comment on
 | |
| 		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
 | |
| 		 */
 | |
| 		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
 | |
| 			msleep(0);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Put the uguru in ready for input state */
 | |
| static int abituguru_ready(struct abituguru_data *data)
 | |
| {
 | |
| 	int timeout = ABIT_UGURU_READY_TIMEOUT;
 | |
| 
 | |
| 	if (data->uguru_ready)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Reset? / Prepare for next read/write cycle */
 | |
| 	outb(0x00, data->addr + ABIT_UGURU_DATA);
 | |
| 
 | |
| 	/* Wait till the uguru is ready */
 | |
| 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
 | |
| 		ABIT_UGURU_DEBUG(1,
 | |
| 			"timeout exceeded waiting for ready state\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Cmd port MUST be read now and should contain 0xAC */
 | |
| 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 | |
| 		timeout--;
 | |
| 		if (timeout == 0) {
 | |
| 			ABIT_UGURU_DEBUG(1,
 | |
| 			   "CMD reg does not hold 0xAC after ready command\n");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		msleep(0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After this the ABIT_UGURU_DATA port should contain
 | |
| 	 * ABIT_UGURU_STATUS_INPUT
 | |
| 	 */
 | |
| 	timeout = ABIT_UGURU_READY_TIMEOUT;
 | |
| 	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
 | |
| 		timeout--;
 | |
| 		if (timeout == 0) {
 | |
| 			ABIT_UGURU_DEBUG(1,
 | |
| 				"state != more input after ready command\n");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		msleep(0);
 | |
| 	}
 | |
| 
 | |
| 	data->uguru_ready = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send the bank and then sensor address to the uGuru for the next read/write
 | |
|  * cycle. This function gets called as the first part of a read/write by
 | |
|  * abituguru_read and abituguru_write. This function should never be
 | |
|  * called by any other function.
 | |
|  */
 | |
| static int abituguru_send_address(struct abituguru_data *data,
 | |
| 	u8 bank_addr, u8 sensor_addr, int retries)
 | |
| {
 | |
| 	/*
 | |
| 	 * assume the caller does error handling itself if it has not requested
 | |
| 	 * any retries, and thus be quiet.
 | |
| 	 */
 | |
| 	int report_errors = retries;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * Make sure the uguru is ready and then send the bank address,
 | |
| 		 * after this the uguru is no longer "ready".
 | |
| 		 */
 | |
| 		if (abituguru_ready(data) != 0)
 | |
| 			return -EIO;
 | |
| 		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
 | |
| 		data->uguru_ready = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
 | |
| 		 * and send the sensor addr
 | |
| 		 */
 | |
| 		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
 | |
| 			if (retries) {
 | |
| 				ABIT_UGURU_DEBUG(3, "timeout exceeded "
 | |
| 					"waiting for more input state, %d "
 | |
| 					"tries remaining\n", retries);
 | |
| 				set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
 | |
| 				retries--;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (report_errors)
 | |
| 				ABIT_UGURU_DEBUG(1, "timeout exceeded "
 | |
| 					"waiting for more input state "
 | |
| 					"(bank: %d)\n", (int)bank_addr);
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
 | |
|  * result in buf, retry the send address part of the read retries times.
 | |
|  */
 | |
| static int abituguru_read(struct abituguru_data *data,
 | |
| 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Send the address */
 | |
| 	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
 | |
| 	if (i)
 | |
| 		return i;
 | |
| 
 | |
| 	/* And read the data */
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 | |
| 			ABIT_UGURU_DEBUG(retries ? 1 : 3,
 | |
| 				"timeout exceeded waiting for "
 | |
| 				"read state (bank: %d, sensor: %d)\n",
 | |
| 				(int)bank_addr, (int)sensor_addr);
 | |
| 			break;
 | |
| 		}
 | |
| 		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
 | |
| 	}
 | |
| 
 | |
| 	/* Last put the chip back in ready state */
 | |
| 	abituguru_ready(data);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
 | |
|  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
 | |
|  */
 | |
| static int abituguru_write(struct abituguru_data *data,
 | |
| 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
 | |
| {
 | |
| 	/*
 | |
| 	 * We use the ready timeout as we have to wait for 0xAC just like the
 | |
| 	 * ready function
 | |
| 	 */
 | |
| 	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
 | |
| 
 | |
| 	/* Send the address */
 | |
| 	i = abituguru_send_address(data, bank_addr, sensor_addr,
 | |
| 		ABIT_UGURU_MAX_RETRIES);
 | |
| 	if (i)
 | |
| 		return i;
 | |
| 
 | |
| 	/* And write the data */
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
 | |
| 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
 | |
| 				"write state (bank: %d, sensor: %d)\n",
 | |
| 				(int)bank_addr, (int)sensor_addr);
 | |
| 			break;
 | |
| 		}
 | |
| 		outb(buf[i], data->addr + ABIT_UGURU_CMD);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we need to wait till the chip is ready to be read again,
 | |
| 	 * so that we can read 0xAC as confirmation that our write has
 | |
| 	 * succeeded.
 | |
| 	 */
 | |
| 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
 | |
| 		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
 | |
| 			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
 | |
| 			(int)sensor_addr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Cmd port MUST be read now and should contain 0xAC */
 | |
| 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
 | |
| 		timeout--;
 | |
| 		if (timeout == 0) {
 | |
| 			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
 | |
| 				"write (bank: %d, sensor: %d)\n",
 | |
| 				(int)bank_addr, (int)sensor_addr);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		msleep(0);
 | |
| 	}
 | |
| 
 | |
| 	/* Last put the chip back in ready state */
 | |
| 	abituguru_ready(data);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detect sensor type. Temp and Volt sensors are enabled with
 | |
|  * different masks and will ignore enable masks not meant for them.
 | |
|  * This enables us to test what kind of sensor we're dealing with.
 | |
|  * By setting the alarm thresholds so that we will always get an
 | |
|  * alarm for sensor type X and then enabling the sensor as sensor type
 | |
|  * X, if we then get an alarm it is a sensor of type X.
 | |
|  */
 | |
| static int
 | |
| abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
 | |
| 				   u8 sensor_addr)
 | |
| {
 | |
| 	u8 val, test_flag, buf[3];
 | |
| 	int i, ret = -ENODEV; /* error is the most common used retval :| */
 | |
| 
 | |
| 	/* If overriden by the user return the user selected type */
 | |
| 	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
 | |
| 			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
 | |
| 		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
 | |
| 			"%d because of \"bank1_types\" module param\n",
 | |
| 			bank1_types[sensor_addr], (int)sensor_addr);
 | |
| 		return bank1_types[sensor_addr];
 | |
| 	}
 | |
| 
 | |
| 	/* First read the sensor and the current settings */
 | |
| 	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
 | |
| 			1, ABIT_UGURU_MAX_RETRIES) != 1)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Test val is sane / usable for sensor type detection. */
 | |
| 	if ((val < 10u) || (val > 250u)) {
 | |
| 		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
 | |
| 			"unable to determine sensor type, skipping sensor\n",
 | |
| 			(int)sensor_addr, (int)val);
 | |
| 		/*
 | |
| 		 * assume no sensor is there for sensors for which we can't
 | |
| 		 * determine the sensor type because their reading is too close
 | |
| 		 * to their limits, this usually means no sensor is there.
 | |
| 		 */
 | |
| 		return ABIT_UGURU_NC;
 | |
| 	}
 | |
| 
 | |
| 	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
 | |
| 	/*
 | |
| 	 * Volt sensor test, enable volt low alarm, set min value ridiculously
 | |
| 	 * high, or vica versa if the reading is very high. If its a volt
 | |
| 	 * sensor this should always give us an alarm.
 | |
| 	 */
 | |
| 	if (val <= 240u) {
 | |
| 		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
 | |
| 		buf[1] = 245;
 | |
| 		buf[2] = 250;
 | |
| 		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
 | |
| 	} else {
 | |
| 		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
 | |
| 		buf[1] = 5;
 | |
| 		buf[2] = 10;
 | |
| 		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
 | |
| 	}
 | |
| 
 | |
| 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 | |
| 			buf, 3) != 3)
 | |
| 		goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 	/*
 | |
| 	 * Now we need 20 ms to give the uguru time to read the sensors
 | |
| 	 * and raise a voltage alarm
 | |
| 	 */
 | |
| 	set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 	schedule_timeout(HZ/50);
 | |
| 	/* Check for alarm and check the alarm is a volt low alarm. */
 | |
| 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 | |
| 			ABIT_UGURU_MAX_RETRIES) != 3)
 | |
| 		goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 | |
| 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 | |
| 				sensor_addr, buf, 3,
 | |
| 				ABIT_UGURU_MAX_RETRIES) != 3)
 | |
| 			goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 		if (buf[0] & test_flag) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
 | |
| 			ret = ABIT_UGURU_IN_SENSOR;
 | |
| 			goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 		} else
 | |
| 			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
 | |
| 				"sensor test, but volt range flag not set\n");
 | |
| 	} else
 | |
| 		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
 | |
| 			"test\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Temp sensor test, enable sensor as a temp sensor, set beep value
 | |
| 	 * ridiculously low (but not too low, otherwise uguru ignores it).
 | |
| 	 * If its a temp sensor this should always give us an alarm.
 | |
| 	 */
 | |
| 	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
 | |
| 	buf[1] = 5;
 | |
| 	buf[2] = 10;
 | |
| 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
 | |
| 			buf, 3) != 3)
 | |
| 		goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 	/*
 | |
| 	 * Now we need 50 ms to give the uguru time to read the sensors
 | |
| 	 * and raise a temp alarm
 | |
| 	 */
 | |
| 	set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 	schedule_timeout(HZ/20);
 | |
| 	/* Check for alarm and check the alarm is a temp high alarm. */
 | |
| 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
 | |
| 			ABIT_UGURU_MAX_RETRIES) != 3)
 | |
| 		goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
 | |
| 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 | |
| 				sensor_addr, buf, 3,
 | |
| 				ABIT_UGURU_MAX_RETRIES) != 3)
 | |
| 			goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
 | |
| 			ret = ABIT_UGURU_TEMP_SENSOR;
 | |
| 			goto abituguru_detect_bank1_sensor_type_exit;
 | |
| 		} else
 | |
| 			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
 | |
| 				"sensor test, but temp high flag not set\n");
 | |
| 	} else
 | |
| 		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
 | |
| 			"test\n");
 | |
| 
 | |
| 	ret = ABIT_UGURU_NC;
 | |
| abituguru_detect_bank1_sensor_type_exit:
 | |
| 	/*
 | |
| 	 * Restore original settings, failing here is really BAD, it has been
 | |
| 	 * reported that some BIOS-es hang when entering the uGuru menu with
 | |
| 	 * invalid settings present in the uGuru, so we try this 3 times.
 | |
| 	 */
 | |
| 	for (i = 0; i < 3; i++)
 | |
| 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 | |
| 				sensor_addr, data->bank1_settings[sensor_addr],
 | |
| 				3) == 3)
 | |
| 			break;
 | |
| 	if (i == 3) {
 | |
| 		pr_err("Fatal error could not restore original settings. %s %s\n",
 | |
| 		       never_happen, report_this);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These functions try to find out how many sensors there are in bank2 and how
 | |
|  * many pwms there are. The purpose of this is to make sure that we don't give
 | |
|  * the user the possibility to change settings for non-existent sensors / pwm.
 | |
|  * The uGuru will happily read / write whatever memory happens to be after the
 | |
|  * memory storing the PWM settings when reading/writing to a PWM which is not
 | |
|  * there. Notice even if we detect a PWM which doesn't exist we normally won't
 | |
|  * write to it, unless the user tries to change the settings.
 | |
|  *
 | |
|  * Although the uGuru allows reading (settings) from non existing bank2
 | |
|  * sensors, my version of the uGuru does seem to stop writing to them, the
 | |
|  * write function above aborts in this case with:
 | |
|  * "CMD reg does not hold 0xAC after write"
 | |
|  *
 | |
|  * Notice these 2 tests are non destructive iow read-only tests, otherwise
 | |
|  * they would defeat their purpose. Although for the bank2_sensors detection a
 | |
|  * read/write test would be feasible because of the reaction above, I've
 | |
|  * however opted to stay on the safe side.
 | |
|  */
 | |
| static void
 | |
| abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
 | |
| 		data->bank2_sensors = fan_sensors;
 | |
| 		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
 | |
| 			"\"fan_sensors\" module param\n",
 | |
| 			(int)data->bank2_sensors);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
 | |
| 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 | |
| 		/*
 | |
| 		 * 0x89 are the known used bits:
 | |
| 		 * -0x80 enable shutdown
 | |
| 		 * -0x08 enable beep
 | |
| 		 * -0x01 enable alarm
 | |
| 		 * All other bits should be 0, but on some motherboards
 | |
| 		 * 0x40 (bit 6) is also high for some of the fans??
 | |
| 		 */
 | |
| 		if (data->bank2_settings[i][0] & ~0xC9) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 | |
| 				"to be a fan sensor: settings[0] = %02X\n",
 | |
| 				i, (unsigned int)data->bank2_settings[i][0]);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* check if the threshold is within the allowed range */
 | |
| 		if (data->bank2_settings[i][1] <
 | |
| 				abituguru_bank2_min_threshold) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 | |
| 				"to be a fan sensor: the threshold (%d) is "
 | |
| 				"below the minimum (%d)\n", i,
 | |
| 				(int)data->bank2_settings[i][1],
 | |
| 				(int)abituguru_bank2_min_threshold);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data->bank2_settings[i][1] >
 | |
| 				abituguru_bank2_max_threshold) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
 | |
| 				"to be a fan sensor: the threshold (%d) is "
 | |
| 				"above the maximum (%d)\n", i,
 | |
| 				(int)data->bank2_settings[i][1],
 | |
| 				(int)abituguru_bank2_max_threshold);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	data->bank2_sensors = i;
 | |
| 	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
 | |
| 		(int)data->bank2_sensors);
 | |
| }
 | |
| 
 | |
| static void
 | |
| abituguru_detect_no_pwms(struct abituguru_data *data)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
 | |
| 		data->pwms = pwms;
 | |
| 		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
 | |
| 			"\"pwms\" module param\n", (int)data->pwms);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
 | |
| 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 | |
| 		/*
 | |
| 		 * 0x80 is the enable bit and the low
 | |
| 		 * nibble is which temp sensor to use,
 | |
| 		 * the other bits should be 0
 | |
| 		 */
 | |
| 		if (data->pwm_settings[i][0] & ~0x8F) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 | |
| 				"to be a pwm channel: settings[0] = %02X\n",
 | |
| 				i, (unsigned int)data->pwm_settings[i][0]);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * the low nibble must correspond to one of the temp sensors
 | |
| 		 * we've found
 | |
| 		 */
 | |
| 		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
 | |
| 				j++) {
 | |
| 			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
 | |
| 					(data->pwm_settings[i][0] & 0x0F))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 | |
| 				"to be a pwm channel: %d is not a valid temp "
 | |
| 				"sensor address\n", i,
 | |
| 				data->pwm_settings[i][0] & 0x0F);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* check if all other settings are within the allowed range */
 | |
| 		for (j = 1; j < 5; j++) {
 | |
| 			u8 min;
 | |
| 			/* special case pwm1 min pwm% */
 | |
| 			if ((i == 0) && ((j == 1) || (j == 2)))
 | |
| 				min = 77;
 | |
| 			else
 | |
| 				min = abituguru_pwm_min[j];
 | |
| 			if (data->pwm_settings[i][j] < min) {
 | |
| 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 | |
| 					"not seem to be a pwm channel: "
 | |
| 					"setting %d (%d) is below the minimum "
 | |
| 					"value (%d)\n", i, j,
 | |
| 					(int)data->pwm_settings[i][j],
 | |
| 					(int)min);
 | |
| 				goto abituguru_detect_no_pwms_exit;
 | |
| 			}
 | |
| 			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
 | |
| 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
 | |
| 					"not seem to be a pwm channel: "
 | |
| 					"setting %d (%d) is above the maximum "
 | |
| 					"value (%d)\n", i, j,
 | |
| 					(int)data->pwm_settings[i][j],
 | |
| 					(int)abituguru_pwm_max[j]);
 | |
| 				goto abituguru_detect_no_pwms_exit;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* check that min temp < max temp and min pwm < max pwm */
 | |
| 		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 | |
| 				"to be a pwm channel: min pwm (%d) >= "
 | |
| 				"max pwm (%d)\n", i,
 | |
| 				(int)data->pwm_settings[i][1],
 | |
| 				(int)data->pwm_settings[i][2]);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
 | |
| 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
 | |
| 				"to be a pwm channel: min temp (%d) >= "
 | |
| 				"max temp (%d)\n", i,
 | |
| 				(int)data->pwm_settings[i][3],
 | |
| 				(int)data->pwm_settings[i][4]);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| abituguru_detect_no_pwms_exit:
 | |
| 	data->pwms = i;
 | |
| 	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Following are the sysfs callback functions. These functions expect:
 | |
|  * sensor_device_attribute_2->index:   sensor address/offset in the bank
 | |
|  * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
 | |
|  */
 | |
| static struct abituguru_data *abituguru_update_device(struct device *dev);
 | |
| 
 | |
| static ssize_t show_bank1_value(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = abituguru_update_device(dev);
 | |
| 	if (!data)
 | |
| 		return -EIO;
 | |
| 	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
 | |
| 		data->bank1_max_value[attr->index] + 128) / 255);
 | |
| }
 | |
| 
 | |
| static ssize_t show_bank1_setting(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		(data->bank1_settings[attr->index][attr->nr] *
 | |
| 		data->bank1_max_value[attr->index] + 128) / 255);
 | |
| }
 | |
| 
 | |
| static ssize_t show_bank2_value(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = abituguru_update_device(dev);
 | |
| 	if (!data)
 | |
| 		return -EIO;
 | |
| 	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
 | |
| 		ABIT_UGURU_FAN_MAX + 128) / 255);
 | |
| }
 | |
| 
 | |
| static ssize_t show_bank2_setting(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		(data->bank2_settings[attr->index][attr->nr] *
 | |
| 		ABIT_UGURU_FAN_MAX + 128) / 255);
 | |
| }
 | |
| 
 | |
| static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
 | |
| 	*devattr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	unsigned long val;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = count;
 | |
| 	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
 | |
| 		data->bank1_max_value[attr->index];
 | |
| 	if (val > 255)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	if (data->bank1_settings[attr->index][attr->nr] != val) {
 | |
| 		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
 | |
| 		data->bank1_settings[attr->index][attr->nr] = val;
 | |
| 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
 | |
| 				attr->index, data->bank1_settings[attr->index],
 | |
| 				3) <= attr->nr) {
 | |
| 			data->bank1_settings[attr->index][attr->nr] = orig_val;
 | |
| 			ret = -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
 | |
| 	*devattr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	unsigned long val;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = count;
 | |
| 	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
 | |
| 
 | |
| 	/* this check can be done before taking the lock */
 | |
| 	if (val < abituguru_bank2_min_threshold ||
 | |
| 			val > abituguru_bank2_max_threshold)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	if (data->bank2_settings[attr->index][attr->nr] != val) {
 | |
| 		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
 | |
| 		data->bank2_settings[attr->index][attr->nr] = val;
 | |
| 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
 | |
| 				attr->index, data->bank2_settings[attr->index],
 | |
| 				2) <= attr->nr) {
 | |
| 			data->bank2_settings[attr->index][attr->nr] = orig_val;
 | |
| 			ret = -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t show_bank1_alarm(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = abituguru_update_device(dev);
 | |
| 	if (!data)
 | |
| 		return -EIO;
 | |
| 	/*
 | |
| 	 * See if the alarm bit for this sensor is set, and if the
 | |
| 	 * alarm matches the type of alarm we're looking for (for volt
 | |
| 	 * it can be either low or high). The type is stored in a few
 | |
| 	 * readonly bits in the settings part of the relevant sensor.
 | |
| 	 * The bitmask of the type is passed to us in attr->nr.
 | |
| 	 */
 | |
| 	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
 | |
| 			(data->bank1_settings[attr->index][0] & attr->nr))
 | |
| 		return sprintf(buf, "1\n");
 | |
| 	else
 | |
| 		return sprintf(buf, "0\n");
 | |
| }
 | |
| 
 | |
| static ssize_t show_bank2_alarm(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = abituguru_update_device(dev);
 | |
| 	if (!data)
 | |
| 		return -EIO;
 | |
| 	if (data->alarms[2] & (0x01 << attr->index))
 | |
| 		return sprintf(buf, "1\n");
 | |
| 	else
 | |
| 		return sprintf(buf, "0\n");
 | |
| }
 | |
| 
 | |
| static ssize_t show_bank1_mask(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	if (data->bank1_settings[attr->index][0] & attr->nr)
 | |
| 		return sprintf(buf, "1\n");
 | |
| 	else
 | |
| 		return sprintf(buf, "0\n");
 | |
| }
 | |
| 
 | |
| static ssize_t show_bank2_mask(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	if (data->bank2_settings[attr->index][0] & attr->nr)
 | |
| 		return sprintf(buf, "1\n");
 | |
| 	else
 | |
| 		return sprintf(buf, "0\n");
 | |
| }
 | |
| 
 | |
| static ssize_t store_bank1_mask(struct device *dev,
 | |
| 	struct device_attribute *devattr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	ssize_t ret;
 | |
| 	u8 orig_val;
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &mask);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = count;
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	orig_val = data->bank1_settings[attr->index][0];
 | |
| 
 | |
| 	if (mask)
 | |
| 		data->bank1_settings[attr->index][0] |= attr->nr;
 | |
| 	else
 | |
| 		data->bank1_settings[attr->index][0] &= ~attr->nr;
 | |
| 
 | |
| 	if ((data->bank1_settings[attr->index][0] != orig_val) &&
 | |
| 			(abituguru_write(data,
 | |
| 			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
 | |
| 			data->bank1_settings[attr->index], 3) < 1)) {
 | |
| 		data->bank1_settings[attr->index][0] = orig_val;
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t store_bank2_mask(struct device *dev,
 | |
| 	struct device_attribute *devattr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	ssize_t ret;
 | |
| 	u8 orig_val;
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &mask);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = count;
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	orig_val = data->bank2_settings[attr->index][0];
 | |
| 
 | |
| 	if (mask)
 | |
| 		data->bank2_settings[attr->index][0] |= attr->nr;
 | |
| 	else
 | |
| 		data->bank2_settings[attr->index][0] &= ~attr->nr;
 | |
| 
 | |
| 	if ((data->bank2_settings[attr->index][0] != orig_val) &&
 | |
| 			(abituguru_write(data,
 | |
| 			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
 | |
| 			data->bank2_settings[attr->index], 2) < 1)) {
 | |
| 		data->bank2_settings[attr->index][0] = orig_val;
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Fan PWM (speed control) */
 | |
| static ssize_t show_pwm_setting(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
 | |
| 		abituguru_pwm_settings_multiplier[attr->nr]);
 | |
| }
 | |
| 
 | |
| static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
 | |
| 	*devattr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	u8 min;
 | |
| 	unsigned long val;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = count;
 | |
| 	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
 | |
| 				abituguru_pwm_settings_multiplier[attr->nr];
 | |
| 
 | |
| 	/* special case pwm1 min pwm% */
 | |
| 	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
 | |
| 		min = 77;
 | |
| 	else
 | |
| 		min = abituguru_pwm_min[attr->nr];
 | |
| 
 | |
| 	/* this check can be done before taking the lock */
 | |
| 	if (val < min || val > abituguru_pwm_max[attr->nr])
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	/* this check needs to be done after taking the lock */
 | |
| 	if ((attr->nr & 1) &&
 | |
| 			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
 | |
| 		ret = -EINVAL;
 | |
| 	else if (!(attr->nr & 1) &&
 | |
| 			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
 | |
| 		ret = -EINVAL;
 | |
| 	else if (data->pwm_settings[attr->index][attr->nr] != val) {
 | |
| 		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
 | |
| 		data->pwm_settings[attr->index][attr->nr] = val;
 | |
| 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
 | |
| 				attr->index, data->pwm_settings[attr->index],
 | |
| 				5) <= attr->nr) {
 | |
| 			data->pwm_settings[attr->index][attr->nr] =
 | |
| 				orig_val;
 | |
| 			ret = -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t show_pwm_sensor(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	int i;
 | |
| 	/*
 | |
| 	 * We need to walk to the temp sensor addresses to find what
 | |
| 	 * the userspace id of the configured temp sensor is.
 | |
| 	 */
 | |
| 	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
 | |
| 		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
 | |
| 				(data->pwm_settings[attr->index][0] & 0x0F))
 | |
| 			return sprintf(buf, "%d\n", i+1);
 | |
| 
 | |
| 	return -ENXIO;
 | |
| }
 | |
| 
 | |
| static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
 | |
| 	*devattr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	ssize_t ret;
 | |
| 	unsigned long val;
 | |
| 	u8 orig_val;
 | |
| 	u8 address;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	val -= 1;
 | |
| 	ret = count;
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	orig_val = data->pwm_settings[attr->index][0];
 | |
| 	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
 | |
| 	data->pwm_settings[attr->index][0] &= 0xF0;
 | |
| 	data->pwm_settings[attr->index][0] |= address;
 | |
| 	if (data->pwm_settings[attr->index][0] != orig_val) {
 | |
| 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
 | |
| 				    data->pwm_settings[attr->index], 5) < 1) {
 | |
| 			data->pwm_settings[attr->index][0] = orig_val;
 | |
| 			ret = -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t show_pwm_enable(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	int res = 0;
 | |
| 	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
 | |
| 		res = 2;
 | |
| 	return sprintf(buf, "%d\n", res);
 | |
| }
 | |
| 
 | |
| static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
 | |
| 	*devattr, const char *buf, size_t count)
 | |
| {
 | |
| 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	u8 orig_val;
 | |
| 	ssize_t ret;
 | |
| 	unsigned long user_val;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &user_val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = count;
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	orig_val = data->pwm_settings[attr->index][0];
 | |
| 	switch (user_val) {
 | |
| 	case 0:
 | |
| 		data->pwm_settings[attr->index][0] &=
 | |
| 			~ABIT_UGURU_FAN_PWM_ENABLE;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	if ((data->pwm_settings[attr->index][0] != orig_val) &&
 | |
| 			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
 | |
| 			attr->index, data->pwm_settings[attr->index],
 | |
| 			5) < 1)) {
 | |
| 		data->pwm_settings[attr->index][0] = orig_val;
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t show_name(struct device *dev,
 | |
| 	struct device_attribute *devattr, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
 | |
| }
 | |
| 
 | |
| /* Sysfs attr templates, the real entries are generated automatically. */
 | |
| static const
 | |
| struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
 | |
| 	{
 | |
| 	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
 | |
| 	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
 | |
| 		store_bank1_setting, 1, 0),
 | |
| 	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
 | |
| 		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
 | |
| 	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
 | |
| 		store_bank1_setting, 2, 0),
 | |
| 	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
 | |
| 		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
 | |
| 	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
 | |
| 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
 | |
| 	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
 | |
| 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
 | |
| 	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
 | |
| 		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
 | |
| 	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
 | |
| 		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
 | |
| 	}, {
 | |
| 	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
 | |
| 	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
 | |
| 		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
 | |
| 	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
 | |
| 		store_bank1_setting, 1, 0),
 | |
| 	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
 | |
| 		store_bank1_setting, 2, 0),
 | |
| 	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
 | |
| 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
 | |
| 	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
 | |
| 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
 | |
| 	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
 | |
| 		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
 | |
| 	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
 | |
| 	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
 | |
| 	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
 | |
| 		store_bank2_setting, 1, 0),
 | |
| 	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
 | |
| 		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
 | |
| 	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
 | |
| 		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
 | |
| 	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
 | |
| 		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
 | |
| };
 | |
| 
 | |
| static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
 | |
| 	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
 | |
| 		store_pwm_enable, 0, 0),
 | |
| 	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
 | |
| 		store_pwm_sensor, 0, 0),
 | |
| 	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
 | |
| 		store_pwm_setting, 1, 0),
 | |
| 	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
 | |
| 		store_pwm_setting, 2, 0),
 | |
| 	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
 | |
| 		store_pwm_setting, 3, 0),
 | |
| 	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
 | |
| 		store_pwm_setting, 4, 0),
 | |
| };
 | |
| 
 | |
| static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
 | |
| 	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
 | |
| };
 | |
| 
 | |
| static int abituguru_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct abituguru_data *data;
 | |
| 	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
 | |
| 	char *sysfs_filename;
 | |
| 
 | |
| 	/*
 | |
| 	 * El weirdo probe order, to keep the sysfs order identical to the
 | |
| 	 * BIOS and window-appliction listing order.
 | |
| 	 */
 | |
| 	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
 | |
| 		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
 | |
| 		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
 | |
| 
 | |
| 	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
 | |
| 			    GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
 | |
| 	mutex_init(&data->update_lock);
 | |
| 	platform_set_drvdata(pdev, data);
 | |
| 
 | |
| 	/* See if the uGuru is ready */
 | |
| 	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
 | |
| 		data->uguru_ready = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Completely read the uGuru this has 2 purposes:
 | |
| 	 * - testread / see if one really is there.
 | |
| 	 * - make an in memory copy of all the uguru settings for future use.
 | |
| 	 */
 | |
| 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
 | |
| 			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
 | |
| 		goto abituguru_probe_error;
 | |
| 
 | |
| 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
 | |
| 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
 | |
| 				&data->bank1_value[i], 1,
 | |
| 				ABIT_UGURU_MAX_RETRIES) != 1)
 | |
| 			goto abituguru_probe_error;
 | |
| 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
 | |
| 				data->bank1_settings[i], 3,
 | |
| 				ABIT_UGURU_MAX_RETRIES) != 3)
 | |
| 			goto abituguru_probe_error;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Note: We don't know how many bank2 sensors / pwms there really are,
 | |
| 	 * but in order to "detect" this we need to read the maximum amount
 | |
| 	 * anyways. If we read sensors/pwms not there we'll just read crap
 | |
| 	 * this can't hurt. We need the detection because we don't want
 | |
| 	 * unwanted writes, which will hurt!
 | |
| 	 */
 | |
| 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
 | |
| 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
 | |
| 				&data->bank2_value[i], 1,
 | |
| 				ABIT_UGURU_MAX_RETRIES) != 1)
 | |
| 			goto abituguru_probe_error;
 | |
| 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
 | |
| 				data->bank2_settings[i], 2,
 | |
| 				ABIT_UGURU_MAX_RETRIES) != 2)
 | |
| 			goto abituguru_probe_error;
 | |
| 	}
 | |
| 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
 | |
| 		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
 | |
| 				data->pwm_settings[i], 5,
 | |
| 				ABIT_UGURU_MAX_RETRIES) != 5)
 | |
| 			goto abituguru_probe_error;
 | |
| 	}
 | |
| 	data->last_updated = jiffies;
 | |
| 
 | |
| 	/* Detect sensor types and fill the sysfs attr for bank1 */
 | |
| 	sysfs_attr_i = 0;
 | |
| 	sysfs_filename = data->sysfs_names;
 | |
| 	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
 | |
| 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
 | |
| 		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
 | |
| 		if (res < 0)
 | |
| 			goto abituguru_probe_error;
 | |
| 		if (res == ABIT_UGURU_NC)
 | |
| 			continue;
 | |
| 
 | |
| 		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
 | |
| 		for (j = 0; j < (res ? 7 : 9); j++) {
 | |
| 			used = snprintf(sysfs_filename, sysfs_names_free,
 | |
| 				abituguru_sysfs_bank1_templ[res][j].dev_attr.
 | |
| 				attr.name, data->bank1_sensors[res] + res)
 | |
| 				+ 1;
 | |
| 			data->sysfs_attr[sysfs_attr_i] =
 | |
| 				abituguru_sysfs_bank1_templ[res][j];
 | |
| 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
 | |
| 				sysfs_filename;
 | |
| 			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
 | |
| 			sysfs_filename += used;
 | |
| 			sysfs_names_free -= used;
 | |
| 			sysfs_attr_i++;
 | |
| 		}
 | |
| 		data->bank1_max_value[probe_order[i]] =
 | |
| 			abituguru_bank1_max_value[res];
 | |
| 		data->bank1_address[res][data->bank1_sensors[res]] =
 | |
| 			probe_order[i];
 | |
| 		data->bank1_sensors[res]++;
 | |
| 	}
 | |
| 	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
 | |
| 	abituguru_detect_no_bank2_sensors(data);
 | |
| 	for (i = 0; i < data->bank2_sensors; i++) {
 | |
| 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
 | |
| 			used = snprintf(sysfs_filename, sysfs_names_free,
 | |
| 				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
 | |
| 				i + 1) + 1;
 | |
| 			data->sysfs_attr[sysfs_attr_i] =
 | |
| 				abituguru_sysfs_fan_templ[j];
 | |
| 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
 | |
| 				sysfs_filename;
 | |
| 			data->sysfs_attr[sysfs_attr_i].index = i;
 | |
| 			sysfs_filename += used;
 | |
| 			sysfs_names_free -= used;
 | |
| 			sysfs_attr_i++;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Detect number of sensors and fill the sysfs attr for pwms */
 | |
| 	abituguru_detect_no_pwms(data);
 | |
| 	for (i = 0; i < data->pwms; i++) {
 | |
| 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
 | |
| 			used = snprintf(sysfs_filename, sysfs_names_free,
 | |
| 				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
 | |
| 				i + 1) + 1;
 | |
| 			data->sysfs_attr[sysfs_attr_i] =
 | |
| 				abituguru_sysfs_pwm_templ[j];
 | |
| 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
 | |
| 				sysfs_filename;
 | |
| 			data->sysfs_attr[sysfs_attr_i].index = i;
 | |
| 			sysfs_filename += used;
 | |
| 			sysfs_names_free -= used;
 | |
| 			sysfs_attr_i++;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Fail safe check, this should never happen! */
 | |
| 	if (sysfs_names_free < 0) {
 | |
| 		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
 | |
| 		       never_happen, report_this);
 | |
| 		res = -ENAMETOOLONG;
 | |
| 		goto abituguru_probe_error;
 | |
| 	}
 | |
| 	pr_info("found Abit uGuru\n");
 | |
| 
 | |
| 	/* Register sysfs hooks */
 | |
| 	for (i = 0; i < sysfs_attr_i; i++) {
 | |
| 		res = device_create_file(&pdev->dev,
 | |
| 					 &data->sysfs_attr[i].dev_attr);
 | |
| 		if (res)
 | |
| 			goto abituguru_probe_error;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
 | |
| 		res = device_create_file(&pdev->dev,
 | |
| 					 &abituguru_sysfs_attr[i].dev_attr);
 | |
| 		if (res)
 | |
| 			goto abituguru_probe_error;
 | |
| 	}
 | |
| 
 | |
| 	data->hwmon_dev = hwmon_device_register(&pdev->dev);
 | |
| 	if (!IS_ERR(data->hwmon_dev))
 | |
| 		return 0; /* success */
 | |
| 
 | |
| 	res = PTR_ERR(data->hwmon_dev);
 | |
| abituguru_probe_error:
 | |
| 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
 | |
| 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
 | |
| 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
 | |
| 		device_remove_file(&pdev->dev,
 | |
| 			&abituguru_sysfs_attr[i].dev_attr);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int abituguru_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct abituguru_data *data = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	hwmon_device_unregister(data->hwmon_dev);
 | |
| 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
 | |
| 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
 | |
| 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
 | |
| 		device_remove_file(&pdev->dev,
 | |
| 			&abituguru_sysfs_attr[i].dev_attr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct abituguru_data *abituguru_update_device(struct device *dev)
 | |
| {
 | |
| 	int i, err;
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	/* fake a complete successful read if no update necessary. */
 | |
| 	char success = 1;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	if (time_after(jiffies, data->last_updated + HZ)) {
 | |
| 		success = 0;
 | |
| 		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
 | |
| 				     data->alarms, 3, 0);
 | |
| 		if (err != 3)
 | |
| 			goto LEAVE_UPDATE;
 | |
| 		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
 | |
| 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
 | |
| 					     i, &data->bank1_value[i], 1, 0);
 | |
| 			if (err != 1)
 | |
| 				goto LEAVE_UPDATE;
 | |
| 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
 | |
| 					     i, data->bank1_settings[i], 3, 0);
 | |
| 			if (err != 3)
 | |
| 				goto LEAVE_UPDATE;
 | |
| 		}
 | |
| 		for (i = 0; i < data->bank2_sensors; i++) {
 | |
| 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
 | |
| 					     &data->bank2_value[i], 1, 0);
 | |
| 			if (err != 1)
 | |
| 				goto LEAVE_UPDATE;
 | |
| 		}
 | |
| 		/* success! */
 | |
| 		success = 1;
 | |
| 		data->update_timeouts = 0;
 | |
| LEAVE_UPDATE:
 | |
| 		/* handle timeout condition */
 | |
| 		if (!success && (err == -EBUSY || err >= 0)) {
 | |
| 			/* No overflow please */
 | |
| 			if (data->update_timeouts < 255u)
 | |
| 				data->update_timeouts++;
 | |
| 			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
 | |
| 				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
 | |
| 					"try again next update\n");
 | |
| 				/* Just a timeout, fake a successful read */
 | |
| 				success = 1;
 | |
| 			} else
 | |
| 				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
 | |
| 					"times waiting for more input state\n",
 | |
| 					(int)data->update_timeouts);
 | |
| 		}
 | |
| 		/* On success set last_updated */
 | |
| 		if (success)
 | |
| 			data->last_updated = jiffies;
 | |
| 	}
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 
 | |
| 	if (success)
 | |
| 		return data;
 | |
| 	else
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int abituguru_suspend(struct device *dev)
 | |
| {
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	/*
 | |
| 	 * make sure all communications with the uguru are done and no new
 | |
| 	 * ones are started
 | |
| 	 */
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int abituguru_resume(struct device *dev)
 | |
| {
 | |
| 	struct abituguru_data *data = dev_get_drvdata(dev);
 | |
| 	/* See if the uGuru is still ready */
 | |
| 	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
 | |
| 		data->uguru_ready = 0;
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
 | |
| #define ABIT_UGURU_PM	(&abituguru_pm)
 | |
| #else
 | |
| #define ABIT_UGURU_PM	NULL
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| static struct platform_driver abituguru_driver = {
 | |
| 	.driver = {
 | |
| 		.owner	= THIS_MODULE,
 | |
| 		.name	= ABIT_UGURU_NAME,
 | |
| 		.pm	= ABIT_UGURU_PM,
 | |
| 	},
 | |
| 	.probe		= abituguru_probe,
 | |
| 	.remove		= abituguru_remove,
 | |
| };
 | |
| 
 | |
| static int __init abituguru_detect(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
 | |
| 	 * at DATA and 0xAC, when this driver has already been loaded once
 | |
| 	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
 | |
| 	 * scenario but some will hold 0x00.
 | |
| 	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
 | |
| 	 * after reading CMD first, so CMD must be read first!
 | |
| 	 */
 | |
| 	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
 | |
| 	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
 | |
| 	if (((data_val == 0x00) || (data_val == 0x08)) &&
 | |
| 	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
 | |
| 		return ABIT_UGURU_BASE;
 | |
| 
 | |
| 	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
 | |
| 		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
 | |
| 
 | |
| 	if (force) {
 | |
| 		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
 | |
| 		return ABIT_UGURU_BASE;
 | |
| 	}
 | |
| 
 | |
| 	/* No uGuru found */
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static struct platform_device *abituguru_pdev;
 | |
| 
 | |
| static int __init abituguru_init(void)
 | |
| {
 | |
| 	int address, err;
 | |
| 	struct resource res = { .flags = IORESOURCE_IO };
 | |
| 	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
 | |
| 
 | |
| 	/* safety check, refuse to load on non Abit motherboards */
 | |
| 	if (!force && (!board_vendor ||
 | |
| 			strcmp(board_vendor, "http://www.abit.com.tw/")))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	address = abituguru_detect();
 | |
| 	if (address < 0)
 | |
| 		return address;
 | |
| 
 | |
| 	err = platform_driver_register(&abituguru_driver);
 | |
| 	if (err)
 | |
| 		goto exit;
 | |
| 
 | |
| 	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
 | |
| 	if (!abituguru_pdev) {
 | |
| 		pr_err("Device allocation failed\n");
 | |
| 		err = -ENOMEM;
 | |
| 		goto exit_driver_unregister;
 | |
| 	}
 | |
| 
 | |
| 	res.start = address;
 | |
| 	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
 | |
| 	res.name = ABIT_UGURU_NAME;
 | |
| 
 | |
| 	err = platform_device_add_resources(abituguru_pdev, &res, 1);
 | |
| 	if (err) {
 | |
| 		pr_err("Device resource addition failed (%d)\n", err);
 | |
| 		goto exit_device_put;
 | |
| 	}
 | |
| 
 | |
| 	err = platform_device_add(abituguru_pdev);
 | |
| 	if (err) {
 | |
| 		pr_err("Device addition failed (%d)\n", err);
 | |
| 		goto exit_device_put;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_device_put:
 | |
| 	platform_device_put(abituguru_pdev);
 | |
| exit_driver_unregister:
 | |
| 	platform_driver_unregister(&abituguru_driver);
 | |
| exit:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __exit abituguru_exit(void)
 | |
| {
 | |
| 	platform_device_unregister(abituguru_pdev);
 | |
| 	platform_driver_unregister(&abituguru_driver);
 | |
| }
 | |
| 
 | |
| MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
 | |
| MODULE_DESCRIPTION("Abit uGuru Sensor device");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| module_init(abituguru_init);
 | |
| module_exit(abituguru_exit);
 |