 5837af017e
			
		
	
	
	5837af017e
	
	
	
		
			
			Signed-off-by: Marek Vasut <marex@denx.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			2270 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2270 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
 | |
|  *
 | |
|  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <crypto/md5.h>
 | |
| #include <crypto/sha.h>
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/des.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| #include <crypto/internal/hash.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <crypto/algapi.h>
 | |
| 
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/mdesc.h>
 | |
| 
 | |
| #include "n2_core.h"
 | |
| 
 | |
| #define DRV_MODULE_NAME		"n2_crypto"
 | |
| #define DRV_MODULE_VERSION	"0.2"
 | |
| #define DRV_MODULE_RELDATE	"July 28, 2011"
 | |
| 
 | |
| static char version[] =
 | |
| 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 | |
| 
 | |
| MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 | |
| MODULE_DESCRIPTION("Niagara2 Crypto driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_MODULE_VERSION);
 | |
| 
 | |
| #define N2_CRA_PRIORITY		200
 | |
| 
 | |
| static DEFINE_MUTEX(spu_lock);
 | |
| 
 | |
| struct spu_queue {
 | |
| 	cpumask_t		sharing;
 | |
| 	unsigned long		qhandle;
 | |
| 
 | |
| 	spinlock_t		lock;
 | |
| 	u8			q_type;
 | |
| 	void			*q;
 | |
| 	unsigned long		head;
 | |
| 	unsigned long		tail;
 | |
| 	struct list_head	jobs;
 | |
| 
 | |
| 	unsigned long		devino;
 | |
| 
 | |
| 	char			irq_name[32];
 | |
| 	unsigned int		irq;
 | |
| 
 | |
| 	struct list_head	list;
 | |
| };
 | |
| 
 | |
| static struct spu_queue **cpu_to_cwq;
 | |
| static struct spu_queue **cpu_to_mau;
 | |
| 
 | |
| static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
 | |
| {
 | |
| 	if (q->q_type == HV_NCS_QTYPE_MAU) {
 | |
| 		off += MAU_ENTRY_SIZE;
 | |
| 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
 | |
| 			off = 0;
 | |
| 	} else {
 | |
| 		off += CWQ_ENTRY_SIZE;
 | |
| 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
 | |
| 			off = 0;
 | |
| 	}
 | |
| 	return off;
 | |
| }
 | |
| 
 | |
| struct n2_request_common {
 | |
| 	struct list_head	entry;
 | |
| 	unsigned int		offset;
 | |
| };
 | |
| #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
 | |
| 
 | |
| /* An async job request records the final tail value it used in
 | |
|  * n2_request_common->offset, test to see if that offset is in
 | |
|  * the range old_head, new_head, inclusive.
 | |
|  */
 | |
| static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 | |
| 				unsigned long old_head, unsigned long new_head)
 | |
| {
 | |
| 	if (old_head <= new_head) {
 | |
| 		if (offset > old_head && offset <= new_head)
 | |
| 			return true;
 | |
| 	} else {
 | |
| 		if (offset > old_head || offset <= new_head)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* When the HEAD marker is unequal to the actual HEAD, we get
 | |
|  * a virtual device INO interrupt.  We should process the
 | |
|  * completed CWQ entries and adjust the HEAD marker to clear
 | |
|  * the IRQ.
 | |
|  */
 | |
| static irqreturn_t cwq_intr(int irq, void *dev_id)
 | |
| {
 | |
| 	unsigned long off, new_head, hv_ret;
 | |
| 	struct spu_queue *q = dev_id;
 | |
| 
 | |
| 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 | |
| 	       smp_processor_id(), q->qhandle);
 | |
| 
 | |
| 	spin_lock(&q->lock);
 | |
| 
 | |
| 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 | |
| 
 | |
| 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 | |
| 	       smp_processor_id(), new_head, hv_ret);
 | |
| 
 | |
| 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 | |
| 		/* XXX ... XXX */
 | |
| 	}
 | |
| 
 | |
| 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 | |
| 	if (hv_ret == HV_EOK)
 | |
| 		q->head = new_head;
 | |
| 
 | |
| 	spin_unlock(&q->lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t mau_intr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct spu_queue *q = dev_id;
 | |
| 	unsigned long head, hv_ret;
 | |
| 
 | |
| 	spin_lock(&q->lock);
 | |
| 
 | |
| 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 | |
| 	       smp_processor_id(), q->qhandle);
 | |
| 
 | |
| 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 | |
| 
 | |
| 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 | |
| 	       smp_processor_id(), head, hv_ret);
 | |
| 
 | |
| 	sun4v_ncs_sethead_marker(q->qhandle, head);
 | |
| 
 | |
| 	spin_unlock(&q->lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void *spu_queue_next(struct spu_queue *q, void *cur)
 | |
| {
 | |
| 	return q->q + spu_next_offset(q, cur - q->q);
 | |
| }
 | |
| 
 | |
| static int spu_queue_num_free(struct spu_queue *q)
 | |
| {
 | |
| 	unsigned long head = q->head;
 | |
| 	unsigned long tail = q->tail;
 | |
| 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 | |
| 	unsigned long diff;
 | |
| 
 | |
| 	if (head > tail)
 | |
| 		diff = head - tail;
 | |
| 	else
 | |
| 		diff = (end - tail) + head;
 | |
| 
 | |
| 	return (diff / CWQ_ENTRY_SIZE) - 1;
 | |
| }
 | |
| 
 | |
| static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 | |
| {
 | |
| 	int avail = spu_queue_num_free(q);
 | |
| 
 | |
| 	if (avail >= num_entries)
 | |
| 		return q->q + q->tail;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 | |
| {
 | |
| 	unsigned long hv_ret, new_tail;
 | |
| 
 | |
| 	new_tail = spu_next_offset(q, last - q->q);
 | |
| 
 | |
| 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 | |
| 	if (hv_ret == HV_EOK)
 | |
| 		q->tail = new_tail;
 | |
| 	return hv_ret;
 | |
| }
 | |
| 
 | |
| static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 | |
| 			     int enc_type, int auth_type,
 | |
| 			     unsigned int hash_len,
 | |
| 			     bool sfas, bool sob, bool eob, bool encrypt,
 | |
| 			     int opcode)
 | |
| {
 | |
| 	u64 word = (len - 1) & CONTROL_LEN;
 | |
| 
 | |
| 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 | |
| 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 | |
| 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 | |
| 	if (sfas)
 | |
| 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
 | |
| 	if (sob)
 | |
| 		word |= CONTROL_START_OF_BLOCK;
 | |
| 	if (eob)
 | |
| 		word |= CONTROL_END_OF_BLOCK;
 | |
| 	if (encrypt)
 | |
| 		word |= CONTROL_ENCRYPT;
 | |
| 	if (hmac_key_len)
 | |
| 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 | |
| 	if (hash_len)
 | |
| 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 | |
| 
 | |
| 	return word;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 | |
| {
 | |
| 	if (this_len >= 64 ||
 | |
| 	    qp->head != qp->tail)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct n2_ahash_alg {
 | |
| 	struct list_head	entry;
 | |
| 	const char		*hash_zero;
 | |
| 	const u32		*hash_init;
 | |
| 	u8			hw_op_hashsz;
 | |
| 	u8			digest_size;
 | |
| 	u8			auth_type;
 | |
| 	u8			hmac_type;
 | |
| 	struct ahash_alg	alg;
 | |
| };
 | |
| 
 | |
| static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_alg *alg = tfm->__crt_alg;
 | |
| 	struct ahash_alg *ahash_alg;
 | |
| 
 | |
| 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 | |
| 
 | |
| 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
 | |
| }
 | |
| 
 | |
| struct n2_hmac_alg {
 | |
| 	const char		*child_alg;
 | |
| 	struct n2_ahash_alg	derived;
 | |
| };
 | |
| 
 | |
| static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_alg *alg = tfm->__crt_alg;
 | |
| 	struct ahash_alg *ahash_alg;
 | |
| 
 | |
| 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 | |
| 
 | |
| 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 | |
| }
 | |
| 
 | |
| struct n2_hash_ctx {
 | |
| 	struct crypto_ahash		*fallback_tfm;
 | |
| };
 | |
| 
 | |
| #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
 | |
| 
 | |
| struct n2_hmac_ctx {
 | |
| 	struct n2_hash_ctx		base;
 | |
| 
 | |
| 	struct crypto_shash		*child_shash;
 | |
| 
 | |
| 	int				hash_key_len;
 | |
| 	unsigned char			hash_key[N2_HASH_KEY_MAX];
 | |
| };
 | |
| 
 | |
| struct n2_hash_req_ctx {
 | |
| 	union {
 | |
| 		struct md5_state	md5;
 | |
| 		struct sha1_state	sha1;
 | |
| 		struct sha256_state	sha256;
 | |
| 	} u;
 | |
| 
 | |
| 	struct ahash_request		fallback_req;
 | |
| };
 | |
| 
 | |
| static int n2_hash_async_init(struct ahash_request *req)
 | |
| {
 | |
| 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 
 | |
| 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 | |
| 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 	return crypto_ahash_init(&rctx->fallback_req);
 | |
| }
 | |
| 
 | |
| static int n2_hash_async_update(struct ahash_request *req)
 | |
| {
 | |
| 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 
 | |
| 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 | |
| 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 	rctx->fallback_req.nbytes = req->nbytes;
 | |
| 	rctx->fallback_req.src = req->src;
 | |
| 
 | |
| 	return crypto_ahash_update(&rctx->fallback_req);
 | |
| }
 | |
| 
 | |
| static int n2_hash_async_final(struct ahash_request *req)
 | |
| {
 | |
| 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 
 | |
| 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 | |
| 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 	rctx->fallback_req.result = req->result;
 | |
| 
 | |
| 	return crypto_ahash_final(&rctx->fallback_req);
 | |
| }
 | |
| 
 | |
| static int n2_hash_async_finup(struct ahash_request *req)
 | |
| {
 | |
| 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 
 | |
| 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 | |
| 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 	rctx->fallback_req.nbytes = req->nbytes;
 | |
| 	rctx->fallback_req.src = req->src;
 | |
| 	rctx->fallback_req.result = req->result;
 | |
| 
 | |
| 	return crypto_ahash_finup(&rctx->fallback_req);
 | |
| }
 | |
| 
 | |
| static int n2_hash_cra_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 | |
| 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 | |
| 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 | |
| 	struct crypto_ahash *fallback_tfm;
 | |
| 	int err;
 | |
| 
 | |
| 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 | |
| 					  CRYPTO_ALG_NEED_FALLBACK);
 | |
| 	if (IS_ERR(fallback_tfm)) {
 | |
| 		pr_warning("Fallback driver '%s' could not be loaded!\n",
 | |
| 			   fallback_driver_name);
 | |
| 		err = PTR_ERR(fallback_tfm);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 | |
| 					 crypto_ahash_reqsize(fallback_tfm)));
 | |
| 
 | |
| 	ctx->fallback_tfm = fallback_tfm;
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 | |
| 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 | |
| 
 | |
| 	crypto_free_ahash(ctx->fallback_tfm);
 | |
| }
 | |
| 
 | |
| static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 | |
| 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 | |
| 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 | |
| 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 | |
| 	struct crypto_ahash *fallback_tfm;
 | |
| 	struct crypto_shash *child_shash;
 | |
| 	int err;
 | |
| 
 | |
| 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 | |
| 					  CRYPTO_ALG_NEED_FALLBACK);
 | |
| 	if (IS_ERR(fallback_tfm)) {
 | |
| 		pr_warning("Fallback driver '%s' could not be loaded!\n",
 | |
| 			   fallback_driver_name);
 | |
| 		err = PTR_ERR(fallback_tfm);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 | |
| 	if (IS_ERR(child_shash)) {
 | |
| 		pr_warning("Child shash '%s' could not be loaded!\n",
 | |
| 			   n2alg->child_alg);
 | |
| 		err = PTR_ERR(child_shash);
 | |
| 		goto out_free_fallback;
 | |
| 	}
 | |
| 
 | |
| 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 | |
| 					 crypto_ahash_reqsize(fallback_tfm)));
 | |
| 
 | |
| 	ctx->child_shash = child_shash;
 | |
| 	ctx->base.fallback_tfm = fallback_tfm;
 | |
| 	return 0;
 | |
| 
 | |
| out_free_fallback:
 | |
| 	crypto_free_ahash(fallback_tfm);
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 | |
| 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 | |
| 
 | |
| 	crypto_free_ahash(ctx->base.fallback_tfm);
 | |
| 	crypto_free_shash(ctx->child_shash);
 | |
| }
 | |
| 
 | |
| static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 | |
| 				unsigned int keylen)
 | |
| {
 | |
| 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 	struct crypto_shash *child_shash = ctx->child_shash;
 | |
| 	struct crypto_ahash *fallback_tfm;
 | |
| 	struct {
 | |
| 		struct shash_desc shash;
 | |
| 		char ctx[crypto_shash_descsize(child_shash)];
 | |
| 	} desc;
 | |
| 	int err, bs, ds;
 | |
| 
 | |
| 	fallback_tfm = ctx->base.fallback_tfm;
 | |
| 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	desc.shash.tfm = child_shash;
 | |
| 	desc.shash.flags = crypto_ahash_get_flags(tfm) &
 | |
| 		CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 	bs = crypto_shash_blocksize(child_shash);
 | |
| 	ds = crypto_shash_digestsize(child_shash);
 | |
| 	BUG_ON(ds > N2_HASH_KEY_MAX);
 | |
| 	if (keylen > bs) {
 | |
| 		err = crypto_shash_digest(&desc.shash, key, keylen,
 | |
| 					  ctx->hash_key);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		keylen = ds;
 | |
| 	} else if (keylen <= N2_HASH_KEY_MAX)
 | |
| 		memcpy(ctx->hash_key, key, keylen);
 | |
| 
 | |
| 	ctx->hash_key_len = keylen;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static unsigned long wait_for_tail(struct spu_queue *qp)
 | |
| {
 | |
| 	unsigned long head, hv_ret;
 | |
| 
 | |
| 	do {
 | |
| 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 | |
| 		if (hv_ret != HV_EOK) {
 | |
| 			pr_err("Hypervisor error on gethead\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		if (head == qp->tail) {
 | |
| 			qp->head = head;
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (1);
 | |
| 	return hv_ret;
 | |
| }
 | |
| 
 | |
| static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 | |
| 					      struct cwq_initial_entry *ent)
 | |
| {
 | |
| 	unsigned long hv_ret = spu_queue_submit(qp, ent);
 | |
| 
 | |
| 	if (hv_ret == HV_EOK)
 | |
| 		hv_ret = wait_for_tail(qp);
 | |
| 
 | |
| 	return hv_ret;
 | |
| }
 | |
| 
 | |
| static int n2_do_async_digest(struct ahash_request *req,
 | |
| 			      unsigned int auth_type, unsigned int digest_size,
 | |
| 			      unsigned int result_size, void *hash_loc,
 | |
| 			      unsigned long auth_key, unsigned int auth_key_len)
 | |
| {
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct cwq_initial_entry *ent;
 | |
| 	struct crypto_hash_walk walk;
 | |
| 	struct spu_queue *qp;
 | |
| 	unsigned long flags;
 | |
| 	int err = -ENODEV;
 | |
| 	int nbytes, cpu;
 | |
| 
 | |
| 	/* The total effective length of the operation may not
 | |
| 	 * exceed 2^16.
 | |
| 	 */
 | |
| 	if (unlikely(req->nbytes > (1 << 16))) {
 | |
| 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 
 | |
| 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 | |
| 		rctx->fallback_req.base.flags =
 | |
| 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 		rctx->fallback_req.nbytes = req->nbytes;
 | |
| 		rctx->fallback_req.src = req->src;
 | |
| 		rctx->fallback_req.result = req->result;
 | |
| 
 | |
| 		return crypto_ahash_digest(&rctx->fallback_req);
 | |
| 	}
 | |
| 
 | |
| 	nbytes = crypto_hash_walk_first(req, &walk);
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	qp = cpu_to_cwq[cpu];
 | |
| 	if (!qp)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock_irqsave(&qp->lock, flags);
 | |
| 
 | |
| 	/* XXX can do better, improve this later by doing a by-hand scatterlist
 | |
| 	 * XXX walk, etc.
 | |
| 	 */
 | |
| 	ent = qp->q + qp->tail;
 | |
| 
 | |
| 	ent->control = control_word_base(nbytes, auth_key_len, 0,
 | |
| 					 auth_type, digest_size,
 | |
| 					 false, true, false, false,
 | |
| 					 OPCODE_INPLACE_BIT |
 | |
| 					 OPCODE_AUTH_MAC);
 | |
| 	ent->src_addr = __pa(walk.data);
 | |
| 	ent->auth_key_addr = auth_key;
 | |
| 	ent->auth_iv_addr = __pa(hash_loc);
 | |
| 	ent->final_auth_state_addr = 0UL;
 | |
| 	ent->enc_key_addr = 0UL;
 | |
| 	ent->enc_iv_addr = 0UL;
 | |
| 	ent->dest_addr = __pa(hash_loc);
 | |
| 
 | |
| 	nbytes = crypto_hash_walk_done(&walk, 0);
 | |
| 	while (nbytes > 0) {
 | |
| 		ent = spu_queue_next(qp, ent);
 | |
| 
 | |
| 		ent->control = (nbytes - 1);
 | |
| 		ent->src_addr = __pa(walk.data);
 | |
| 		ent->auth_key_addr = 0UL;
 | |
| 		ent->auth_iv_addr = 0UL;
 | |
| 		ent->final_auth_state_addr = 0UL;
 | |
| 		ent->enc_key_addr = 0UL;
 | |
| 		ent->enc_iv_addr = 0UL;
 | |
| 		ent->dest_addr = 0UL;
 | |
| 
 | |
| 		nbytes = crypto_hash_walk_done(&walk, 0);
 | |
| 	}
 | |
| 	ent->control |= CONTROL_END_OF_BLOCK;
 | |
| 
 | |
| 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 | |
| 		err = -EINVAL;
 | |
| 	else
 | |
| 		err = 0;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&qp->lock, flags);
 | |
| 
 | |
| 	if (!err)
 | |
| 		memcpy(req->result, hash_loc, result_size);
 | |
| out:
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2_hash_async_digest(struct ahash_request *req)
 | |
| {
 | |
| 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 | |
| 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	int ds;
 | |
| 
 | |
| 	ds = n2alg->digest_size;
 | |
| 	if (unlikely(req->nbytes == 0)) {
 | |
| 		memcpy(req->result, n2alg->hash_zero, ds);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 | |
| 
 | |
| 	return n2_do_async_digest(req, n2alg->auth_type,
 | |
| 				  n2alg->hw_op_hashsz, ds,
 | |
| 				  &rctx->u, 0UL, 0);
 | |
| }
 | |
| 
 | |
| static int n2_hmac_async_digest(struct ahash_request *req)
 | |
| {
 | |
| 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 | |
| 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 	int ds;
 | |
| 
 | |
| 	ds = n2alg->derived.digest_size;
 | |
| 	if (unlikely(req->nbytes == 0) ||
 | |
| 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 | |
| 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 
 | |
| 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 | |
| 		rctx->fallback_req.base.flags =
 | |
| 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 		rctx->fallback_req.nbytes = req->nbytes;
 | |
| 		rctx->fallback_req.src = req->src;
 | |
| 		rctx->fallback_req.result = req->result;
 | |
| 
 | |
| 		return crypto_ahash_digest(&rctx->fallback_req);
 | |
| 	}
 | |
| 	memcpy(&rctx->u, n2alg->derived.hash_init,
 | |
| 	       n2alg->derived.hw_op_hashsz);
 | |
| 
 | |
| 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
 | |
| 				  n2alg->derived.hw_op_hashsz, ds,
 | |
| 				  &rctx->u,
 | |
| 				  __pa(&ctx->hash_key),
 | |
| 				  ctx->hash_key_len);
 | |
| }
 | |
| 
 | |
| struct n2_cipher_context {
 | |
| 	int			key_len;
 | |
| 	int			enc_type;
 | |
| 	union {
 | |
| 		u8		aes[AES_MAX_KEY_SIZE];
 | |
| 		u8		des[DES_KEY_SIZE];
 | |
| 		u8		des3[3 * DES_KEY_SIZE];
 | |
| 		u8		arc4[258]; /* S-box, X, Y */
 | |
| 	} key;
 | |
| };
 | |
| 
 | |
| #define N2_CHUNK_ARR_LEN	16
 | |
| 
 | |
| struct n2_crypto_chunk {
 | |
| 	struct list_head	entry;
 | |
| 	unsigned long		iv_paddr : 44;
 | |
| 	unsigned long		arr_len : 20;
 | |
| 	unsigned long		dest_paddr;
 | |
| 	unsigned long		dest_final;
 | |
| 	struct {
 | |
| 		unsigned long	src_paddr : 44;
 | |
| 		unsigned long	src_len : 20;
 | |
| 	} arr[N2_CHUNK_ARR_LEN];
 | |
| };
 | |
| 
 | |
| struct n2_request_context {
 | |
| 	struct ablkcipher_walk	walk;
 | |
| 	struct list_head	chunk_list;
 | |
| 	struct n2_crypto_chunk	chunk;
 | |
| 	u8			temp_iv[16];
 | |
| };
 | |
| 
 | |
| /* The SPU allows some level of flexibility for partial cipher blocks
 | |
|  * being specified in a descriptor.
 | |
|  *
 | |
|  * It merely requires that every descriptor's length field is at least
 | |
|  * as large as the cipher block size.  This means that a cipher block
 | |
|  * can span at most 2 descriptors.  However, this does not allow a
 | |
|  * partial block to span into the final descriptor as that would
 | |
|  * violate the rule (since every descriptor's length must be at lest
 | |
|  * the block size).  So, for example, assuming an 8 byte block size:
 | |
|  *
 | |
|  *	0xe --> 0xa --> 0x8
 | |
|  *
 | |
|  * is a valid length sequence, whereas:
 | |
|  *
 | |
|  *	0xe --> 0xb --> 0x7
 | |
|  *
 | |
|  * is not a valid sequence.
 | |
|  */
 | |
| 
 | |
| struct n2_cipher_alg {
 | |
| 	struct list_head	entry;
 | |
| 	u8			enc_type;
 | |
| 	struct crypto_alg	alg;
 | |
| };
 | |
| 
 | |
| static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_alg *alg = tfm->__crt_alg;
 | |
| 
 | |
| 	return container_of(alg, struct n2_cipher_alg, alg);
 | |
| }
 | |
| 
 | |
| struct n2_cipher_request_context {
 | |
| 	struct ablkcipher_walk	walk;
 | |
| };
 | |
| 
 | |
| static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 | |
| 			 unsigned int keylen)
 | |
| {
 | |
| 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 | |
| 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 | |
| 
 | |
| 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 | |
| 
 | |
| 	switch (keylen) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_192:
 | |
| 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
 | |
| 		break;
 | |
| 	default:
 | |
| 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctx->key_len = keylen;
 | |
| 	memcpy(ctx->key.aes, key, keylen);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 | |
| 			 unsigned int keylen)
 | |
| {
 | |
| 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 | |
| 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 | |
| 	u32 tmp[DES_EXPKEY_WORDS];
 | |
| 	int err;
 | |
| 
 | |
| 	ctx->enc_type = n2alg->enc_type;
 | |
| 
 | |
| 	if (keylen != DES_KEY_SIZE) {
 | |
| 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = des_ekey(tmp, key);
 | |
| 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
 | |
| 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctx->key_len = keylen;
 | |
| 	memcpy(ctx->key.des, key, keylen);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 | |
| 			  unsigned int keylen)
 | |
| {
 | |
| 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 | |
| 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 | |
| 
 | |
| 	ctx->enc_type = n2alg->enc_type;
 | |
| 
 | |
| 	if (keylen != (3 * DES_KEY_SIZE)) {
 | |
| 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	ctx->key_len = keylen;
 | |
| 	memcpy(ctx->key.des3, key, keylen);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 | |
| 			  unsigned int keylen)
 | |
| {
 | |
| 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 | |
| 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 | |
| 	u8 *s = ctx->key.arc4;
 | |
| 	u8 *x = s + 256;
 | |
| 	u8 *y = x + 1;
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	ctx->enc_type = n2alg->enc_type;
 | |
| 
 | |
| 	j = k = 0;
 | |
| 	*x = 0;
 | |
| 	*y = 0;
 | |
| 	for (i = 0; i < 256; i++)
 | |
| 		s[i] = i;
 | |
| 	for (i = 0; i < 256; i++) {
 | |
| 		u8 a = s[i];
 | |
| 		j = (j + key[k] + a) & 0xff;
 | |
| 		s[i] = s[j];
 | |
| 		s[j] = a;
 | |
| 		if (++k >= keylen)
 | |
| 			k = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
 | |
| {
 | |
| 	int this_len = nbytes;
 | |
| 
 | |
| 	this_len -= (nbytes & (block_size - 1));
 | |
| 	return this_len > (1 << 16) ? (1 << 16) : this_len;
 | |
| }
 | |
| 
 | |
| static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
 | |
| 			    struct spu_queue *qp, bool encrypt)
 | |
| {
 | |
| 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct cwq_initial_entry *ent;
 | |
| 	bool in_place;
 | |
| 	int i;
 | |
| 
 | |
| 	ent = spu_queue_alloc(qp, cp->arr_len);
 | |
| 	if (!ent) {
 | |
| 		pr_info("queue_alloc() of %d fails\n",
 | |
| 			cp->arr_len);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 | |
| 
 | |
| 	ent->control = control_word_base(cp->arr[0].src_len,
 | |
| 					 0, ctx->enc_type, 0, 0,
 | |
| 					 false, true, false, encrypt,
 | |
| 					 OPCODE_ENCRYPT |
 | |
| 					 (in_place ? OPCODE_INPLACE_BIT : 0));
 | |
| 	ent->src_addr = cp->arr[0].src_paddr;
 | |
| 	ent->auth_key_addr = 0UL;
 | |
| 	ent->auth_iv_addr = 0UL;
 | |
| 	ent->final_auth_state_addr = 0UL;
 | |
| 	ent->enc_key_addr = __pa(&ctx->key);
 | |
| 	ent->enc_iv_addr = cp->iv_paddr;
 | |
| 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 | |
| 
 | |
| 	for (i = 1; i < cp->arr_len; i++) {
 | |
| 		ent = spu_queue_next(qp, ent);
 | |
| 
 | |
| 		ent->control = cp->arr[i].src_len - 1;
 | |
| 		ent->src_addr = cp->arr[i].src_paddr;
 | |
| 		ent->auth_key_addr = 0UL;
 | |
| 		ent->auth_iv_addr = 0UL;
 | |
| 		ent->final_auth_state_addr = 0UL;
 | |
| 		ent->enc_key_addr = 0UL;
 | |
| 		ent->enc_iv_addr = 0UL;
 | |
| 		ent->dest_addr = 0UL;
 | |
| 	}
 | |
| 	ent->control |= CONTROL_END_OF_BLOCK;
 | |
| 
 | |
| 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 | |
| }
 | |
| 
 | |
| static int n2_compute_chunks(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 | |
| 	struct ablkcipher_walk *walk = &rctx->walk;
 | |
| 	struct n2_crypto_chunk *chunk;
 | |
| 	unsigned long dest_prev;
 | |
| 	unsigned int tot_len;
 | |
| 	bool prev_in_place;
 | |
| 	int err, nbytes;
 | |
| 
 | |
| 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
 | |
| 	err = ablkcipher_walk_phys(req, walk);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&rctx->chunk_list);
 | |
| 
 | |
| 	chunk = &rctx->chunk;
 | |
| 	INIT_LIST_HEAD(&chunk->entry);
 | |
| 
 | |
| 	chunk->iv_paddr = 0UL;
 | |
| 	chunk->arr_len = 0;
 | |
| 	chunk->dest_paddr = 0UL;
 | |
| 
 | |
| 	prev_in_place = false;
 | |
| 	dest_prev = ~0UL;
 | |
| 	tot_len = 0;
 | |
| 
 | |
| 	while ((nbytes = walk->nbytes) != 0) {
 | |
| 		unsigned long dest_paddr, src_paddr;
 | |
| 		bool in_place;
 | |
| 		int this_len;
 | |
| 
 | |
| 		src_paddr = (page_to_phys(walk->src.page) +
 | |
| 			     walk->src.offset);
 | |
| 		dest_paddr = (page_to_phys(walk->dst.page) +
 | |
| 			      walk->dst.offset);
 | |
| 		in_place = (src_paddr == dest_paddr);
 | |
| 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
 | |
| 
 | |
| 		if (chunk->arr_len != 0) {
 | |
| 			if (in_place != prev_in_place ||
 | |
| 			    (!prev_in_place &&
 | |
| 			     dest_paddr != dest_prev) ||
 | |
| 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
 | |
| 			    tot_len + this_len > (1 << 16)) {
 | |
| 				chunk->dest_final = dest_prev;
 | |
| 				list_add_tail(&chunk->entry,
 | |
| 					      &rctx->chunk_list);
 | |
| 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 | |
| 				if (!chunk) {
 | |
| 					err = -ENOMEM;
 | |
| 					break;
 | |
| 				}
 | |
| 				INIT_LIST_HEAD(&chunk->entry);
 | |
| 			}
 | |
| 		}
 | |
| 		if (chunk->arr_len == 0) {
 | |
| 			chunk->dest_paddr = dest_paddr;
 | |
| 			tot_len = 0;
 | |
| 		}
 | |
| 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 | |
| 		chunk->arr[chunk->arr_len].src_len = this_len;
 | |
| 		chunk->arr_len++;
 | |
| 
 | |
| 		dest_prev = dest_paddr + this_len;
 | |
| 		prev_in_place = in_place;
 | |
| 		tot_len += this_len;
 | |
| 
 | |
| 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!err && chunk->arr_len != 0) {
 | |
| 		chunk->dest_final = dest_prev;
 | |
| 		list_add_tail(&chunk->entry, &rctx->chunk_list);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
 | |
| {
 | |
| 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 | |
| 	struct n2_crypto_chunk *c, *tmp;
 | |
| 
 | |
| 	if (final_iv)
 | |
| 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 | |
| 
 | |
| 	ablkcipher_walk_complete(&rctx->walk);
 | |
| 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 | |
| 		list_del(&c->entry);
 | |
| 		if (unlikely(c != &rctx->chunk))
 | |
| 			kfree(c);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
 | |
| {
 | |
| 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 | |
| 	struct crypto_tfm *tfm = req->base.tfm;
 | |
| 	int err = n2_compute_chunks(req);
 | |
| 	struct n2_crypto_chunk *c, *tmp;
 | |
| 	unsigned long flags, hv_ret;
 | |
| 	struct spu_queue *qp;
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	qp = cpu_to_cwq[get_cpu()];
 | |
| 	err = -ENODEV;
 | |
| 	if (!qp)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock_irqsave(&qp->lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 | |
| 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		list_del(&c->entry);
 | |
| 		if (unlikely(c != &rctx->chunk))
 | |
| 			kfree(c);
 | |
| 	}
 | |
| 	if (!err) {
 | |
| 		hv_ret = wait_for_tail(qp);
 | |
| 		if (hv_ret != HV_EOK)
 | |
| 			err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&qp->lock, flags);
 | |
| 
 | |
| out:
 | |
| 	put_cpu();
 | |
| 
 | |
| 	n2_chunk_complete(req, NULL);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2_encrypt_ecb(struct ablkcipher_request *req)
 | |
| {
 | |
| 	return n2_do_ecb(req, true);
 | |
| }
 | |
| 
 | |
| static int n2_decrypt_ecb(struct ablkcipher_request *req)
 | |
| {
 | |
| 	return n2_do_ecb(req, false);
 | |
| }
 | |
| 
 | |
| static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
 | |
| {
 | |
| 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 | |
| 	struct crypto_tfm *tfm = req->base.tfm;
 | |
| 	unsigned long flags, hv_ret, iv_paddr;
 | |
| 	int err = n2_compute_chunks(req);
 | |
| 	struct n2_crypto_chunk *c, *tmp;
 | |
| 	struct spu_queue *qp;
 | |
| 	void *final_iv_addr;
 | |
| 
 | |
| 	final_iv_addr = NULL;
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	qp = cpu_to_cwq[get_cpu()];
 | |
| 	err = -ENODEV;
 | |
| 	if (!qp)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock_irqsave(&qp->lock, flags);
 | |
| 
 | |
| 	if (encrypt) {
 | |
| 		iv_paddr = __pa(rctx->walk.iv);
 | |
| 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
 | |
| 					 entry) {
 | |
| 			c->iv_paddr = iv_paddr;
 | |
| 			err = __n2_crypt_chunk(tfm, c, qp, true);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			iv_paddr = c->dest_final - rctx->walk.blocksize;
 | |
| 			list_del(&c->entry);
 | |
| 			if (unlikely(c != &rctx->chunk))
 | |
| 				kfree(c);
 | |
| 		}
 | |
| 		final_iv_addr = __va(iv_paddr);
 | |
| 	} else {
 | |
| 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
 | |
| 						 entry) {
 | |
| 			if (c == &rctx->chunk) {
 | |
| 				iv_paddr = __pa(rctx->walk.iv);
 | |
| 			} else {
 | |
| 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
 | |
| 					    tmp->arr[tmp->arr_len-1].src_len -
 | |
| 					    rctx->walk.blocksize);
 | |
| 			}
 | |
| 			if (!final_iv_addr) {
 | |
| 				unsigned long pa;
 | |
| 
 | |
| 				pa = (c->arr[c->arr_len-1].src_paddr +
 | |
| 				      c->arr[c->arr_len-1].src_len -
 | |
| 				      rctx->walk.blocksize);
 | |
| 				final_iv_addr = rctx->temp_iv;
 | |
| 				memcpy(rctx->temp_iv, __va(pa),
 | |
| 				       rctx->walk.blocksize);
 | |
| 			}
 | |
| 			c->iv_paddr = iv_paddr;
 | |
| 			err = __n2_crypt_chunk(tfm, c, qp, false);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			list_del(&c->entry);
 | |
| 			if (unlikely(c != &rctx->chunk))
 | |
| 				kfree(c);
 | |
| 		}
 | |
| 	}
 | |
| 	if (!err) {
 | |
| 		hv_ret = wait_for_tail(qp);
 | |
| 		if (hv_ret != HV_EOK)
 | |
| 			err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&qp->lock, flags);
 | |
| 
 | |
| out:
 | |
| 	put_cpu();
 | |
| 
 | |
| 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2_encrypt_chaining(struct ablkcipher_request *req)
 | |
| {
 | |
| 	return n2_do_chaining(req, true);
 | |
| }
 | |
| 
 | |
| static int n2_decrypt_chaining(struct ablkcipher_request *req)
 | |
| {
 | |
| 	return n2_do_chaining(req, false);
 | |
| }
 | |
| 
 | |
| struct n2_cipher_tmpl {
 | |
| 	const char		*name;
 | |
| 	const char		*drv_name;
 | |
| 	u8			block_size;
 | |
| 	u8			enc_type;
 | |
| 	struct ablkcipher_alg	ablkcipher;
 | |
| };
 | |
| 
 | |
| static const struct n2_cipher_tmpl cipher_tmpls[] = {
 | |
| 	/* ARC4: only ECB is supported (chaining bits ignored) */
 | |
| 	{	.name		= "ecb(arc4)",
 | |
| 		.drv_name	= "ecb-arc4",
 | |
| 		.block_size	= 1,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
 | |
| 				   ENC_TYPE_CHAINING_ECB),
 | |
| 		.ablkcipher	= {
 | |
| 			.min_keysize	= 1,
 | |
| 			.max_keysize	= 256,
 | |
| 			.setkey		= n2_arc4_setkey,
 | |
| 			.encrypt	= n2_encrypt_ecb,
 | |
| 			.decrypt	= n2_decrypt_ecb,
 | |
| 		},
 | |
| 	},
 | |
| 
 | |
| 	/* DES: ECB CBC and CFB are supported */
 | |
| 	{	.name		= "ecb(des)",
 | |
| 		.drv_name	= "ecb-des",
 | |
| 		.block_size	= DES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_DES |
 | |
| 				   ENC_TYPE_CHAINING_ECB),
 | |
| 		.ablkcipher	= {
 | |
| 			.min_keysize	= DES_KEY_SIZE,
 | |
| 			.max_keysize	= DES_KEY_SIZE,
 | |
| 			.setkey		= n2_des_setkey,
 | |
| 			.encrypt	= n2_encrypt_ecb,
 | |
| 			.decrypt	= n2_decrypt_ecb,
 | |
| 		},
 | |
| 	},
 | |
| 	{	.name		= "cbc(des)",
 | |
| 		.drv_name	= "cbc-des",
 | |
| 		.block_size	= DES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_DES |
 | |
| 				   ENC_TYPE_CHAINING_CBC),
 | |
| 		.ablkcipher	= {
 | |
| 			.ivsize		= DES_BLOCK_SIZE,
 | |
| 			.min_keysize	= DES_KEY_SIZE,
 | |
| 			.max_keysize	= DES_KEY_SIZE,
 | |
| 			.setkey		= n2_des_setkey,
 | |
| 			.encrypt	= n2_encrypt_chaining,
 | |
| 			.decrypt	= n2_decrypt_chaining,
 | |
| 		},
 | |
| 	},
 | |
| 	{	.name		= "cfb(des)",
 | |
| 		.drv_name	= "cfb-des",
 | |
| 		.block_size	= DES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_DES |
 | |
| 				   ENC_TYPE_CHAINING_CFB),
 | |
| 		.ablkcipher	= {
 | |
| 			.min_keysize	= DES_KEY_SIZE,
 | |
| 			.max_keysize	= DES_KEY_SIZE,
 | |
| 			.setkey		= n2_des_setkey,
 | |
| 			.encrypt	= n2_encrypt_chaining,
 | |
| 			.decrypt	= n2_decrypt_chaining,
 | |
| 		},
 | |
| 	},
 | |
| 
 | |
| 	/* 3DES: ECB CBC and CFB are supported */
 | |
| 	{	.name		= "ecb(des3_ede)",
 | |
| 		.drv_name	= "ecb-3des",
 | |
| 		.block_size	= DES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_3DES |
 | |
| 				   ENC_TYPE_CHAINING_ECB),
 | |
| 		.ablkcipher	= {
 | |
| 			.min_keysize	= 3 * DES_KEY_SIZE,
 | |
| 			.max_keysize	= 3 * DES_KEY_SIZE,
 | |
| 			.setkey		= n2_3des_setkey,
 | |
| 			.encrypt	= n2_encrypt_ecb,
 | |
| 			.decrypt	= n2_decrypt_ecb,
 | |
| 		},
 | |
| 	},
 | |
| 	{	.name		= "cbc(des3_ede)",
 | |
| 		.drv_name	= "cbc-3des",
 | |
| 		.block_size	= DES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_3DES |
 | |
| 				   ENC_TYPE_CHAINING_CBC),
 | |
| 		.ablkcipher	= {
 | |
| 			.ivsize		= DES_BLOCK_SIZE,
 | |
| 			.min_keysize	= 3 * DES_KEY_SIZE,
 | |
| 			.max_keysize	= 3 * DES_KEY_SIZE,
 | |
| 			.setkey		= n2_3des_setkey,
 | |
| 			.encrypt	= n2_encrypt_chaining,
 | |
| 			.decrypt	= n2_decrypt_chaining,
 | |
| 		},
 | |
| 	},
 | |
| 	{	.name		= "cfb(des3_ede)",
 | |
| 		.drv_name	= "cfb-3des",
 | |
| 		.block_size	= DES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_3DES |
 | |
| 				   ENC_TYPE_CHAINING_CFB),
 | |
| 		.ablkcipher	= {
 | |
| 			.min_keysize	= 3 * DES_KEY_SIZE,
 | |
| 			.max_keysize	= 3 * DES_KEY_SIZE,
 | |
| 			.setkey		= n2_3des_setkey,
 | |
| 			.encrypt	= n2_encrypt_chaining,
 | |
| 			.decrypt	= n2_decrypt_chaining,
 | |
| 		},
 | |
| 	},
 | |
| 	/* AES: ECB CBC and CTR are supported */
 | |
| 	{	.name		= "ecb(aes)",
 | |
| 		.drv_name	= "ecb-aes",
 | |
| 		.block_size	= AES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_AES128 |
 | |
| 				   ENC_TYPE_CHAINING_ECB),
 | |
| 		.ablkcipher	= {
 | |
| 			.min_keysize	= AES_MIN_KEY_SIZE,
 | |
| 			.max_keysize	= AES_MAX_KEY_SIZE,
 | |
| 			.setkey		= n2_aes_setkey,
 | |
| 			.encrypt	= n2_encrypt_ecb,
 | |
| 			.decrypt	= n2_decrypt_ecb,
 | |
| 		},
 | |
| 	},
 | |
| 	{	.name		= "cbc(aes)",
 | |
| 		.drv_name	= "cbc-aes",
 | |
| 		.block_size	= AES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_AES128 |
 | |
| 				   ENC_TYPE_CHAINING_CBC),
 | |
| 		.ablkcipher	= {
 | |
| 			.ivsize		= AES_BLOCK_SIZE,
 | |
| 			.min_keysize	= AES_MIN_KEY_SIZE,
 | |
| 			.max_keysize	= AES_MAX_KEY_SIZE,
 | |
| 			.setkey		= n2_aes_setkey,
 | |
| 			.encrypt	= n2_encrypt_chaining,
 | |
| 			.decrypt	= n2_decrypt_chaining,
 | |
| 		},
 | |
| 	},
 | |
| 	{	.name		= "ctr(aes)",
 | |
| 		.drv_name	= "ctr-aes",
 | |
| 		.block_size	= AES_BLOCK_SIZE,
 | |
| 		.enc_type	= (ENC_TYPE_ALG_AES128 |
 | |
| 				   ENC_TYPE_CHAINING_COUNTER),
 | |
| 		.ablkcipher	= {
 | |
| 			.ivsize		= AES_BLOCK_SIZE,
 | |
| 			.min_keysize	= AES_MIN_KEY_SIZE,
 | |
| 			.max_keysize	= AES_MAX_KEY_SIZE,
 | |
| 			.setkey		= n2_aes_setkey,
 | |
| 			.encrypt	= n2_encrypt_chaining,
 | |
| 			.decrypt	= n2_encrypt_chaining,
 | |
| 		},
 | |
| 	},
 | |
| 
 | |
| };
 | |
| #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
 | |
| 
 | |
| static LIST_HEAD(cipher_algs);
 | |
| 
 | |
| struct n2_hash_tmpl {
 | |
| 	const char	*name;
 | |
| 	const char	*hash_zero;
 | |
| 	const u32	*hash_init;
 | |
| 	u8		hw_op_hashsz;
 | |
| 	u8		digest_size;
 | |
| 	u8		block_size;
 | |
| 	u8		auth_type;
 | |
| 	u8		hmac_type;
 | |
| };
 | |
| 
 | |
| static const char md5_zero[MD5_DIGEST_SIZE] = {
 | |
| 	0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
 | |
| 	0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
 | |
| };
 | |
| static const u32 md5_init[MD5_HASH_WORDS] = {
 | |
| 	cpu_to_le32(0x67452301),
 | |
| 	cpu_to_le32(0xefcdab89),
 | |
| 	cpu_to_le32(0x98badcfe),
 | |
| 	cpu_to_le32(0x10325476),
 | |
| };
 | |
| static const char sha1_zero[SHA1_DIGEST_SIZE] = {
 | |
| 	0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32,
 | |
| 	0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8,
 | |
| 	0x07, 0x09
 | |
| };
 | |
| static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
 | |
| 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
 | |
| };
 | |
| static const char sha256_zero[SHA256_DIGEST_SIZE] = {
 | |
| 	0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a,
 | |
| 	0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae,
 | |
| 	0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99,
 | |
| 	0x1b, 0x78, 0x52, 0xb8, 0x55
 | |
| };
 | |
| static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
 | |
| 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
 | |
| 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
 | |
| };
 | |
| static const char sha224_zero[SHA224_DIGEST_SIZE] = {
 | |
| 	0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47,
 | |
| 	0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2,
 | |
| 	0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4,
 | |
| 	0x2f
 | |
| };
 | |
| static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
 | |
| 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
 | |
| 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
 | |
| };
 | |
| 
 | |
| static const struct n2_hash_tmpl hash_tmpls[] = {
 | |
| 	{ .name		= "md5",
 | |
| 	  .hash_zero	= md5_zero,
 | |
| 	  .hash_init	= md5_init,
 | |
| 	  .auth_type	= AUTH_TYPE_MD5,
 | |
| 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
 | |
| 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
 | |
| 	  .digest_size	= MD5_DIGEST_SIZE,
 | |
| 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
 | |
| 	{ .name		= "sha1",
 | |
| 	  .hash_zero	= sha1_zero,
 | |
| 	  .hash_init	= sha1_init,
 | |
| 	  .auth_type	= AUTH_TYPE_SHA1,
 | |
| 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
 | |
| 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
 | |
| 	  .digest_size	= SHA1_DIGEST_SIZE,
 | |
| 	  .block_size	= SHA1_BLOCK_SIZE },
 | |
| 	{ .name		= "sha256",
 | |
| 	  .hash_zero	= sha256_zero,
 | |
| 	  .hash_init	= sha256_init,
 | |
| 	  .auth_type	= AUTH_TYPE_SHA256,
 | |
| 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
 | |
| 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
 | |
| 	  .digest_size	= SHA256_DIGEST_SIZE,
 | |
| 	  .block_size	= SHA256_BLOCK_SIZE },
 | |
| 	{ .name		= "sha224",
 | |
| 	  .hash_zero	= sha224_zero,
 | |
| 	  .hash_init	= sha224_init,
 | |
| 	  .auth_type	= AUTH_TYPE_SHA256,
 | |
| 	  .hmac_type	= AUTH_TYPE_RESERVED,
 | |
| 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
 | |
| 	  .digest_size	= SHA224_DIGEST_SIZE,
 | |
| 	  .block_size	= SHA224_BLOCK_SIZE },
 | |
| };
 | |
| #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
 | |
| 
 | |
| static LIST_HEAD(ahash_algs);
 | |
| static LIST_HEAD(hmac_algs);
 | |
| 
 | |
| static int algs_registered;
 | |
| 
 | |
| static void __n2_unregister_algs(void)
 | |
| {
 | |
| 	struct n2_cipher_alg *cipher, *cipher_tmp;
 | |
| 	struct n2_ahash_alg *alg, *alg_tmp;
 | |
| 	struct n2_hmac_alg *hmac, *hmac_tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
 | |
| 		crypto_unregister_alg(&cipher->alg);
 | |
| 		list_del(&cipher->entry);
 | |
| 		kfree(cipher);
 | |
| 	}
 | |
| 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
 | |
| 		crypto_unregister_ahash(&hmac->derived.alg);
 | |
| 		list_del(&hmac->derived.entry);
 | |
| 		kfree(hmac);
 | |
| 	}
 | |
| 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
 | |
| 		crypto_unregister_ahash(&alg->alg);
 | |
| 		list_del(&alg->entry);
 | |
| 		kfree(alg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int n2_cipher_cra_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
 | |
| {
 | |
| 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
 | |
| 	struct crypto_alg *alg;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!p)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	alg = &p->alg;
 | |
| 
 | |
| 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
 | |
| 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
 | |
| 	alg->cra_priority = N2_CRA_PRIORITY;
 | |
| 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
 | |
| 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
 | |
| 	alg->cra_blocksize = tmpl->block_size;
 | |
| 	p->enc_type = tmpl->enc_type;
 | |
| 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
 | |
| 	alg->cra_type = &crypto_ablkcipher_type;
 | |
| 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
 | |
| 	alg->cra_init = n2_cipher_cra_init;
 | |
| 	alg->cra_module = THIS_MODULE;
 | |
| 
 | |
| 	list_add(&p->entry, &cipher_algs);
 | |
| 	err = crypto_register_alg(alg);
 | |
| 	if (err) {
 | |
| 		pr_err("%s alg registration failed\n", alg->cra_name);
 | |
| 		list_del(&p->entry);
 | |
| 		kfree(p);
 | |
| 	} else {
 | |
| 		pr_info("%s alg registered\n", alg->cra_name);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
 | |
| {
 | |
| 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
 | |
| 	struct ahash_alg *ahash;
 | |
| 	struct crypto_alg *base;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!p)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	p->child_alg = n2ahash->alg.halg.base.cra_name;
 | |
| 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
 | |
| 	INIT_LIST_HEAD(&p->derived.entry);
 | |
| 
 | |
| 	ahash = &p->derived.alg;
 | |
| 	ahash->digest = n2_hmac_async_digest;
 | |
| 	ahash->setkey = n2_hmac_async_setkey;
 | |
| 
 | |
| 	base = &ahash->halg.base;
 | |
| 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
 | |
| 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
 | |
| 
 | |
| 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
 | |
| 	base->cra_init = n2_hmac_cra_init;
 | |
| 	base->cra_exit = n2_hmac_cra_exit;
 | |
| 
 | |
| 	list_add(&p->derived.entry, &hmac_algs);
 | |
| 	err = crypto_register_ahash(ahash);
 | |
| 	if (err) {
 | |
| 		pr_err("%s alg registration failed\n", base->cra_name);
 | |
| 		list_del(&p->derived.entry);
 | |
| 		kfree(p);
 | |
| 	} else {
 | |
| 		pr_info("%s alg registered\n", base->cra_name);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
 | |
| {
 | |
| 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
 | |
| 	struct hash_alg_common *halg;
 | |
| 	struct crypto_alg *base;
 | |
| 	struct ahash_alg *ahash;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!p)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	p->hash_zero = tmpl->hash_zero;
 | |
| 	p->hash_init = tmpl->hash_init;
 | |
| 	p->auth_type = tmpl->auth_type;
 | |
| 	p->hmac_type = tmpl->hmac_type;
 | |
| 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
 | |
| 	p->digest_size = tmpl->digest_size;
 | |
| 
 | |
| 	ahash = &p->alg;
 | |
| 	ahash->init = n2_hash_async_init;
 | |
| 	ahash->update = n2_hash_async_update;
 | |
| 	ahash->final = n2_hash_async_final;
 | |
| 	ahash->finup = n2_hash_async_finup;
 | |
| 	ahash->digest = n2_hash_async_digest;
 | |
| 
 | |
| 	halg = &ahash->halg;
 | |
| 	halg->digestsize = tmpl->digest_size;
 | |
| 
 | |
| 	base = &halg->base;
 | |
| 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
 | |
| 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
 | |
| 	base->cra_priority = N2_CRA_PRIORITY;
 | |
| 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
 | |
| 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | |
| 			  CRYPTO_ALG_NEED_FALLBACK;
 | |
| 	base->cra_blocksize = tmpl->block_size;
 | |
| 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
 | |
| 	base->cra_module = THIS_MODULE;
 | |
| 	base->cra_init = n2_hash_cra_init;
 | |
| 	base->cra_exit = n2_hash_cra_exit;
 | |
| 
 | |
| 	list_add(&p->entry, &ahash_algs);
 | |
| 	err = crypto_register_ahash(ahash);
 | |
| 	if (err) {
 | |
| 		pr_err("%s alg registration failed\n", base->cra_name);
 | |
| 		list_del(&p->entry);
 | |
| 		kfree(p);
 | |
| 	} else {
 | |
| 		pr_info("%s alg registered\n", base->cra_name);
 | |
| 	}
 | |
| 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
 | |
| 		err = __n2_register_one_hmac(p);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2_register_algs(void)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	mutex_lock(&spu_lock);
 | |
| 	if (algs_registered++)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
 | |
| 		err = __n2_register_one_ahash(&hash_tmpls[i]);
 | |
| 		if (err) {
 | |
| 			__n2_unregister_algs();
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
 | |
| 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
 | |
| 		if (err) {
 | |
| 			__n2_unregister_algs();
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&spu_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void n2_unregister_algs(void)
 | |
| {
 | |
| 	mutex_lock(&spu_lock);
 | |
| 	if (!--algs_registered)
 | |
| 		__n2_unregister_algs();
 | |
| 	mutex_unlock(&spu_lock);
 | |
| }
 | |
| 
 | |
| /* To map CWQ queues to interrupt sources, the hypervisor API provides
 | |
|  * a devino.  This isn't very useful to us because all of the
 | |
|  * interrupts listed in the device_node have been translated to
 | |
|  * Linux virtual IRQ cookie numbers.
 | |
|  *
 | |
|  * So we have to back-translate, going through the 'intr' and 'ino'
 | |
|  * property tables of the n2cp MDESC node, matching it with the OF
 | |
|  * 'interrupts' property entries, in order to to figure out which
 | |
|  * devino goes to which already-translated IRQ.
 | |
|  */
 | |
| static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
 | |
| 			     unsigned long dev_ino)
 | |
| {
 | |
| 	const unsigned int *dev_intrs;
 | |
| 	unsigned int intr;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ip->num_intrs; i++) {
 | |
| 		if (ip->ino_table[i].ino == dev_ino)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i == ip->num_intrs)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	intr = ip->ino_table[i].intr;
 | |
| 
 | |
| 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
 | |
| 	if (!dev_intrs)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	for (i = 0; i < dev->archdata.num_irqs; i++) {
 | |
| 		if (dev_intrs[i] == intr)
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
 | |
| 		       const char *irq_name, struct spu_queue *p,
 | |
| 		       irq_handler_t handler)
 | |
| {
 | |
| 	unsigned long herr;
 | |
| 	int index;
 | |
| 
 | |
| 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
 | |
| 	if (herr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	index = find_devino_index(dev, ip, p->devino);
 | |
| 	if (index < 0)
 | |
| 		return index;
 | |
| 
 | |
| 	p->irq = dev->archdata.irqs[index];
 | |
| 
 | |
| 	sprintf(p->irq_name, "%s-%d", irq_name, index);
 | |
| 
 | |
| 	return request_irq(p->irq, handler, 0, p->irq_name, p);
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *queue_cache[2];
 | |
| 
 | |
| static void *new_queue(unsigned long q_type)
 | |
| {
 | |
| 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| static void free_queue(void *p, unsigned long q_type)
 | |
| {
 | |
| 	return kmem_cache_free(queue_cache[q_type - 1], p);
 | |
| }
 | |
| 
 | |
| static int queue_cache_init(void)
 | |
| {
 | |
| 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
 | |
| 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
 | |
| 			kmem_cache_create("mau_queue",
 | |
| 					  (MAU_NUM_ENTRIES *
 | |
| 					   MAU_ENTRY_SIZE),
 | |
| 					  MAU_ENTRY_SIZE, 0, NULL);
 | |
| 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
 | |
| 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
 | |
| 			kmem_cache_create("cwq_queue",
 | |
| 					  (CWQ_NUM_ENTRIES *
 | |
| 					   CWQ_ENTRY_SIZE),
 | |
| 					  CWQ_ENTRY_SIZE, 0, NULL);
 | |
| 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
 | |
| 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void queue_cache_destroy(void)
 | |
| {
 | |
| 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
 | |
| 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
 | |
| }
 | |
| 
 | |
| static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
 | |
| {
 | |
| 	cpumask_var_t old_allowed;
 | |
| 	unsigned long hv_ret;
 | |
| 
 | |
| 	if (cpumask_empty(&p->sharing))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cpumask_copy(old_allowed, ¤t->cpus_allowed);
 | |
| 
 | |
| 	set_cpus_allowed_ptr(current, &p->sharing);
 | |
| 
 | |
| 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
 | |
| 				 CWQ_NUM_ENTRIES, &p->qhandle);
 | |
| 	if (!hv_ret)
 | |
| 		sun4v_ncs_sethead_marker(p->qhandle, 0);
 | |
| 
 | |
| 	set_cpus_allowed_ptr(current, old_allowed);
 | |
| 
 | |
| 	free_cpumask_var(old_allowed);
 | |
| 
 | |
| 	return (hv_ret ? -EINVAL : 0);
 | |
| }
 | |
| 
 | |
| static int spu_queue_setup(struct spu_queue *p)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	p->q = new_queue(p->q_type);
 | |
| 	if (!p->q)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = spu_queue_register(p, p->q_type);
 | |
| 	if (err) {
 | |
| 		free_queue(p->q, p->q_type);
 | |
| 		p->q = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void spu_queue_destroy(struct spu_queue *p)
 | |
| {
 | |
| 	unsigned long hv_ret;
 | |
| 
 | |
| 	if (!p->q)
 | |
| 		return;
 | |
| 
 | |
| 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
 | |
| 
 | |
| 	if (!hv_ret)
 | |
| 		free_queue(p->q, p->q_type);
 | |
| }
 | |
| 
 | |
| static void spu_list_destroy(struct list_head *list)
 | |
| {
 | |
| 	struct spu_queue *p, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, list, list) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < NR_CPUS; i++) {
 | |
| 			if (cpu_to_cwq[i] == p)
 | |
| 				cpu_to_cwq[i] = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (p->irq) {
 | |
| 			free_irq(p->irq, p);
 | |
| 			p->irq = 0;
 | |
| 		}
 | |
| 		spu_queue_destroy(p);
 | |
| 		list_del(&p->list);
 | |
| 		kfree(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Walk the backward arcs of a CWQ 'exec-unit' node,
 | |
|  * gathering cpu membership information.
 | |
|  */
 | |
| static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
 | |
| 			       struct platform_device *dev,
 | |
| 			       u64 node, struct spu_queue *p,
 | |
| 			       struct spu_queue **table)
 | |
| {
 | |
| 	u64 arc;
 | |
| 
 | |
| 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
 | |
| 		u64 tgt = mdesc_arc_target(mdesc, arc);
 | |
| 		const char *name = mdesc_node_name(mdesc, tgt);
 | |
| 		const u64 *id;
 | |
| 
 | |
| 		if (strcmp(name, "cpu"))
 | |
| 			continue;
 | |
| 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
 | |
| 		if (table[*id] != NULL) {
 | |
| 			dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
 | |
| 				dev->dev.of_node->full_name);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		cpu_set(*id, p->sharing);
 | |
| 		table[*id] = p;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
 | |
| static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
 | |
| 			    struct platform_device *dev, struct mdesc_handle *mdesc,
 | |
| 			    u64 node, const char *iname, unsigned long q_type,
 | |
| 			    irq_handler_t handler, struct spu_queue **table)
 | |
| {
 | |
| 	struct spu_queue *p;
 | |
| 	int err;
 | |
| 
 | |
| 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
 | |
| 	if (!p) {
 | |
| 		dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
 | |
| 			dev->dev.of_node->full_name);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	cpus_clear(p->sharing);
 | |
| 	spin_lock_init(&p->lock);
 | |
| 	p->q_type = q_type;
 | |
| 	INIT_LIST_HEAD(&p->jobs);
 | |
| 	list_add(&p->list, list);
 | |
| 
 | |
| 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = spu_queue_setup(p);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return spu_map_ino(dev, ip, iname, p, handler);
 | |
| }
 | |
| 
 | |
| static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
 | |
| 			  struct spu_mdesc_info *ip, struct list_head *list,
 | |
| 			  const char *exec_name, unsigned long q_type,
 | |
| 			  irq_handler_t handler, struct spu_queue **table)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	u64 node;
 | |
| 
 | |
| 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
 | |
| 		const char *type;
 | |
| 
 | |
| 		type = mdesc_get_property(mdesc, node, "type", NULL);
 | |
| 		if (!type || strcmp(type, exec_name))
 | |
| 			continue;
 | |
| 
 | |
| 		err = handle_exec_unit(ip, list, dev, mdesc, node,
 | |
| 				       exec_name, q_type, handler, table);
 | |
| 		if (err) {
 | |
| 			spu_list_destroy(list);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
 | |
| 			 struct spu_mdesc_info *ip)
 | |
| {
 | |
| 	const u64 *ino;
 | |
| 	int ino_len;
 | |
| 	int i;
 | |
| 
 | |
| 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
 | |
| 	if (!ino) {
 | |
| 		printk("NO 'ino'\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	ip->num_intrs = ino_len / sizeof(u64);
 | |
| 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
 | |
| 				 ip->num_intrs),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!ip->ino_table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < ip->num_intrs; i++) {
 | |
| 		struct ino_blob *b = &ip->ino_table[i];
 | |
| 		b->intr = i + 1;
 | |
| 		b->ino = ino[i];
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
 | |
| 				struct platform_device *dev,
 | |
| 				struct spu_mdesc_info *ip,
 | |
| 				const char *node_name)
 | |
| {
 | |
| 	const unsigned int *reg;
 | |
| 	u64 node;
 | |
| 
 | |
| 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
 | |
| 	if (!reg)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
 | |
| 		const char *name;
 | |
| 		const u64 *chdl;
 | |
| 
 | |
| 		name = mdesc_get_property(mdesc, node, "name", NULL);
 | |
| 		if (!name || strcmp(name, node_name))
 | |
| 			continue;
 | |
| 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
 | |
| 		if (!chdl || (*chdl != *reg))
 | |
| 			continue;
 | |
| 		ip->cfg_handle = *chdl;
 | |
| 		return get_irq_props(mdesc, node, ip);
 | |
| 	}
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static unsigned long n2_spu_hvapi_major;
 | |
| static unsigned long n2_spu_hvapi_minor;
 | |
| 
 | |
| static int n2_spu_hvapi_register(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	n2_spu_hvapi_major = 2;
 | |
| 	n2_spu_hvapi_minor = 0;
 | |
| 
 | |
| 	err = sun4v_hvapi_register(HV_GRP_NCS,
 | |
| 				   n2_spu_hvapi_major,
 | |
| 				   &n2_spu_hvapi_minor);
 | |
| 
 | |
| 	if (!err)
 | |
| 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
 | |
| 			n2_spu_hvapi_major,
 | |
| 			n2_spu_hvapi_minor);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void n2_spu_hvapi_unregister(void)
 | |
| {
 | |
| 	sun4v_hvapi_unregister(HV_GRP_NCS);
 | |
| }
 | |
| 
 | |
| static int global_ref;
 | |
| 
 | |
| static int grab_global_resources(void)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&spu_lock);
 | |
| 
 | |
| 	if (global_ref++)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = n2_spu_hvapi_register();
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = queue_cache_init();
 | |
| 	if (err)
 | |
| 		goto out_hvapi_release;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!cpu_to_cwq)
 | |
| 		goto out_queue_cache_destroy;
 | |
| 
 | |
| 	cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!cpu_to_mau)
 | |
| 		goto out_free_cwq_table;
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| out:
 | |
| 	if (err)
 | |
| 		global_ref--;
 | |
| 	mutex_unlock(&spu_lock);
 | |
| 	return err;
 | |
| 
 | |
| out_free_cwq_table:
 | |
| 	kfree(cpu_to_cwq);
 | |
| 	cpu_to_cwq = NULL;
 | |
| 
 | |
| out_queue_cache_destroy:
 | |
| 	queue_cache_destroy();
 | |
| 
 | |
| out_hvapi_release:
 | |
| 	n2_spu_hvapi_unregister();
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static void release_global_resources(void)
 | |
| {
 | |
| 	mutex_lock(&spu_lock);
 | |
| 	if (!--global_ref) {
 | |
| 		kfree(cpu_to_cwq);
 | |
| 		cpu_to_cwq = NULL;
 | |
| 
 | |
| 		kfree(cpu_to_mau);
 | |
| 		cpu_to_mau = NULL;
 | |
| 
 | |
| 		queue_cache_destroy();
 | |
| 		n2_spu_hvapi_unregister();
 | |
| 	}
 | |
| 	mutex_unlock(&spu_lock);
 | |
| }
 | |
| 
 | |
| static struct n2_crypto *alloc_n2cp(void)
 | |
| {
 | |
| 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
 | |
| 
 | |
| 	if (np)
 | |
| 		INIT_LIST_HEAD(&np->cwq_list);
 | |
| 
 | |
| 	return np;
 | |
| }
 | |
| 
 | |
| static void free_n2cp(struct n2_crypto *np)
 | |
| {
 | |
| 	if (np->cwq_info.ino_table) {
 | |
| 		kfree(np->cwq_info.ino_table);
 | |
| 		np->cwq_info.ino_table = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(np);
 | |
| }
 | |
| 
 | |
| static void n2_spu_driver_version(void)
 | |
| {
 | |
| 	static int n2_spu_version_printed;
 | |
| 
 | |
| 	if (n2_spu_version_printed++ == 0)
 | |
| 		pr_info("%s", version);
 | |
| }
 | |
| 
 | |
| static int n2_crypto_probe(struct platform_device *dev)
 | |
| {
 | |
| 	struct mdesc_handle *mdesc;
 | |
| 	const char *full_name;
 | |
| 	struct n2_crypto *np;
 | |
| 	int err;
 | |
| 
 | |
| 	n2_spu_driver_version();
 | |
| 
 | |
| 	full_name = dev->dev.of_node->full_name;
 | |
| 	pr_info("Found N2CP at %s\n", full_name);
 | |
| 
 | |
| 	np = alloc_n2cp();
 | |
| 	if (!np) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
 | |
| 			full_name);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	err = grab_global_resources();
 | |
| 	if (err) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to grab "
 | |
| 			"global resources.\n", full_name);
 | |
| 		goto out_free_n2cp;
 | |
| 	}
 | |
| 
 | |
| 	mdesc = mdesc_grab();
 | |
| 
 | |
| 	if (!mdesc) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
 | |
| 			full_name);
 | |
| 		err = -ENODEV;
 | |
| 		goto out_free_global;
 | |
| 	}
 | |
| 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
 | |
| 	if (err) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
 | |
| 			full_name);
 | |
| 		mdesc_release(mdesc);
 | |
| 		goto out_free_global;
 | |
| 	}
 | |
| 
 | |
| 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
 | |
| 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
 | |
| 			     cpu_to_cwq);
 | |
| 	mdesc_release(mdesc);
 | |
| 
 | |
| 	if (err) {
 | |
| 		dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
 | |
| 			full_name);
 | |
| 		goto out_free_global;
 | |
| 	}
 | |
| 
 | |
| 	err = n2_register_algs();
 | |
| 	if (err) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
 | |
| 			full_name);
 | |
| 		goto out_free_spu_list;
 | |
| 	}
 | |
| 
 | |
| 	dev_set_drvdata(&dev->dev, np);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_spu_list:
 | |
| 	spu_list_destroy(&np->cwq_list);
 | |
| 
 | |
| out_free_global:
 | |
| 	release_global_resources();
 | |
| 
 | |
| out_free_n2cp:
 | |
| 	free_n2cp(np);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2_crypto_remove(struct platform_device *dev)
 | |
| {
 | |
| 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
 | |
| 
 | |
| 	n2_unregister_algs();
 | |
| 
 | |
| 	spu_list_destroy(&np->cwq_list);
 | |
| 
 | |
| 	release_global_resources();
 | |
| 
 | |
| 	free_n2cp(np);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct n2_mau *alloc_ncp(void)
 | |
| {
 | |
| 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
 | |
| 
 | |
| 	if (mp)
 | |
| 		INIT_LIST_HEAD(&mp->mau_list);
 | |
| 
 | |
| 	return mp;
 | |
| }
 | |
| 
 | |
| static void free_ncp(struct n2_mau *mp)
 | |
| {
 | |
| 	if (mp->mau_info.ino_table) {
 | |
| 		kfree(mp->mau_info.ino_table);
 | |
| 		mp->mau_info.ino_table = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(mp);
 | |
| }
 | |
| 
 | |
| static int n2_mau_probe(struct platform_device *dev)
 | |
| {
 | |
| 	struct mdesc_handle *mdesc;
 | |
| 	const char *full_name;
 | |
| 	struct n2_mau *mp;
 | |
| 	int err;
 | |
| 
 | |
| 	n2_spu_driver_version();
 | |
| 
 | |
| 	full_name = dev->dev.of_node->full_name;
 | |
| 	pr_info("Found NCP at %s\n", full_name);
 | |
| 
 | |
| 	mp = alloc_ncp();
 | |
| 	if (!mp) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
 | |
| 			full_name);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	err = grab_global_resources();
 | |
| 	if (err) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to grab "
 | |
| 			"global resources.\n", full_name);
 | |
| 		goto out_free_ncp;
 | |
| 	}
 | |
| 
 | |
| 	mdesc = mdesc_grab();
 | |
| 
 | |
| 	if (!mdesc) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
 | |
| 			full_name);
 | |
| 		err = -ENODEV;
 | |
| 		goto out_free_global;
 | |
| 	}
 | |
| 
 | |
| 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
 | |
| 	if (err) {
 | |
| 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
 | |
| 			full_name);
 | |
| 		mdesc_release(mdesc);
 | |
| 		goto out_free_global;
 | |
| 	}
 | |
| 
 | |
| 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
 | |
| 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
 | |
| 			     cpu_to_mau);
 | |
| 	mdesc_release(mdesc);
 | |
| 
 | |
| 	if (err) {
 | |
| 		dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
 | |
| 			full_name);
 | |
| 		goto out_free_global;
 | |
| 	}
 | |
| 
 | |
| 	dev_set_drvdata(&dev->dev, mp);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_global:
 | |
| 	release_global_resources();
 | |
| 
 | |
| out_free_ncp:
 | |
| 	free_ncp(mp);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int n2_mau_remove(struct platform_device *dev)
 | |
| {
 | |
| 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
 | |
| 
 | |
| 	spu_list_destroy(&mp->mau_list);
 | |
| 
 | |
| 	release_global_resources();
 | |
| 
 | |
| 	free_ncp(mp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct of_device_id n2_crypto_match[] = {
 | |
| 	{
 | |
| 		.name = "n2cp",
 | |
| 		.compatible = "SUNW,n2-cwq",
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "n2cp",
 | |
| 		.compatible = "SUNW,vf-cwq",
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "n2cp",
 | |
| 		.compatible = "SUNW,kt-cwq",
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(of, n2_crypto_match);
 | |
| 
 | |
| static struct platform_driver n2_crypto_driver = {
 | |
| 	.driver = {
 | |
| 		.name		=	"n2cp",
 | |
| 		.owner		=	THIS_MODULE,
 | |
| 		.of_match_table	=	n2_crypto_match,
 | |
| 	},
 | |
| 	.probe		=	n2_crypto_probe,
 | |
| 	.remove		=	n2_crypto_remove,
 | |
| };
 | |
| 
 | |
| static struct of_device_id n2_mau_match[] = {
 | |
| 	{
 | |
| 		.name = "ncp",
 | |
| 		.compatible = "SUNW,n2-mau",
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "ncp",
 | |
| 		.compatible = "SUNW,vf-mau",
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "ncp",
 | |
| 		.compatible = "SUNW,kt-mau",
 | |
| 	},
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(of, n2_mau_match);
 | |
| 
 | |
| static struct platform_driver n2_mau_driver = {
 | |
| 	.driver = {
 | |
| 		.name		=	"ncp",
 | |
| 		.owner		=	THIS_MODULE,
 | |
| 		.of_match_table	=	n2_mau_match,
 | |
| 	},
 | |
| 	.probe		=	n2_mau_probe,
 | |
| 	.remove		=	n2_mau_remove,
 | |
| };
 | |
| 
 | |
| static int __init n2_init(void)
 | |
| {
 | |
| 	int err = platform_driver_register(&n2_crypto_driver);
 | |
| 
 | |
| 	if (!err) {
 | |
| 		err = platform_driver_register(&n2_mau_driver);
 | |
| 		if (err)
 | |
| 			platform_driver_unregister(&n2_crypto_driver);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __exit n2_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&n2_mau_driver);
 | |
| 	platform_driver_unregister(&n2_crypto_driver);
 | |
| }
 | |
| 
 | |
| module_init(n2_init);
 | |
| module_exit(n2_exit);
 |