 51a7163499
			
		
	
	
	51a7163499
	
	
	
		
			
			The checking for the type of algorithm implementation is pretty strange here. Use regular flags to check for the type instead. Signed-off-by: Marek Vasut <marex@denx.de> Cc: Bill Pemberton <wfp5p@virginia.edu> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: Jamie Iles <jamie@jamieiles.com> Cc: Phil Sutter <phil.sutter@viprinet.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			1199 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1199 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Support for Marvell's crypto engine which can be found on some Orion5X
 | |
|  * boards.
 | |
|  *
 | |
|  * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
 | |
|  * License: GPLv2
 | |
|  *
 | |
|  */
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/algapi.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/clk.h>
 | |
| #include <crypto/internal/hash.h>
 | |
| #include <crypto/sha.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/of_irq.h>
 | |
| 
 | |
| #include "mv_cesa.h"
 | |
| 
 | |
| #define MV_CESA	"MV-CESA:"
 | |
| #define MAX_HW_HASH_SIZE	0xFFFF
 | |
| #define MV_CESA_EXPIRE		500 /* msec */
 | |
| 
 | |
| /*
 | |
|  * STM:
 | |
|  *   /---------------------------------------\
 | |
|  *   |					     | request complete
 | |
|  *  \./					     |
 | |
|  * IDLE -> new request -> BUSY -> done -> DEQUEUE
 | |
|  *                         /°\               |
 | |
|  *			    |		     | more scatter entries
 | |
|  *			    \________________/
 | |
|  */
 | |
| enum engine_status {
 | |
| 	ENGINE_IDLE,
 | |
| 	ENGINE_BUSY,
 | |
| 	ENGINE_W_DEQUEUE,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct req_progress - used for every crypt request
 | |
|  * @src_sg_it:		sg iterator for src
 | |
|  * @dst_sg_it:		sg iterator for dst
 | |
|  * @sg_src_left:	bytes left in src to process (scatter list)
 | |
|  * @src_start:		offset to add to src start position (scatter list)
 | |
|  * @crypt_len:		length of current hw crypt/hash process
 | |
|  * @hw_nbytes:		total bytes to process in hw for this request
 | |
|  * @copy_back:		whether to copy data back (crypt) or not (hash)
 | |
|  * @sg_dst_left:	bytes left dst to process in this scatter list
 | |
|  * @dst_start:		offset to add to dst start position (scatter list)
 | |
|  * @hw_processed_bytes:	number of bytes processed by hw (request).
 | |
|  *
 | |
|  * sg helper are used to iterate over the scatterlist. Since the size of the
 | |
|  * SRAM may be less than the scatter size, this struct struct is used to keep
 | |
|  * track of progress within current scatterlist.
 | |
|  */
 | |
| struct req_progress {
 | |
| 	struct sg_mapping_iter src_sg_it;
 | |
| 	struct sg_mapping_iter dst_sg_it;
 | |
| 	void (*complete) (void);
 | |
| 	void (*process) (int is_first);
 | |
| 
 | |
| 	/* src mostly */
 | |
| 	int sg_src_left;
 | |
| 	int src_start;
 | |
| 	int crypt_len;
 | |
| 	int hw_nbytes;
 | |
| 	/* dst mostly */
 | |
| 	int copy_back;
 | |
| 	int sg_dst_left;
 | |
| 	int dst_start;
 | |
| 	int hw_processed_bytes;
 | |
| };
 | |
| 
 | |
| struct crypto_priv {
 | |
| 	void __iomem *reg;
 | |
| 	void __iomem *sram;
 | |
| 	int irq;
 | |
| 	struct clk *clk;
 | |
| 	struct task_struct *queue_th;
 | |
| 
 | |
| 	/* the lock protects queue and eng_st */
 | |
| 	spinlock_t lock;
 | |
| 	struct crypto_queue queue;
 | |
| 	enum engine_status eng_st;
 | |
| 	struct timer_list completion_timer;
 | |
| 	struct crypto_async_request *cur_req;
 | |
| 	struct req_progress p;
 | |
| 	int max_req_size;
 | |
| 	int sram_size;
 | |
| 	int has_sha1;
 | |
| 	int has_hmac_sha1;
 | |
| };
 | |
| 
 | |
| static struct crypto_priv *cpg;
 | |
| 
 | |
| struct mv_ctx {
 | |
| 	u8 aes_enc_key[AES_KEY_LEN];
 | |
| 	u32 aes_dec_key[8];
 | |
| 	int key_len;
 | |
| 	u32 need_calc_aes_dkey;
 | |
| };
 | |
| 
 | |
| enum crypto_op {
 | |
| 	COP_AES_ECB,
 | |
| 	COP_AES_CBC,
 | |
| };
 | |
| 
 | |
| struct mv_req_ctx {
 | |
| 	enum crypto_op op;
 | |
| 	int decrypt;
 | |
| };
 | |
| 
 | |
| enum hash_op {
 | |
| 	COP_SHA1,
 | |
| 	COP_HMAC_SHA1
 | |
| };
 | |
| 
 | |
| struct mv_tfm_hash_ctx {
 | |
| 	struct crypto_shash *fallback;
 | |
| 	struct crypto_shash *base_hash;
 | |
| 	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 | |
| 	int count_add;
 | |
| 	enum hash_op op;
 | |
| };
 | |
| 
 | |
| struct mv_req_hash_ctx {
 | |
| 	u64 count;
 | |
| 	u32 state[SHA1_DIGEST_SIZE / 4];
 | |
| 	u8 buffer[SHA1_BLOCK_SIZE];
 | |
| 	int first_hash;		/* marks that we don't have previous state */
 | |
| 	int last_chunk;		/* marks that this is the 'final' request */
 | |
| 	int extra_bytes;	/* unprocessed bytes in buffer */
 | |
| 	enum hash_op op;
 | |
| 	int count_add;
 | |
| };
 | |
| 
 | |
| static void mv_completion_timer_callback(unsigned long unused)
 | |
| {
 | |
| 	int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
 | |
| 
 | |
| 	printk(KERN_ERR MV_CESA
 | |
| 	       "completion timer expired (CESA %sactive), cleaning up.\n",
 | |
| 	       active ? "" : "in");
 | |
| 
 | |
| 	del_timer(&cpg->completion_timer);
 | |
| 	writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
 | |
| 	while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
 | |
| 		printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
 | |
| 	cpg->eng_st = ENGINE_W_DEQUEUE;
 | |
| 	wake_up_process(cpg->queue_th);
 | |
| }
 | |
| 
 | |
| static void mv_setup_timer(void)
 | |
| {
 | |
| 	setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
 | |
| 	mod_timer(&cpg->completion_timer,
 | |
| 			jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
 | |
| }
 | |
| 
 | |
| static void compute_aes_dec_key(struct mv_ctx *ctx)
 | |
| {
 | |
| 	struct crypto_aes_ctx gen_aes_key;
 | |
| 	int key_pos;
 | |
| 
 | |
| 	if (!ctx->need_calc_aes_dkey)
 | |
| 		return;
 | |
| 
 | |
| 	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 | |
| 
 | |
| 	key_pos = ctx->key_len + 24;
 | |
| 	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 | |
| 	switch (ctx->key_len) {
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		key_pos -= 2;
 | |
| 		/* fall */
 | |
| 	case AES_KEYSIZE_192:
 | |
| 		key_pos -= 2;
 | |
| 		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 | |
| 				4 * 4);
 | |
| 		break;
 | |
| 	}
 | |
| 	ctx->need_calc_aes_dkey = 0;
 | |
| }
 | |
| 
 | |
| static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 | |
| 		unsigned int len)
 | |
| {
 | |
| 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 | |
| 	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 
 | |
| 	switch (len) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 	case AES_KEYSIZE_192:
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		break;
 | |
| 	default:
 | |
| 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	ctx->key_len = len;
 | |
| 	ctx->need_calc_aes_dkey = 1;
 | |
| 
 | |
| 	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 | |
| {
 | |
| 	int ret;
 | |
| 	void *sbuf;
 | |
| 	int copy_len;
 | |
| 
 | |
| 	while (len) {
 | |
| 		if (!p->sg_src_left) {
 | |
| 			ret = sg_miter_next(&p->src_sg_it);
 | |
| 			BUG_ON(!ret);
 | |
| 			p->sg_src_left = p->src_sg_it.length;
 | |
| 			p->src_start = 0;
 | |
| 		}
 | |
| 
 | |
| 		sbuf = p->src_sg_it.addr + p->src_start;
 | |
| 
 | |
| 		copy_len = min(p->sg_src_left, len);
 | |
| 		memcpy(dbuf, sbuf, copy_len);
 | |
| 
 | |
| 		p->src_start += copy_len;
 | |
| 		p->sg_src_left -= copy_len;
 | |
| 
 | |
| 		len -= copy_len;
 | |
| 		dbuf += copy_len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void setup_data_in(void)
 | |
| {
 | |
| 	struct req_progress *p = &cpg->p;
 | |
| 	int data_in_sram =
 | |
| 	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 | |
| 	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 | |
| 			data_in_sram - p->crypt_len);
 | |
| 	p->crypt_len = data_in_sram;
 | |
| }
 | |
| 
 | |
| static void mv_process_current_q(int first_block)
 | |
| {
 | |
| 	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 | |
| 	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 | |
| 	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 | |
| 	struct sec_accel_config op;
 | |
| 
 | |
| 	switch (req_ctx->op) {
 | |
| 	case COP_AES_ECB:
 | |
| 		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 | |
| 		break;
 | |
| 	case COP_AES_CBC:
 | |
| 	default:
 | |
| 		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 | |
| 		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 | |
| 			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 | |
| 		if (first_block)
 | |
| 			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (req_ctx->decrypt) {
 | |
| 		op.config |= CFG_DIR_DEC;
 | |
| 		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 | |
| 				AES_KEY_LEN);
 | |
| 	} else {
 | |
| 		op.config |= CFG_DIR_ENC;
 | |
| 		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 | |
| 				AES_KEY_LEN);
 | |
| 	}
 | |
| 
 | |
| 	switch (ctx->key_len) {
 | |
| 	case AES_KEYSIZE_128:
 | |
| 		op.config |= CFG_AES_LEN_128;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_192:
 | |
| 		op.config |= CFG_AES_LEN_192;
 | |
| 		break;
 | |
| 	case AES_KEYSIZE_256:
 | |
| 		op.config |= CFG_AES_LEN_256;
 | |
| 		break;
 | |
| 	}
 | |
| 	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 | |
| 		ENC_P_DST(SRAM_DATA_OUT_START);
 | |
| 	op.enc_key_p = SRAM_DATA_KEY_P;
 | |
| 
 | |
| 	setup_data_in();
 | |
| 	op.enc_len = cpg->p.crypt_len;
 | |
| 	memcpy(cpg->sram + SRAM_CONFIG, &op,
 | |
| 			sizeof(struct sec_accel_config));
 | |
| 
 | |
| 	/* GO */
 | |
| 	mv_setup_timer();
 | |
| 	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 | |
| }
 | |
| 
 | |
| static void mv_crypto_algo_completion(void)
 | |
| {
 | |
| 	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 | |
| 	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 | |
| 
 | |
| 	sg_miter_stop(&cpg->p.src_sg_it);
 | |
| 	sg_miter_stop(&cpg->p.dst_sg_it);
 | |
| 
 | |
| 	if (req_ctx->op != COP_AES_CBC)
 | |
| 		return ;
 | |
| 
 | |
| 	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 | |
| }
 | |
| 
 | |
| static void mv_process_hash_current(int first_block)
 | |
| {
 | |
| 	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 | |
| 	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 | |
| 	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 | |
| 	struct req_progress *p = &cpg->p;
 | |
| 	struct sec_accel_config op = { 0 };
 | |
| 	int is_last;
 | |
| 
 | |
| 	switch (req_ctx->op) {
 | |
| 	case COP_SHA1:
 | |
| 	default:
 | |
| 		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 | |
| 		break;
 | |
| 	case COP_HMAC_SHA1:
 | |
| 		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 | |
| 		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 | |
| 				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	op.mac_src_p =
 | |
| 		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 | |
| 		req_ctx->
 | |
| 		count);
 | |
| 
 | |
| 	setup_data_in();
 | |
| 
 | |
| 	op.mac_digest =
 | |
| 		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 | |
| 	op.mac_iv =
 | |
| 		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 | |
| 		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 | |
| 
 | |
| 	is_last = req_ctx->last_chunk
 | |
| 		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 | |
| 		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
 | |
| 	if (req_ctx->first_hash) {
 | |
| 		if (is_last)
 | |
| 			op.config |= CFG_NOT_FRAG;
 | |
| 		else
 | |
| 			op.config |= CFG_FIRST_FRAG;
 | |
| 
 | |
| 		req_ctx->first_hash = 0;
 | |
| 	} else {
 | |
| 		if (is_last)
 | |
| 			op.config |= CFG_LAST_FRAG;
 | |
| 		else
 | |
| 			op.config |= CFG_MID_FRAG;
 | |
| 
 | |
| 		if (first_block) {
 | |
| 			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 | |
| 			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 | |
| 			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 | |
| 			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 | |
| 			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 | |
| 
 | |
| 	/* GO */
 | |
| 	mv_setup_timer();
 | |
| 	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 | |
| }
 | |
| 
 | |
| static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 | |
| 					  struct shash_desc *desc)
 | |
| {
 | |
| 	int i;
 | |
| 	struct sha1_state shash_state;
 | |
| 
 | |
| 	shash_state.count = ctx->count + ctx->count_add;
 | |
| 	for (i = 0; i < 5; i++)
 | |
| 		shash_state.state[i] = ctx->state[i];
 | |
| 	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 | |
| 	return crypto_shash_import(desc, &shash_state);
 | |
| }
 | |
| 
 | |
| static int mv_hash_final_fallback(struct ahash_request *req)
 | |
| {
 | |
| 	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 | |
| 	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 | |
| 	struct {
 | |
| 		struct shash_desc shash;
 | |
| 		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
 | |
| 	} desc;
 | |
| 	int rc;
 | |
| 
 | |
| 	desc.shash.tfm = tfm_ctx->fallback;
 | |
| 	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 	if (unlikely(req_ctx->first_hash)) {
 | |
| 		crypto_shash_init(&desc.shash);
 | |
| 		crypto_shash_update(&desc.shash, req_ctx->buffer,
 | |
| 				    req_ctx->extra_bytes);
 | |
| 	} else {
 | |
| 		/* only SHA1 for now....
 | |
| 		 */
 | |
| 		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	rc = crypto_shash_final(&desc.shash, req->result);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
 | |
| {
 | |
| 	ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 | |
| 	ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 | |
| 	ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 | |
| 	ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 | |
| 	ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 | |
| }
 | |
| 
 | |
| static void mv_hash_algo_completion(void)
 | |
| {
 | |
| 	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 | |
| 	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 | |
| 
 | |
| 	if (ctx->extra_bytes)
 | |
| 		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 | |
| 	sg_miter_stop(&cpg->p.src_sg_it);
 | |
| 
 | |
| 	if (likely(ctx->last_chunk)) {
 | |
| 		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 | |
| 			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 | |
| 			       crypto_ahash_digestsize(crypto_ahash_reqtfm
 | |
| 						       (req)));
 | |
| 		} else {
 | |
| 			mv_save_digest_state(ctx);
 | |
| 			mv_hash_final_fallback(req);
 | |
| 		}
 | |
| 	} else {
 | |
| 		mv_save_digest_state(ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dequeue_complete_req(void)
 | |
| {
 | |
| 	struct crypto_async_request *req = cpg->cur_req;
 | |
| 	void *buf;
 | |
| 	int ret;
 | |
| 	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 | |
| 	if (cpg->p.copy_back) {
 | |
| 		int need_copy_len = cpg->p.crypt_len;
 | |
| 		int sram_offset = 0;
 | |
| 		do {
 | |
| 			int dst_copy;
 | |
| 
 | |
| 			if (!cpg->p.sg_dst_left) {
 | |
| 				ret = sg_miter_next(&cpg->p.dst_sg_it);
 | |
| 				BUG_ON(!ret);
 | |
| 				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 | |
| 				cpg->p.dst_start = 0;
 | |
| 			}
 | |
| 
 | |
| 			buf = cpg->p.dst_sg_it.addr;
 | |
| 			buf += cpg->p.dst_start;
 | |
| 
 | |
| 			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 | |
| 
 | |
| 			memcpy(buf,
 | |
| 			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 | |
| 			       dst_copy);
 | |
| 			sram_offset += dst_copy;
 | |
| 			cpg->p.sg_dst_left -= dst_copy;
 | |
| 			need_copy_len -= dst_copy;
 | |
| 			cpg->p.dst_start += dst_copy;
 | |
| 		} while (need_copy_len > 0);
 | |
| 	}
 | |
| 
 | |
| 	cpg->p.crypt_len = 0;
 | |
| 
 | |
| 	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 | |
| 	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 | |
| 		/* process next scatter list entry */
 | |
| 		cpg->eng_st = ENGINE_BUSY;
 | |
| 		cpg->p.process(0);
 | |
| 	} else {
 | |
| 		cpg->p.complete();
 | |
| 		cpg->eng_st = ENGINE_IDLE;
 | |
| 		local_bh_disable();
 | |
| 		req->complete(req, 0);
 | |
| 		local_bh_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	size_t cur_len;
 | |
| 
 | |
| 	while (sl) {
 | |
| 		cur_len = sl[i].length;
 | |
| 		++i;
 | |
| 		if (total_bytes > cur_len)
 | |
| 			total_bytes -= cur_len;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct req_progress *p = &cpg->p;
 | |
| 	int num_sgs;
 | |
| 
 | |
| 	cpg->cur_req = &req->base;
 | |
| 	memset(p, 0, sizeof(struct req_progress));
 | |
| 	p->hw_nbytes = req->nbytes;
 | |
| 	p->complete = mv_crypto_algo_completion;
 | |
| 	p->process = mv_process_current_q;
 | |
| 	p->copy_back = 1;
 | |
| 
 | |
| 	num_sgs = count_sgs(req->src, req->nbytes);
 | |
| 	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 | |
| 
 | |
| 	num_sgs = count_sgs(req->dst, req->nbytes);
 | |
| 	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 | |
| 
 | |
| 	mv_process_current_q(1);
 | |
| }
 | |
| 
 | |
| static void mv_start_new_hash_req(struct ahash_request *req)
 | |
| {
 | |
| 	struct req_progress *p = &cpg->p;
 | |
| 	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 | |
| 	int num_sgs, hw_bytes, old_extra_bytes, rc;
 | |
| 	cpg->cur_req = &req->base;
 | |
| 	memset(p, 0, sizeof(struct req_progress));
 | |
| 	hw_bytes = req->nbytes + ctx->extra_bytes;
 | |
| 	old_extra_bytes = ctx->extra_bytes;
 | |
| 
 | |
| 	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 | |
| 	if (ctx->extra_bytes != 0
 | |
| 	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 | |
| 		hw_bytes -= ctx->extra_bytes;
 | |
| 	else
 | |
| 		ctx->extra_bytes = 0;
 | |
| 
 | |
| 	num_sgs = count_sgs(req->src, req->nbytes);
 | |
| 	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 | |
| 
 | |
| 	if (hw_bytes) {
 | |
| 		p->hw_nbytes = hw_bytes;
 | |
| 		p->complete = mv_hash_algo_completion;
 | |
| 		p->process = mv_process_hash_current;
 | |
| 
 | |
| 		if (unlikely(old_extra_bytes)) {
 | |
| 			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 | |
| 			       old_extra_bytes);
 | |
| 			p->crypt_len = old_extra_bytes;
 | |
| 		}
 | |
| 
 | |
| 		mv_process_hash_current(1);
 | |
| 	} else {
 | |
| 		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 | |
| 				ctx->extra_bytes - old_extra_bytes);
 | |
| 		sg_miter_stop(&p->src_sg_it);
 | |
| 		if (ctx->last_chunk)
 | |
| 			rc = mv_hash_final_fallback(req);
 | |
| 		else
 | |
| 			rc = 0;
 | |
| 		cpg->eng_st = ENGINE_IDLE;
 | |
| 		local_bh_disable();
 | |
| 		req->base.complete(&req->base, rc);
 | |
| 		local_bh_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int queue_manag(void *data)
 | |
| {
 | |
| 	cpg->eng_st = ENGINE_IDLE;
 | |
| 	do {
 | |
| 		struct crypto_async_request *async_req = NULL;
 | |
| 		struct crypto_async_request *backlog;
 | |
| 
 | |
| 		__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 
 | |
| 		if (cpg->eng_st == ENGINE_W_DEQUEUE)
 | |
| 			dequeue_complete_req();
 | |
| 
 | |
| 		spin_lock_irq(&cpg->lock);
 | |
| 		if (cpg->eng_st == ENGINE_IDLE) {
 | |
| 			backlog = crypto_get_backlog(&cpg->queue);
 | |
| 			async_req = crypto_dequeue_request(&cpg->queue);
 | |
| 			if (async_req) {
 | |
| 				BUG_ON(cpg->eng_st != ENGINE_IDLE);
 | |
| 				cpg->eng_st = ENGINE_BUSY;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock_irq(&cpg->lock);
 | |
| 
 | |
| 		if (backlog) {
 | |
| 			backlog->complete(backlog, -EINPROGRESS);
 | |
| 			backlog = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (async_req) {
 | |
| 			if (crypto_tfm_alg_type(async_req->tfm) !=
 | |
| 			    CRYPTO_ALG_TYPE_AHASH) {
 | |
| 				struct ablkcipher_request *req =
 | |
| 				    ablkcipher_request_cast(async_req);
 | |
| 				mv_start_new_crypt_req(req);
 | |
| 			} else {
 | |
| 				struct ahash_request *req =
 | |
| 				    ahash_request_cast(async_req);
 | |
| 				mv_start_new_hash_req(req);
 | |
| 			}
 | |
| 			async_req = NULL;
 | |
| 		}
 | |
| 
 | |
| 		schedule();
 | |
| 
 | |
| 	} while (!kthread_should_stop());
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mv_handle_req(struct crypto_async_request *req)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&cpg->lock, flags);
 | |
| 	ret = crypto_enqueue_request(&cpg->queue, req);
 | |
| 	spin_unlock_irqrestore(&cpg->lock, flags);
 | |
| 	wake_up_process(cpg->queue_th);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 | |
| 
 | |
| 	req_ctx->op = COP_AES_ECB;
 | |
| 	req_ctx->decrypt = 0;
 | |
| 
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 | |
| 	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 | |
| 
 | |
| 	req_ctx->op = COP_AES_ECB;
 | |
| 	req_ctx->decrypt = 1;
 | |
| 
 | |
| 	compute_aes_dec_key(ctx);
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 | |
| 
 | |
| 	req_ctx->op = COP_AES_CBC;
 | |
| 	req_ctx->decrypt = 0;
 | |
| 
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 | |
| {
 | |
| 	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 | |
| 	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 | |
| 
 | |
| 	req_ctx->op = COP_AES_CBC;
 | |
| 	req_ctx->decrypt = 1;
 | |
| 
 | |
| 	compute_aes_dec_key(ctx);
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static int mv_cra_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 | |
| 				 int is_last, unsigned int req_len,
 | |
| 				 int count_add)
 | |
| {
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	ctx->op = op;
 | |
| 	ctx->count = req_len;
 | |
| 	ctx->first_hash = 1;
 | |
| 	ctx->last_chunk = is_last;
 | |
| 	ctx->count_add = count_add;
 | |
| }
 | |
| 
 | |
| static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 | |
| 				   unsigned req_len)
 | |
| {
 | |
| 	ctx->last_chunk = is_last;
 | |
| 	ctx->count += req_len;
 | |
| }
 | |
| 
 | |
| static int mv_hash_init(struct ahash_request *req)
 | |
| {
 | |
| 	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 | |
| 	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 | |
| 			     tfm_ctx->count_add);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mv_hash_update(struct ahash_request *req)
 | |
| {
 | |
| 	if (!req->nbytes)
 | |
| 		return 0;
 | |
| 
 | |
| 	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static int mv_hash_final(struct ahash_request *req)
 | |
| {
 | |
| 	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 | |
| 
 | |
| 	ahash_request_set_crypt(req, NULL, req->result, 0);
 | |
| 	mv_update_hash_req_ctx(ctx, 1, 0);
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static int mv_hash_finup(struct ahash_request *req)
 | |
| {
 | |
| 	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static int mv_hash_digest(struct ahash_request *req)
 | |
| {
 | |
| 	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 | |
| 	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 | |
| 			     req->nbytes, tfm_ctx->count_add);
 | |
| 	return mv_handle_req(&req->base);
 | |
| }
 | |
| 
 | |
| static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 | |
| 			     const void *ostate)
 | |
| {
 | |
| 	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 | |
| 	int i;
 | |
| 	for (i = 0; i < 5; i++) {
 | |
| 		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 | |
| 		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 | |
| 			  unsigned int keylen)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 | |
| 	int bs, ds, ss;
 | |
| 
 | |
| 	if (!ctx->base_hash)
 | |
| 		return 0;
 | |
| 
 | |
| 	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* Can't see a way to extract the ipad/opad from the fallback tfm
 | |
| 	   so I'm basically copying code from the hmac module */
 | |
| 	bs = crypto_shash_blocksize(ctx->base_hash);
 | |
| 	ds = crypto_shash_digestsize(ctx->base_hash);
 | |
| 	ss = crypto_shash_statesize(ctx->base_hash);
 | |
| 
 | |
| 	{
 | |
| 		struct {
 | |
| 			struct shash_desc shash;
 | |
| 			char ctx[crypto_shash_descsize(ctx->base_hash)];
 | |
| 		} desc;
 | |
| 		unsigned int i;
 | |
| 		char ipad[ss];
 | |
| 		char opad[ss];
 | |
| 
 | |
| 		desc.shash.tfm = ctx->base_hash;
 | |
| 		desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
 | |
| 		    CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 		if (keylen > bs) {
 | |
| 			int err;
 | |
| 
 | |
| 			err =
 | |
| 			    crypto_shash_digest(&desc.shash, key, keylen, ipad);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			keylen = ds;
 | |
| 		} else
 | |
| 			memcpy(ipad, key, keylen);
 | |
| 
 | |
| 		memset(ipad + keylen, 0, bs - keylen);
 | |
| 		memcpy(opad, ipad, bs);
 | |
| 
 | |
| 		for (i = 0; i < bs; i++) {
 | |
| 			ipad[i] ^= 0x36;
 | |
| 			opad[i] ^= 0x5c;
 | |
| 		}
 | |
| 
 | |
| 		rc = crypto_shash_init(&desc.shash) ? :
 | |
| 		    crypto_shash_update(&desc.shash, ipad, bs) ? :
 | |
| 		    crypto_shash_export(&desc.shash, ipad) ? :
 | |
| 		    crypto_shash_init(&desc.shash) ? :
 | |
| 		    crypto_shash_update(&desc.shash, opad, bs) ? :
 | |
| 		    crypto_shash_export(&desc.shash, opad);
 | |
| 
 | |
| 		if (rc == 0)
 | |
| 			mv_hash_init_ivs(ctx, ipad, opad);
 | |
| 
 | |
| 		return rc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 | |
| 			    enum hash_op op, int count_add)
 | |
| {
 | |
| 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 | |
| 	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct crypto_shash *fallback_tfm = NULL;
 | |
| 	struct crypto_shash *base_hash = NULL;
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| 	ctx->op = op;
 | |
| 	ctx->count_add = count_add;
 | |
| 
 | |
| 	/* Allocate a fallback and abort if it failed. */
 | |
| 	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 | |
| 					  CRYPTO_ALG_NEED_FALLBACK);
 | |
| 	if (IS_ERR(fallback_tfm)) {
 | |
| 		printk(KERN_WARNING MV_CESA
 | |
| 		       "Fallback driver '%s' could not be loaded!\n",
 | |
| 		       fallback_driver_name);
 | |
| 		err = PTR_ERR(fallback_tfm);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ctx->fallback = fallback_tfm;
 | |
| 
 | |
| 	if (base_hash_name) {
 | |
| 		/* Allocate a hash to compute the ipad/opad of hmac. */
 | |
| 		base_hash = crypto_alloc_shash(base_hash_name, 0,
 | |
| 					       CRYPTO_ALG_NEED_FALLBACK);
 | |
| 		if (IS_ERR(base_hash)) {
 | |
| 			printk(KERN_WARNING MV_CESA
 | |
| 			       "Base driver '%s' could not be loaded!\n",
 | |
| 			       base_hash_name);
 | |
| 			err = PTR_ERR(base_hash);
 | |
| 			goto err_bad_base;
 | |
| 		}
 | |
| 	}
 | |
| 	ctx->base_hash = base_hash;
 | |
| 
 | |
| 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 | |
| 				 sizeof(struct mv_req_hash_ctx) +
 | |
| 				 crypto_shash_descsize(ctx->fallback));
 | |
| 	return 0;
 | |
| err_bad_base:
 | |
| 	crypto_free_shash(fallback_tfm);
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 
 | |
| 	crypto_free_shash(ctx->fallback);
 | |
| 	if (ctx->base_hash)
 | |
| 		crypto_free_shash(ctx->base_hash);
 | |
| }
 | |
| 
 | |
| static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 | |
| }
 | |
| 
 | |
| static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 | |
| }
 | |
| 
 | |
| static irqreturn_t crypto_int(int irq, void *priv)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 | |
| 	if (!(val & SEC_INT_ACCEL0_DONE))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (!del_timer(&cpg->completion_timer)) {
 | |
| 		printk(KERN_WARNING MV_CESA
 | |
| 		       "got an interrupt but no pending timer?\n");
 | |
| 	}
 | |
| 	val &= ~SEC_INT_ACCEL0_DONE;
 | |
| 	writel(val, cpg->reg + FPGA_INT_STATUS);
 | |
| 	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 | |
| 	BUG_ON(cpg->eng_st != ENGINE_BUSY);
 | |
| 	cpg->eng_st = ENGINE_W_DEQUEUE;
 | |
| 	wake_up_process(cpg->queue_th);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static struct crypto_alg mv_aes_alg_ecb = {
 | |
| 	.cra_name		= "ecb(aes)",
 | |
| 	.cra_driver_name	= "mv-ecb-aes",
 | |
| 	.cra_priority	= 300,
 | |
| 	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 | |
| 			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 | |
| 	.cra_blocksize	= 16,
 | |
| 	.cra_ctxsize	= sizeof(struct mv_ctx),
 | |
| 	.cra_alignmask	= 0,
 | |
| 	.cra_type	= &crypto_ablkcipher_type,
 | |
| 	.cra_module	= THIS_MODULE,
 | |
| 	.cra_init	= mv_cra_init,
 | |
| 	.cra_u		= {
 | |
| 		.ablkcipher = {
 | |
| 			.min_keysize	=	AES_MIN_KEY_SIZE,
 | |
| 			.max_keysize	=	AES_MAX_KEY_SIZE,
 | |
| 			.setkey		=	mv_setkey_aes,
 | |
| 			.encrypt	=	mv_enc_aes_ecb,
 | |
| 			.decrypt	=	mv_dec_aes_ecb,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static struct crypto_alg mv_aes_alg_cbc = {
 | |
| 	.cra_name		= "cbc(aes)",
 | |
| 	.cra_driver_name	= "mv-cbc-aes",
 | |
| 	.cra_priority	= 300,
 | |
| 	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 | |
| 			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 | |
| 	.cra_blocksize	= AES_BLOCK_SIZE,
 | |
| 	.cra_ctxsize	= sizeof(struct mv_ctx),
 | |
| 	.cra_alignmask	= 0,
 | |
| 	.cra_type	= &crypto_ablkcipher_type,
 | |
| 	.cra_module	= THIS_MODULE,
 | |
| 	.cra_init	= mv_cra_init,
 | |
| 	.cra_u		= {
 | |
| 		.ablkcipher = {
 | |
| 			.ivsize		=	AES_BLOCK_SIZE,
 | |
| 			.min_keysize	=	AES_MIN_KEY_SIZE,
 | |
| 			.max_keysize	=	AES_MAX_KEY_SIZE,
 | |
| 			.setkey		=	mv_setkey_aes,
 | |
| 			.encrypt	=	mv_enc_aes_cbc,
 | |
| 			.decrypt	=	mv_dec_aes_cbc,
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static struct ahash_alg mv_sha1_alg = {
 | |
| 	.init = mv_hash_init,
 | |
| 	.update = mv_hash_update,
 | |
| 	.final = mv_hash_final,
 | |
| 	.finup = mv_hash_finup,
 | |
| 	.digest = mv_hash_digest,
 | |
| 	.halg = {
 | |
| 		 .digestsize = SHA1_DIGEST_SIZE,
 | |
| 		 .base = {
 | |
| 			  .cra_name = "sha1",
 | |
| 			  .cra_driver_name = "mv-sha1",
 | |
| 			  .cra_priority = 300,
 | |
| 			  .cra_flags =
 | |
| 			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 | |
| 			  CRYPTO_ALG_NEED_FALLBACK,
 | |
| 			  .cra_blocksize = SHA1_BLOCK_SIZE,
 | |
| 			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 | |
| 			  .cra_init = mv_cra_hash_sha1_init,
 | |
| 			  .cra_exit = mv_cra_hash_exit,
 | |
| 			  .cra_module = THIS_MODULE,
 | |
| 			  }
 | |
| 		 }
 | |
| };
 | |
| 
 | |
| static struct ahash_alg mv_hmac_sha1_alg = {
 | |
| 	.init = mv_hash_init,
 | |
| 	.update = mv_hash_update,
 | |
| 	.final = mv_hash_final,
 | |
| 	.finup = mv_hash_finup,
 | |
| 	.digest = mv_hash_digest,
 | |
| 	.setkey = mv_hash_setkey,
 | |
| 	.halg = {
 | |
| 		 .digestsize = SHA1_DIGEST_SIZE,
 | |
| 		 .base = {
 | |
| 			  .cra_name = "hmac(sha1)",
 | |
| 			  .cra_driver_name = "mv-hmac-sha1",
 | |
| 			  .cra_priority = 300,
 | |
| 			  .cra_flags =
 | |
| 			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 | |
| 			  CRYPTO_ALG_NEED_FALLBACK,
 | |
| 			  .cra_blocksize = SHA1_BLOCK_SIZE,
 | |
| 			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 | |
| 			  .cra_init = mv_cra_hash_hmac_sha1_init,
 | |
| 			  .cra_exit = mv_cra_hash_exit,
 | |
| 			  .cra_module = THIS_MODULE,
 | |
| 			  }
 | |
| 		 }
 | |
| };
 | |
| 
 | |
| static int mv_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct crypto_priv *cp;
 | |
| 	struct resource *res;
 | |
| 	int irq;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (cpg) {
 | |
| 		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
 | |
| 		return -EEXIST;
 | |
| 	}
 | |
| 
 | |
| 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
 | |
| 	if (!res)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
 | |
| 	if (!cp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_init(&cp->lock);
 | |
| 	crypto_init_queue(&cp->queue, 50);
 | |
| 	cp->reg = ioremap(res->start, resource_size(res));
 | |
| 	if (!cp->reg) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
 | |
| 	if (!res) {
 | |
| 		ret = -ENXIO;
 | |
| 		goto err_unmap_reg;
 | |
| 	}
 | |
| 	cp->sram_size = resource_size(res);
 | |
| 	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
 | |
| 	cp->sram = ioremap(res->start, cp->sram_size);
 | |
| 	if (!cp->sram) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_unmap_reg;
 | |
| 	}
 | |
| 
 | |
| 	if (pdev->dev.of_node)
 | |
| 		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
 | |
| 	else
 | |
| 		irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0 || irq == NO_IRQ) {
 | |
| 		ret = irq;
 | |
| 		goto err_unmap_sram;
 | |
| 	}
 | |
| 	cp->irq = irq;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, cp);
 | |
| 	cpg = cp;
 | |
| 
 | |
| 	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
 | |
| 	if (IS_ERR(cp->queue_th)) {
 | |
| 		ret = PTR_ERR(cp->queue_th);
 | |
| 		goto err_unmap_sram;
 | |
| 	}
 | |
| 
 | |
| 	ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
 | |
| 			cp);
 | |
| 	if (ret)
 | |
| 		goto err_thread;
 | |
| 
 | |
| 	/* Not all platforms can gate the clock, so it is not
 | |
| 	   an error if the clock does not exists. */
 | |
| 	cp->clk = clk_get(&pdev->dev, NULL);
 | |
| 	if (!IS_ERR(cp->clk))
 | |
| 		clk_prepare_enable(cp->clk);
 | |
| 
 | |
| 	writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
 | |
| 	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
 | |
| 	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
 | |
| 	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
 | |
| 
 | |
| 	ret = crypto_register_alg(&mv_aes_alg_ecb);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING MV_CESA
 | |
| 		       "Could not register aes-ecb driver\n");
 | |
| 		goto err_irq;
 | |
| 	}
 | |
| 
 | |
| 	ret = crypto_register_alg(&mv_aes_alg_cbc);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_WARNING MV_CESA
 | |
| 		       "Could not register aes-cbc driver\n");
 | |
| 		goto err_unreg_ecb;
 | |
| 	}
 | |
| 
 | |
| 	ret = crypto_register_ahash(&mv_sha1_alg);
 | |
| 	if (ret == 0)
 | |
| 		cpg->has_sha1 = 1;
 | |
| 	else
 | |
| 		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
 | |
| 
 | |
| 	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
 | |
| 	if (ret == 0) {
 | |
| 		cpg->has_hmac_sha1 = 1;
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING MV_CESA
 | |
| 		       "Could not register hmac-sha1 driver\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| err_unreg_ecb:
 | |
| 	crypto_unregister_alg(&mv_aes_alg_ecb);
 | |
| err_irq:
 | |
| 	free_irq(irq, cp);
 | |
| 	if (!IS_ERR(cp->clk)) {
 | |
| 		clk_disable_unprepare(cp->clk);
 | |
| 		clk_put(cp->clk);
 | |
| 	}
 | |
| err_thread:
 | |
| 	kthread_stop(cp->queue_th);
 | |
| err_unmap_sram:
 | |
| 	iounmap(cp->sram);
 | |
| err_unmap_reg:
 | |
| 	iounmap(cp->reg);
 | |
| err:
 | |
| 	kfree(cp);
 | |
| 	cpg = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mv_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct crypto_priv *cp = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	crypto_unregister_alg(&mv_aes_alg_ecb);
 | |
| 	crypto_unregister_alg(&mv_aes_alg_cbc);
 | |
| 	if (cp->has_sha1)
 | |
| 		crypto_unregister_ahash(&mv_sha1_alg);
 | |
| 	if (cp->has_hmac_sha1)
 | |
| 		crypto_unregister_ahash(&mv_hmac_sha1_alg);
 | |
| 	kthread_stop(cp->queue_th);
 | |
| 	free_irq(cp->irq, cp);
 | |
| 	memset(cp->sram, 0, cp->sram_size);
 | |
| 	iounmap(cp->sram);
 | |
| 	iounmap(cp->reg);
 | |
| 
 | |
| 	if (!IS_ERR(cp->clk)) {
 | |
| 		clk_disable_unprepare(cp->clk);
 | |
| 		clk_put(cp->clk);
 | |
| 	}
 | |
| 
 | |
| 	kfree(cp);
 | |
| 	cpg = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id mv_cesa_of_match_table[] = {
 | |
| 	{ .compatible = "marvell,orion-crypto", },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
 | |
| 
 | |
| static struct platform_driver marvell_crypto = {
 | |
| 	.probe		= mv_probe,
 | |
| 	.remove		= mv_remove,
 | |
| 	.driver		= {
 | |
| 		.owner	= THIS_MODULE,
 | |
| 		.name	= "mv_crypto",
 | |
| 		.of_match_table = mv_cesa_of_match_table,
 | |
| 	},
 | |
| };
 | |
| MODULE_ALIAS("platform:mv_crypto");
 | |
| 
 | |
| module_platform_driver(marvell_crypto);
 | |
| 
 | |
| MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
 | |
| MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
 | |
| MODULE_LICENSE("GPL");
 |