 c11baa02c5
			
		
	
	
	c11baa02c5
	
	
	
		
			
			Move the support to perform an HMAC calculation into the CCP operations file. This eliminates the need to perform a synchronous SHA operation used to calculate the HMAC. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			437 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			437 lines
		
	
	
	
		
			10 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
 | |
|  *
 | |
|  * Copyright (C) 2013 Advanced Micro Devices, Inc.
 | |
|  *
 | |
|  * Author: Tom Lendacky <thomas.lendacky@amd.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/crypto.h>
 | |
| #include <crypto/algapi.h>
 | |
| #include <crypto/hash.h>
 | |
| #include <crypto/internal/hash.h>
 | |
| #include <crypto/sha.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| 
 | |
| #include "ccp-crypto.h"
 | |
| 
 | |
| 
 | |
| static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
 | |
| {
 | |
| 	struct ahash_request *req = ahash_request_cast(async_req);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	unsigned int digest_size = crypto_ahash_digestsize(tfm);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto e_free;
 | |
| 
 | |
| 	if (rctx->hash_rem) {
 | |
| 		/* Save remaining data to buffer */
 | |
| 		unsigned int offset = rctx->nbytes - rctx->hash_rem;
 | |
| 		scatterwalk_map_and_copy(rctx->buf, rctx->src,
 | |
| 					 offset, rctx->hash_rem, 0);
 | |
| 		rctx->buf_count = rctx->hash_rem;
 | |
| 	} else
 | |
| 		rctx->buf_count = 0;
 | |
| 
 | |
| 	/* Update result area if supplied */
 | |
| 	if (req->result)
 | |
| 		memcpy(req->result, rctx->ctx, digest_size);
 | |
| 
 | |
| e_free:
 | |
| 	sg_free_table(&rctx->data_sg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
 | |
| 			     unsigned int final)
 | |
| {
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	struct scatterlist *sg;
 | |
| 	unsigned int block_size =
 | |
| 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 | |
| 	unsigned int sg_count;
 | |
| 	gfp_t gfp;
 | |
| 	u64 len;
 | |
| 	int ret;
 | |
| 
 | |
| 	len = (u64)rctx->buf_count + (u64)nbytes;
 | |
| 
 | |
| 	if (!final && (len <= block_size)) {
 | |
| 		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
 | |
| 					 0, nbytes, 0);
 | |
| 		rctx->buf_count += nbytes;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	rctx->src = req->src;
 | |
| 	rctx->nbytes = nbytes;
 | |
| 
 | |
| 	rctx->final = final;
 | |
| 	rctx->hash_rem = final ? 0 : len & (block_size - 1);
 | |
| 	rctx->hash_cnt = len - rctx->hash_rem;
 | |
| 	if (!final && !rctx->hash_rem) {
 | |
| 		/* CCP can't do zero length final, so keep some data around */
 | |
| 		rctx->hash_cnt -= block_size;
 | |
| 		rctx->hash_rem = block_size;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the context scatterlist */
 | |
| 	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
 | |
| 
 | |
| 	sg = NULL;
 | |
| 	if (rctx->buf_count && nbytes) {
 | |
| 		/* Build the data scatterlist table - allocate enough entries
 | |
| 		 * for both data pieces (buffer and input data)
 | |
| 		 */
 | |
| 		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 | |
| 			GFP_KERNEL : GFP_ATOMIC;
 | |
| 		sg_count = sg_nents(req->src) + 1;
 | |
| 		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 | |
| 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
 | |
| 		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
 | |
| 		sg_mark_end(sg);
 | |
| 
 | |
| 		sg = rctx->data_sg.sgl;
 | |
| 	} else if (rctx->buf_count) {
 | |
| 		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 | |
| 
 | |
| 		sg = &rctx->buf_sg;
 | |
| 	} else if (nbytes) {
 | |
| 		sg = req->src;
 | |
| 	}
 | |
| 
 | |
| 	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
 | |
| 
 | |
| 	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
 | |
| 	INIT_LIST_HEAD(&rctx->cmd.entry);
 | |
| 	rctx->cmd.engine = CCP_ENGINE_SHA;
 | |
| 	rctx->cmd.u.sha.type = rctx->type;
 | |
| 	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
 | |
| 	rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
 | |
| 	rctx->cmd.u.sha.src = sg;
 | |
| 	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
 | |
| 	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
 | |
| 		&ctx->u.sha.opad_sg : NULL;
 | |
| 	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
 | |
| 		ctx->u.sha.opad_count : 0;
 | |
| 	rctx->cmd.u.sha.first = rctx->first;
 | |
| 	rctx->cmd.u.sha.final = rctx->final;
 | |
| 	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
 | |
| 
 | |
| 	rctx->first = 0;
 | |
| 
 | |
| 	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_sha_init(struct ahash_request *req)
 | |
| {
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 | |
| 	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
 | |
| 	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 | |
| 	struct ccp_crypto_ahash_alg *alg =
 | |
| 		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
 | |
| 	unsigned int block_size =
 | |
| 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 | |
| 
 | |
| 	memset(rctx, 0, sizeof(*rctx));
 | |
| 
 | |
| 	rctx->type = alg->type;
 | |
| 	rctx->first = 1;
 | |
| 
 | |
| 	if (ctx->u.sha.key_len) {
 | |
| 		/* Buffer the HMAC key for first update */
 | |
| 		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
 | |
| 		rctx->buf_count = block_size;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ccp_sha_update(struct ahash_request *req)
 | |
| {
 | |
| 	return ccp_do_sha_update(req, req->nbytes, 0);
 | |
| }
 | |
| 
 | |
| static int ccp_sha_final(struct ahash_request *req)
 | |
| {
 | |
| 	return ccp_do_sha_update(req, 0, 1);
 | |
| }
 | |
| 
 | |
| static int ccp_sha_finup(struct ahash_request *req)
 | |
| {
 | |
| 	return ccp_do_sha_update(req, req->nbytes, 1);
 | |
| }
 | |
| 
 | |
| static int ccp_sha_digest(struct ahash_request *req)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ccp_sha_init(req);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return ccp_sha_finup(req);
 | |
| }
 | |
| 
 | |
| static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
 | |
| 			  unsigned int key_len)
 | |
| {
 | |
| 	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
 | |
| 	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
 | |
| 	struct {
 | |
| 		struct shash_desc sdesc;
 | |
| 		char ctx[crypto_shash_descsize(shash)];
 | |
| 	} desc;
 | |
| 	unsigned int block_size = crypto_shash_blocksize(shash);
 | |
| 	unsigned int digest_size = crypto_shash_digestsize(shash);
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* Set to zero until complete */
 | |
| 	ctx->u.sha.key_len = 0;
 | |
| 
 | |
| 	/* Clear key area to provide zero padding for keys smaller
 | |
| 	 * than the block size
 | |
| 	 */
 | |
| 	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
 | |
| 
 | |
| 	if (key_len > block_size) {
 | |
| 		/* Must hash the input key */
 | |
| 		desc.sdesc.tfm = shash;
 | |
| 		desc.sdesc.flags = crypto_ahash_get_flags(tfm) &
 | |
| 			CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 
 | |
| 		ret = crypto_shash_digest(&desc.sdesc, key, key_len,
 | |
| 					  ctx->u.sha.key);
 | |
| 		if (ret) {
 | |
| 			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		key_len = digest_size;
 | |
| 	} else
 | |
| 		memcpy(ctx->u.sha.key, key, key_len);
 | |
| 
 | |
| 	for (i = 0; i < block_size; i++) {
 | |
| 		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
 | |
| 		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
 | |
| 	}
 | |
| 
 | |
| 	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
 | |
| 	ctx->u.sha.opad_count = block_size;
 | |
| 
 | |
| 	ctx->u.sha.key_len = key_len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ccp_sha_cra_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 | |
| 
 | |
| 	ctx->complete = ccp_sha_complete;
 | |
| 	ctx->u.sha.key_len = 0;
 | |
| 
 | |
| 	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
 | |
| 	struct crypto_shash *hmac_tfm;
 | |
| 
 | |
| 	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
 | |
| 	if (IS_ERR(hmac_tfm)) {
 | |
| 		pr_warn("could not load driver %s need for HMAC support\n",
 | |
| 			alg->child_alg);
 | |
| 		return PTR_ERR(hmac_tfm);
 | |
| 	}
 | |
| 
 | |
| 	ctx->u.sha.hmac_tfm = hmac_tfm;
 | |
| 
 | |
| 	return ccp_sha_cra_init(tfm);
 | |
| }
 | |
| 
 | |
| static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 | |
| 
 | |
| 	if (ctx->u.sha.hmac_tfm)
 | |
| 		crypto_free_shash(ctx->u.sha.hmac_tfm);
 | |
| 
 | |
| 	ccp_sha_cra_exit(tfm);
 | |
| }
 | |
| 
 | |
| struct ccp_sha_def {
 | |
| 	const char *name;
 | |
| 	const char *drv_name;
 | |
| 	enum ccp_sha_type type;
 | |
| 	u32 digest_size;
 | |
| 	u32 block_size;
 | |
| };
 | |
| 
 | |
| static struct ccp_sha_def sha_algs[] = {
 | |
| 	{
 | |
| 		.name		= "sha1",
 | |
| 		.drv_name	= "sha1-ccp",
 | |
| 		.type		= CCP_SHA_TYPE_1,
 | |
| 		.digest_size	= SHA1_DIGEST_SIZE,
 | |
| 		.block_size	= SHA1_BLOCK_SIZE,
 | |
| 	},
 | |
| 	{
 | |
| 		.name		= "sha224",
 | |
| 		.drv_name	= "sha224-ccp",
 | |
| 		.type		= CCP_SHA_TYPE_224,
 | |
| 		.digest_size	= SHA224_DIGEST_SIZE,
 | |
| 		.block_size	= SHA224_BLOCK_SIZE,
 | |
| 	},
 | |
| 	{
 | |
| 		.name		= "sha256",
 | |
| 		.drv_name	= "sha256-ccp",
 | |
| 		.type		= CCP_SHA_TYPE_256,
 | |
| 		.digest_size	= SHA256_DIGEST_SIZE,
 | |
| 		.block_size	= SHA256_BLOCK_SIZE,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int ccp_register_hmac_alg(struct list_head *head,
 | |
| 				 const struct ccp_sha_def *def,
 | |
| 				 const struct ccp_crypto_ahash_alg *base_alg)
 | |
| {
 | |
| 	struct ccp_crypto_ahash_alg *ccp_alg;
 | |
| 	struct ahash_alg *alg;
 | |
| 	struct hash_alg_common *halg;
 | |
| 	struct crypto_alg *base;
 | |
| 	int ret;
 | |
| 
 | |
| 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 | |
| 	if (!ccp_alg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Copy the base algorithm and only change what's necessary */
 | |
| 	*ccp_alg = *base_alg;
 | |
| 	INIT_LIST_HEAD(&ccp_alg->entry);
 | |
| 
 | |
| 	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
 | |
| 
 | |
| 	alg = &ccp_alg->alg;
 | |
| 	alg->setkey = ccp_sha_setkey;
 | |
| 
 | |
| 	halg = &alg->halg;
 | |
| 
 | |
| 	base = &halg->base;
 | |
| 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
 | |
| 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
 | |
| 		 def->drv_name);
 | |
| 	base->cra_init = ccp_hmac_sha_cra_init;
 | |
| 	base->cra_exit = ccp_hmac_sha_cra_exit;
 | |
| 
 | |
| 	ret = crypto_register_ahash(alg);
 | |
| 	if (ret) {
 | |
| 		pr_err("%s ahash algorithm registration error (%d)\n",
 | |
| 			base->cra_name, ret);
 | |
| 		kfree(ccp_alg);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	list_add(&ccp_alg->entry, head);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_register_sha_alg(struct list_head *head,
 | |
| 				const struct ccp_sha_def *def)
 | |
| {
 | |
| 	struct ccp_crypto_ahash_alg *ccp_alg;
 | |
| 	struct ahash_alg *alg;
 | |
| 	struct hash_alg_common *halg;
 | |
| 	struct crypto_alg *base;
 | |
| 	int ret;
 | |
| 
 | |
| 	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 | |
| 	if (!ccp_alg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ccp_alg->entry);
 | |
| 
 | |
| 	ccp_alg->type = def->type;
 | |
| 
 | |
| 	alg = &ccp_alg->alg;
 | |
| 	alg->init = ccp_sha_init;
 | |
| 	alg->update = ccp_sha_update;
 | |
| 	alg->final = ccp_sha_final;
 | |
| 	alg->finup = ccp_sha_finup;
 | |
| 	alg->digest = ccp_sha_digest;
 | |
| 
 | |
| 	halg = &alg->halg;
 | |
| 	halg->digestsize = def->digest_size;
 | |
| 
 | |
| 	base = &halg->base;
 | |
| 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 | |
| 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 | |
| 		 def->drv_name);
 | |
| 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
 | |
| 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
 | |
| 			  CRYPTO_ALG_NEED_FALLBACK;
 | |
| 	base->cra_blocksize = def->block_size;
 | |
| 	base->cra_ctxsize = sizeof(struct ccp_ctx);
 | |
| 	base->cra_priority = CCP_CRA_PRIORITY;
 | |
| 	base->cra_type = &crypto_ahash_type;
 | |
| 	base->cra_init = ccp_sha_cra_init;
 | |
| 	base->cra_exit = ccp_sha_cra_exit;
 | |
| 	base->cra_module = THIS_MODULE;
 | |
| 
 | |
| 	ret = crypto_register_ahash(alg);
 | |
| 	if (ret) {
 | |
| 		pr_err("%s ahash algorithm registration error (%d)\n",
 | |
| 			base->cra_name, ret);
 | |
| 		kfree(ccp_alg);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	list_add(&ccp_alg->entry, head);
 | |
| 
 | |
| 	ret = ccp_register_hmac_alg(head, def, ccp_alg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int ccp_register_sha_algs(struct list_head *head)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
 | |
| 		ret = ccp_register_sha_alg(head, &sha_algs[i]);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |