 c9f21cb638
			
		
	
	
	c9f21cb638
	
	
	
		
			
			If the ccp is built as a built-in module, then ccp-crypto (whether built as a module or a built-in module) will be able to load and it will register its crypto algorithms. If the system does not have a CCP this will result in -ENODEV being returned whenever a command is attempted to be queued by the registered crypto algorithms. Add an API, ccp_present(), that checks for the presence of a CCP on the system. The ccp-crypto module can use this to determine if it should register it's crypto alogorithms. Cc: stable@vger.kernel.org Reported-by: Scot Doyle <lkml14@scotdoyle.com> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Tested-by: Scot Doyle <lkml14@scotdoyle.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			392 lines
		
	
	
	
		
			9.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			392 lines
		
	
	
	
		
			9.4 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AMD Cryptographic Coprocessor (CCP) crypto API support
 | |
|  *
 | |
|  * Copyright (C) 2013 Advanced Micro Devices, Inc.
 | |
|  *
 | |
|  * Author: Tom Lendacky <thomas.lendacky@amd.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/ccp.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <crypto/internal/hash.h>
 | |
| 
 | |
| #include "ccp-crypto.h"
 | |
| 
 | |
| MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION("1.0.0");
 | |
| MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
 | |
| 
 | |
| static unsigned int aes_disable;
 | |
| module_param(aes_disable, uint, 0444);
 | |
| MODULE_PARM_DESC(aes_disable, "Disable use of AES - any non-zero value");
 | |
| 
 | |
| static unsigned int sha_disable;
 | |
| module_param(sha_disable, uint, 0444);
 | |
| MODULE_PARM_DESC(sha_disable, "Disable use of SHA - any non-zero value");
 | |
| 
 | |
| 
 | |
| /* List heads for the supported algorithms */
 | |
| static LIST_HEAD(hash_algs);
 | |
| static LIST_HEAD(cipher_algs);
 | |
| 
 | |
| /* For any tfm, requests for that tfm must be returned on the order
 | |
|  * received.  With multiple queues available, the CCP can process more
 | |
|  * than one cmd at a time.  Therefore we must maintain a cmd list to insure
 | |
|  * the proper ordering of requests on a given tfm.
 | |
|  */
 | |
| struct ccp_crypto_queue {
 | |
| 	struct list_head cmds;
 | |
| 	struct list_head *backlog;
 | |
| 	unsigned int cmd_count;
 | |
| };
 | |
| #define CCP_CRYPTO_MAX_QLEN	100
 | |
| 
 | |
| static struct ccp_crypto_queue req_queue;
 | |
| static spinlock_t req_queue_lock;
 | |
| 
 | |
| struct ccp_crypto_cmd {
 | |
| 	struct list_head entry;
 | |
| 
 | |
| 	struct ccp_cmd *cmd;
 | |
| 
 | |
| 	/* Save the crypto_tfm and crypto_async_request addresses
 | |
| 	 * separately to avoid any reference to a possibly invalid
 | |
| 	 * crypto_async_request structure after invoking the request
 | |
| 	 * callback
 | |
| 	 */
 | |
| 	struct crypto_async_request *req;
 | |
| 	struct crypto_tfm *tfm;
 | |
| 
 | |
| 	/* Used for held command processing to determine state */
 | |
| 	int ret;
 | |
| };
 | |
| 
 | |
| struct ccp_crypto_cpu {
 | |
| 	struct work_struct work;
 | |
| 	struct completion completion;
 | |
| 	struct ccp_crypto_cmd *crypto_cmd;
 | |
| 	int err;
 | |
| };
 | |
| 
 | |
| 
 | |
| static inline bool ccp_crypto_success(int err)
 | |
| {
 | |
| 	if (err && (err != -EINPROGRESS) && (err != -EBUSY))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
 | |
| 	struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
 | |
| {
 | |
| 	struct ccp_crypto_cmd *held = NULL, *tmp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	*backlog = NULL;
 | |
| 
 | |
| 	spin_lock_irqsave(&req_queue_lock, flags);
 | |
| 
 | |
| 	/* Held cmds will be after the current cmd in the queue so start
 | |
| 	 * searching for a cmd with a matching tfm for submission.
 | |
| 	 */
 | |
| 	tmp = crypto_cmd;
 | |
| 	list_for_each_entry_continue(tmp, &req_queue.cmds, entry) {
 | |
| 		if (crypto_cmd->tfm != tmp->tfm)
 | |
| 			continue;
 | |
| 		held = tmp;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Process the backlog:
 | |
| 	 *   Because cmds can be executed from any point in the cmd list
 | |
| 	 *   special precautions have to be taken when handling the backlog.
 | |
| 	 */
 | |
| 	if (req_queue.backlog != &req_queue.cmds) {
 | |
| 		/* Skip over this cmd if it is the next backlog cmd */
 | |
| 		if (req_queue.backlog == &crypto_cmd->entry)
 | |
| 			req_queue.backlog = crypto_cmd->entry.next;
 | |
| 
 | |
| 		*backlog = container_of(req_queue.backlog,
 | |
| 					struct ccp_crypto_cmd, entry);
 | |
| 		req_queue.backlog = req_queue.backlog->next;
 | |
| 
 | |
| 		/* Skip over this cmd if it is now the next backlog cmd */
 | |
| 		if (req_queue.backlog == &crypto_cmd->entry)
 | |
| 			req_queue.backlog = crypto_cmd->entry.next;
 | |
| 	}
 | |
| 
 | |
| 	/* Remove the cmd entry from the list of cmds */
 | |
| 	req_queue.cmd_count--;
 | |
| 	list_del(&crypto_cmd->entry);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&req_queue_lock, flags);
 | |
| 
 | |
| 	return held;
 | |
| }
 | |
| 
 | |
| static void ccp_crypto_complete(void *data, int err)
 | |
| {
 | |
| 	struct ccp_crypto_cmd *crypto_cmd = data;
 | |
| 	struct ccp_crypto_cmd *held, *next, *backlog;
 | |
| 	struct crypto_async_request *req = crypto_cmd->req;
 | |
| 	struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (err == -EINPROGRESS) {
 | |
| 		/* Only propogate the -EINPROGRESS if necessary */
 | |
| 		if (crypto_cmd->ret == -EBUSY) {
 | |
| 			crypto_cmd->ret = -EINPROGRESS;
 | |
| 			req->complete(req, -EINPROGRESS);
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Operation has completed - update the queue before invoking
 | |
| 	 * the completion callbacks and retrieve the next cmd (cmd with
 | |
| 	 * a matching tfm) that can be submitted to the CCP.
 | |
| 	 */
 | |
| 	held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
 | |
| 	if (backlog) {
 | |
| 		backlog->ret = -EINPROGRESS;
 | |
| 		backlog->req->complete(backlog->req, -EINPROGRESS);
 | |
| 	}
 | |
| 
 | |
| 	/* Transition the state from -EBUSY to -EINPROGRESS first */
 | |
| 	if (crypto_cmd->ret == -EBUSY)
 | |
| 		req->complete(req, -EINPROGRESS);
 | |
| 
 | |
| 	/* Completion callbacks */
 | |
| 	ret = err;
 | |
| 	if (ctx->complete)
 | |
| 		ret = ctx->complete(req, ret);
 | |
| 	req->complete(req, ret);
 | |
| 
 | |
| 	/* Submit the next cmd */
 | |
| 	while (held) {
 | |
| 		/* Since we have already queued the cmd, we must indicate that
 | |
| 		 * we can backlog so as not to "lose" this request.
 | |
| 		 */
 | |
| 		held->cmd->flags |= CCP_CMD_MAY_BACKLOG;
 | |
| 		ret = ccp_enqueue_cmd(held->cmd);
 | |
| 		if (ccp_crypto_success(ret))
 | |
| 			break;
 | |
| 
 | |
| 		/* Error occurred, report it and get the next entry */
 | |
| 		ctx = crypto_tfm_ctx(held->req->tfm);
 | |
| 		if (ctx->complete)
 | |
| 			ret = ctx->complete(held->req, ret);
 | |
| 		held->req->complete(held->req, ret);
 | |
| 
 | |
| 		next = ccp_crypto_cmd_complete(held, &backlog);
 | |
| 		if (backlog) {
 | |
| 			backlog->ret = -EINPROGRESS;
 | |
| 			backlog->req->complete(backlog->req, -EINPROGRESS);
 | |
| 		}
 | |
| 
 | |
| 		kfree(held);
 | |
| 		held = next;
 | |
| 	}
 | |
| 
 | |
| 	kfree(crypto_cmd);
 | |
| }
 | |
| 
 | |
| static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
 | |
| {
 | |
| 	struct ccp_crypto_cmd *active = NULL, *tmp;
 | |
| 	unsigned long flags;
 | |
| 	bool free_cmd = true;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irqsave(&req_queue_lock, flags);
 | |
| 
 | |
| 	/* Check if the cmd can/should be queued */
 | |
| 	if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
 | |
| 		ret = -EBUSY;
 | |
| 		if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
 | |
| 			goto e_lock;
 | |
| 	}
 | |
| 
 | |
| 	/* Look for an entry with the same tfm.  If there is a cmd
 | |
| 	 * with the same tfm in the list then the current cmd cannot
 | |
| 	 * be submitted to the CCP yet.
 | |
| 	 */
 | |
| 	list_for_each_entry(tmp, &req_queue.cmds, entry) {
 | |
| 		if (crypto_cmd->tfm != tmp->tfm)
 | |
| 			continue;
 | |
| 		active = tmp;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ret = -EINPROGRESS;
 | |
| 	if (!active) {
 | |
| 		ret = ccp_enqueue_cmd(crypto_cmd->cmd);
 | |
| 		if (!ccp_crypto_success(ret))
 | |
| 			goto e_lock;	/* Error, don't queue it */
 | |
| 		if ((ret == -EBUSY) &&
 | |
| 		    !(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
 | |
| 			goto e_lock;	/* Not backlogging, don't queue it */
 | |
| 	}
 | |
| 
 | |
| 	if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
 | |
| 		ret = -EBUSY;
 | |
| 		if (req_queue.backlog == &req_queue.cmds)
 | |
| 			req_queue.backlog = &crypto_cmd->entry;
 | |
| 	}
 | |
| 	crypto_cmd->ret = ret;
 | |
| 
 | |
| 	req_queue.cmd_count++;
 | |
| 	list_add_tail(&crypto_cmd->entry, &req_queue.cmds);
 | |
| 
 | |
| 	free_cmd = false;
 | |
| 
 | |
| e_lock:
 | |
| 	spin_unlock_irqrestore(&req_queue_lock, flags);
 | |
| 
 | |
| 	if (free_cmd)
 | |
| 		kfree(crypto_cmd);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ccp_crypto_enqueue_request - queue an crypto async request for processing
 | |
|  *				by the CCP
 | |
|  *
 | |
|  * @req: crypto_async_request struct to be processed
 | |
|  * @cmd: ccp_cmd struct to be sent to the CCP
 | |
|  */
 | |
| int ccp_crypto_enqueue_request(struct crypto_async_request *req,
 | |
| 			       struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_crypto_cmd *crypto_cmd;
 | |
| 	gfp_t gfp;
 | |
| 
 | |
| 	gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
 | |
| 
 | |
| 	crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
 | |
| 	if (!crypto_cmd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* The tfm pointer must be saved and not referenced from the
 | |
| 	 * crypto_async_request (req) pointer because it is used after
 | |
| 	 * completion callback for the request and the req pointer
 | |
| 	 * might not be valid anymore.
 | |
| 	 */
 | |
| 	crypto_cmd->cmd = cmd;
 | |
| 	crypto_cmd->req = req;
 | |
| 	crypto_cmd->tfm = req->tfm;
 | |
| 
 | |
| 	cmd->callback = ccp_crypto_complete;
 | |
| 	cmd->data = crypto_cmd;
 | |
| 
 | |
| 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
 | |
| 		cmd->flags |= CCP_CMD_MAY_BACKLOG;
 | |
| 	else
 | |
| 		cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
 | |
| 
 | |
| 	return ccp_crypto_enqueue_cmd(crypto_cmd);
 | |
| }
 | |
| 
 | |
| struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
 | |
| 					    struct scatterlist *sg_add)
 | |
| {
 | |
| 	struct scatterlist *sg, *sg_last = NULL;
 | |
| 
 | |
| 	for (sg = table->sgl; sg; sg = sg_next(sg))
 | |
| 		if (!sg_page(sg))
 | |
| 			break;
 | |
| 	BUG_ON(!sg);
 | |
| 
 | |
| 	for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
 | |
| 		sg_set_page(sg, sg_page(sg_add), sg_add->length,
 | |
| 			    sg_add->offset);
 | |
| 		sg_last = sg;
 | |
| 	}
 | |
| 	BUG_ON(sg_add);
 | |
| 
 | |
| 	return sg_last;
 | |
| }
 | |
| 
 | |
| static int ccp_register_algs(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!aes_disable) {
 | |
| 		ret = ccp_register_aes_algs(&cipher_algs);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = ccp_register_aes_cmac_algs(&hash_algs);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = ccp_register_aes_xts_algs(&cipher_algs);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!sha_disable) {
 | |
| 		ret = ccp_register_sha_algs(&hash_algs);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ccp_unregister_algs(void)
 | |
| {
 | |
| 	struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
 | |
| 	struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
 | |
| 		crypto_unregister_ahash(&ahash_alg->alg);
 | |
| 		list_del(&ahash_alg->entry);
 | |
| 		kfree(ahash_alg);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
 | |
| 		crypto_unregister_alg(&ablk_alg->alg);
 | |
| 		list_del(&ablk_alg->entry);
 | |
| 		kfree(ablk_alg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ccp_crypto_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ccp_present();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock_init(&req_queue_lock);
 | |
| 	INIT_LIST_HEAD(&req_queue.cmds);
 | |
| 	req_queue.backlog = &req_queue.cmds;
 | |
| 	req_queue.cmd_count = 0;
 | |
| 
 | |
| 	ret = ccp_register_algs();
 | |
| 	if (ret)
 | |
| 		ccp_unregister_algs();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ccp_crypto_exit(void)
 | |
| {
 | |
| 	ccp_unregister_algs();
 | |
| }
 | |
| 
 | |
| module_init(ccp_crypto_init);
 | |
| module_exit(ccp_crypto_exit);
 |