 4ebbefd6b9
			
		
	
	
	4ebbefd6b9
	
	
	
		
			
			This adds a new vdso_test.c that's written entirely in C. It also makes all of the vDSO examples work on 32-bit x86. Cc: Stefani Seibold <stefani@seibold.net> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/62b701fc44b79f118ac2b2d64d19965fc5c291fb.1402620737.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
		
			
				
	
	
		
			269 lines
		
	
	
	
		
			6.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
	
		
			6.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * parse_vdso.c: Linux reference vDSO parser
 | |
|  * Written by Andrew Lutomirski, 2011-2014.
 | |
|  *
 | |
|  * This code is meant to be linked in to various programs that run on Linux.
 | |
|  * As such, it is available with as few restrictions as possible.  This file
 | |
|  * is licensed under the Creative Commons Zero License, version 1.0,
 | |
|  * available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
 | |
|  *
 | |
|  * The vDSO is a regular ELF DSO that the kernel maps into user space when
 | |
|  * it starts a program.  It works equally well in statically and dynamically
 | |
|  * linked binaries.
 | |
|  *
 | |
|  * This code is tested on x86.  In principle it should work on any
 | |
|  * architecture that has a vDSO.
 | |
|  */
 | |
| 
 | |
| #include <stdbool.h>
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| #include <limits.h>
 | |
| #include <elf.h>
 | |
| 
 | |
| /*
 | |
|  * To use this vDSO parser, first call one of the vdso_init_* functions.
 | |
|  * If you've already parsed auxv, then pass the value of AT_SYSINFO_EHDR
 | |
|  * to vdso_init_from_sysinfo_ehdr.  Otherwise pass auxv to vdso_init_from_auxv.
 | |
|  * Then call vdso_sym for each symbol you want.  For example, to look up
 | |
|  * gettimeofday on x86_64, use:
 | |
|  *
 | |
|  *     <some pointer> = vdso_sym("LINUX_2.6", "gettimeofday");
 | |
|  * or
 | |
|  *     <some pointer> = vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
 | |
|  *
 | |
|  * vdso_sym will return 0 if the symbol doesn't exist or if the init function
 | |
|  * failed or was not called.  vdso_sym is a little slow, so its return value
 | |
|  * should be cached.
 | |
|  *
 | |
|  * vdso_sym is threadsafe; the init functions are not.
 | |
|  *
 | |
|  * These are the prototypes:
 | |
|  */
 | |
| extern void vdso_init_from_auxv(void *auxv);
 | |
| extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
 | |
| extern void *vdso_sym(const char *version, const char *name);
 | |
| 
 | |
| 
 | |
| /* And here's the code. */
 | |
| #ifndef ELF_BITS
 | |
| # if ULONG_MAX > 0xffffffffUL
 | |
| #  define ELF_BITS 64
 | |
| # else
 | |
| #  define ELF_BITS 32
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| #define ELF_BITS_XFORM2(bits, x) Elf##bits##_##x
 | |
| #define ELF_BITS_XFORM(bits, x) ELF_BITS_XFORM2(bits, x)
 | |
| #define ELF(x) ELF_BITS_XFORM(ELF_BITS, x)
 | |
| 
 | |
| static struct vdso_info
 | |
| {
 | |
| 	bool valid;
 | |
| 
 | |
| 	/* Load information */
 | |
| 	uintptr_t load_addr;
 | |
| 	uintptr_t load_offset;  /* load_addr - recorded vaddr */
 | |
| 
 | |
| 	/* Symbol table */
 | |
| 	ELF(Sym) *symtab;
 | |
| 	const char *symstrings;
 | |
| 	ELF(Word) *bucket, *chain;
 | |
| 	ELF(Word) nbucket, nchain;
 | |
| 
 | |
| 	/* Version table */
 | |
| 	ELF(Versym) *versym;
 | |
| 	ELF(Verdef) *verdef;
 | |
| } vdso_info;
 | |
| 
 | |
| /* Straight from the ELF specification. */
 | |
| static unsigned long elf_hash(const unsigned char *name)
 | |
| {
 | |
| 	unsigned long h = 0, g;
 | |
| 	while (*name)
 | |
| 	{
 | |
| 		h = (h << 4) + *name++;
 | |
| 		if (g = h & 0xf0000000)
 | |
| 			h ^= g >> 24;
 | |
| 		h &= ~g;
 | |
| 	}
 | |
| 	return h;
 | |
| }
 | |
| 
 | |
| void vdso_init_from_sysinfo_ehdr(uintptr_t base)
 | |
| {
 | |
| 	size_t i;
 | |
| 	bool found_vaddr = false;
 | |
| 
 | |
| 	vdso_info.valid = false;
 | |
| 
 | |
| 	vdso_info.load_addr = base;
 | |
| 
 | |
| 	ELF(Ehdr) *hdr = (ELF(Ehdr)*)base;
 | |
| 	if (hdr->e_ident[EI_CLASS] !=
 | |
| 	    (ELF_BITS == 32 ? ELFCLASS32 : ELFCLASS64)) {
 | |
| 		return;  /* Wrong ELF class -- check ELF_BITS */
 | |
| 	}
 | |
| 
 | |
| 	ELF(Phdr) *pt = (ELF(Phdr)*)(vdso_info.load_addr + hdr->e_phoff);
 | |
| 	ELF(Dyn) *dyn = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need two things from the segment table: the load offset
 | |
| 	 * and the dynamic table.
 | |
| 	 */
 | |
| 	for (i = 0; i < hdr->e_phnum; i++)
 | |
| 	{
 | |
| 		if (pt[i].p_type == PT_LOAD && !found_vaddr) {
 | |
| 			found_vaddr = true;
 | |
| 			vdso_info.load_offset =	base
 | |
| 				+ (uintptr_t)pt[i].p_offset
 | |
| 				- (uintptr_t)pt[i].p_vaddr;
 | |
| 		} else if (pt[i].p_type == PT_DYNAMIC) {
 | |
| 			dyn = (ELF(Dyn)*)(base + pt[i].p_offset);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!found_vaddr || !dyn)
 | |
| 		return;  /* Failed */
 | |
| 
 | |
| 	/*
 | |
| 	 * Fish out the useful bits of the dynamic table.
 | |
| 	 */
 | |
| 	ELF(Word) *hash = 0;
 | |
| 	vdso_info.symstrings = 0;
 | |
| 	vdso_info.symtab = 0;
 | |
| 	vdso_info.versym = 0;
 | |
| 	vdso_info.verdef = 0;
 | |
| 	for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
 | |
| 		switch (dyn[i].d_tag) {
 | |
| 		case DT_STRTAB:
 | |
| 			vdso_info.symstrings = (const char *)
 | |
| 				((uintptr_t)dyn[i].d_un.d_ptr
 | |
| 				 + vdso_info.load_offset);
 | |
| 			break;
 | |
| 		case DT_SYMTAB:
 | |
| 			vdso_info.symtab = (ELF(Sym) *)
 | |
| 				((uintptr_t)dyn[i].d_un.d_ptr
 | |
| 				 + vdso_info.load_offset);
 | |
| 			break;
 | |
| 		case DT_HASH:
 | |
| 			hash = (ELF(Word) *)
 | |
| 				((uintptr_t)dyn[i].d_un.d_ptr
 | |
| 				 + vdso_info.load_offset);
 | |
| 			break;
 | |
| 		case DT_VERSYM:
 | |
| 			vdso_info.versym = (ELF(Versym) *)
 | |
| 				((uintptr_t)dyn[i].d_un.d_ptr
 | |
| 				 + vdso_info.load_offset);
 | |
| 			break;
 | |
| 		case DT_VERDEF:
 | |
| 			vdso_info.verdef = (ELF(Verdef) *)
 | |
| 				((uintptr_t)dyn[i].d_un.d_ptr
 | |
| 				 + vdso_info.load_offset);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
 | |
| 		return;  /* Failed */
 | |
| 
 | |
| 	if (!vdso_info.verdef)
 | |
| 		vdso_info.versym = 0;
 | |
| 
 | |
| 	/* Parse the hash table header. */
 | |
| 	vdso_info.nbucket = hash[0];
 | |
| 	vdso_info.nchain = hash[1];
 | |
| 	vdso_info.bucket = &hash[2];
 | |
| 	vdso_info.chain = &hash[vdso_info.nbucket + 2];
 | |
| 
 | |
| 	/* That's all we need. */
 | |
| 	vdso_info.valid = true;
 | |
| }
 | |
| 
 | |
| static bool vdso_match_version(ELF(Versym) ver,
 | |
| 			       const char *name, ELF(Word) hash)
 | |
| {
 | |
| 	/*
 | |
| 	 * This is a helper function to check if the version indexed by
 | |
| 	 * ver matches name (which hashes to hash).
 | |
| 	 *
 | |
| 	 * The version definition table is a mess, and I don't know how
 | |
| 	 * to do this in better than linear time without allocating memory
 | |
| 	 * to build an index.  I also don't know why the table has
 | |
| 	 * variable size entries in the first place.
 | |
| 	 *
 | |
| 	 * For added fun, I can't find a comprehensible specification of how
 | |
| 	 * to parse all the weird flags in the table.
 | |
| 	 *
 | |
| 	 * So I just parse the whole table every time.
 | |
| 	 */
 | |
| 
 | |
| 	/* First step: find the version definition */
 | |
| 	ver &= 0x7fff;  /* Apparently bit 15 means "hidden" */
 | |
| 	ELF(Verdef) *def = vdso_info.verdef;
 | |
| 	while(true) {
 | |
| 		if ((def->vd_flags & VER_FLG_BASE) == 0
 | |
| 		    && (def->vd_ndx & 0x7fff) == ver)
 | |
| 			break;
 | |
| 
 | |
| 		if (def->vd_next == 0)
 | |
| 			return false;  /* No definition. */
 | |
| 
 | |
| 		def = (ELF(Verdef) *)((char *)def + def->vd_next);
 | |
| 	}
 | |
| 
 | |
| 	/* Now figure out whether it matches. */
 | |
| 	ELF(Verdaux) *aux = (ELF(Verdaux)*)((char *)def + def->vd_aux);
 | |
| 	return def->vd_hash == hash
 | |
| 		&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
 | |
| }
 | |
| 
 | |
| void *vdso_sym(const char *version, const char *name)
 | |
| {
 | |
| 	unsigned long ver_hash;
 | |
| 	if (!vdso_info.valid)
 | |
| 		return 0;
 | |
| 
 | |
| 	ver_hash = elf_hash(version);
 | |
| 	ELF(Word) chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
 | |
| 
 | |
| 	for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
 | |
| 		ELF(Sym) *sym = &vdso_info.symtab[chain];
 | |
| 
 | |
| 		/* Check for a defined global or weak function w/ right name. */
 | |
| 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
 | |
| 			continue;
 | |
| 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
 | |
| 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
 | |
| 			continue;
 | |
| 		if (sym->st_shndx == SHN_UNDEF)
 | |
| 			continue;
 | |
| 		if (strcmp(name, vdso_info.symstrings + sym->st_name))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Check symbol version. */
 | |
| 		if (vdso_info.versym
 | |
| 		    && !vdso_match_version(vdso_info.versym[chain],
 | |
| 					   version, ver_hash))
 | |
| 			continue;
 | |
| 
 | |
| 		return (void *)(vdso_info.load_offset + sym->st_value);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void vdso_init_from_auxv(void *auxv)
 | |
| {
 | |
| 	ELF(auxv_t) *elf_auxv = auxv;
 | |
| 	for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
 | |
| 	{
 | |
| 		if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
 | |
| 			vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vdso_info.valid = false;
 | |
| }
 |