 cadbd4a5e3
			
		
	
	
	cadbd4a5e3
	
	
	
		
			
			[jejb: fixed up a ton of missed conversions. All of you are on notice this has happened, driver trees will now need to be rebased] Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Cc: SCSI List <linux-scsi@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
		
			
				
	
	
		
			1390 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1390 lines
		
	
	
	
		
			38 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Aic94xx SAS/SATA driver hardware interface.
 | |
|  *
 | |
|  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
 | |
|  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
 | |
|  *
 | |
|  * This file is licensed under GPLv2.
 | |
|  *
 | |
|  * This file is part of the aic94xx driver.
 | |
|  *
 | |
|  * The aic94xx driver is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation; version 2 of the
 | |
|  * License.
 | |
|  *
 | |
|  * The aic94xx driver is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with the aic94xx driver; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/pci.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/firmware.h>
 | |
| 
 | |
| #include "aic94xx.h"
 | |
| #include "aic94xx_reg.h"
 | |
| #include "aic94xx_hwi.h"
 | |
| #include "aic94xx_seq.h"
 | |
| #include "aic94xx_dump.h"
 | |
| 
 | |
| u32 MBAR0_SWB_SIZE;
 | |
| 
 | |
| /* ---------- Initialization ---------- */
 | |
| 
 | |
| static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	/* adapter came with a sas address */
 | |
| 	if (asd_ha->hw_prof.sas_addr[0])
 | |
| 		return 0;
 | |
| 
 | |
| 	return sas_request_addr(asd_ha->sas_ha.core.shost,
 | |
| 				asd_ha->hw_prof.sas_addr);
 | |
| }
 | |
| 
 | |
| static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ASD_MAX_PHYS; i++) {
 | |
| 		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
 | |
| 			continue;
 | |
| 		/* Set a phy's address only if it has none.
 | |
| 		 */
 | |
| 		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
 | |
| 			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
 | |
| 		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
 | |
| 		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ---------- PHY initialization ---------- */
 | |
| 
 | |
| static void asd_init_phy_identify(struct asd_phy *phy)
 | |
| {
 | |
| 	phy->identify_frame = phy->id_frm_tok->vaddr;
 | |
| 
 | |
| 	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
 | |
| 
 | |
| 	phy->identify_frame->dev_type = SAS_END_DEV;
 | |
| 	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
 | |
| 		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
 | |
| 	if (phy->sas_phy.role & PHY_ROLE_TARGET)
 | |
| 		phy->identify_frame->target_bits = phy->sas_phy.tproto;
 | |
| 	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
 | |
| 	       SAS_ADDR_SIZE);
 | |
| 	phy->identify_frame->phy_id = phy->sas_phy.id;
 | |
| }
 | |
| 
 | |
| static int asd_init_phy(struct asd_phy *phy)
 | |
| {
 | |
| 	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
 | |
| 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
 | |
| 
 | |
| 	sas_phy->enabled = 1;
 | |
| 	sas_phy->class = SAS;
 | |
| 	sas_phy->iproto = SAS_PROTOCOL_ALL;
 | |
| 	sas_phy->tproto = 0;
 | |
| 	sas_phy->type = PHY_TYPE_PHYSICAL;
 | |
| 	sas_phy->role = PHY_ROLE_INITIATOR;
 | |
| 	sas_phy->oob_mode = OOB_NOT_CONNECTED;
 | |
| 	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
 | |
| 
 | |
| 	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
 | |
| 					     sizeof(*phy->identify_frame),
 | |
| 					     GFP_KERNEL);
 | |
| 	if (!phy->id_frm_tok) {
 | |
| 		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
 | |
| 		return -ENOMEM;
 | |
| 	} else
 | |
| 		asd_init_phy_identify(phy);
 | |
| 
 | |
| 	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void asd_init_ports(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_init(&asd_ha->asd_ports_lock);
 | |
| 	for (i = 0; i < ASD_MAX_PHYS; i++) {
 | |
| 		struct asd_port *asd_port = &asd_ha->asd_ports[i];
 | |
| 
 | |
| 		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
 | |
| 		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
 | |
| 		asd_port->phy_mask = 0;
 | |
| 		asd_port->num_phys = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int asd_init_phys(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	u8 i;
 | |
| 	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
 | |
| 
 | |
| 	for (i = 0; i < ASD_MAX_PHYS; i++) {
 | |
| 		struct asd_phy *phy = &asd_ha->phys[i];
 | |
| 
 | |
| 		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
 | |
| 		phy->asd_port = NULL;
 | |
| 
 | |
| 		phy->sas_phy.enabled = 0;
 | |
| 		phy->sas_phy.id = i;
 | |
| 		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
 | |
| 		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
 | |
| 		phy->sas_phy.ha = &asd_ha->sas_ha;
 | |
| 		phy->sas_phy.lldd_phy = phy;
 | |
| 	}
 | |
| 
 | |
| 	/* Now enable and initialize only the enabled phys. */
 | |
| 	for_each_phy(phy_mask, phy_mask, i) {
 | |
| 		int err = asd_init_phy(&asd_ha->phys[i]);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ---------- Sliding windows ---------- */
 | |
| 
 | |
| static int asd_init_sw(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	struct pci_dev *pcidev = asd_ha->pcidev;
 | |
| 	int err;
 | |
| 	u32 v;
 | |
| 
 | |
| 	/* Unlock MBARs */
 | |
| 	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't access conf. space of %s\n",
 | |
| 			   pci_name(pcidev));
 | |
| 		goto Err;
 | |
| 	}
 | |
| 	if (v)
 | |
| 		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't write to MBAR_KEY of %s\n",
 | |
| 			   pci_name(pcidev));
 | |
| 		goto Err;
 | |
| 	}
 | |
| 
 | |
| 	/* Set sliding windows A, B and C to point to proper internal
 | |
| 	 * memory regions.
 | |
| 	 */
 | |
| 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
 | |
| 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
 | |
| 			       REG_BASE_ADDR_CSEQCIO);
 | |
| 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
 | |
| 	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
 | |
| 	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
 | |
| 	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
 | |
| 	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
 | |
| 	if (!asd_ha->iospace) {
 | |
| 		/* MBAR1 will point to OCM (On Chip Memory) */
 | |
| 		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
 | |
| 		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
 | |
| 	}
 | |
| 	spin_lock_init(&asd_ha->iolock);
 | |
| Err:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* ---------- SCB initialization ---------- */
 | |
| 
 | |
| /**
 | |
|  * asd_init_scbs - manually allocate the first SCB.
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  *
 | |
|  * This allocates the very first SCB which would be sent to the
 | |
|  * sequencer for execution.  Its bus address is written to
 | |
|  * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
 | |
|  * the _next_ scb to be DMA-ed to the host adapter is read from the last
 | |
|  * SCB DMA-ed to the host adapter, we have to always stay one step
 | |
|  * ahead of the sequencer and keep one SCB already allocated.
 | |
|  */
 | |
| static int asd_init_scbs(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	int bitmap_bytes;
 | |
| 
 | |
| 	/* allocate the index array and bitmap */
 | |
| 	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
 | |
| 	asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
 | |
| 					     sizeof(void *), GFP_KERNEL);
 | |
| 	if (!asd_ha->seq.tc_index_array)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
 | |
| 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
 | |
| 	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
 | |
| 	if (!asd_ha->seq.tc_index_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_init(&seq->tc_index_lock);
 | |
| 
 | |
| 	seq->next_scb.size = sizeof(struct scb);
 | |
| 	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
 | |
| 					     &seq->next_scb.dma_handle);
 | |
| 	if (!seq->next_scb.vaddr) {
 | |
| 		kfree(asd_ha->seq.tc_index_bitmap);
 | |
| 		kfree(asd_ha->seq.tc_index_array);
 | |
| 		asd_ha->seq.tc_index_bitmap = NULL;
 | |
| 		asd_ha->seq.tc_index_array = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	seq->pending = 0;
 | |
| 	spin_lock_init(&seq->pend_q_lock);
 | |
| 	INIT_LIST_HEAD(&seq->pend_q);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
 | |
| 	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
 | |
| 	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
 | |
| 		    asd_ha->hw_prof.max_scbs,
 | |
| 		    asd_ha->hw_prof.max_ddbs);
 | |
| }
 | |
| 
 | |
| /* ---------- Done List initialization ---------- */
 | |
| 
 | |
| static void asd_dl_tasklet_handler(unsigned long);
 | |
| 
 | |
| static int asd_init_dl(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	asd_ha->seq.actual_dl
 | |
| 		= asd_alloc_coherent(asd_ha,
 | |
| 			     ASD_DL_SIZE * sizeof(struct done_list_struct),
 | |
| 				     GFP_KERNEL);
 | |
| 	if (!asd_ha->seq.actual_dl)
 | |
| 		return -ENOMEM;
 | |
| 	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
 | |
| 	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
 | |
| 	asd_ha->seq.dl_next = 0;
 | |
| 	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
 | |
| 		     (unsigned long) asd_ha);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ---------- EDB and ESCB init ---------- */
 | |
| 
 | |
| static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
 | |
| {
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	int i;
 | |
| 
 | |
| 	seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
 | |
| 	if (!seq->edb_arr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < seq->num_edbs; i++) {
 | |
| 		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
 | |
| 						     gfp_flags);
 | |
| 		if (!seq->edb_arr[i])
 | |
| 			goto Err_unroll;
 | |
| 		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| Err_unroll:
 | |
| 	for (i-- ; i >= 0; i--)
 | |
| 		asd_free_coherent(asd_ha, seq->edb_arr[i]);
 | |
| 	kfree(seq->edb_arr);
 | |
| 	seq->edb_arr = NULL;
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
 | |
| 			   gfp_t gfp_flags)
 | |
| {
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	struct asd_ascb *escb;
 | |
| 	int i, escbs;
 | |
| 
 | |
| 	seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
 | |
| 				gfp_flags);
 | |
| 	if (!seq->escb_arr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	escbs = seq->num_escbs;
 | |
| 	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
 | |
| 	if (!escb) {
 | |
| 		asd_printk("couldn't allocate list of escbs\n");
 | |
| 		goto Err;
 | |
| 	}
 | |
| 	seq->num_escbs -= escbs;  /* subtract what was not allocated */
 | |
| 	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
 | |
| 
 | |
| 	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
 | |
| 							       struct asd_ascb,
 | |
| 							       list)) {
 | |
| 		seq->escb_arr[i] = escb;
 | |
| 		escb->scb->header.opcode = EMPTY_SCB;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| Err:
 | |
| 	kfree(seq->escb_arr);
 | |
| 	seq->escb_arr = NULL;
 | |
| 	return -ENOMEM;
 | |
| 
 | |
| }
 | |
| 
 | |
| static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	int i, k, z = 0;
 | |
| 
 | |
| 	for (i = 0; i < seq->num_escbs; i++) {
 | |
| 		struct asd_ascb *ascb = seq->escb_arr[i];
 | |
| 		struct empty_scb *escb = &ascb->scb->escb;
 | |
| 
 | |
| 		ascb->edb_index = z;
 | |
| 
 | |
| 		escb->num_valid = ASD_EDBS_PER_SCB;
 | |
| 
 | |
| 		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
 | |
| 			struct sg_el *eb = &escb->eb[k];
 | |
| 			struct asd_dma_tok *edb = seq->edb_arr[z++];
 | |
| 
 | |
| 			memset(eb, 0, sizeof(*eb));
 | |
| 			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
 | |
| 			eb->size = cpu_to_le32(((u32) edb->size));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_init_escbs -- allocate and initialize empty scbs
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  *
 | |
|  * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
 | |
|  * They transport sense data, etc.
 | |
|  */
 | |
| static int asd_init_escbs(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* Allocate two empty data buffers (edb) per sequencer. */
 | |
| 	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
 | |
| 
 | |
| 	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
 | |
| 	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
 | |
| 
 | |
| 	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't allocate edbs\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't allocate escbs\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	asd_assign_edbs2escbs(asd_ha);
 | |
| 	/* In order to insure that normal SCBs do not overfill sequencer
 | |
| 	 * memory and leave no space for escbs (halting condition),
 | |
| 	 * we increment pending here by the number of escbs.  However,
 | |
| 	 * escbs are never pending.
 | |
| 	 */
 | |
| 	seq->pending   = seq->num_escbs;
 | |
| 	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ---------- HW initialization ---------- */
 | |
| 
 | |
| /**
 | |
|  * asd_chip_hardrst -- hard reset the chip
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  *
 | |
|  * This takes 16 cycles and is synchronous to CFCLK, which runs
 | |
|  * at 200 MHz, so this should take at most 80 nanoseconds.
 | |
|  */
 | |
| int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	int i;
 | |
| 	int count = 100;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	for (i = 0 ; i < 4 ; i++) {
 | |
| 		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		udelay(1);
 | |
| 		reg = asd_read_reg_dword(asd_ha, CHIMINT);
 | |
| 		if (reg & HARDRSTDET) {
 | |
| 			asd_write_reg_dword(asd_ha, CHIMINT,
 | |
| 					    HARDRSTDET|PORRSTDET);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} while (--count > 0);
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_init_chip -- initialize the chip
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  *
 | |
|  * Hard resets the chip, disables HA interrupts, downloads the sequnecer
 | |
|  * microcode and starts the sequencers.  The caller has to explicitly
 | |
|  * enable HA interrupts with asd_enable_ints(asd_ha).
 | |
|  */
 | |
| static int asd_init_chip(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = asd_chip_hardrst(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't hard reset %s\n",
 | |
| 			    pci_name(asd_ha->pcidev));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	asd_disable_ints(asd_ha);
 | |
| 
 | |
| 	err = asd_init_seqs(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't init seqs for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = asd_start_seqs(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("coudln't start seqs for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 		goto out;
 | |
| 	}
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
 | |
| 
 | |
| static int max_devs = 0;
 | |
| module_param_named(max_devs, max_devs, int, S_IRUGO);
 | |
| MODULE_PARM_DESC(max_devs, "\n"
 | |
| 	"\tMaximum number of SAS devices to support (not LUs).\n"
 | |
| 	"\tDefault: 2176, Maximum: 65663.\n");
 | |
| 
 | |
| static int max_cmnds = 0;
 | |
| module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
 | |
| MODULE_PARM_DESC(max_cmnds, "\n"
 | |
| 	"\tMaximum number of commands queuable.\n"
 | |
| 	"\tDefault: 512, Maximum: 66047.\n");
 | |
| 
 | |
| static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	unsigned long dma_addr = OCM_BASE_ADDR;
 | |
| 	u32 d;
 | |
| 
 | |
| 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
 | |
| 	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
 | |
| 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 | |
| 	d |= 4;
 | |
| 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 | |
| 	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
 | |
| }
 | |
| 
 | |
| static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	dma_addr_t dma_handle;
 | |
| 	unsigned long dma_addr;
 | |
| 	u32 d;
 | |
| 	int size;
 | |
| 
 | |
| 	asd_extend_devctx_ocm(asd_ha);
 | |
| 
 | |
| 	asd_ha->hw_prof.ddb_ext = NULL;
 | |
| 	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
 | |
| 		max_devs = asd_ha->hw_prof.max_ddbs;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
 | |
| 
 | |
| 	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
 | |
| 	if (!asd_ha->hw_prof.ddb_ext) {
 | |
| 		asd_printk("couldn't allocate memory for %d devices\n",
 | |
| 			   max_devs);
 | |
| 		max_devs = asd_ha->hw_prof.max_ddbs;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
 | |
| 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
 | |
| 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
 | |
| 	dma_handle = (dma_addr_t) dma_addr;
 | |
| 	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
 | |
| 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 | |
| 	d &= ~4;
 | |
| 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 | |
| 
 | |
| 	asd_ha->hw_prof.max_ddbs = max_devs;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	dma_addr_t dma_handle;
 | |
| 	unsigned long dma_addr;
 | |
| 	u32 d;
 | |
| 	int size;
 | |
| 
 | |
| 	asd_ha->hw_prof.scb_ext = NULL;
 | |
| 	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
 | |
| 		max_cmnds = asd_ha->hw_prof.max_scbs;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
 | |
| 
 | |
| 	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
 | |
| 	if (!asd_ha->hw_prof.scb_ext) {
 | |
| 		asd_printk("couldn't allocate memory for %d commands\n",
 | |
| 			   max_cmnds);
 | |
| 		max_cmnds = asd_ha->hw_prof.max_scbs;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
 | |
| 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
 | |
| 	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
 | |
| 	dma_handle = (dma_addr_t) dma_addr;
 | |
| 	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
 | |
| 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
 | |
| 	d &= ~1;
 | |
| 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
 | |
| 
 | |
| 	asd_ha->hw_prof.max_scbs = max_cmnds;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_init_ctxmem -- initialize context memory
 | |
|  * asd_ha: pointer to host adapter structure
 | |
|  *
 | |
|  * This function sets the maximum number of SCBs and
 | |
|  * DDBs which can be used by the sequencer.  This is normally
 | |
|  * 512 and 128 respectively.  If support for more SCBs or more DDBs
 | |
|  * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
 | |
|  * initialized here to extend context memory to point to host memory,
 | |
|  * thus allowing unlimited support for SCBs and DDBs -- only limited
 | |
|  * by host memory.
 | |
|  */
 | |
| static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	int bitmap_bytes;
 | |
| 
 | |
| 	asd_get_max_scb_ddb(asd_ha);
 | |
| 	asd_extend_devctx(asd_ha);
 | |
| 	asd_extend_cmdctx(asd_ha);
 | |
| 
 | |
| 	/* The kernel wants bitmaps to be unsigned long sized. */
 | |
| 	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
 | |
| 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
 | |
| 	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
 | |
| 	if (!asd_ha->hw_prof.ddb_bitmap)
 | |
| 		return -ENOMEM;
 | |
| 	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int asd_init_hw(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	int err;
 | |
| 	u32 v;
 | |
| 
 | |
| 	err = asd_init_sw(asd_ha);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 		return err;
 | |
| 	}
 | |
| 	pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
 | |
| 					v | SC_TMR_DIS);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't disable split completion timer of %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = asd_read_ocm(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't read ocm(%d)\n", err);
 | |
| 		/* While suspicios, it is not an error that we
 | |
| 		 * couldn't read the OCM. */
 | |
| 	}
 | |
| 
 | |
| 	err = asd_read_flash(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't read flash(%d)\n", err);
 | |
| 		/* While suspicios, it is not an error that we
 | |
| 		 * couldn't read FLASH memory.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	asd_init_ctxmem(asd_ha);
 | |
| 
 | |
| 	if (asd_get_user_sas_addr(asd_ha)) {
 | |
| 		asd_printk("No SAS Address provided for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 		err = -ENODEV;
 | |
| 		goto Out;
 | |
| 	}
 | |
| 
 | |
| 	asd_propagate_sas_addr(asd_ha);
 | |
| 
 | |
| 	err = asd_init_phys(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't initialize phys for %s\n",
 | |
| 			    pci_name(asd_ha->pcidev));
 | |
| 		goto Out;
 | |
| 	}
 | |
| 
 | |
| 	asd_init_ports(asd_ha);
 | |
| 
 | |
| 	err = asd_init_scbs(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't initialize scbs for %s\n",
 | |
| 			    pci_name(asd_ha->pcidev));
 | |
| 		goto Out;
 | |
| 	}
 | |
| 
 | |
| 	err = asd_init_dl(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't initialize the done list:%d\n",
 | |
| 			    err);
 | |
| 		goto Out;
 | |
| 	}
 | |
| 
 | |
| 	err = asd_init_escbs(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't initialize escbs\n");
 | |
| 		goto Out;
 | |
| 	}
 | |
| 
 | |
| 	err = asd_init_chip(asd_ha);
 | |
| 	if (err) {
 | |
| 		asd_printk("couldn't init the chip\n");
 | |
| 		goto Out;
 | |
| 	}
 | |
| Out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* ---------- Chip reset ---------- */
 | |
| 
 | |
| /**
 | |
|  * asd_chip_reset -- reset the host adapter, etc
 | |
|  * @asd_ha: pointer to host adapter structure of interest
 | |
|  *
 | |
|  * Called from the ISR.  Hard reset the chip.  Let everything
 | |
|  * timeout.  This should be no different than hot-unplugging the
 | |
|  * host adapter.  Once everything times out we'll init the chip with
 | |
|  * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
 | |
|  * XXX finish.
 | |
|  */
 | |
| static void asd_chip_reset(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
 | |
| 
 | |
| 	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
 | |
| 	asd_chip_hardrst(asd_ha);
 | |
| 	sas_ha->notify_ha_event(sas_ha, HAE_RESET);
 | |
| }
 | |
| 
 | |
| /* ---------- Done List Routines ---------- */
 | |
| 
 | |
| static void asd_dl_tasklet_handler(unsigned long data)
 | |
| {
 | |
| 	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	while (1) {
 | |
| 		struct done_list_struct *dl = &seq->dl[seq->dl_next];
 | |
| 		struct asd_ascb *ascb;
 | |
| 
 | |
| 		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
 | |
| 			break;
 | |
| 
 | |
| 		/* find the aSCB */
 | |
| 		spin_lock_irqsave(&seq->tc_index_lock, flags);
 | |
| 		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
 | |
| 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
 | |
| 		if (unlikely(!ascb)) {
 | |
| 			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
 | |
| 			goto next_1;
 | |
| 		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
 | |
| 			goto out;
 | |
| 		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
 | |
| 			goto next_1;
 | |
| 		}
 | |
| 		spin_lock_irqsave(&seq->pend_q_lock, flags);
 | |
| 		list_del_init(&ascb->list);
 | |
| 		seq->pending--;
 | |
| 		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
 | |
| 	out:
 | |
| 		ascb->tasklet_complete(ascb, dl);
 | |
| 
 | |
| 	next_1:
 | |
| 		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
 | |
| 		if (!seq->dl_next)
 | |
| 			seq->dl_toggle ^= DL_TOGGLE_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ---------- Interrupt Service Routines ---------- */
 | |
| 
 | |
| /**
 | |
|  * asd_process_donelist_isr -- schedule processing of done list entries
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  */
 | |
| static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	tasklet_schedule(&asd_ha->seq.dl_tasklet);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_com_sas_isr -- process device communication interrupt (COMINT)
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  */
 | |
| static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
 | |
| 
 | |
| 	/* clear COMSTAT int */
 | |
| 	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
 | |
| 
 | |
| 	if (comstat & CSBUFPERR) {
 | |
| 		asd_printk("%s: command/status buffer dma parity error\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 	} else if (comstat & CSERR) {
 | |
| 		int i;
 | |
| 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
 | |
| 		dmaerr &= 0xFF;
 | |
| 		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
 | |
| 			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
 | |
| 			   pci_name(asd_ha->pcidev),
 | |
| 			   dmaerr,
 | |
| 			   asd_read_reg_dword(asd_ha, CSDMAADR),
 | |
| 			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
 | |
| 		asd_printk("CSBUFFER:\n");
 | |
| 		for (i = 0; i < 8; i++) {
 | |
| 			asd_printk("%08x %08x %08x %08x\n",
 | |
| 				   asd_read_reg_dword(asd_ha, CSBUFFER),
 | |
| 				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
 | |
| 				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
 | |
| 				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
 | |
| 		}
 | |
| 		asd_dump_seq_state(asd_ha, 0);
 | |
| 	} else if (comstat & OVLYERR) {
 | |
| 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
 | |
| 		dmaerr = (dmaerr >> 8) & 0xFF;
 | |
| 		asd_printk("%s: overlay dma error:0x%x\n",
 | |
| 			   pci_name(asd_ha->pcidev),
 | |
| 			   dmaerr);
 | |
| 	}
 | |
| 	asd_chip_reset(asd_ha);
 | |
| }
 | |
| 
 | |
| static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
 | |
| {
 | |
| 	static const char *halt_code[256] = {
 | |
| 		"UNEXPECTED_INTERRUPT0",
 | |
| 		"UNEXPECTED_INTERRUPT1",
 | |
| 		"UNEXPECTED_INTERRUPT2",
 | |
| 		"UNEXPECTED_INTERRUPT3",
 | |
| 		"UNEXPECTED_INTERRUPT4",
 | |
| 		"UNEXPECTED_INTERRUPT5",
 | |
| 		"UNEXPECTED_INTERRUPT6",
 | |
| 		"UNEXPECTED_INTERRUPT7",
 | |
| 		"UNEXPECTED_INTERRUPT8",
 | |
| 		"UNEXPECTED_INTERRUPT9",
 | |
| 		"UNEXPECTED_INTERRUPT10",
 | |
| 		[11 ... 19] = "unknown[11,19]",
 | |
| 		"NO_FREE_SCB_AVAILABLE",
 | |
| 		"INVALID_SCB_OPCODE",
 | |
| 		"INVALID_MBX_OPCODE",
 | |
| 		"INVALID_ATA_STATE",
 | |
| 		"ATA_QUEUE_FULL",
 | |
| 		"ATA_TAG_TABLE_FAULT",
 | |
| 		"ATA_TAG_MASK_FAULT",
 | |
| 		"BAD_LINK_QUEUE_STATE",
 | |
| 		"DMA2CHIM_QUEUE_ERROR",
 | |
| 		"EMPTY_SCB_LIST_FULL",
 | |
| 		"unknown[30]",
 | |
| 		"IN_USE_SCB_ON_FREE_LIST",
 | |
| 		"BAD_OPEN_WAIT_STATE",
 | |
| 		"INVALID_STP_AFFILIATION",
 | |
| 		"unknown[34]",
 | |
| 		"EXEC_QUEUE_ERROR",
 | |
| 		"TOO_MANY_EMPTIES_NEEDED",
 | |
| 		"EMPTY_REQ_QUEUE_ERROR",
 | |
| 		"Q_MONIRTT_MGMT_ERROR",
 | |
| 		"TARGET_MODE_FLOW_ERROR",
 | |
| 		"DEVICE_QUEUE_NOT_FOUND",
 | |
| 		"START_IRTT_TIMER_ERROR",
 | |
| 		"ABORT_TASK_ILLEGAL_REQ",
 | |
| 		[43 ... 255] = "unknown[43,255]"
 | |
| 	};
 | |
| 
 | |
| 	if (dchstatus & CSEQINT) {
 | |
| 		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
 | |
| 
 | |
| 		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
 | |
| 			asd_printk("%s: CSEQ arp2int:0x%x\n",
 | |
| 				   pci_name(asd_ha->pcidev),
 | |
| 				   arp2int);
 | |
| 		} else if (arp2int & ARP2HALTC)
 | |
| 			asd_printk("%s: CSEQ halted: %s\n",
 | |
| 				   pci_name(asd_ha->pcidev),
 | |
| 				   halt_code[(arp2int>>16)&0xFF]);
 | |
| 		else
 | |
| 			asd_printk("%s: CARP2INT:0x%x\n",
 | |
| 				   pci_name(asd_ha->pcidev),
 | |
| 				   arp2int);
 | |
| 	}
 | |
| 	if (dchstatus & LSEQINT_MASK) {
 | |
| 		int lseq;
 | |
| 		u8  lseq_mask = dchstatus & LSEQINT_MASK;
 | |
| 
 | |
| 		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
 | |
| 			u32 arp2int = asd_read_reg_dword(asd_ha,
 | |
| 							 LmARP2INT(lseq));
 | |
| 			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
 | |
| 				       | ARP2CIOPERR)) {
 | |
| 				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
 | |
| 					   pci_name(asd_ha->pcidev),
 | |
| 					   lseq, arp2int);
 | |
| 				/* XXX we should only do lseq reset */
 | |
| 			} else if (arp2int & ARP2HALTC)
 | |
| 				asd_printk("%s: LSEQ%d halted: %s\n",
 | |
| 					   pci_name(asd_ha->pcidev),
 | |
| 					   lseq,halt_code[(arp2int>>16)&0xFF]);
 | |
| 			else
 | |
| 				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
 | |
| 					   pci_name(asd_ha->pcidev), lseq,
 | |
| 					   arp2int);
 | |
| 		}
 | |
| 	}
 | |
| 	asd_chip_reset(asd_ha);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  */
 | |
| static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
 | |
| 
 | |
| 	if (dchstatus & CFIFTOERR) {
 | |
| 		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
 | |
| 		asd_chip_reset(asd_ha);
 | |
| 	} else
 | |
| 		asd_arp2_err(asd_ha, dchstatus);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  */
 | |
| static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
 | |
| 
 | |
| 	if (!(stat0r & ASIERR)) {
 | |
| 		asd_printk("hmm, EXSI interrupted but no error?\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (stat0r & ASIFMTERR) {
 | |
| 		asd_printk("ASI SEEPROM format error for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 	} else if (stat0r & ASISEECHKERR) {
 | |
| 		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
 | |
| 		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
 | |
| 			   stat1r & CHECKSUM_MASK,
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 	} else {
 | |
| 		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
 | |
| 
 | |
| 		if (!(statr & CPI2ASIMSTERR_MASK)) {
 | |
| 			ASD_DPRINTK("hmm, ASIERR?\n");
 | |
| 			return;
 | |
| 		} else {
 | |
| 			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
 | |
| 			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
 | |
| 
 | |
| 			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
 | |
| 				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
 | |
| 				   "master id: 0x%x, master err: 0x%x\n",
 | |
| 				   pci_name(asd_ha->pcidev),
 | |
| 				   addr, data,
 | |
| 				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
 | |
| 				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
 | |
| 				   (statr & CPI2ASITARGERR_MASK) >> 8,
 | |
| 				   (statr & CPI2ASITARGMID_MASK) >> 4,
 | |
| 				   (statr & CPI2ASIMSTERR_MASK));
 | |
| 		}
 | |
| 	}
 | |
| 	asd_chip_reset(asd_ha);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_hst_pcix_isr -- process host interface interrupts
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  *
 | |
|  * Asserted on PCIX errors: target abort, etc.
 | |
|  */
 | |
| static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
 | |
| {
 | |
| 	u16 status;
 | |
| 	u32 pcix_status;
 | |
| 	u32 ecc_status;
 | |
| 
 | |
| 	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
 | |
| 	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
 | |
| 	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
 | |
| 
 | |
| 	if (status & PCI_STATUS_DETECTED_PARITY)
 | |
| 		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
 | |
| 	else if (status & PCI_STATUS_REC_MASTER_ABORT)
 | |
| 		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
 | |
| 	else if (status & PCI_STATUS_REC_TARGET_ABORT)
 | |
| 		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
 | |
| 	else if (status & PCI_STATUS_PARITY)
 | |
| 		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
 | |
| 	else if (pcix_status & RCV_SCE) {
 | |
| 		asd_printk("received split completion error for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
 | |
| 		/* XXX: Abort task? */
 | |
| 		return;
 | |
| 	} else if (pcix_status & UNEXP_SC) {
 | |
| 		asd_printk("unexpected split completion for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
 | |
| 		/* ignore */
 | |
| 		return;
 | |
| 	} else if (pcix_status & SC_DISCARD)
 | |
| 		asd_printk("split completion discarded for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 	else if (ecc_status & UNCOR_ECCERR)
 | |
| 		asd_printk("uncorrectable ECC error for %s\n",
 | |
| 			   pci_name(asd_ha->pcidev));
 | |
| 	asd_chip_reset(asd_ha);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_hw_isr -- host adapter interrupt service routine
 | |
|  * @irq: ignored
 | |
|  * @dev_id: pointer to host adapter structure
 | |
|  *
 | |
|  * The ISR processes done list entries and level 3 error handling.
 | |
|  */
 | |
| irqreturn_t asd_hw_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct asd_ha_struct *asd_ha = dev_id;
 | |
| 	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
 | |
| 
 | |
| 	if (!chimint)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
 | |
| 	(void) asd_read_reg_dword(asd_ha, CHIMINT);
 | |
| 
 | |
| 	if (chimint & DLAVAIL)
 | |
| 		asd_process_donelist_isr(asd_ha);
 | |
| 	if (chimint & COMINT)
 | |
| 		asd_com_sas_isr(asd_ha);
 | |
| 	if (chimint & DEVINT)
 | |
| 		asd_dch_sas_isr(asd_ha);
 | |
| 	if (chimint & INITERR)
 | |
| 		asd_rbi_exsi_isr(asd_ha);
 | |
| 	if (chimint & HOSTERR)
 | |
| 		asd_hst_pcix_isr(asd_ha);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* ---------- SCB handling ---------- */
 | |
| 
 | |
| static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
 | |
| 				       gfp_t gfp_flags)
 | |
| {
 | |
| 	extern struct kmem_cache *asd_ascb_cache;
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	struct asd_ascb *ascb;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
 | |
| 
 | |
| 	if (ascb) {
 | |
| 		ascb->dma_scb.size = sizeof(struct scb);
 | |
| 		ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
 | |
| 						     gfp_flags,
 | |
| 						    &ascb->dma_scb.dma_handle);
 | |
| 		if (!ascb->dma_scb.vaddr) {
 | |
| 			kmem_cache_free(asd_ascb_cache, ascb);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
 | |
| 		asd_init_ascb(asd_ha, ascb);
 | |
| 
 | |
| 		spin_lock_irqsave(&seq->tc_index_lock, flags);
 | |
| 		ascb->tc_index = asd_tc_index_get(seq, ascb);
 | |
| 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
 | |
| 		if (ascb->tc_index == -1)
 | |
| 			goto undo;
 | |
| 
 | |
| 		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
 | |
| 	}
 | |
| 
 | |
| 	return ascb;
 | |
| undo:
 | |
| 	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
 | |
| 		      ascb->dma_scb.dma_handle);
 | |
| 	kmem_cache_free(asd_ascb_cache, ascb);
 | |
| 	ASD_DPRINTK("no index for ascb\n");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_ascb_alloc_list -- allocate a list of aSCBs
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  * @num: pointer to integer number of aSCBs
 | |
|  * @gfp_flags: GFP_ flags.
 | |
|  *
 | |
|  * This is the only function which is used to allocate aSCBs.
 | |
|  * It can allocate one or many. If more than one, then they form
 | |
|  * a linked list in two ways: by their list field of the ascb struct
 | |
|  * and by the next_scb field of the scb_header.
 | |
|  *
 | |
|  * Returns NULL if no memory was available, else pointer to a list
 | |
|  * of ascbs.  When this function returns, @num would be the number
 | |
|  * of SCBs which were not able to be allocated, 0 if all requested
 | |
|  * were able to be allocated.
 | |
|  */
 | |
| struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
 | |
| 				     *asd_ha, int *num,
 | |
| 				     gfp_t gfp_flags)
 | |
| {
 | |
| 	struct asd_ascb *first = NULL;
 | |
| 
 | |
| 	for ( ; *num > 0; --*num) {
 | |
| 		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
 | |
| 
 | |
| 		if (!ascb)
 | |
| 			break;
 | |
| 		else if (!first)
 | |
| 			first = ascb;
 | |
| 		else {
 | |
| 			struct asd_ascb *last = list_entry(first->list.prev,
 | |
| 							   struct asd_ascb,
 | |
| 							   list);
 | |
| 			list_add_tail(&ascb->list, &first->list);
 | |
| 			last->scb->header.next_scb =
 | |
| 				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_swap_head_scb -- swap the head scb
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  * @ascb: pointer to the head of an ascb list
 | |
|  *
 | |
|  * The sequencer knows the DMA address of the next SCB to be DMAed to
 | |
|  * the host adapter, from initialization or from the last list DMAed.
 | |
|  * seq->next_scb keeps the address of this SCB.  The sequencer will
 | |
|  * DMA to the host adapter this list of SCBs.  But the head (first
 | |
|  * element) of this list is not known to the sequencer.  Here we swap
 | |
|  * the head of the list with the known SCB (memcpy()).
 | |
|  * Only one memcpy() is required per list so it is in our interest
 | |
|  * to keep the list of SCB as long as possible so that the ratio
 | |
|  * of number of memcpy calls to the number of SCB DMA-ed is as small
 | |
|  * as possible.
 | |
|  *
 | |
|  * LOCKING: called with the pending list lock held.
 | |
|  */
 | |
| static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
 | |
| 			      struct asd_ascb *ascb)
 | |
| {
 | |
| 	struct asd_seq_data *seq = &asd_ha->seq;
 | |
| 	struct asd_ascb *last = list_entry(ascb->list.prev,
 | |
| 					   struct asd_ascb,
 | |
| 					   list);
 | |
| 	struct asd_dma_tok t = ascb->dma_scb;
 | |
| 
 | |
| 	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
 | |
| 	ascb->dma_scb = seq->next_scb;
 | |
| 	ascb->scb = ascb->dma_scb.vaddr;
 | |
| 	seq->next_scb = t;
 | |
| 	last->scb->header.next_scb =
 | |
| 		cpu_to_le64(((u64)seq->next_scb.dma_handle));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_start_timers -- (add and) start timers of SCBs
 | |
|  * @list: pointer to struct list_head of the scbs
 | |
|  * @to: timeout in jiffies
 | |
|  *
 | |
|  * If an SCB in the @list has no timer function, assign the default
 | |
|  * one,  then start the timer of the SCB.  This function is
 | |
|  * intended to be called from asd_post_ascb_list(), just prior to
 | |
|  * posting the SCBs to the sequencer.
 | |
|  */
 | |
| static void asd_start_scb_timers(struct list_head *list)
 | |
| {
 | |
| 	struct asd_ascb *ascb;
 | |
| 	list_for_each_entry(ascb, list, list) {
 | |
| 		if (!ascb->uldd_timer) {
 | |
| 			ascb->timer.data = (unsigned long) ascb;
 | |
| 			ascb->timer.function = asd_ascb_timedout;
 | |
| 			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
 | |
| 			add_timer(&ascb->timer);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
 | |
|  * @asd_ha: pointer to a host adapter structure
 | |
|  * @ascb: pointer to the first aSCB in the list
 | |
|  * @num: number of aSCBs in the list (to be posted)
 | |
|  *
 | |
|  * See queueing comment in asd_post_escb_list().
 | |
|  *
 | |
|  * Additional note on queuing: In order to minimize the ratio of memcpy()
 | |
|  * to the number of ascbs sent, we try to batch-send as many ascbs as possible
 | |
|  * in one go.
 | |
|  * Two cases are possible:
 | |
|  *    A) can_queue >= num,
 | |
|  *    B) can_queue < num.
 | |
|  * Case A: we can send the whole batch at once.  Increment "pending"
 | |
|  * in the beginning of this function, when it is checked, in order to
 | |
|  * eliminate races when this function is called by multiple processes.
 | |
|  * Case B: should never happen if the managing layer considers
 | |
|  * lldd_queue_size.
 | |
|  */
 | |
| int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
 | |
| 		       int num)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 	int can_queue;
 | |
| 
 | |
| 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
 | |
| 	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
 | |
| 	if (can_queue >= num)
 | |
| 		asd_ha->seq.pending += num;
 | |
| 	else
 | |
| 		can_queue = 0;
 | |
| 
 | |
| 	if (!can_queue) {
 | |
| 		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
 | |
| 		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
 | |
| 		return -SAS_QUEUE_FULL;
 | |
| 	}
 | |
| 
 | |
| 	asd_swap_head_scb(asd_ha, ascb);
 | |
| 
 | |
| 	__list_add(&list, ascb->list.prev, &ascb->list);
 | |
| 
 | |
| 	asd_start_scb_timers(&list);
 | |
| 
 | |
| 	asd_ha->seq.scbpro += num;
 | |
| 	list_splice_init(&list, asd_ha->seq.pend_q.prev);
 | |
| 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
 | |
| 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_post_escb_list -- post a list of 1 or more empty scb
 | |
|  * @asd_ha: pointer to a host adapter structure
 | |
|  * @ascb: pointer to the first empty SCB in the list
 | |
|  * @num: number of aSCBs in the list (to be posted)
 | |
|  *
 | |
|  * This is essentially the same as asd_post_ascb_list, but we do not
 | |
|  * increment pending, add those to the pending list or get indexes.
 | |
|  * See asd_init_escbs() and asd_init_post_escbs().
 | |
|  *
 | |
|  * Since sending a list of ascbs is a superset of sending a single
 | |
|  * ascb, this function exists to generalize this.  More specifically,
 | |
|  * when sending a list of those, we want to do only a _single_
 | |
|  * memcpy() at swap head, as opposed to for each ascb sent (in the
 | |
|  * case of sending them one by one).  That is, we want to minimize the
 | |
|  * ratio of memcpy() operations to the number of ascbs sent.  The same
 | |
|  * logic applies to asd_post_ascb_list().
 | |
|  */
 | |
| int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
 | |
| 		       int num)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
 | |
| 	asd_swap_head_scb(asd_ha, ascb);
 | |
| 	asd_ha->seq.scbpro += num;
 | |
| 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
 | |
| 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ---------- LED ---------- */
 | |
| 
 | |
| /**
 | |
|  * asd_turn_led -- turn on/off an LED
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  * @phy_id: the PHY id whose LED we want to manupulate
 | |
|  * @op: 1 to turn on, 0 to turn off
 | |
|  */
 | |
| void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
 | |
| {
 | |
| 	if (phy_id < ASD_MAX_PHYS) {
 | |
| 		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
 | |
| 		if (op)
 | |
| 			v |= LEDPOL;
 | |
| 		else
 | |
| 			v &= ~LEDPOL;
 | |
| 		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * asd_control_led -- enable/disable an LED on the board
 | |
|  * @asd_ha: pointer to host adapter structure
 | |
|  * @phy_id: integer, the phy id
 | |
|  * @op: integer, 1 to enable, 0 to disable the LED
 | |
|  *
 | |
|  * First we output enable the LED, then we set the source
 | |
|  * to be an external module.
 | |
|  */
 | |
| void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
 | |
| {
 | |
| 	if (phy_id < ASD_MAX_PHYS) {
 | |
| 		u32 v;
 | |
| 
 | |
| 		v = asd_read_reg_dword(asd_ha, GPIOOER);
 | |
| 		if (op)
 | |
| 			v |= (1 << phy_id);
 | |
| 		else
 | |
| 			v &= ~(1 << phy_id);
 | |
| 		asd_write_reg_dword(asd_ha, GPIOOER, v);
 | |
| 
 | |
| 		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
 | |
| 		if (op)
 | |
| 			v |= (1 << phy_id);
 | |
| 		else
 | |
| 			v &= ~(1 << phy_id);
 | |
| 		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ---------- PHY enable ---------- */
 | |
| 
 | |
| static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
 | |
| {
 | |
| 	struct asd_phy *phy = &asd_ha->phys[phy_id];
 | |
| 
 | |
| 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
 | |
| 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
 | |
| 			   HOTPLUG_DELAY_TIMEOUT);
 | |
| 
 | |
| 	/* Get defaults from manuf. sector */
 | |
| 	/* XXX we need defaults for those in case MS is broken. */
 | |
| 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
 | |
| 			   phy->phy_desc->phy_control_0);
 | |
| 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
 | |
| 			   phy->phy_desc->phy_control_1);
 | |
| 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
 | |
| 			   phy->phy_desc->phy_control_2);
 | |
| 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
 | |
| 			   phy->phy_desc->phy_control_3);
 | |
| 
 | |
| 	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
 | |
| 			    ASD_COMINIT_TIMEOUT);
 | |
| 
 | |
| 	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
 | |
| 			   phy->id_frm_tok->dma_handle);
 | |
| 
 | |
| 	asd_control_led(asd_ha, phy_id, 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
 | |
| {
 | |
| 	u8  phy_m;
 | |
| 	u8  i;
 | |
| 	int num = 0, k;
 | |
| 	struct asd_ascb *ascb;
 | |
| 	struct asd_ascb *ascb_list;
 | |
| 
 | |
| 	if (!phy_mask) {
 | |
| 		asd_printk("%s called with phy_mask of 0!?\n", __func__);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for_each_phy(phy_mask, phy_m, i) {
 | |
| 		num++;
 | |
| 		asd_enable_phy(asd_ha, i);
 | |
| 	}
 | |
| 
 | |
| 	k = num;
 | |
| 	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
 | |
| 	if (!ascb_list) {
 | |
| 		asd_printk("no memory for control phy ascb list\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	num -= k;
 | |
| 
 | |
| 	ascb = ascb_list;
 | |
| 	for_each_phy(phy_mask, phy_m, i) {
 | |
| 		asd_build_control_phy(ascb, i, ENABLE_PHY);
 | |
| 		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
 | |
| 	}
 | |
| 	ASD_DPRINTK("posting %d control phy scbs\n", num);
 | |
| 	k = asd_post_ascb_list(asd_ha, ascb_list, num);
 | |
| 	if (k)
 | |
| 		asd_ascb_free_list(ascb_list);
 | |
| 
 | |
| 	return k;
 | |
| }
 |