The patch below updates broken web addresses in the arch directory. Signed-off-by: Justin P. Mattock <justinmattock@gmail.com> Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org> Cc: Finn Thain <fthain@telegraphics.com.au> Cc: Randy Dunlap <rdunlap@xenotime.net> Reviewed-by: Finn Thain <fthain@telegraphics.com.au> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
		
			
				
	
	
		
			3435 lines
		
	
	
	
		
			116 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3435 lines
		
	
	
	
		
			116 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
===============================================================================
 | 
						|
 | 
						|
This C source file is part of the SoftFloat IEC/IEEE Floating-point
 | 
						|
Arithmetic Package, Release 2.
 | 
						|
 | 
						|
Written by John R. Hauser.  This work was made possible in part by the
 | 
						|
International Computer Science Institute, located at Suite 600, 1947 Center
 | 
						|
Street, Berkeley, California 94704.  Funding was partially provided by the
 | 
						|
National Science Foundation under grant MIP-9311980.  The original version
 | 
						|
of this code was written as part of a project to build a fixed-point vector
 | 
						|
processor in collaboration with the University of California at Berkeley,
 | 
						|
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | 
						|
is available through the web page
 | 
						|
http://www.jhauser.us/arithmetic/SoftFloat-2b/SoftFloat-source.txt
 | 
						|
 | 
						|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | 
						|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | 
						|
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | 
						|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | 
						|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | 
						|
 | 
						|
Derivative works are acceptable, even for commercial purposes, so long as
 | 
						|
(1) they include prominent notice that the work is derivative, and (2) they
 | 
						|
include prominent notice akin to these three paragraphs for those parts of
 | 
						|
this code that are retained.
 | 
						|
 | 
						|
===============================================================================
 | 
						|
*/
 | 
						|
 | 
						|
#include <asm/div64.h>
 | 
						|
 | 
						|
#include "fpa11.h"
 | 
						|
//#include "milieu.h"
 | 
						|
//#include "softfloat.h"
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Primitive arithmetic functions, including multi-word arithmetic, and
 | 
						|
division and square root approximations.  (Can be specialized to target if
 | 
						|
desired.)
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
#include "softfloat-macros"
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Functions and definitions to determine:  (1) whether tininess for underflow
 | 
						|
is detected before or after rounding by default, (2) what (if anything)
 | 
						|
happens when exceptions are raised, (3) how signaling NaNs are distinguished
 | 
						|
from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 | 
						|
are propagated from function inputs to output.  These details are target-
 | 
						|
specific.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
#include "softfloat-specialize"
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | 
						|
and 7, and returns the properly rounded 32-bit integer corresponding to the
 | 
						|
input.  If `zSign' is nonzero, the input is negated before being converted
 | 
						|
to an integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point
 | 
						|
input is simply rounded to an integer, with the inexact exception raised if
 | 
						|
the input cannot be represented exactly as an integer.  If the fixed-point
 | 
						|
input is too large, however, the invalid exception is raised and the largest
 | 
						|
positive or negative integer is returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static int32 roundAndPackInt32( struct roundingData *roundData, flag zSign, bits64 absZ )
 | 
						|
{
 | 
						|
    int8 roundingMode;
 | 
						|
    flag roundNearestEven;
 | 
						|
    int8 roundIncrement, roundBits;
 | 
						|
    int32 z;
 | 
						|
 | 
						|
    roundingMode = roundData->mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    roundIncrement = 0x40;
 | 
						|
    if ( ! roundNearestEven ) {
 | 
						|
        if ( roundingMode == float_round_to_zero ) {
 | 
						|
            roundIncrement = 0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            roundIncrement = 0x7F;
 | 
						|
            if ( zSign ) {
 | 
						|
                if ( roundingMode == float_round_up ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if ( roundingMode == float_round_down ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    roundBits = absZ & 0x7F;
 | 
						|
    absZ = ( absZ + roundIncrement )>>7;
 | 
						|
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | 
						|
    z = absZ;
 | 
						|
    if ( zSign ) z = - z;
 | 
						|
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return zSign ? 0x80000000 : 0x7FFFFFFF;
 | 
						|
    }
 | 
						|
    if ( roundBits ) roundData->exception |= float_flag_inexact;
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the fraction bits of the single-precision floating-point value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE bits32 extractFloat32Frac( float32 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a & 0x007FFFFF;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the exponent bits of the single-precision floating-point value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE int16 extractFloat32Exp( float32 a )
 | 
						|
{
 | 
						|
 | 
						|
    return ( a>>23 ) & 0xFF;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the sign bit of the single-precision floating-point value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
#if 0	/* in softfloat.h */
 | 
						|
INLINE flag extractFloat32Sign( float32 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a>>31;
 | 
						|
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Normalizes the subnormal single-precision floating-point value represented
 | 
						|
by the denormalized significand `aSig'.  The normalized exponent and
 | 
						|
significand are stored at the locations pointed to by `zExpPtr' and
 | 
						|
`zSigPtr', respectively.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static void
 | 
						|
 normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
 | 
						|
{
 | 
						|
    int8 shiftCount;
 | 
						|
 | 
						|
    shiftCount = countLeadingZeros32( aSig ) - 8;
 | 
						|
    *zSigPtr = aSig<<shiftCount;
 | 
						|
    *zExpPtr = 1 - shiftCount;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | 
						|
single-precision floating-point value, returning the result.  After being
 | 
						|
shifted into the proper positions, the three fields are simply added
 | 
						|
together to form the result.  This means that any integer portion of `zSig'
 | 
						|
will be added into the exponent.  Since a properly normalized significand
 | 
						|
will have an integer portion equal to 1, the `zExp' input should be 1 less
 | 
						|
than the desired result exponent whenever `zSig' is a complete, normalized
 | 
						|
significand.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
 | 
						|
{
 | 
						|
#if 0
 | 
						|
   float32 f;
 | 
						|
   __asm__("@ packFloat32				\n\
 | 
						|
   	    mov %0, %1, asl #31				\n\
 | 
						|
   	    orr %0, %2, asl #23				\n\
 | 
						|
   	    orr %0, %3"
 | 
						|
   	    : /* no outputs */
 | 
						|
   	    : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig)
 | 
						|
   	    : "cc");
 | 
						|
   return f;
 | 
						|
#else
 | 
						|
    return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
 | 
						|
#endif 
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
and significand `zSig', and returns the proper single-precision floating-
 | 
						|
point value corresponding to the abstract input.  Ordinarily, the abstract
 | 
						|
value is simply rounded and packed into the single-precision format, with
 | 
						|
the inexact exception raised if the abstract input cannot be represented
 | 
						|
exactly.  If the abstract value is too large, however, the overflow and
 | 
						|
inexact exceptions are raised and an infinity or maximal finite value is
 | 
						|
returned.  If the abstract value is too small, the input value is rounded to
 | 
						|
a subnormal number, and the underflow and inexact exceptions are raised if
 | 
						|
the abstract input cannot be represented exactly as a subnormal single-
 | 
						|
precision floating-point number.
 | 
						|
    The input significand `zSig' has its binary point between bits 30
 | 
						|
and 29, which is 7 bits to the left of the usual location.  This shifted
 | 
						|
significand must be normalized or smaller.  If `zSig' is not normalized,
 | 
						|
`zExp' must be 0; in that case, the result returned is a subnormal number,
 | 
						|
and it must not require rounding.  In the usual case that `zSig' is
 | 
						|
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | 
						|
The handling of underflow and overflow follows the IEC/IEEE Standard for
 | 
						|
Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float32 roundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
 | 
						|
{
 | 
						|
    int8 roundingMode;
 | 
						|
    flag roundNearestEven;
 | 
						|
    int8 roundIncrement, roundBits;
 | 
						|
    flag isTiny;
 | 
						|
 | 
						|
    roundingMode = roundData->mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    roundIncrement = 0x40;
 | 
						|
    if ( ! roundNearestEven ) {
 | 
						|
        if ( roundingMode == float_round_to_zero ) {
 | 
						|
            roundIncrement = 0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            roundIncrement = 0x7F;
 | 
						|
            if ( zSign ) {
 | 
						|
                if ( roundingMode == float_round_up ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if ( roundingMode == float_round_down ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    roundBits = zSig & 0x7F;
 | 
						|
    if ( 0xFD <= (bits16) zExp ) {
 | 
						|
        if (    ( 0xFD < zExp )
 | 
						|
             || (    ( zExp == 0xFD )
 | 
						|
                  && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
 | 
						|
           ) {
 | 
						|
            roundData->exception |= float_flag_overflow | float_flag_inexact;
 | 
						|
            return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
 | 
						|
        }
 | 
						|
        if ( zExp < 0 ) {
 | 
						|
            isTiny =
 | 
						|
                   ( float_detect_tininess == float_tininess_before_rounding )
 | 
						|
                || ( zExp < -1 )
 | 
						|
                || ( zSig + roundIncrement < 0x80000000 );
 | 
						|
            shift32RightJamming( zSig, - zExp, &zSig );
 | 
						|
            zExp = 0;
 | 
						|
            roundBits = zSig & 0x7F;
 | 
						|
            if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ( roundBits ) roundData->exception |= float_flag_inexact;
 | 
						|
    zSig = ( zSig + roundIncrement )>>7;
 | 
						|
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | 
						|
    if ( zSig == 0 ) zExp = 0;
 | 
						|
    return packFloat32( zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
and significand `zSig', and returns the proper single-precision floating-
 | 
						|
point value corresponding to the abstract input.  This routine is just like
 | 
						|
`roundAndPackFloat32' except that `zSig' does not have to be normalized in
 | 
						|
any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | 
						|
point exponent.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float32
 | 
						|
 normalizeRoundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
 | 
						|
{
 | 
						|
    int8 shiftCount;
 | 
						|
 | 
						|
    shiftCount = countLeadingZeros32( zSig ) - 1;
 | 
						|
    return roundAndPackFloat32( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the fraction bits of the double-precision floating-point value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE bits64 extractFloat64Frac( float64 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a & LIT64( 0x000FFFFFFFFFFFFF );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the exponent bits of the double-precision floating-point value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE int16 extractFloat64Exp( float64 a )
 | 
						|
{
 | 
						|
 | 
						|
    return ( a>>52 ) & 0x7FF;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the sign bit of the double-precision floating-point value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
#if 0	/* in softfloat.h */
 | 
						|
INLINE flag extractFloat64Sign( float64 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a>>63;
 | 
						|
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Normalizes the subnormal double-precision floating-point value represented
 | 
						|
by the denormalized significand `aSig'.  The normalized exponent and
 | 
						|
significand are stored at the locations pointed to by `zExpPtr' and
 | 
						|
`zSigPtr', respectively.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static void
 | 
						|
 normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
 | 
						|
{
 | 
						|
    int8 shiftCount;
 | 
						|
 | 
						|
    shiftCount = countLeadingZeros64( aSig ) - 11;
 | 
						|
    *zSigPtr = aSig<<shiftCount;
 | 
						|
    *zExpPtr = 1 - shiftCount;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | 
						|
double-precision floating-point value, returning the result.  After being
 | 
						|
shifted into the proper positions, the three fields are simply added
 | 
						|
together to form the result.  This means that any integer portion of `zSig'
 | 
						|
will be added into the exponent.  Since a properly normalized significand
 | 
						|
will have an integer portion equal to 1, the `zExp' input should be 1 less
 | 
						|
than the desired result exponent whenever `zSig' is a complete, normalized
 | 
						|
significand.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
 | 
						|
{
 | 
						|
 | 
						|
    return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
and significand `zSig', and returns the proper double-precision floating-
 | 
						|
point value corresponding to the abstract input.  Ordinarily, the abstract
 | 
						|
value is simply rounded and packed into the double-precision format, with
 | 
						|
the inexact exception raised if the abstract input cannot be represented
 | 
						|
exactly.  If the abstract value is too large, however, the overflow and
 | 
						|
inexact exceptions are raised and an infinity or maximal finite value is
 | 
						|
returned.  If the abstract value is too small, the input value is rounded to
 | 
						|
a subnormal number, and the underflow and inexact exceptions are raised if
 | 
						|
the abstract input cannot be represented exactly as a subnormal double-
 | 
						|
precision floating-point number.
 | 
						|
    The input significand `zSig' has its binary point between bits 62
 | 
						|
and 61, which is 10 bits to the left of the usual location.  This shifted
 | 
						|
significand must be normalized or smaller.  If `zSig' is not normalized,
 | 
						|
`zExp' must be 0; in that case, the result returned is a subnormal number,
 | 
						|
and it must not require rounding.  In the usual case that `zSig' is
 | 
						|
normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | 
						|
The handling of underflow and overflow follows the IEC/IEEE Standard for
 | 
						|
Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float64 roundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
 | 
						|
{
 | 
						|
    int8 roundingMode;
 | 
						|
    flag roundNearestEven;
 | 
						|
    int16 roundIncrement, roundBits;
 | 
						|
    flag isTiny;
 | 
						|
 | 
						|
    roundingMode = roundData->mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    roundIncrement = 0x200;
 | 
						|
    if ( ! roundNearestEven ) {
 | 
						|
        if ( roundingMode == float_round_to_zero ) {
 | 
						|
            roundIncrement = 0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            roundIncrement = 0x3FF;
 | 
						|
            if ( zSign ) {
 | 
						|
                if ( roundingMode == float_round_up ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if ( roundingMode == float_round_down ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    roundBits = zSig & 0x3FF;
 | 
						|
    if ( 0x7FD <= (bits16) zExp ) {
 | 
						|
        if (    ( 0x7FD < zExp )
 | 
						|
             || (    ( zExp == 0x7FD )
 | 
						|
                  && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
 | 
						|
           ) {
 | 
						|
            //register int lr = __builtin_return_address(0);
 | 
						|
            //printk("roundAndPackFloat64 called from 0x%08x\n",lr);
 | 
						|
            roundData->exception |= float_flag_overflow | float_flag_inexact;
 | 
						|
            return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
 | 
						|
        }
 | 
						|
        if ( zExp < 0 ) {
 | 
						|
            isTiny =
 | 
						|
                   ( float_detect_tininess == float_tininess_before_rounding )
 | 
						|
                || ( zExp < -1 )
 | 
						|
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
 | 
						|
            shift64RightJamming( zSig, - zExp, &zSig );
 | 
						|
            zExp = 0;
 | 
						|
            roundBits = zSig & 0x3FF;
 | 
						|
            if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ( roundBits ) roundData->exception |= float_flag_inexact;
 | 
						|
    zSig = ( zSig + roundIncrement )>>10;
 | 
						|
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
 | 
						|
    if ( zSig == 0 ) zExp = 0;
 | 
						|
    return packFloat64( zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
and significand `zSig', and returns the proper double-precision floating-
 | 
						|
point value corresponding to the abstract input.  This routine is just like
 | 
						|
`roundAndPackFloat64' except that `zSig' does not have to be normalized in
 | 
						|
any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | 
						|
point exponent.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float64
 | 
						|
 normalizeRoundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
 | 
						|
{
 | 
						|
    int8 shiftCount;
 | 
						|
 | 
						|
    shiftCount = countLeadingZeros64( zSig ) - 1;
 | 
						|
    return roundAndPackFloat64( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FLOATX80
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the fraction bits of the extended double-precision floating-point
 | 
						|
value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE bits64 extractFloatx80Frac( floatx80 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a.low;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the exponent bits of the extended double-precision floating-point
 | 
						|
value `a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE int32 extractFloatx80Exp( floatx80 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a.high & 0x7FFF;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the sign bit of the extended double-precision floating-point value
 | 
						|
`a'.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE flag extractFloatx80Sign( floatx80 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a.high>>15;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Normalizes the subnormal extended double-precision floating-point value
 | 
						|
represented by the denormalized significand `aSig'.  The normalized exponent
 | 
						|
and significand are stored at the locations pointed to by `zExpPtr' and
 | 
						|
`zSigPtr', respectively.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static void
 | 
						|
 normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
 | 
						|
{
 | 
						|
    int8 shiftCount;
 | 
						|
 | 
						|
    shiftCount = countLeadingZeros64( aSig );
 | 
						|
    *zSigPtr = aSig<<shiftCount;
 | 
						|
    *zExpPtr = 1 - shiftCount;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
 | 
						|
extended double-precision floating-point value, returning the result.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
 | 
						|
{
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    z.low = zSig;
 | 
						|
    z.high = ( ( (bits16) zSign )<<15 ) + zExp;
 | 
						|
    z.__padding = 0;
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
and extended significand formed by the concatenation of `zSig0' and `zSig1',
 | 
						|
and returns the proper extended double-precision floating-point value
 | 
						|
corresponding to the abstract input.  Ordinarily, the abstract value is
 | 
						|
rounded and packed into the extended double-precision format, with the
 | 
						|
inexact exception raised if the abstract input cannot be represented
 | 
						|
exactly.  If the abstract value is too large, however, the overflow and
 | 
						|
inexact exceptions are raised and an infinity or maximal finite value is
 | 
						|
returned.  If the abstract value is too small, the input value is rounded to
 | 
						|
a subnormal number, and the underflow and inexact exceptions are raised if
 | 
						|
the abstract input cannot be represented exactly as a subnormal extended
 | 
						|
double-precision floating-point number.
 | 
						|
    If `roundingPrecision' is 32 or 64, the result is rounded to the same
 | 
						|
number of bits as single or double precision, respectively.  Otherwise, the
 | 
						|
result is rounded to the full precision of the extended double-precision
 | 
						|
format.
 | 
						|
    The input significand must be normalized or smaller.  If the input
 | 
						|
significand is not normalized, `zExp' must be 0; in that case, the result
 | 
						|
returned is a subnormal number, and it must not require rounding.  The
 | 
						|
handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static floatx80
 | 
						|
 roundAndPackFloatx80(
 | 
						|
     struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 | 
						|
 )
 | 
						|
{
 | 
						|
    int8 roundingMode, roundingPrecision;
 | 
						|
    flag roundNearestEven, increment, isTiny;
 | 
						|
    int64 roundIncrement, roundMask, roundBits;
 | 
						|
 | 
						|
    roundingMode = roundData->mode;
 | 
						|
    roundingPrecision = roundData->precision;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    if ( roundingPrecision == 80 ) goto precision80;
 | 
						|
    if ( roundingPrecision == 64 ) {
 | 
						|
        roundIncrement = LIT64( 0x0000000000000400 );
 | 
						|
        roundMask = LIT64( 0x00000000000007FF );
 | 
						|
    }
 | 
						|
    else if ( roundingPrecision == 32 ) {
 | 
						|
        roundIncrement = LIT64( 0x0000008000000000 );
 | 
						|
        roundMask = LIT64( 0x000000FFFFFFFFFF );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        goto precision80;
 | 
						|
    }
 | 
						|
    zSig0 |= ( zSig1 != 0 );
 | 
						|
    if ( ! roundNearestEven ) {
 | 
						|
        if ( roundingMode == float_round_to_zero ) {
 | 
						|
            roundIncrement = 0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            roundIncrement = roundMask;
 | 
						|
            if ( zSign ) {
 | 
						|
                if ( roundingMode == float_round_up ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if ( roundingMode == float_round_down ) roundIncrement = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    roundBits = zSig0 & roundMask;
 | 
						|
    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 | 
						|
        if (    ( 0x7FFE < zExp )
 | 
						|
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 | 
						|
           ) {
 | 
						|
            goto overflow;
 | 
						|
        }
 | 
						|
        if ( zExp <= 0 ) {
 | 
						|
            isTiny =
 | 
						|
                   ( float_detect_tininess == float_tininess_before_rounding )
 | 
						|
                || ( zExp < 0 )
 | 
						|
                || ( zSig0 <= zSig0 + roundIncrement );
 | 
						|
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 | 
						|
            zExp = 0;
 | 
						|
            roundBits = zSig0 & roundMask;
 | 
						|
            if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
 | 
						|
            if ( roundBits ) roundData->exception |= float_flag_inexact;
 | 
						|
            zSig0 += roundIncrement;
 | 
						|
            if ( (sbits64) zSig0 < 0 ) zExp = 1;
 | 
						|
            roundIncrement = roundMask + 1;
 | 
						|
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | 
						|
                roundMask |= roundIncrement;
 | 
						|
            }
 | 
						|
            zSig0 &= ~ roundMask;
 | 
						|
            return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ( roundBits ) roundData->exception |= float_flag_inexact;
 | 
						|
    zSig0 += roundIncrement;
 | 
						|
    if ( zSig0 < roundIncrement ) {
 | 
						|
        ++zExp;
 | 
						|
        zSig0 = LIT64( 0x8000000000000000 );
 | 
						|
    }
 | 
						|
    roundIncrement = roundMask + 1;
 | 
						|
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | 
						|
        roundMask |= roundIncrement;
 | 
						|
    }
 | 
						|
    zSig0 &= ~ roundMask;
 | 
						|
    if ( zSig0 == 0 ) zExp = 0;
 | 
						|
    return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
 precision80:
 | 
						|
    increment = ( (sbits64) zSig1 < 0 );
 | 
						|
    if ( ! roundNearestEven ) {
 | 
						|
        if ( roundingMode == float_round_to_zero ) {
 | 
						|
            increment = 0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if ( zSign ) {
 | 
						|
                increment = ( roundingMode == float_round_down ) && zSig1;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                increment = ( roundingMode == float_round_up ) && zSig1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 | 
						|
        if (    ( 0x7FFE < zExp )
 | 
						|
             || (    ( zExp == 0x7FFE )
 | 
						|
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
 | 
						|
                  && increment
 | 
						|
                )
 | 
						|
           ) {
 | 
						|
            roundMask = 0;
 | 
						|
 overflow:
 | 
						|
            roundData->exception |= float_flag_overflow | float_flag_inexact;
 | 
						|
            if (    ( roundingMode == float_round_to_zero )
 | 
						|
                 || ( zSign && ( roundingMode == float_round_up ) )
 | 
						|
                 || ( ! zSign && ( roundingMode == float_round_down ) )
 | 
						|
               ) {
 | 
						|
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 | 
						|
            }
 | 
						|
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
        }
 | 
						|
        if ( zExp <= 0 ) {
 | 
						|
            isTiny =
 | 
						|
                   ( float_detect_tininess == float_tininess_before_rounding )
 | 
						|
                || ( zExp < 0 )
 | 
						|
                || ! increment
 | 
						|
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
 | 
						|
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 | 
						|
            zExp = 0;
 | 
						|
            if ( isTiny && zSig1 ) roundData->exception |= float_flag_underflow;
 | 
						|
            if ( zSig1 ) roundData->exception |= float_flag_inexact;
 | 
						|
            if ( roundNearestEven ) {
 | 
						|
                increment = ( (sbits64) zSig1 < 0 );
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if ( zSign ) {
 | 
						|
                    increment = ( roundingMode == float_round_down ) && zSig1;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    increment = ( roundingMode == float_round_up ) && zSig1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if ( increment ) {
 | 
						|
                ++zSig0;
 | 
						|
                zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
 | 
						|
                if ( (sbits64) zSig0 < 0 ) zExp = 1;
 | 
						|
            }
 | 
						|
            return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ( zSig1 ) roundData->exception |= float_flag_inexact;
 | 
						|
    if ( increment ) {
 | 
						|
        ++zSig0;
 | 
						|
        if ( zSig0 == 0 ) {
 | 
						|
            ++zExp;
 | 
						|
            zSig0 = LIT64( 0x8000000000000000 );
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( zSig0 == 0 ) zExp = 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Takes an abstract floating-point value having sign `zSign', exponent
 | 
						|
`zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 | 
						|
and returns the proper extended double-precision floating-point value
 | 
						|
corresponding to the abstract input.  This routine is just like
 | 
						|
`roundAndPackFloatx80' except that the input significand does not have to be
 | 
						|
normalized.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static floatx80
 | 
						|
 normalizeRoundAndPackFloatx80(
 | 
						|
     struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 | 
						|
 )
 | 
						|
{
 | 
						|
    int8 shiftCount;
 | 
						|
 | 
						|
    if ( zSig0 == 0 ) {
 | 
						|
        zSig0 = zSig1;
 | 
						|
        zSig1 = 0;
 | 
						|
        zExp -= 64;
 | 
						|
    }
 | 
						|
    shiftCount = countLeadingZeros64( zSig0 );
 | 
						|
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | 
						|
    zExp -= shiftCount;
 | 
						|
    return
 | 
						|
        roundAndPackFloatx80( roundData, zSign, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the 32-bit two's complement integer `a' to
 | 
						|
the single-precision floating-point format.  The conversion is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 int32_to_float32(struct roundingData *roundData, int32 a)
 | 
						|
{
 | 
						|
    flag zSign;
 | 
						|
 | 
						|
    if ( a == 0 ) return 0;
 | 
						|
    if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
 | 
						|
    zSign = ( a < 0 );
 | 
						|
    return normalizeRoundAndPackFloat32( roundData, zSign, 0x9C, zSign ? - a : a );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the 32-bit two's complement integer `a' to
 | 
						|
the double-precision floating-point format.  The conversion is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 int32_to_float64( int32 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    uint32 absA;
 | 
						|
    int8 shiftCount;
 | 
						|
    bits64 zSig;
 | 
						|
 | 
						|
    if ( a == 0 ) return 0;
 | 
						|
    aSign = ( a < 0 );
 | 
						|
    absA = aSign ? - a : a;
 | 
						|
    shiftCount = countLeadingZeros32( absA ) + 21;
 | 
						|
    zSig = absA;
 | 
						|
    return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FLOATX80
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the 32-bit two's complement integer `a'
 | 
						|
to the extended double-precision floating-point format.  The conversion
 | 
						|
is performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 int32_to_floatx80( int32 a )
 | 
						|
{
 | 
						|
    flag zSign;
 | 
						|
    uint32 absA;
 | 
						|
    int8 shiftCount;
 | 
						|
    bits64 zSig;
 | 
						|
 | 
						|
    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | 
						|
    zSign = ( a < 0 );
 | 
						|
    absA = zSign ? - a : a;
 | 
						|
    shiftCount = countLeadingZeros32( absA ) + 32;
 | 
						|
    zSig = absA;
 | 
						|
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the single-precision floating-point value
 | 
						|
`a' to the 32-bit two's complement integer format.  The conversion is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic---which means in particular that the conversion is rounded
 | 
						|
according to the current rounding mode.  If `a' is a NaN, the largest
 | 
						|
positive integer is returned.  Otherwise, if the conversion overflows, the
 | 
						|
largest integer with the same sign as `a' is returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 float32_to_int32( struct roundingData *roundData, float32 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, shiftCount;
 | 
						|
    bits32 aSig;
 | 
						|
    bits64 zSig;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | 
						|
    if ( aExp ) aSig |= 0x00800000;
 | 
						|
    shiftCount = 0xAF - aExp;
 | 
						|
    zSig = aSig;
 | 
						|
    zSig <<= 32;
 | 
						|
    if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig );
 | 
						|
    return roundAndPackInt32( roundData, aSign, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the single-precision floating-point value
 | 
						|
`a' to the 32-bit two's complement integer format.  The conversion is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic, except that the conversion is always rounded toward zero.  If
 | 
						|
`a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | 
						|
conversion overflows, the largest integer with the same sign as `a' is
 | 
						|
returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 float32_to_int32_round_to_zero( float32 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, shiftCount;
 | 
						|
    bits32 aSig;
 | 
						|
    int32 z;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    shiftCount = aExp - 0x9E;
 | 
						|
    if ( 0 <= shiftCount ) {
 | 
						|
        if ( a == 0xCF000000 ) return 0x80000000;
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
 | 
						|
        return 0x80000000;
 | 
						|
    }
 | 
						|
    else if ( aExp <= 0x7E ) {
 | 
						|
        if ( aExp | aSig ) float_raise( float_flag_inexact );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSig = ( aSig | 0x00800000 )<<8;
 | 
						|
    z = aSig>>( - shiftCount );
 | 
						|
    if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
 | 
						|
        float_raise( float_flag_inexact );
 | 
						|
    }
 | 
						|
    return aSign ? - z : z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the single-precision floating-point value
 | 
						|
`a' to the double-precision floating-point format.  The conversion is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float32_to_float64( float32 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp;
 | 
						|
    bits32 aSig;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
 | 
						|
        return packFloat64( aSign, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
        --aExp;
 | 
						|
    }
 | 
						|
    return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FLOATX80
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the single-precision floating-point value
 | 
						|
`a' to the extended double-precision floating-point format.  The conversion
 | 
						|
is performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 float32_to_floatx80( float32 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp;
 | 
						|
    bits32 aSig;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
 | 
						|
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    aSig |= 0x00800000;
 | 
						|
    return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Rounds the single-precision floating-point value `a' to an integer, and
 | 
						|
returns the result as a single-precision floating-point value.  The
 | 
						|
operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float32_round_to_int( struct roundingData *roundData, float32 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp;
 | 
						|
    bits32 lastBitMask, roundBitsMask;
 | 
						|
    int8 roundingMode;
 | 
						|
    float32 z;
 | 
						|
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    if ( 0x96 <= aExp ) {
 | 
						|
        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
 | 
						|
            return propagateFloat32NaN( a, a );
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    roundingMode = roundData->mode;
 | 
						|
    if ( aExp <= 0x7E ) {
 | 
						|
        if ( (bits32) ( a<<1 ) == 0 ) return a;
 | 
						|
        roundData->exception |= float_flag_inexact;
 | 
						|
        aSign = extractFloat32Sign( a );
 | 
						|
        switch ( roundingMode ) {
 | 
						|
         case float_round_nearest_even:
 | 
						|
            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
 | 
						|
                return packFloat32( aSign, 0x7F, 0 );
 | 
						|
            }
 | 
						|
            break;
 | 
						|
         case float_round_down:
 | 
						|
            return aSign ? 0xBF800000 : 0;
 | 
						|
         case float_round_up:
 | 
						|
            return aSign ? 0x80000000 : 0x3F800000;
 | 
						|
        }
 | 
						|
        return packFloat32( aSign, 0, 0 );
 | 
						|
    }
 | 
						|
    lastBitMask = 1;
 | 
						|
    lastBitMask <<= 0x96 - aExp;
 | 
						|
    roundBitsMask = lastBitMask - 1;
 | 
						|
    z = a;
 | 
						|
    if ( roundingMode == float_round_nearest_even ) {
 | 
						|
        z += lastBitMask>>1;
 | 
						|
        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 | 
						|
    }
 | 
						|
    else if ( roundingMode != float_round_to_zero ) {
 | 
						|
        if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | 
						|
            z += roundBitsMask;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    z &= ~ roundBitsMask;
 | 
						|
    if ( z != a ) roundData->exception |= float_flag_inexact;
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of adding the absolute values of the single-precision
 | 
						|
floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
 | 
						|
before being returned.  `zSign' is ignored if the result is a NaN.  The
 | 
						|
addition is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float32 addFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
 | 
						|
{
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits32 aSig, bSig, zSig;
 | 
						|
    int16 expDiff;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    bSig = extractFloat32Frac( b );
 | 
						|
    bExp = extractFloat32Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig <<= 6;
 | 
						|
    bSig <<= 6;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        if ( aExp == 0xFF ) {
 | 
						|
            if ( aSig ) return propagateFloat32NaN( a, b );
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if ( bExp == 0 ) {
 | 
						|
            --expDiff;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            bSig |= 0x20000000;
 | 
						|
        }
 | 
						|
        shift32RightJamming( bSig, expDiff, &bSig );
 | 
						|
        zExp = aExp;
 | 
						|
    }
 | 
						|
    else if ( expDiff < 0 ) {
 | 
						|
        if ( bExp == 0xFF ) {
 | 
						|
            if ( bSig ) return propagateFloat32NaN( a, b );
 | 
						|
            return packFloat32( zSign, 0xFF, 0 );
 | 
						|
        }
 | 
						|
        if ( aExp == 0 ) {
 | 
						|
            ++expDiff;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aSig |= 0x20000000;
 | 
						|
        }
 | 
						|
        shift32RightJamming( aSig, - expDiff, &aSig );
 | 
						|
        zExp = bExp;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( aExp == 0xFF ) {
 | 
						|
            if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
 | 
						|
        zSig = 0x40000000 + aSig + bSig;
 | 
						|
        zExp = aExp;
 | 
						|
        goto roundAndPack;
 | 
						|
    }
 | 
						|
    aSig |= 0x20000000;
 | 
						|
    zSig = ( aSig + bSig )<<1;
 | 
						|
    --zExp;
 | 
						|
    if ( (sbits32) zSig < 0 ) {
 | 
						|
        zSig = aSig + bSig;
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
 roundAndPack:
 | 
						|
    return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of subtracting the absolute values of the single-
 | 
						|
precision floating-point values `a' and `b'.  If `zSign' is true, the
 | 
						|
difference is negated before being returned.  `zSign' is ignored if the
 | 
						|
result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | 
						|
Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float32 subFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
 | 
						|
{
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits32 aSig, bSig, zSig;
 | 
						|
    int16 expDiff;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    bSig = extractFloat32Frac( b );
 | 
						|
    bExp = extractFloat32Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig <<= 7;
 | 
						|
    bSig <<= 7;
 | 
						|
    if ( 0 < expDiff ) goto aExpBigger;
 | 
						|
    if ( expDiff < 0 ) goto bExpBigger;
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float32_default_nan;
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        aExp = 1;
 | 
						|
        bExp = 1;
 | 
						|
    }
 | 
						|
    if ( bSig < aSig ) goto aBigger;
 | 
						|
    if ( aSig < bSig ) goto bBigger;
 | 
						|
    return packFloat32( roundData->mode == float_round_down, 0, 0 );
 | 
						|
 bExpBigger:
 | 
						|
    if ( bExp == 0xFF ) {
 | 
						|
        if ( bSig ) return propagateFloat32NaN( a, b );
 | 
						|
        return packFloat32( zSign ^ 1, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        ++expDiff;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        aSig |= 0x40000000;
 | 
						|
    }
 | 
						|
    shift32RightJamming( aSig, - expDiff, &aSig );
 | 
						|
    bSig |= 0x40000000;
 | 
						|
 bBigger:
 | 
						|
    zSig = bSig - aSig;
 | 
						|
    zExp = bExp;
 | 
						|
    zSign ^= 1;
 | 
						|
    goto normalizeRoundAndPack;
 | 
						|
 aExpBigger:
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig ) return propagateFloat32NaN( a, b );
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        --expDiff;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bSig |= 0x40000000;
 | 
						|
    }
 | 
						|
    shift32RightJamming( bSig, expDiff, &bSig );
 | 
						|
    aSig |= 0x40000000;
 | 
						|
 aBigger:
 | 
						|
    zSig = aSig - bSig;
 | 
						|
    zExp = aExp;
 | 
						|
 normalizeRoundAndPack:
 | 
						|
    --zExp;
 | 
						|
    return normalizeRoundAndPackFloat32( roundData, zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of adding the single-precision floating-point values `a'
 | 
						|
and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | 
						|
Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float32_add( struct roundingData *roundData, float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return addFloat32Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return subFloat32Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of subtracting the single-precision floating-point values
 | 
						|
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | 
						|
for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float32_sub( struct roundingData *roundData, float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return subFloat32Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return addFloat32Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of multiplying the single-precision floating-point values
 | 
						|
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | 
						|
for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float32_mul( struct roundingData *roundData, float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits32 aSig, bSig;
 | 
						|
    bits64 zSig64;
 | 
						|
    bits32 zSig;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSig = extractFloat32Frac( b );
 | 
						|
    bExp = extractFloat32Exp( b );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | 
						|
            return propagateFloat32NaN( a, b );
 | 
						|
        }
 | 
						|
        if ( ( bExp | bSig ) == 0 ) {
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float32_default_nan;
 | 
						|
        }
 | 
						|
        return packFloat32( zSign, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0xFF ) {
 | 
						|
        if ( bSig ) return propagateFloat32NaN( a, b );
 | 
						|
        if ( ( aExp | aSig ) == 0 ) {
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float32_default_nan;
 | 
						|
        }
 | 
						|
        return packFloat32( zSign, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 | 
						|
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    zExp = aExp + bExp - 0x7F;
 | 
						|
    aSig = ( aSig | 0x00800000 )<<7;
 | 
						|
    bSig = ( bSig | 0x00800000 )<<8;
 | 
						|
    shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
 | 
						|
    zSig = zSig64;
 | 
						|
    if ( 0 <= (sbits32) ( zSig<<1 ) ) {
 | 
						|
        zSig <<= 1;
 | 
						|
        --zExp;
 | 
						|
    }
 | 
						|
    return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of dividing the single-precision floating-point value `a'
 | 
						|
by the corresponding value `b'.  The operation is performed according to the
 | 
						|
IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float32_div( struct roundingData *roundData, float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits32 aSig, bSig, zSig;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSig = extractFloat32Frac( b );
 | 
						|
    bExp = extractFloat32Exp( b );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig ) return propagateFloat32NaN( a, b );
 | 
						|
        if ( bExp == 0xFF ) {
 | 
						|
            if ( bSig ) return propagateFloat32NaN( a, b );
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float32_default_nan;
 | 
						|
        }
 | 
						|
        return packFloat32( zSign, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0xFF ) {
 | 
						|
        if ( bSig ) return propagateFloat32NaN( a, b );
 | 
						|
        return packFloat32( zSign, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            if ( ( aExp | aSig ) == 0 ) {
 | 
						|
                roundData->exception |= float_flag_invalid;
 | 
						|
                return float32_default_nan;
 | 
						|
            }
 | 
						|
            roundData->exception |= float_flag_divbyzero;
 | 
						|
            return packFloat32( zSign, 0xFF, 0 );
 | 
						|
        }
 | 
						|
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    zExp = aExp - bExp + 0x7D;
 | 
						|
    aSig = ( aSig | 0x00800000 )<<7;
 | 
						|
    bSig = ( bSig | 0x00800000 )<<8;
 | 
						|
    if ( bSig <= ( aSig + aSig ) ) {
 | 
						|
        aSig >>= 1;
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
    {
 | 
						|
        bits64 tmp = ( (bits64) aSig )<<32;
 | 
						|
        do_div( tmp, bSig );
 | 
						|
        zSig = tmp;
 | 
						|
    }
 | 
						|
    if ( ( zSig & 0x3F ) == 0 ) {
 | 
						|
        zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 );
 | 
						|
    }
 | 
						|
    return roundAndPackFloat32( roundData, zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the remainder of the single-precision floating-point value `a'
 | 
						|
with respect to the corresponding value `b'.  The operation is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float32_rem( struct roundingData *roundData, float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int16 aExp, bExp, expDiff;
 | 
						|
    bits32 aSig, bSig;
 | 
						|
    bits32 q;
 | 
						|
    bits64 aSig64, bSig64, q64;
 | 
						|
    bits32 alternateASig;
 | 
						|
    sbits32 sigMean;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSig = extractFloat32Frac( b );
 | 
						|
    bExp = extractFloat32Exp( b );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | 
						|
            return propagateFloat32NaN( a, b );
 | 
						|
        }
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float32_default_nan;
 | 
						|
    }
 | 
						|
    if ( bExp == 0xFF ) {
 | 
						|
        if ( bSig ) return propagateFloat32NaN( a, b );
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float32_default_nan;
 | 
						|
        }
 | 
						|
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return a;
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig |= 0x00800000;
 | 
						|
    bSig |= 0x00800000;
 | 
						|
    if ( expDiff < 32 ) {
 | 
						|
        aSig <<= 8;
 | 
						|
        bSig <<= 8;
 | 
						|
        if ( expDiff < 0 ) {
 | 
						|
            if ( expDiff < -1 ) return a;
 | 
						|
            aSig >>= 1;
 | 
						|
        }
 | 
						|
        q = ( bSig <= aSig );
 | 
						|
        if ( q ) aSig -= bSig;
 | 
						|
        if ( 0 < expDiff ) {
 | 
						|
            bits64 tmp = ( (bits64) aSig )<<32;
 | 
						|
            do_div( tmp, bSig );
 | 
						|
            q = tmp;
 | 
						|
            q >>= 32 - expDiff;
 | 
						|
            bSig >>= 2;
 | 
						|
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aSig >>= 2;
 | 
						|
            bSig >>= 2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( bSig <= aSig ) aSig -= bSig;
 | 
						|
        aSig64 = ( (bits64) aSig )<<40;
 | 
						|
        bSig64 = ( (bits64) bSig )<<40;
 | 
						|
        expDiff -= 64;
 | 
						|
        while ( 0 < expDiff ) {
 | 
						|
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | 
						|
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | 
						|
            aSig64 = - ( ( bSig * q64 )<<38 );
 | 
						|
            expDiff -= 62;
 | 
						|
        }
 | 
						|
        expDiff += 64;
 | 
						|
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | 
						|
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | 
						|
        q = q64>>( 64 - expDiff );
 | 
						|
        bSig <<= 6;
 | 
						|
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 | 
						|
    }
 | 
						|
    do {
 | 
						|
        alternateASig = aSig;
 | 
						|
        ++q;
 | 
						|
        aSig -= bSig;
 | 
						|
    } while ( 0 <= (sbits32) aSig );
 | 
						|
    sigMean = aSig + alternateASig;
 | 
						|
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | 
						|
        aSig = alternateASig;
 | 
						|
    }
 | 
						|
    zSign = ( (sbits32) aSig < 0 );
 | 
						|
    if ( zSign ) aSig = - aSig;
 | 
						|
    return normalizeRoundAndPackFloat32( roundData, aSign ^ zSign, bExp, aSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the square root of the single-precision floating-point value `a'.
 | 
						|
The operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float32_sqrt( struct roundingData *roundData, float32 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, zExp;
 | 
						|
    bits32 aSig, zSig;
 | 
						|
    bits64 rem, term;
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig ) return propagateFloat32NaN( a, 0 );
 | 
						|
        if ( ! aSign ) return a;
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float32_default_nan;
 | 
						|
    }
 | 
						|
    if ( aSign ) {
 | 
						|
        if ( ( aExp | aSig ) == 0 ) return a;
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float32_default_nan;
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return 0;
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 | 
						|
    aSig = ( aSig | 0x00800000 )<<8;
 | 
						|
    zSig = estimateSqrt32( aExp, aSig ) + 2;
 | 
						|
    if ( ( zSig & 0x7F ) <= 5 ) {
 | 
						|
        if ( zSig < 2 ) {
 | 
						|
            zSig = 0xFFFFFFFF;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aSig >>= aExp & 1;
 | 
						|
            term = ( (bits64) zSig ) * zSig;
 | 
						|
            rem = ( ( (bits64) aSig )<<32 ) - term;
 | 
						|
            while ( (sbits64) rem < 0 ) {
 | 
						|
                --zSig;
 | 
						|
                rem += ( ( (bits64) zSig )<<1 ) | 1;
 | 
						|
            }
 | 
						|
            zSig |= ( rem != 0 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    shift32RightJamming( zSig, 1, &zSig );
 | 
						|
    return roundAndPackFloat32( roundData, 0, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the single-precision floating-point value `a' is equal to the
 | 
						|
corresponding value `b', and 0 otherwise.  The comparison is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float32_eq( float32 a, float32 b )
 | 
						|
{
 | 
						|
 | 
						|
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | 
						|
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | 
						|
       ) {
 | 
						|
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | 
						|
            float_raise( float_flag_invalid );
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the single-precision floating-point value `a' is less than or
 | 
						|
equal to the corresponding value `b', and 0 otherwise.  The comparison is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float32_le( float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | 
						|
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | 
						|
    return ( a == b ) || ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the single-precision floating-point value `a' is less than
 | 
						|
the corresponding value `b', and 0 otherwise.  The comparison is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float32_lt( float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | 
						|
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 | 
						|
    return ( a != b ) && ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the single-precision floating-point value `a' is equal to the
 | 
						|
corresponding value `b', and 0 otherwise.  The invalid exception is raised
 | 
						|
if either operand is a NaN.  Otherwise, the comparison is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float32_eq_signaling( float32 a, float32 b )
 | 
						|
{
 | 
						|
 | 
						|
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | 
						|
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the single-precision floating-point value `a' is less than or
 | 
						|
equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | 
						|
cause an exception.  Otherwise, the comparison is performed according to the
 | 
						|
IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float32_le_quiet( float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
    //int16 aExp, bExp;
 | 
						|
 | 
						|
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | 
						|
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | 
						|
       ) {
 | 
						|
        /* Do nothing, even if NaN as we're quiet */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | 
						|
    return ( a == b ) || ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the single-precision floating-point value `a' is less than
 | 
						|
the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | 
						|
exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | 
						|
Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float32_lt_quiet( float32 a, float32 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | 
						|
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | 
						|
       ) {
 | 
						|
        /* Do nothing, even if NaN as we're quiet */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSign = extractFloat32Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 | 
						|
    return ( a != b ) && ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the double-precision floating-point value
 | 
						|
`a' to the 32-bit two's complement integer format.  The conversion is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic---which means in particular that the conversion is rounded
 | 
						|
according to the current rounding mode.  If `a' is a NaN, the largest
 | 
						|
positive integer is returned.  Otherwise, if the conversion overflows, the
 | 
						|
largest integer with the same sign as `a' is returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 float64_to_int32( struct roundingData *roundData, float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, shiftCount;
 | 
						|
    bits64 aSig;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | 
						|
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | 
						|
    shiftCount = 0x42C - aExp;
 | 
						|
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
 | 
						|
    return roundAndPackInt32( roundData, aSign, aSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the double-precision floating-point value
 | 
						|
`a' to the 32-bit two's complement integer format.  The conversion is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic, except that the conversion is always rounded toward zero.  If
 | 
						|
`a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | 
						|
conversion overflows, the largest integer with the same sign as `a' is
 | 
						|
returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 float64_to_int32_round_to_zero( float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, shiftCount;
 | 
						|
    bits64 aSig, savedASig;
 | 
						|
    int32 z;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    shiftCount = 0x433 - aExp;
 | 
						|
    if ( shiftCount < 21 ) {
 | 
						|
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    else if ( 52 < shiftCount ) {
 | 
						|
        if ( aExp || aSig ) float_raise( float_flag_inexact );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSig |= LIT64( 0x0010000000000000 );
 | 
						|
    savedASig = aSig;
 | 
						|
    aSig >>= shiftCount;
 | 
						|
    z = aSig;
 | 
						|
    if ( aSign ) z = - z;
 | 
						|
    if ( ( z < 0 ) ^ aSign ) {
 | 
						|
 invalid:
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return aSign ? 0x80000000 : 0x7FFFFFFF;
 | 
						|
    }
 | 
						|
    if ( ( aSig<<shiftCount ) != savedASig ) {
 | 
						|
        float_raise( float_flag_inexact );
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the double-precision floating-point value
 | 
						|
`a' to the 32-bit two's complement unsigned integer format.  The conversion
 | 
						|
is performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic---which means in particular that the conversion is rounded
 | 
						|
according to the current rounding mode.  If `a' is a NaN, the largest
 | 
						|
positive integer is returned.  Otherwise, if the conversion overflows, the
 | 
						|
largest positive integer is returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 float64_to_uint32( struct roundingData *roundData, float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, shiftCount;
 | 
						|
    bits64 aSig;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = 0; //extractFloat64Sign( a );
 | 
						|
    //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | 
						|
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | 
						|
    shiftCount = 0x42C - aExp;
 | 
						|
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
 | 
						|
    return roundAndPackInt32( roundData, aSign, aSig );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the double-precision floating-point value
 | 
						|
`a' to the 32-bit two's complement integer format.  The conversion is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic, except that the conversion is always rounded toward zero.  If
 | 
						|
`a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | 
						|
conversion overflows, the largest positive integer is returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 float64_to_uint32_round_to_zero( float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, shiftCount;
 | 
						|
    bits64 aSig, savedASig;
 | 
						|
    int32 z;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    shiftCount = 0x433 - aExp;
 | 
						|
    if ( shiftCount < 21 ) {
 | 
						|
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    else if ( 52 < shiftCount ) {
 | 
						|
        if ( aExp || aSig ) float_raise( float_flag_inexact );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSig |= LIT64( 0x0010000000000000 );
 | 
						|
    savedASig = aSig;
 | 
						|
    aSig >>= shiftCount;
 | 
						|
    z = aSig;
 | 
						|
    if ( aSign ) z = - z;
 | 
						|
    if ( ( z < 0 ) ^ aSign ) {
 | 
						|
 invalid:
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return aSign ? 0x80000000 : 0x7FFFFFFF;
 | 
						|
    }
 | 
						|
    if ( ( aSig<<shiftCount ) != savedASig ) {
 | 
						|
        float_raise( float_flag_inexact );
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the double-precision floating-point value
 | 
						|
`a' to the single-precision floating-point format.  The conversion is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 float64_to_float32( struct roundingData *roundData, float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp;
 | 
						|
    bits64 aSig;
 | 
						|
    bits32 zSig;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
 | 
						|
        return packFloat32( aSign, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    shift64RightJamming( aSig, 22, &aSig );
 | 
						|
    zSig = aSig;
 | 
						|
    if ( aExp || zSig ) {
 | 
						|
        zSig |= 0x40000000;
 | 
						|
        aExp -= 0x381;
 | 
						|
    }
 | 
						|
    return roundAndPackFloat32( roundData, aSign, aExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FLOATX80
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the double-precision floating-point value
 | 
						|
`a' to the extended double-precision floating-point format.  The conversion
 | 
						|
is performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 float64_to_floatx80( float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp;
 | 
						|
    bits64 aSig;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
 | 
						|
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    return
 | 
						|
        packFloatx80(
 | 
						|
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Rounds the double-precision floating-point value `a' to an integer, and
 | 
						|
returns the result as a double-precision floating-point value.  The
 | 
						|
operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float64_round_to_int( struct roundingData *roundData, float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp;
 | 
						|
    bits64 lastBitMask, roundBitsMask;
 | 
						|
    int8 roundingMode;
 | 
						|
    float64 z;
 | 
						|
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    if ( 0x433 <= aExp ) {
 | 
						|
        if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
 | 
						|
            return propagateFloat64NaN( a, a );
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( aExp <= 0x3FE ) {
 | 
						|
        if ( (bits64) ( a<<1 ) == 0 ) return a;
 | 
						|
        roundData->exception |= float_flag_inexact;
 | 
						|
        aSign = extractFloat64Sign( a );
 | 
						|
        switch ( roundData->mode ) {
 | 
						|
         case float_round_nearest_even:
 | 
						|
            if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
 | 
						|
                return packFloat64( aSign, 0x3FF, 0 );
 | 
						|
            }
 | 
						|
            break;
 | 
						|
         case float_round_down:
 | 
						|
            return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
 | 
						|
         case float_round_up:
 | 
						|
            return
 | 
						|
            aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
 | 
						|
        }
 | 
						|
        return packFloat64( aSign, 0, 0 );
 | 
						|
    }
 | 
						|
    lastBitMask = 1;
 | 
						|
    lastBitMask <<= 0x433 - aExp;
 | 
						|
    roundBitsMask = lastBitMask - 1;
 | 
						|
    z = a;
 | 
						|
    roundingMode = roundData->mode;
 | 
						|
    if ( roundingMode == float_round_nearest_even ) {
 | 
						|
        z += lastBitMask>>1;
 | 
						|
        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 | 
						|
    }
 | 
						|
    else if ( roundingMode != float_round_to_zero ) {
 | 
						|
        if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | 
						|
            z += roundBitsMask;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    z &= ~ roundBitsMask;
 | 
						|
    if ( z != a ) roundData->exception |= float_flag_inexact;
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of adding the absolute values of the double-precision
 | 
						|
floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
 | 
						|
before being returned.  `zSign' is ignored if the result is a NaN.  The
 | 
						|
addition is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float64 addFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
 | 
						|
{
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig;
 | 
						|
    int16 expDiff;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    bSig = extractFloat64Frac( b );
 | 
						|
    bExp = extractFloat64Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig <<= 9;
 | 
						|
    bSig <<= 9;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        if ( aExp == 0x7FF ) {
 | 
						|
            if ( aSig ) return propagateFloat64NaN( a, b );
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if ( bExp == 0 ) {
 | 
						|
            --expDiff;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            bSig |= LIT64( 0x2000000000000000 );
 | 
						|
        }
 | 
						|
        shift64RightJamming( bSig, expDiff, &bSig );
 | 
						|
        zExp = aExp;
 | 
						|
    }
 | 
						|
    else if ( expDiff < 0 ) {
 | 
						|
        if ( bExp == 0x7FF ) {
 | 
						|
            if ( bSig ) return propagateFloat64NaN( a, b );
 | 
						|
            return packFloat64( zSign, 0x7FF, 0 );
 | 
						|
        }
 | 
						|
        if ( aExp == 0 ) {
 | 
						|
            ++expDiff;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aSig |= LIT64( 0x2000000000000000 );
 | 
						|
        }
 | 
						|
        shift64RightJamming( aSig, - expDiff, &aSig );
 | 
						|
        zExp = bExp;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( aExp == 0x7FF ) {
 | 
						|
            if ( aSig | bSig ) return propagateFloat64NaN( a, b );
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
 | 
						|
        zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
 | 
						|
        zExp = aExp;
 | 
						|
        goto roundAndPack;
 | 
						|
    }
 | 
						|
    aSig |= LIT64( 0x2000000000000000 );
 | 
						|
    zSig = ( aSig + bSig )<<1;
 | 
						|
    --zExp;
 | 
						|
    if ( (sbits64) zSig < 0 ) {
 | 
						|
        zSig = aSig + bSig;
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
 roundAndPack:
 | 
						|
    return roundAndPackFloat64( roundData, zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of subtracting the absolute values of the double-
 | 
						|
precision floating-point values `a' and `b'.  If `zSign' is true, the
 | 
						|
difference is negated before being returned.  `zSign' is ignored if the
 | 
						|
result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | 
						|
Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static float64 subFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
 | 
						|
{
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig;
 | 
						|
    int16 expDiff;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    bSig = extractFloat64Frac( b );
 | 
						|
    bExp = extractFloat64Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig <<= 10;
 | 
						|
    bSig <<= 10;
 | 
						|
    if ( 0 < expDiff ) goto aExpBigger;
 | 
						|
    if ( expDiff < 0 ) goto bExpBigger;
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig | bSig ) return propagateFloat64NaN( a, b );
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float64_default_nan;
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        aExp = 1;
 | 
						|
        bExp = 1;
 | 
						|
    }
 | 
						|
    if ( bSig < aSig ) goto aBigger;
 | 
						|
    if ( aSig < bSig ) goto bBigger;
 | 
						|
    return packFloat64( roundData->mode == float_round_down, 0, 0 );
 | 
						|
 bExpBigger:
 | 
						|
    if ( bExp == 0x7FF ) {
 | 
						|
        if ( bSig ) return propagateFloat64NaN( a, b );
 | 
						|
        return packFloat64( zSign ^ 1, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        ++expDiff;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        aSig |= LIT64( 0x4000000000000000 );
 | 
						|
    }
 | 
						|
    shift64RightJamming( aSig, - expDiff, &aSig );
 | 
						|
    bSig |= LIT64( 0x4000000000000000 );
 | 
						|
 bBigger:
 | 
						|
    zSig = bSig - aSig;
 | 
						|
    zExp = bExp;
 | 
						|
    zSign ^= 1;
 | 
						|
    goto normalizeRoundAndPack;
 | 
						|
 aExpBigger:
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig ) return propagateFloat64NaN( a, b );
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        --expDiff;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bSig |= LIT64( 0x4000000000000000 );
 | 
						|
    }
 | 
						|
    shift64RightJamming( bSig, expDiff, &bSig );
 | 
						|
    aSig |= LIT64( 0x4000000000000000 );
 | 
						|
 aBigger:
 | 
						|
    zSig = aSig - bSig;
 | 
						|
    zExp = aExp;
 | 
						|
 normalizeRoundAndPack:
 | 
						|
    --zExp;
 | 
						|
    return normalizeRoundAndPackFloat64( roundData, zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of adding the double-precision floating-point values `a'
 | 
						|
and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | 
						|
Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float64_add( struct roundingData *roundData, float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return addFloat64Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return subFloat64Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of subtracting the double-precision floating-point values
 | 
						|
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | 
						|
for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float64_sub( struct roundingData *roundData, float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return subFloat64Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return addFloat64Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of multiplying the double-precision floating-point values
 | 
						|
`a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | 
						|
for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float64_mul( struct roundingData *roundData, float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig0, zSig1;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSig = extractFloat64Frac( b );
 | 
						|
    bExp = extractFloat64Exp( b );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | 
						|
            return propagateFloat64NaN( a, b );
 | 
						|
        }
 | 
						|
        if ( ( bExp | bSig ) == 0 ) {
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float64_default_nan;
 | 
						|
        }
 | 
						|
        return packFloat64( zSign, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FF ) {
 | 
						|
        if ( bSig ) return propagateFloat64NaN( a, b );
 | 
						|
        if ( ( aExp | aSig ) == 0 ) {
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float64_default_nan;
 | 
						|
        }
 | 
						|
        return packFloat64( zSign, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
 | 
						|
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    zExp = aExp + bExp - 0x3FF;
 | 
						|
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | 
						|
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | 
						|
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | 
						|
    zSig0 |= ( zSig1 != 0 );
 | 
						|
    if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
 | 
						|
        zSig0 <<= 1;
 | 
						|
        --zExp;
 | 
						|
    }
 | 
						|
    return roundAndPackFloat64( roundData, zSign, zExp, zSig0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of dividing the double-precision floating-point value `a'
 | 
						|
by the corresponding value `b'.  The operation is performed according to
 | 
						|
the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float64_div( struct roundingData *roundData, float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int16 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig;
 | 
						|
    bits64 rem0, rem1;
 | 
						|
    bits64 term0, term1;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSig = extractFloat64Frac( b );
 | 
						|
    bExp = extractFloat64Exp( b );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig ) return propagateFloat64NaN( a, b );
 | 
						|
        if ( bExp == 0x7FF ) {
 | 
						|
            if ( bSig ) return propagateFloat64NaN( a, b );
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float64_default_nan;
 | 
						|
        }
 | 
						|
        return packFloat64( zSign, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FF ) {
 | 
						|
        if ( bSig ) return propagateFloat64NaN( a, b );
 | 
						|
        return packFloat64( zSign, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            if ( ( aExp | aSig ) == 0 ) {
 | 
						|
                roundData->exception |= float_flag_invalid;
 | 
						|
                return float64_default_nan;
 | 
						|
            }
 | 
						|
            roundData->exception |= float_flag_divbyzero;
 | 
						|
            return packFloat64( zSign, 0x7FF, 0 );
 | 
						|
        }
 | 
						|
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    zExp = aExp - bExp + 0x3FD;
 | 
						|
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | 
						|
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | 
						|
    if ( bSig <= ( aSig + aSig ) ) {
 | 
						|
        aSig >>= 1;
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
    zSig = estimateDiv128To64( aSig, 0, bSig );
 | 
						|
    if ( ( zSig & 0x1FF ) <= 2 ) {
 | 
						|
        mul64To128( bSig, zSig, &term0, &term1 );
 | 
						|
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | 
						|
        while ( (sbits64) rem0 < 0 ) {
 | 
						|
            --zSig;
 | 
						|
            add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | 
						|
        }
 | 
						|
        zSig |= ( rem1 != 0 );
 | 
						|
    }
 | 
						|
    return roundAndPackFloat64( roundData, zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the remainder of the double-precision floating-point value `a'
 | 
						|
with respect to the corresponding value `b'.  The operation is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float64_rem( struct roundingData *roundData, float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int16 aExp, bExp, expDiff;
 | 
						|
    bits64 aSig, bSig;
 | 
						|
    bits64 q, alternateASig;
 | 
						|
    sbits64 sigMean;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSig = extractFloat64Frac( b );
 | 
						|
    bExp = extractFloat64Exp( b );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | 
						|
            return propagateFloat64NaN( a, b );
 | 
						|
        }
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float64_default_nan;
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FF ) {
 | 
						|
        if ( bSig ) return propagateFloat64NaN( a, b );
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            return float64_default_nan;
 | 
						|
        }
 | 
						|
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return a;
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
 | 
						|
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | 
						|
    if ( expDiff < 0 ) {
 | 
						|
        if ( expDiff < -1 ) return a;
 | 
						|
        aSig >>= 1;
 | 
						|
    }
 | 
						|
    q = ( bSig <= aSig );
 | 
						|
    if ( q ) aSig -= bSig;
 | 
						|
    expDiff -= 64;
 | 
						|
    while ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig, 0, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        aSig = - ( ( bSig>>2 ) * q );
 | 
						|
        expDiff -= 62;
 | 
						|
    }
 | 
						|
    expDiff += 64;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig, 0, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        q >>= 64 - expDiff;
 | 
						|
        bSig >>= 2;
 | 
						|
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        aSig >>= 2;
 | 
						|
        bSig >>= 2;
 | 
						|
    }
 | 
						|
    do {
 | 
						|
        alternateASig = aSig;
 | 
						|
        ++q;
 | 
						|
        aSig -= bSig;
 | 
						|
    } while ( 0 <= (sbits64) aSig );
 | 
						|
    sigMean = aSig + alternateASig;
 | 
						|
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | 
						|
        aSig = alternateASig;
 | 
						|
    }
 | 
						|
    zSign = ( (sbits64) aSig < 0 );
 | 
						|
    if ( zSign ) aSig = - aSig;
 | 
						|
    return normalizeRoundAndPackFloat64( roundData, aSign ^ zSign, bExp, aSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the square root of the double-precision floating-point value `a'.
 | 
						|
The operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 float64_sqrt( struct roundingData *roundData, float64 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int16 aExp, zExp;
 | 
						|
    bits64 aSig, zSig;
 | 
						|
    bits64 rem0, rem1, term0, term1; //, shiftedRem;
 | 
						|
    //float64 z;
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig ) return propagateFloat64NaN( a, a );
 | 
						|
        if ( ! aSign ) return a;
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float64_default_nan;
 | 
						|
    }
 | 
						|
    if ( aSign ) {
 | 
						|
        if ( ( aExp | aSig ) == 0 ) return a;
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        return float64_default_nan;
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return 0;
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
 | 
						|
    aSig |= LIT64( 0x0010000000000000 );
 | 
						|
    zSig = estimateSqrt32( aExp, aSig>>21 );
 | 
						|
    zSig <<= 31;
 | 
						|
    aSig <<= 9 - ( aExp & 1 );
 | 
						|
    zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2;
 | 
						|
    if ( ( zSig & 0x3FF ) <= 5 ) {
 | 
						|
        if ( zSig < 2 ) {
 | 
						|
            zSig = LIT64( 0xFFFFFFFFFFFFFFFF );
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aSig <<= 2;
 | 
						|
            mul64To128( zSig, zSig, &term0, &term1 );
 | 
						|
            sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | 
						|
            while ( (sbits64) rem0 < 0 ) {
 | 
						|
                --zSig;
 | 
						|
                shortShift128Left( 0, zSig, 1, &term0, &term1 );
 | 
						|
                term1 |= 1;
 | 
						|
                add128( rem0, rem1, term0, term1, &rem0, &rem1 );
 | 
						|
            }
 | 
						|
            zSig |= ( ( rem0 | rem1 ) != 0 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    shift64RightJamming( zSig, 1, &zSig );
 | 
						|
    return roundAndPackFloat64( roundData, 0, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the double-precision floating-point value `a' is equal to the
 | 
						|
corresponding value `b', and 0 otherwise.  The comparison is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float64_eq( float64 a, float64 b )
 | 
						|
{
 | 
						|
 | 
						|
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | 
						|
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | 
						|
       ) {
 | 
						|
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | 
						|
            float_raise( float_flag_invalid );
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the double-precision floating-point value `a' is less than or
 | 
						|
equal to the corresponding value `b', and 0 otherwise.  The comparison is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float64_le( float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | 
						|
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | 
						|
    return ( a == b ) || ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the double-precision floating-point value `a' is less than
 | 
						|
the corresponding value `b', and 0 otherwise.  The comparison is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float64_lt( float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | 
						|
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
 | 
						|
    return ( a != b ) && ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the double-precision floating-point value `a' is equal to the
 | 
						|
corresponding value `b', and 0 otherwise.  The invalid exception is raised
 | 
						|
if either operand is a NaN.  Otherwise, the comparison is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float64_eq_signaling( float64 a, float64 b )
 | 
						|
{
 | 
						|
 | 
						|
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | 
						|
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the double-precision floating-point value `a' is less than or
 | 
						|
equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | 
						|
cause an exception.  Otherwise, the comparison is performed according to the
 | 
						|
IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float64_le_quiet( float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
    //int16 aExp, bExp;
 | 
						|
 | 
						|
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | 
						|
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | 
						|
       ) {
 | 
						|
        /* Do nothing, even if NaN as we're quiet */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | 
						|
    return ( a == b ) || ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the double-precision floating-point value `a' is less than
 | 
						|
the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | 
						|
exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | 
						|
Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag float64_lt_quiet( float64 a, float64 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | 
						|
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | 
						|
       ) {
 | 
						|
        /* Do nothing, even if NaN as we're quiet */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSign = extractFloat64Sign( b );
 | 
						|
    if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
 | 
						|
    return ( a != b ) && ( aSign ^ ( a < b ) );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifdef FLOATX80
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the extended double-precision floating-
 | 
						|
point value `a' to the 32-bit two's complement integer format.  The
 | 
						|
conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic---which means in particular that the conversion
 | 
						|
is rounded according to the current rounding mode.  If `a' is a NaN, the
 | 
						|
largest positive integer is returned.  Otherwise, if the conversion
 | 
						|
overflows, the largest integer with the same sign as `a' is returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 floatx80_to_int32( struct roundingData *roundData, floatx80 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int32 aExp, shiftCount;
 | 
						|
    bits64 aSig;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 | 
						|
    shiftCount = 0x4037 - aExp;
 | 
						|
    if ( shiftCount <= 0 ) shiftCount = 1;
 | 
						|
    shift64RightJamming( aSig, shiftCount, &aSig );
 | 
						|
    return roundAndPackInt32( roundData, aSign, aSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the extended double-precision floating-
 | 
						|
point value `a' to the 32-bit two's complement integer format.  The
 | 
						|
conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic, except that the conversion is always rounded
 | 
						|
toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | 
						|
Otherwise, if the conversion overflows, the largest integer with the same
 | 
						|
sign as `a' is returned.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
int32 floatx80_to_int32_round_to_zero( floatx80 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int32 aExp, shiftCount;
 | 
						|
    bits64 aSig, savedASig;
 | 
						|
    int32 z;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    shiftCount = 0x403E - aExp;
 | 
						|
    if ( shiftCount < 32 ) {
 | 
						|
        if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    else if ( 63 < shiftCount ) {
 | 
						|
        if ( aExp || aSig ) float_raise( float_flag_inexact );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    savedASig = aSig;
 | 
						|
    aSig >>= shiftCount;
 | 
						|
    z = aSig;
 | 
						|
    if ( aSign ) z = - z;
 | 
						|
    if ( ( z < 0 ) ^ aSign ) {
 | 
						|
 invalid:
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return aSign ? 0x80000000 : 0x7FFFFFFF;
 | 
						|
    }
 | 
						|
    if ( ( aSig<<shiftCount ) != savedASig ) {
 | 
						|
        float_raise( float_flag_inexact );
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the extended double-precision floating-
 | 
						|
point value `a' to the single-precision floating-point format.  The
 | 
						|
conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float32 floatx80_to_float32( struct roundingData *roundData, floatx80 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int32 aExp;
 | 
						|
    bits64 aSig;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( aSig<<1 ) ) {
 | 
						|
            return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
 | 
						|
        }
 | 
						|
        return packFloat32( aSign, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    shift64RightJamming( aSig, 33, &aSig );
 | 
						|
    if ( aExp || aSig ) aExp -= 0x3F81;
 | 
						|
    return roundAndPackFloat32( roundData, aSign, aExp, aSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of converting the extended double-precision floating-
 | 
						|
point value `a' to the double-precision floating-point format.  The
 | 
						|
conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
float64 floatx80_to_float64( struct roundingData *roundData, floatx80 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int32 aExp;
 | 
						|
    bits64 aSig, zSig;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( aSig<<1 ) ) {
 | 
						|
            return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
 | 
						|
        }
 | 
						|
        return packFloat64( aSign, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    shift64RightJamming( aSig, 1, &zSig );
 | 
						|
    if ( aExp || aSig ) aExp -= 0x3C01;
 | 
						|
    return roundAndPackFloat64( roundData, aSign, aExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Rounds the extended double-precision floating-point value `a' to an integer,
 | 
						|
and returns the result as an extended quadruple-precision floating-point
 | 
						|
value.  The operation is performed according to the IEC/IEEE Standard for
 | 
						|
Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 floatx80_round_to_int( struct roundingData *roundData, floatx80 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int32 aExp;
 | 
						|
    bits64 lastBitMask, roundBitsMask;
 | 
						|
    int8 roundingMode;
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    if ( 0x403E <= aExp ) {
 | 
						|
        if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
 | 
						|
            return propagateFloatx80NaN( a, a );
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( aExp <= 0x3FFE ) {
 | 
						|
        if (    ( aExp == 0 )
 | 
						|
             && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        roundData->exception |= float_flag_inexact;
 | 
						|
        aSign = extractFloatx80Sign( a );
 | 
						|
        switch ( roundData->mode ) {
 | 
						|
         case float_round_nearest_even:
 | 
						|
            if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
 | 
						|
               ) {
 | 
						|
                return
 | 
						|
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
            }
 | 
						|
            break;
 | 
						|
         case float_round_down:
 | 
						|
            return
 | 
						|
                  aSign ?
 | 
						|
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
 | 
						|
                : packFloatx80( 0, 0, 0 );
 | 
						|
         case float_round_up:
 | 
						|
            return
 | 
						|
                  aSign ? packFloatx80( 1, 0, 0 )
 | 
						|
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
        }
 | 
						|
        return packFloatx80( aSign, 0, 0 );
 | 
						|
    }
 | 
						|
    lastBitMask = 1;
 | 
						|
    lastBitMask <<= 0x403E - aExp;
 | 
						|
    roundBitsMask = lastBitMask - 1;
 | 
						|
    z = a;
 | 
						|
    roundingMode = roundData->mode;
 | 
						|
    if ( roundingMode == float_round_nearest_even ) {
 | 
						|
        z.low += lastBitMask>>1;
 | 
						|
        if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | 
						|
    }
 | 
						|
    else if ( roundingMode != float_round_to_zero ) {
 | 
						|
        if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | 
						|
            z.low += roundBitsMask;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    z.low &= ~ roundBitsMask;
 | 
						|
    if ( z.low == 0 ) {
 | 
						|
        ++z.high;
 | 
						|
        z.low = LIT64( 0x8000000000000000 );
 | 
						|
    }
 | 
						|
    if ( z.low != a.low ) roundData->exception |= float_flag_inexact;
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of adding the absolute values of the extended double-
 | 
						|
precision floating-point values `a' and `b'.  If `zSign' is true, the sum is
 | 
						|
negated before being returned.  `zSign' is ignored if the result is a NaN.
 | 
						|
The addition is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static floatx80 addFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
 | 
						|
{
 | 
						|
    int32 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig0, zSig1;
 | 
						|
    int32 expDiff;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        if ( aExp == 0x7FFF ) {
 | 
						|
            if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if ( bExp == 0 ) --expDiff;
 | 
						|
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | 
						|
        zExp = aExp;
 | 
						|
    }
 | 
						|
    else if ( expDiff < 0 ) {
 | 
						|
        if ( bExp == 0x7FFF ) {
 | 
						|
            if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
        }
 | 
						|
        if ( aExp == 0 ) ++expDiff;
 | 
						|
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | 
						|
        zExp = bExp;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( aExp == 0x7FFF ) {
 | 
						|
            if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 | 
						|
                return propagateFloatx80NaN( a, b );
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        zSig1 = 0;
 | 
						|
        zSig0 = aSig + bSig;
 | 
						|
        if ( aExp == 0 ) {
 | 
						|
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
 | 
						|
            goto roundAndPack;
 | 
						|
        }
 | 
						|
        zExp = aExp;
 | 
						|
        goto shiftRight1;
 | 
						|
    }
 | 
						|
    
 | 
						|
    zSig0 = aSig + bSig;
 | 
						|
 | 
						|
    if ( (sbits64) zSig0 < 0 ) goto roundAndPack; 
 | 
						|
 shiftRight1:
 | 
						|
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | 
						|
    zSig0 |= LIT64( 0x8000000000000000 );
 | 
						|
    ++zExp;
 | 
						|
 roundAndPack:
 | 
						|
    return
 | 
						|
        roundAndPackFloatx80(
 | 
						|
            roundData, zSign, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of subtracting the absolute values of the extended
 | 
						|
double-precision floating-point values `a' and `b'.  If `zSign' is true,
 | 
						|
the difference is negated before being returned.  `zSign' is ignored if the
 | 
						|
result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | 
						|
Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
static floatx80 subFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
 | 
						|
{
 | 
						|
    int32 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig0, zSig1;
 | 
						|
    int32 expDiff;
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    if ( 0 < expDiff ) goto aExpBigger;
 | 
						|
    if ( expDiff < 0 ) goto bExpBigger;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 | 
						|
            return propagateFloatx80NaN( a, b );
 | 
						|
        }
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        z.low = floatx80_default_nan_low;
 | 
						|
        z.high = floatx80_default_nan_high;
 | 
						|
        z.__padding = 0;
 | 
						|
        return z;
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        aExp = 1;
 | 
						|
        bExp = 1;
 | 
						|
    }
 | 
						|
    zSig1 = 0;
 | 
						|
    if ( bSig < aSig ) goto aBigger;
 | 
						|
    if ( aSig < bSig ) goto bBigger;
 | 
						|
    return packFloatx80( roundData->mode == float_round_down, 0, 0 );
 | 
						|
 bExpBigger:
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) ++expDiff;
 | 
						|
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | 
						|
 bBigger:
 | 
						|
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
 | 
						|
    zExp = bExp;
 | 
						|
    zSign ^= 1;
 | 
						|
    goto normalizeRoundAndPack;
 | 
						|
 aExpBigger:
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) --expDiff;
 | 
						|
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | 
						|
 aBigger:
 | 
						|
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
 | 
						|
    zExp = aExp;
 | 
						|
 normalizeRoundAndPack:
 | 
						|
    return
 | 
						|
        normalizeRoundAndPackFloatx80(
 | 
						|
            roundData, zSign, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of adding the extended double-precision floating-point
 | 
						|
values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | 
						|
Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 floatx80_add( struct roundingData *roundData, floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
    
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return addFloatx80Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return subFloatx80Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
    
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of subtracting the extended double-precision floating-
 | 
						|
point values `a' and `b'.  The operation is performed according to the
 | 
						|
IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 floatx80_sub( struct roundingData *roundData, floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return subFloatx80Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return addFloatx80Sigs( roundData, a, b, aSign );
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of multiplying the extended double-precision floating-
 | 
						|
point values `a' and `b'.  The operation is performed according to the
 | 
						|
IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 floatx80_mul( struct roundingData *roundData, floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int32 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig0, zSig1;
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (    (bits64) ( aSig<<1 )
 | 
						|
             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 | 
						|
            return propagateFloatx80NaN( a, b );
 | 
						|
        }
 | 
						|
        if ( ( bExp | bSig ) == 0 ) goto invalid;
 | 
						|
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
        if ( ( aExp | aSig ) == 0 ) {
 | 
						|
 invalid:
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            z.low = floatx80_default_nan_low;
 | 
						|
            z.high = floatx80_default_nan_high;
 | 
						|
            z.__padding = 0;
 | 
						|
            return z;
 | 
						|
        }
 | 
						|
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    zExp = aExp + bExp - 0x3FFE;
 | 
						|
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | 
						|
    if ( 0 < (sbits64) zSig0 ) {
 | 
						|
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | 
						|
        --zExp;
 | 
						|
    }
 | 
						|
    return
 | 
						|
        roundAndPackFloatx80(
 | 
						|
            roundData, zSign, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the result of dividing the extended double-precision floating-point
 | 
						|
value `a' by the corresponding value `b'.  The operation is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 floatx80_div( struct roundingData *roundData, floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int32 aExp, bExp, zExp;
 | 
						|
    bits64 aSig, bSig, zSig0, zSig1;
 | 
						|
    bits64 rem0, rem1, rem2, term0, term1, term2;
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
        if ( bExp == 0x7FFF ) {
 | 
						|
            if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
            goto invalid;
 | 
						|
        }
 | 
						|
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
        return packFloatx80( zSign, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            if ( ( aExp | aSig ) == 0 ) {
 | 
						|
 invalid:
 | 
						|
                roundData->exception |= float_flag_invalid;
 | 
						|
                z.low = floatx80_default_nan_low;
 | 
						|
                z.high = floatx80_default_nan_high;
 | 
						|
                z.__padding = 0;
 | 
						|
                return z;
 | 
						|
            }
 | 
						|
            roundData->exception |= float_flag_divbyzero;
 | 
						|
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | 
						|
        }
 | 
						|
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    zExp = aExp - bExp + 0x3FFE;
 | 
						|
    rem1 = 0;
 | 
						|
    if ( bSig <= aSig ) {
 | 
						|
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
 | 
						|
    mul64To128( bSig, zSig0, &term0, &term1 );
 | 
						|
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
 | 
						|
    while ( (sbits64) rem0 < 0 ) {
 | 
						|
        --zSig0;
 | 
						|
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | 
						|
    }
 | 
						|
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
 | 
						|
    if ( (bits64) ( zSig1<<1 ) <= 8 ) {
 | 
						|
        mul64To128( bSig, zSig1, &term1, &term2 );
 | 
						|
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | 
						|
        while ( (sbits64) rem1 < 0 ) {
 | 
						|
            --zSig1;
 | 
						|
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
 | 
						|
        }
 | 
						|
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
 | 
						|
    }
 | 
						|
    return
 | 
						|
        roundAndPackFloatx80(
 | 
						|
            roundData, zSign, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the remainder of the extended double-precision floating-point value
 | 
						|
`a' with respect to the corresponding value `b'.  The operation is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 floatx80_rem( struct roundingData *roundData, floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign, zSign;
 | 
						|
    int32 aExp, bExp, expDiff;
 | 
						|
    bits64 aSig0, aSig1, bSig;
 | 
						|
    bits64 q, term0, term1, alternateASig0, alternateASig1;
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    aSig0 = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (    (bits64) ( aSig0<<1 )
 | 
						|
             || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 | 
						|
            return propagateFloatx80NaN( a, b );
 | 
						|
        }
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
 invalid:
 | 
						|
            roundData->exception |= float_flag_invalid;
 | 
						|
            z.low = floatx80_default_nan_low;
 | 
						|
            z.high = floatx80_default_nan_high;
 | 
						|
            z.__padding = 0;
 | 
						|
            return z;
 | 
						|
        }
 | 
						|
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
 | 
						|
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | 
						|
    }
 | 
						|
    bSig |= LIT64( 0x8000000000000000 );
 | 
						|
    zSign = aSign;
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig1 = 0;
 | 
						|
    if ( expDiff < 0 ) {
 | 
						|
        if ( expDiff < -1 ) return a;
 | 
						|
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
 | 
						|
        expDiff = 0;
 | 
						|
    }
 | 
						|
    q = ( bSig <= aSig0 );
 | 
						|
    if ( q ) aSig0 -= bSig;
 | 
						|
    expDiff -= 64;
 | 
						|
    while ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig0, aSig1, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        mul64To128( bSig, q, &term0, &term1 );
 | 
						|
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | 
						|
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
 | 
						|
        expDiff -= 62;
 | 
						|
    }
 | 
						|
    expDiff += 64;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig0, aSig1, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        q >>= 64 - expDiff;
 | 
						|
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
 | 
						|
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | 
						|
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
 | 
						|
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
 | 
						|
            ++q;
 | 
						|
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        term1 = 0;
 | 
						|
        term0 = bSig;
 | 
						|
    }
 | 
						|
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
 | 
						|
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | 
						|
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | 
						|
              && ( q & 1 ) )
 | 
						|
       ) {
 | 
						|
        aSig0 = alternateASig0;
 | 
						|
        aSig1 = alternateASig1;
 | 
						|
        zSign = ! zSign;
 | 
						|
    }
 | 
						|
 | 
						|
    return
 | 
						|
        normalizeRoundAndPackFloatx80(
 | 
						|
            roundData, zSign, bExp + expDiff, aSig0, aSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns the square root of the extended double-precision floating-point
 | 
						|
value `a'.  The operation is performed according to the IEC/IEEE Standard
 | 
						|
for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
floatx80 floatx80_sqrt( struct roundingData *roundData, floatx80 a )
 | 
						|
{
 | 
						|
    flag aSign;
 | 
						|
    int32 aExp, zExp;
 | 
						|
    bits64 aSig0, aSig1, zSig0, zSig1;
 | 
						|
    bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | 
						|
    bits64 shiftedRem0, shiftedRem1;
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    aSig0 = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
 | 
						|
        if ( ! aSign ) return a;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    if ( aSign ) {
 | 
						|
        if ( ( aExp | aSig0 ) == 0 ) return a;
 | 
						|
 invalid:
 | 
						|
        roundData->exception |= float_flag_invalid;
 | 
						|
        z.low = floatx80_default_nan_low;
 | 
						|
        z.high = floatx80_default_nan_high;
 | 
						|
        z.__padding = 0;
 | 
						|
        return z;
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | 
						|
    }
 | 
						|
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
 | 
						|
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
 | 
						|
    zSig0 <<= 31;
 | 
						|
    aSig1 = 0;
 | 
						|
    shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 );
 | 
						|
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4;
 | 
						|
    if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF );
 | 
						|
    shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 );
 | 
						|
    mul64To128( zSig0, zSig0, &term0, &term1 );
 | 
						|
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | 
						|
    while ( (sbits64) rem0 < 0 ) {
 | 
						|
        --zSig0;
 | 
						|
        shortShift128Left( 0, zSig0, 1, &term0, &term1 );
 | 
						|
        term1 |= 1;
 | 
						|
        add128( rem0, rem1, term0, term1, &rem0, &rem1 );
 | 
						|
    }
 | 
						|
    shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 );
 | 
						|
    zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 );
 | 
						|
    if ( (bits64) ( zSig1<<1 ) <= 10 ) {
 | 
						|
        if ( zSig1 == 0 ) zSig1 = 1;
 | 
						|
        mul64To128( zSig0, zSig1, &term1, &term2 );
 | 
						|
        shortShift128Left( term1, term2, 1, &term1, &term2 );
 | 
						|
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | 
						|
        mul64To128( zSig1, zSig1, &term2, &term3 );
 | 
						|
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | 
						|
        while ( (sbits64) rem1 < 0 ) {
 | 
						|
            --zSig1;
 | 
						|
            shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 );
 | 
						|
            term3 |= 1;
 | 
						|
            add192(
 | 
						|
                rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 );
 | 
						|
        }
 | 
						|
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | 
						|
    }
 | 
						|
    return
 | 
						|
        roundAndPackFloatx80(
 | 
						|
            roundData, 0, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the extended double-precision floating-point value `a' is
 | 
						|
equal to the corresponding value `b', and 0 otherwise.  The comparison is
 | 
						|
performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag floatx80_eq( floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
 | 
						|
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | 
						|
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | 
						|
       ) {
 | 
						|
        if (    floatx80_is_signaling_nan( a )
 | 
						|
             || floatx80_is_signaling_nan( b ) ) {
 | 
						|
            float_raise( float_flag_invalid );
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return
 | 
						|
           ( a.low == b.low )
 | 
						|
        && (    ( a.high == b.high )
 | 
						|
             || (    ( a.low == 0 )
 | 
						|
                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 | 
						|
           );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the extended double-precision floating-point value `a' is
 | 
						|
less than or equal to the corresponding value `b', and 0 otherwise.  The
 | 
						|
comparison is performed according to the IEC/IEEE Standard for Binary
 | 
						|
Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag floatx80_le( floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | 
						|
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign != bSign ) {
 | 
						|
        return
 | 
						|
               aSign
 | 
						|
            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | 
						|
                 == 0 );
 | 
						|
    }
 | 
						|
    return
 | 
						|
          aSign ? le128( b.high, b.low, a.high, a.low )
 | 
						|
        : le128( a.high, a.low, b.high, b.low );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the extended double-precision floating-point value `a' is
 | 
						|
less than the corresponding value `b', and 0 otherwise.  The comparison
 | 
						|
is performed according to the IEC/IEEE Standard for Binary Floating-point
 | 
						|
Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag floatx80_lt( floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | 
						|
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign != bSign ) {
 | 
						|
        return
 | 
						|
               aSign
 | 
						|
            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | 
						|
                 != 0 );
 | 
						|
    }
 | 
						|
    return
 | 
						|
          aSign ? lt128( b.high, b.low, a.high, a.low )
 | 
						|
        : lt128( a.high, a.low, b.high, b.low );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the extended double-precision floating-point value `a' is equal
 | 
						|
to the corresponding value `b', and 0 otherwise.  The invalid exception is
 | 
						|
raised if either operand is a NaN.  Otherwise, the comparison is performed
 | 
						|
according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag floatx80_eq_signaling( floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
 | 
						|
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | 
						|
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | 
						|
       ) {
 | 
						|
        float_raise( float_flag_invalid );
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return
 | 
						|
           ( a.low == b.low )
 | 
						|
        && (    ( a.high == b.high )
 | 
						|
             || (    ( a.low == 0 )
 | 
						|
                  && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 | 
						|
           );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the extended double-precision floating-point value `a' is less
 | 
						|
than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
 | 
						|
do not cause an exception.  Otherwise, the comparison is performed according
 | 
						|
to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag floatx80_le_quiet( floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | 
						|
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | 
						|
       ) {
 | 
						|
        /* Do nothing, even if NaN as we're quiet */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign != bSign ) {
 | 
						|
        return
 | 
						|
               aSign
 | 
						|
            || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | 
						|
                 == 0 );
 | 
						|
    }
 | 
						|
    return
 | 
						|
          aSign ? le128( b.high, b.low, a.high, a.low )
 | 
						|
        : le128( a.high, a.low, b.high, b.low );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
Returns 1 if the extended double-precision floating-point value `a' is less
 | 
						|
than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
 | 
						|
an exception.  Otherwise, the comparison is performed according to the
 | 
						|
IEC/IEEE Standard for Binary Floating-point Arithmetic.
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
*/
 | 
						|
flag floatx80_lt_quiet( floatx80 a, floatx80 b )
 | 
						|
{
 | 
						|
    flag aSign, bSign;
 | 
						|
 | 
						|
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | 
						|
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | 
						|
              && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | 
						|
       ) {
 | 
						|
        /* Do nothing, even if NaN as we're quiet */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign != bSign ) {
 | 
						|
        return
 | 
						|
               aSign
 | 
						|
            && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | 
						|
                 != 0 );
 | 
						|
    }
 | 
						|
    return
 | 
						|
          aSign ? lt128( b.high, b.low, a.high, a.low )
 | 
						|
        : lt128( a.high, a.low, b.high, b.low );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 |