 8a37f52052
			
		
	
	
	8a37f52052
	
	
	
		
			
			The dwarf unwinder ties in to an early initcall, but it's possible that return_address() calls will be made prior to that. This implements some additional error handling in to the dwarf unwinder as well as an exit path in the return_address() case to bail out if the unwinder hasn't come up yet. This fixes a NULL pointer deref in early boot when mempool_alloc() blows up on the not-yet-ready mempool via dwarf_unwind_stack(). Signed-off-by: Paul Mundt <lethal@linux-sh.org>
		
			
				
	
	
		
			1220 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1220 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
 | |
|  *
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * This is an implementation of a DWARF unwinder. Its main purpose is
 | |
|  * for generating stacktrace information. Based on the DWARF 3
 | |
|  * specification from http://www.dwarfstd.org.
 | |
|  *
 | |
|  * TODO:
 | |
|  *	- DWARF64 doesn't work.
 | |
|  *	- Registers with DWARF_VAL_OFFSET rules aren't handled properly.
 | |
|  */
 | |
| 
 | |
| /* #define DEBUG */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/dwarf.h>
 | |
| #include <asm/unwinder.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <asm/stacktrace.h>
 | |
| 
 | |
| /* Reserve enough memory for two stack frames */
 | |
| #define DWARF_FRAME_MIN_REQ	2
 | |
| /* ... with 4 registers per frame. */
 | |
| #define DWARF_REG_MIN_REQ	(DWARF_FRAME_MIN_REQ * 4)
 | |
| 
 | |
| static struct kmem_cache *dwarf_frame_cachep;
 | |
| static mempool_t *dwarf_frame_pool;
 | |
| 
 | |
| static struct kmem_cache *dwarf_reg_cachep;
 | |
| static mempool_t *dwarf_reg_pool;
 | |
| 
 | |
| static struct rb_root cie_root;
 | |
| static DEFINE_SPINLOCK(dwarf_cie_lock);
 | |
| 
 | |
| static struct rb_root fde_root;
 | |
| static DEFINE_SPINLOCK(dwarf_fde_lock);
 | |
| 
 | |
| static struct dwarf_cie *cached_cie;
 | |
| 
 | |
| static unsigned int dwarf_unwinder_ready;
 | |
| 
 | |
| /**
 | |
|  *	dwarf_frame_alloc_reg - allocate memory for a DWARF register
 | |
|  *	@frame: the DWARF frame whose list of registers we insert on
 | |
|  *	@reg_num: the register number
 | |
|  *
 | |
|  *	Allocate space for, and initialise, a dwarf reg from
 | |
|  *	dwarf_reg_pool and insert it onto the (unsorted) linked-list of
 | |
|  *	dwarf registers for @frame.
 | |
|  *
 | |
|  *	Return the initialised DWARF reg.
 | |
|  */
 | |
| static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
 | |
| 					       unsigned int reg_num)
 | |
| {
 | |
| 	struct dwarf_reg *reg;
 | |
| 
 | |
| 	reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
 | |
| 	if (!reg) {
 | |
| 		printk(KERN_WARNING "Unable to allocate a DWARF register\n");
 | |
| 		/*
 | |
| 		 * Let's just bomb hard here, we have no way to
 | |
| 		 * gracefully recover.
 | |
| 		 */
 | |
| 		UNWINDER_BUG();
 | |
| 	}
 | |
| 
 | |
| 	reg->number = reg_num;
 | |
| 	reg->addr = 0;
 | |
| 	reg->flags = 0;
 | |
| 
 | |
| 	list_add(®->link, &frame->reg_list);
 | |
| 
 | |
| 	return reg;
 | |
| }
 | |
| 
 | |
| static void dwarf_frame_free_regs(struct dwarf_frame *frame)
 | |
| {
 | |
| 	struct dwarf_reg *reg, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
 | |
| 		list_del(®->link);
 | |
| 		mempool_free(reg, dwarf_reg_pool);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_frame_reg - return a DWARF register
 | |
|  *	@frame: the DWARF frame to search in for @reg_num
 | |
|  *	@reg_num: the register number to search for
 | |
|  *
 | |
|  *	Lookup and return the dwarf reg @reg_num for this frame. Return
 | |
|  *	NULL if @reg_num is an register invalid number.
 | |
|  */
 | |
| static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
 | |
| 					 unsigned int reg_num)
 | |
| {
 | |
| 	struct dwarf_reg *reg;
 | |
| 
 | |
| 	list_for_each_entry(reg, &frame->reg_list, link) {
 | |
| 		if (reg->number == reg_num)
 | |
| 			return reg;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_read_addr - read dwarf data
 | |
|  *	@src: source address of data
 | |
|  *	@dst: destination address to store the data to
 | |
|  *
 | |
|  *	Read 'n' bytes from @src, where 'n' is the size of an address on
 | |
|  *	the native machine. We return the number of bytes read, which
 | |
|  *	should always be 'n'. We also have to be careful when reading
 | |
|  *	from @src and writing to @dst, because they can be arbitrarily
 | |
|  *	aligned. Return 'n' - the number of bytes read.
 | |
|  */
 | |
| static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
 | |
| {
 | |
| 	u32 val = get_unaligned(src);
 | |
| 	put_unaligned(val, dst);
 | |
| 	return sizeof(unsigned long *);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_read_uleb128 - read unsigned LEB128 data
 | |
|  *	@addr: the address where the ULEB128 data is stored
 | |
|  *	@ret: address to store the result
 | |
|  *
 | |
|  *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
 | |
|  *	from Appendix C of the DWARF 3 spec. For information on the
 | |
|  *	encodings refer to section "7.6 - Variable Length Data". Return
 | |
|  *	the number of bytes read.
 | |
|  */
 | |
| static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
 | |
| {
 | |
| 	unsigned int result;
 | |
| 	unsigned char byte;
 | |
| 	int shift, count;
 | |
| 
 | |
| 	result = 0;
 | |
| 	shift = 0;
 | |
| 	count = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		byte = __raw_readb(addr);
 | |
| 		addr++;
 | |
| 		count++;
 | |
| 
 | |
| 		result |= (byte & 0x7f) << shift;
 | |
| 		shift += 7;
 | |
| 
 | |
| 		if (!(byte & 0x80))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	*ret = result;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_read_leb128 - read signed LEB128 data
 | |
|  *	@addr: the address of the LEB128 encoded data
 | |
|  *	@ret: address to store the result
 | |
|  *
 | |
|  *	Decode signed LEB128 data. The algorithm is taken from Appendix
 | |
|  *	C of the DWARF 3 spec. Return the number of bytes read.
 | |
|  */
 | |
| static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
 | |
| {
 | |
| 	unsigned char byte;
 | |
| 	int result, shift;
 | |
| 	int num_bits;
 | |
| 	int count;
 | |
| 
 | |
| 	result = 0;
 | |
| 	shift = 0;
 | |
| 	count = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		byte = __raw_readb(addr);
 | |
| 		addr++;
 | |
| 		result |= (byte & 0x7f) << shift;
 | |
| 		shift += 7;
 | |
| 		count++;
 | |
| 
 | |
| 		if (!(byte & 0x80))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* The number of bits in a signed integer. */
 | |
| 	num_bits = 8 * sizeof(result);
 | |
| 
 | |
| 	if ((shift < num_bits) && (byte & 0x40))
 | |
| 		result |= (-1 << shift);
 | |
| 
 | |
| 	*ret = result;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_read_encoded_value - return the decoded value at @addr
 | |
|  *	@addr: the address of the encoded value
 | |
|  *	@val: where to write the decoded value
 | |
|  *	@encoding: the encoding with which we can decode @addr
 | |
|  *
 | |
|  *	GCC emits encoded address in the .eh_frame FDE entries. Decode
 | |
|  *	the value at @addr using @encoding. The decoded value is written
 | |
|  *	to @val and the number of bytes read is returned.
 | |
|  */
 | |
| static int dwarf_read_encoded_value(char *addr, unsigned long *val,
 | |
| 				    char encoding)
 | |
| {
 | |
| 	unsigned long decoded_addr = 0;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	switch (encoding & 0x70) {
 | |
| 	case DW_EH_PE_absptr:
 | |
| 		break;
 | |
| 	case DW_EH_PE_pcrel:
 | |
| 		decoded_addr = (unsigned long)addr;
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_debug("encoding=0x%x\n", (encoding & 0x70));
 | |
| 		UNWINDER_BUG();
 | |
| 	}
 | |
| 
 | |
| 	if ((encoding & 0x07) == 0x00)
 | |
| 		encoding |= DW_EH_PE_udata4;
 | |
| 
 | |
| 	switch (encoding & 0x0f) {
 | |
| 	case DW_EH_PE_sdata4:
 | |
| 	case DW_EH_PE_udata4:
 | |
| 		count += 4;
 | |
| 		decoded_addr += get_unaligned((u32 *)addr);
 | |
| 		__raw_writel(decoded_addr, val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_debug("encoding=0x%x\n", encoding);
 | |
| 		UNWINDER_BUG();
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_entry_len - return the length of an FDE or CIE
 | |
|  *	@addr: the address of the entry
 | |
|  *	@len: the length of the entry
 | |
|  *
 | |
|  *	Read the initial_length field of the entry and store the size of
 | |
|  *	the entry in @len. We return the number of bytes read. Return a
 | |
|  *	count of 0 on error.
 | |
|  */
 | |
| static inline int dwarf_entry_len(char *addr, unsigned long *len)
 | |
| {
 | |
| 	u32 initial_len;
 | |
| 	int count;
 | |
| 
 | |
| 	initial_len = get_unaligned((u32 *)addr);
 | |
| 	count = 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * An initial length field value in the range DW_LEN_EXT_LO -
 | |
| 	 * DW_LEN_EXT_HI indicates an extension, and should not be
 | |
| 	 * interpreted as a length. The only extension that we currently
 | |
| 	 * understand is the use of DWARF64 addresses.
 | |
| 	 */
 | |
| 	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
 | |
| 		/*
 | |
| 		 * The 64-bit length field immediately follows the
 | |
| 		 * compulsory 32-bit length field.
 | |
| 		 */
 | |
| 		if (initial_len == DW_EXT_DWARF64) {
 | |
| 			*len = get_unaligned((u64 *)addr + 4);
 | |
| 			count = 12;
 | |
| 		} else {
 | |
| 			printk(KERN_WARNING "Unknown DWARF extension\n");
 | |
| 			count = 0;
 | |
| 		}
 | |
| 	} else
 | |
| 		*len = initial_len;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_lookup_cie - locate the cie
 | |
|  *	@cie_ptr: pointer to help with lookup
 | |
|  */
 | |
| static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
 | |
| {
 | |
| 	struct rb_node **rb_node = &cie_root.rb_node;
 | |
| 	struct dwarf_cie *cie = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dwarf_cie_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We've cached the last CIE we looked up because chances are
 | |
| 	 * that the FDE wants this CIE.
 | |
| 	 */
 | |
| 	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
 | |
| 		cie = cached_cie;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (*rb_node) {
 | |
| 		struct dwarf_cie *cie_tmp;
 | |
| 
 | |
| 		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
 | |
| 		BUG_ON(!cie_tmp);
 | |
| 
 | |
| 		if (cie_ptr == cie_tmp->cie_pointer) {
 | |
| 			cie = cie_tmp;
 | |
| 			cached_cie = cie_tmp;
 | |
| 			goto out;
 | |
| 		} else {
 | |
| 			if (cie_ptr < cie_tmp->cie_pointer)
 | |
| 				rb_node = &(*rb_node)->rb_left;
 | |
| 			else
 | |
| 				rb_node = &(*rb_node)->rb_right;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
 | |
| 	return cie;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_lookup_fde - locate the FDE that covers pc
 | |
|  *	@pc: the program counter
 | |
|  */
 | |
| struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
 | |
| {
 | |
| 	struct rb_node **rb_node = &fde_root.rb_node;
 | |
| 	struct dwarf_fde *fde = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dwarf_fde_lock, flags);
 | |
| 
 | |
| 	while (*rb_node) {
 | |
| 		struct dwarf_fde *fde_tmp;
 | |
| 		unsigned long tmp_start, tmp_end;
 | |
| 
 | |
| 		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
 | |
| 		BUG_ON(!fde_tmp);
 | |
| 
 | |
| 		tmp_start = fde_tmp->initial_location;
 | |
| 		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
 | |
| 
 | |
| 		if (pc < tmp_start) {
 | |
| 			rb_node = &(*rb_node)->rb_left;
 | |
| 		} else {
 | |
| 			if (pc < tmp_end) {
 | |
| 				fde = fde_tmp;
 | |
| 				goto out;
 | |
| 			} else
 | |
| 				rb_node = &(*rb_node)->rb_right;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
 | |
| 
 | |
| 	return fde;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
 | |
|  *	@insn_start: address of the first instruction
 | |
|  *	@insn_end: address of the last instruction
 | |
|  *	@cie: the CIE for this function
 | |
|  *	@fde: the FDE for this function
 | |
|  *	@frame: the instructions calculate the CFA for this frame
 | |
|  *	@pc: the program counter of the address we're interested in
 | |
|  *
 | |
|  *	Execute the Call Frame instruction sequence starting at
 | |
|  *	@insn_start and ending at @insn_end. The instructions describe
 | |
|  *	how to calculate the Canonical Frame Address of a stackframe.
 | |
|  *	Store the results in @frame.
 | |
|  */
 | |
| static int dwarf_cfa_execute_insns(unsigned char *insn_start,
 | |
| 				   unsigned char *insn_end,
 | |
| 				   struct dwarf_cie *cie,
 | |
| 				   struct dwarf_fde *fde,
 | |
| 				   struct dwarf_frame *frame,
 | |
| 				   unsigned long pc)
 | |
| {
 | |
| 	unsigned char insn;
 | |
| 	unsigned char *current_insn;
 | |
| 	unsigned int count, delta, reg, expr_len, offset;
 | |
| 	struct dwarf_reg *regp;
 | |
| 
 | |
| 	current_insn = insn_start;
 | |
| 
 | |
| 	while (current_insn < insn_end && frame->pc <= pc) {
 | |
| 		insn = __raw_readb(current_insn++);
 | |
| 
 | |
| 		/*
 | |
| 		 * Firstly, handle the opcodes that embed their operands
 | |
| 		 * in the instructions.
 | |
| 		 */
 | |
| 		switch (DW_CFA_opcode(insn)) {
 | |
| 		case DW_CFA_advance_loc:
 | |
| 			delta = DW_CFA_operand(insn);
 | |
| 			delta *= cie->code_alignment_factor;
 | |
| 			frame->pc += delta;
 | |
| 			continue;
 | |
| 			/* NOTREACHED */
 | |
| 		case DW_CFA_offset:
 | |
| 			reg = DW_CFA_operand(insn);
 | |
| 			count = dwarf_read_uleb128(current_insn, &offset);
 | |
| 			current_insn += count;
 | |
| 			offset *= cie->data_alignment_factor;
 | |
| 			regp = dwarf_frame_alloc_reg(frame, reg);
 | |
| 			regp->addr = offset;
 | |
| 			regp->flags |= DWARF_REG_OFFSET;
 | |
| 			continue;
 | |
| 			/* NOTREACHED */
 | |
| 		case DW_CFA_restore:
 | |
| 			reg = DW_CFA_operand(insn);
 | |
| 			continue;
 | |
| 			/* NOTREACHED */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Secondly, handle the opcodes that don't embed their
 | |
| 		 * operands in the instruction.
 | |
| 		 */
 | |
| 		switch (insn) {
 | |
| 		case DW_CFA_nop:
 | |
| 			continue;
 | |
| 		case DW_CFA_advance_loc1:
 | |
| 			delta = *current_insn++;
 | |
| 			frame->pc += delta * cie->code_alignment_factor;
 | |
| 			break;
 | |
| 		case DW_CFA_advance_loc2:
 | |
| 			delta = get_unaligned((u16 *)current_insn);
 | |
| 			current_insn += 2;
 | |
| 			frame->pc += delta * cie->code_alignment_factor;
 | |
| 			break;
 | |
| 		case DW_CFA_advance_loc4:
 | |
| 			delta = get_unaligned((u32 *)current_insn);
 | |
| 			current_insn += 4;
 | |
| 			frame->pc += delta * cie->code_alignment_factor;
 | |
| 			break;
 | |
| 		case DW_CFA_offset_extended:
 | |
| 			count = dwarf_read_uleb128(current_insn, ®);
 | |
| 			current_insn += count;
 | |
| 			count = dwarf_read_uleb128(current_insn, &offset);
 | |
| 			current_insn += count;
 | |
| 			offset *= cie->data_alignment_factor;
 | |
| 			break;
 | |
| 		case DW_CFA_restore_extended:
 | |
| 			count = dwarf_read_uleb128(current_insn, ®);
 | |
| 			current_insn += count;
 | |
| 			break;
 | |
| 		case DW_CFA_undefined:
 | |
| 			count = dwarf_read_uleb128(current_insn, ®);
 | |
| 			current_insn += count;
 | |
| 			regp = dwarf_frame_alloc_reg(frame, reg);
 | |
| 			regp->flags |= DWARF_UNDEFINED;
 | |
| 			break;
 | |
| 		case DW_CFA_def_cfa:
 | |
| 			count = dwarf_read_uleb128(current_insn,
 | |
| 						   &frame->cfa_register);
 | |
| 			current_insn += count;
 | |
| 			count = dwarf_read_uleb128(current_insn,
 | |
| 						   &frame->cfa_offset);
 | |
| 			current_insn += count;
 | |
| 
 | |
| 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
 | |
| 			break;
 | |
| 		case DW_CFA_def_cfa_register:
 | |
| 			count = dwarf_read_uleb128(current_insn,
 | |
| 						   &frame->cfa_register);
 | |
| 			current_insn += count;
 | |
| 			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
 | |
| 			break;
 | |
| 		case DW_CFA_def_cfa_offset:
 | |
| 			count = dwarf_read_uleb128(current_insn, &offset);
 | |
| 			current_insn += count;
 | |
| 			frame->cfa_offset = offset;
 | |
| 			break;
 | |
| 		case DW_CFA_def_cfa_expression:
 | |
| 			count = dwarf_read_uleb128(current_insn, &expr_len);
 | |
| 			current_insn += count;
 | |
| 
 | |
| 			frame->cfa_expr = current_insn;
 | |
| 			frame->cfa_expr_len = expr_len;
 | |
| 			current_insn += expr_len;
 | |
| 
 | |
| 			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
 | |
| 			break;
 | |
| 		case DW_CFA_offset_extended_sf:
 | |
| 			count = dwarf_read_uleb128(current_insn, ®);
 | |
| 			current_insn += count;
 | |
| 			count = dwarf_read_leb128(current_insn, &offset);
 | |
| 			current_insn += count;
 | |
| 			offset *= cie->data_alignment_factor;
 | |
| 			regp = dwarf_frame_alloc_reg(frame, reg);
 | |
| 			regp->flags |= DWARF_REG_OFFSET;
 | |
| 			regp->addr = offset;
 | |
| 			break;
 | |
| 		case DW_CFA_val_offset:
 | |
| 			count = dwarf_read_uleb128(current_insn, ®);
 | |
| 			current_insn += count;
 | |
| 			count = dwarf_read_leb128(current_insn, &offset);
 | |
| 			offset *= cie->data_alignment_factor;
 | |
| 			regp = dwarf_frame_alloc_reg(frame, reg);
 | |
| 			regp->flags |= DWARF_VAL_OFFSET;
 | |
| 			regp->addr = offset;
 | |
| 			break;
 | |
| 		case DW_CFA_GNU_args_size:
 | |
| 			count = dwarf_read_uleb128(current_insn, &offset);
 | |
| 			current_insn += count;
 | |
| 			break;
 | |
| 		case DW_CFA_GNU_negative_offset_extended:
 | |
| 			count = dwarf_read_uleb128(current_insn, ®);
 | |
| 			current_insn += count;
 | |
| 			count = dwarf_read_uleb128(current_insn, &offset);
 | |
| 			offset *= cie->data_alignment_factor;
 | |
| 
 | |
| 			regp = dwarf_frame_alloc_reg(frame, reg);
 | |
| 			regp->flags |= DWARF_REG_OFFSET;
 | |
| 			regp->addr = -offset;
 | |
| 			break;
 | |
| 		default:
 | |
| 			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
 | |
| 			UNWINDER_BUG();
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_free_frame - free the memory allocated for @frame
 | |
|  *	@frame: the frame to free
 | |
|  */
 | |
| void dwarf_free_frame(struct dwarf_frame *frame)
 | |
| {
 | |
| 	dwarf_frame_free_regs(frame);
 | |
| 	mempool_free(frame, dwarf_frame_pool);
 | |
| }
 | |
| 
 | |
| extern void ret_from_irq(void);
 | |
| 
 | |
| /**
 | |
|  *	dwarf_unwind_stack - unwind the stack
 | |
|  *
 | |
|  *	@pc: address of the function to unwind
 | |
|  *	@prev: struct dwarf_frame of the previous stackframe on the callstack
 | |
|  *
 | |
|  *	Return a struct dwarf_frame representing the most recent frame
 | |
|  *	on the callstack. Each of the lower (older) stack frames are
 | |
|  *	linked via the "prev" member.
 | |
|  */
 | |
| struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
 | |
| 				       struct dwarf_frame *prev)
 | |
| {
 | |
| 	struct dwarf_frame *frame;
 | |
| 	struct dwarf_cie *cie;
 | |
| 	struct dwarf_fde *fde;
 | |
| 	struct dwarf_reg *reg;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we've been called in to before initialization has
 | |
| 	 * completed, bail out immediately.
 | |
| 	 */
 | |
| 	if (!dwarf_unwinder_ready)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're starting at the top of the stack we need get the
 | |
| 	 * contents of a physical register to get the CFA in order to
 | |
| 	 * begin the virtual unwinding of the stack.
 | |
| 	 *
 | |
| 	 * NOTE: the return address is guaranteed to be setup by the
 | |
| 	 * time this function makes its first function call.
 | |
| 	 */
 | |
| 	if (!pc || !prev)
 | |
| 		pc = (unsigned long)current_text_addr();
 | |
| 
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 	/*
 | |
| 	 * If our stack has been patched by the function graph tracer
 | |
| 	 * then we might see the address of return_to_handler() where we
 | |
| 	 * expected to find the real return address.
 | |
| 	 */
 | |
| 	if (pc == (unsigned long)&return_to_handler) {
 | |
| 		int index = current->curr_ret_stack;
 | |
| 
 | |
| 		/*
 | |
| 		 * We currently have no way of tracking how many
 | |
| 		 * return_to_handler()'s we've seen. If there is more
 | |
| 		 * than one patched return address on our stack,
 | |
| 		 * complain loudly.
 | |
| 		 */
 | |
| 		WARN_ON(index > 0);
 | |
| 
 | |
| 		pc = current->ret_stack[index].ret;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
 | |
| 	if (!frame) {
 | |
| 		printk(KERN_ERR "Unable to allocate a dwarf frame\n");
 | |
| 		UNWINDER_BUG();
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&frame->reg_list);
 | |
| 	frame->flags = 0;
 | |
| 	frame->prev = prev;
 | |
| 	frame->return_addr = 0;
 | |
| 
 | |
| 	fde = dwarf_lookup_fde(pc);
 | |
| 	if (!fde) {
 | |
| 		/*
 | |
| 		 * This is our normal exit path. There are two reasons
 | |
| 		 * why we might exit here,
 | |
| 		 *
 | |
| 		 *	a) pc has no asscociated DWARF frame info and so
 | |
| 		 *	we don't know how to unwind this frame. This is
 | |
| 		 *	usually the case when we're trying to unwind a
 | |
| 		 *	frame that was called from some assembly code
 | |
| 		 *	that has no DWARF info, e.g. syscalls.
 | |
| 		 *
 | |
| 		 *	b) the DEBUG info for pc is bogus. There's
 | |
| 		 *	really no way to distinguish this case from the
 | |
| 		 *	case above, which sucks because we could print a
 | |
| 		 *	warning here.
 | |
| 		 */
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	cie = dwarf_lookup_cie(fde->cie_pointer);
 | |
| 
 | |
| 	frame->pc = fde->initial_location;
 | |
| 
 | |
| 	/* CIE initial instructions */
 | |
| 	dwarf_cfa_execute_insns(cie->initial_instructions,
 | |
| 				cie->instructions_end, cie, fde,
 | |
| 				frame, pc);
 | |
| 
 | |
| 	/* FDE instructions */
 | |
| 	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
 | |
| 				fde, frame, pc);
 | |
| 
 | |
| 	/* Calculate the CFA */
 | |
| 	switch (frame->flags) {
 | |
| 	case DWARF_FRAME_CFA_REG_OFFSET:
 | |
| 		if (prev) {
 | |
| 			reg = dwarf_frame_reg(prev, frame->cfa_register);
 | |
| 			UNWINDER_BUG_ON(!reg);
 | |
| 			UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
 | |
| 
 | |
| 			addr = prev->cfa + reg->addr;
 | |
| 			frame->cfa = __raw_readl(addr);
 | |
| 
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Again, we're starting from the top of the
 | |
| 			 * stack. We need to physically read
 | |
| 			 * the contents of a register in order to get
 | |
| 			 * the Canonical Frame Address for this
 | |
| 			 * function.
 | |
| 			 */
 | |
| 			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
 | |
| 		}
 | |
| 
 | |
| 		frame->cfa += frame->cfa_offset;
 | |
| 		break;
 | |
| 	default:
 | |
| 		UNWINDER_BUG();
 | |
| 	}
 | |
| 
 | |
| 	reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we haven't seen the return address register or the return
 | |
| 	 * address column is undefined then we must assume that this is
 | |
| 	 * the end of the callstack.
 | |
| 	 */
 | |
| 	if (!reg || reg->flags == DWARF_UNDEFINED)
 | |
| 		goto bail;
 | |
| 
 | |
| 	UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
 | |
| 
 | |
| 	addr = frame->cfa + reg->addr;
 | |
| 	frame->return_addr = __raw_readl(addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ah, the joys of unwinding through interrupts.
 | |
| 	 *
 | |
| 	 * Interrupts are tricky - the DWARF info needs to be _really_
 | |
| 	 * accurate and unfortunately I'm seeing a lot of bogus DWARF
 | |
| 	 * info. For example, I've seen interrupts occur in epilogues
 | |
| 	 * just after the frame pointer (r14) had been restored. The
 | |
| 	 * problem was that the DWARF info claimed that the CFA could be
 | |
| 	 * reached by using the value of the frame pointer before it was
 | |
| 	 * restored.
 | |
| 	 *
 | |
| 	 * So until the compiler can be trusted to produce reliable
 | |
| 	 * DWARF info when it really matters, let's stop unwinding once
 | |
| 	 * we've calculated the function that was interrupted.
 | |
| 	 */
 | |
| 	if (prev && prev->pc == (unsigned long)ret_from_irq)
 | |
| 		frame->return_addr = 0;
 | |
| 
 | |
| 	return frame;
 | |
| 
 | |
| bail:
 | |
| 	dwarf_free_frame(frame);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
 | |
| 			   unsigned char *end, struct module *mod)
 | |
| {
 | |
| 	struct rb_node **rb_node = &cie_root.rb_node;
 | |
| 	struct rb_node *parent = *rb_node;
 | |
| 	struct dwarf_cie *cie;
 | |
| 	unsigned long flags;
 | |
| 	int count;
 | |
| 
 | |
| 	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
 | |
| 	if (!cie)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cie->length = len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Record the offset into the .eh_frame section
 | |
| 	 * for this CIE. It allows this CIE to be
 | |
| 	 * quickly and easily looked up from the
 | |
| 	 * corresponding FDE.
 | |
| 	 */
 | |
| 	cie->cie_pointer = (unsigned long)entry;
 | |
| 
 | |
| 	cie->version = *(char *)p++;
 | |
| 	UNWINDER_BUG_ON(cie->version != 1);
 | |
| 
 | |
| 	cie->augmentation = p;
 | |
| 	p += strlen(cie->augmentation) + 1;
 | |
| 
 | |
| 	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
 | |
| 	p += count;
 | |
| 
 | |
| 	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
 | |
| 	p += count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Which column in the rule table contains the
 | |
| 	 * return address?
 | |
| 	 */
 | |
| 	if (cie->version == 1) {
 | |
| 		cie->return_address_reg = __raw_readb(p);
 | |
| 		p++;
 | |
| 	} else {
 | |
| 		count = dwarf_read_uleb128(p, &cie->return_address_reg);
 | |
| 		p += count;
 | |
| 	}
 | |
| 
 | |
| 	if (cie->augmentation[0] == 'z') {
 | |
| 		unsigned int length, count;
 | |
| 		cie->flags |= DWARF_CIE_Z_AUGMENTATION;
 | |
| 
 | |
| 		count = dwarf_read_uleb128(p, &length);
 | |
| 		p += count;
 | |
| 
 | |
| 		UNWINDER_BUG_ON((unsigned char *)p > end);
 | |
| 
 | |
| 		cie->initial_instructions = p + length;
 | |
| 		cie->augmentation++;
 | |
| 	}
 | |
| 
 | |
| 	while (*cie->augmentation) {
 | |
| 		/*
 | |
| 		 * "L" indicates a byte showing how the
 | |
| 		 * LSDA pointer is encoded. Skip it.
 | |
| 		 */
 | |
| 		if (*cie->augmentation == 'L') {
 | |
| 			p++;
 | |
| 			cie->augmentation++;
 | |
| 		} else if (*cie->augmentation == 'R') {
 | |
| 			/*
 | |
| 			 * "R" indicates a byte showing
 | |
| 			 * how FDE addresses are
 | |
| 			 * encoded.
 | |
| 			 */
 | |
| 			cie->encoding = *(char *)p++;
 | |
| 			cie->augmentation++;
 | |
| 		} else if (*cie->augmentation == 'P') {
 | |
| 			/*
 | |
| 			 * "R" indicates a personality
 | |
| 			 * routine in the CIE
 | |
| 			 * augmentation.
 | |
| 			 */
 | |
| 			UNWINDER_BUG();
 | |
| 		} else if (*cie->augmentation == 'S') {
 | |
| 			UNWINDER_BUG();
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Unknown augmentation. Assume
 | |
| 			 * 'z' augmentation.
 | |
| 			 */
 | |
| 			p = cie->initial_instructions;
 | |
| 			UNWINDER_BUG_ON(!p);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cie->initial_instructions = p;
 | |
| 	cie->instructions_end = end;
 | |
| 
 | |
| 	/* Add to list */
 | |
| 	spin_lock_irqsave(&dwarf_cie_lock, flags);
 | |
| 
 | |
| 	while (*rb_node) {
 | |
| 		struct dwarf_cie *cie_tmp;
 | |
| 
 | |
| 		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
 | |
| 
 | |
| 		parent = *rb_node;
 | |
| 
 | |
| 		if (cie->cie_pointer < cie_tmp->cie_pointer)
 | |
| 			rb_node = &parent->rb_left;
 | |
| 		else if (cie->cie_pointer >= cie_tmp->cie_pointer)
 | |
| 			rb_node = &parent->rb_right;
 | |
| 		else
 | |
| 			WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&cie->node, parent, rb_node);
 | |
| 	rb_insert_color(&cie->node, &cie_root);
 | |
| 
 | |
| #ifdef CONFIG_MODULES
 | |
| 	if (mod != NULL)
 | |
| 		list_add_tail(&cie->link, &mod->arch.cie_list);
 | |
| #endif
 | |
| 
 | |
| 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dwarf_parse_fde(void *entry, u32 entry_type,
 | |
| 			   void *start, unsigned long len,
 | |
| 			   unsigned char *end, struct module *mod)
 | |
| {
 | |
| 	struct rb_node **rb_node = &fde_root.rb_node;
 | |
| 	struct rb_node *parent = *rb_node;
 | |
| 	struct dwarf_fde *fde;
 | |
| 	struct dwarf_cie *cie;
 | |
| 	unsigned long flags;
 | |
| 	int count;
 | |
| 	void *p = start;
 | |
| 
 | |
| 	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
 | |
| 	if (!fde)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	fde->length = len;
 | |
| 
 | |
| 	/*
 | |
| 	 * In a .eh_frame section the CIE pointer is the
 | |
| 	 * delta between the address within the FDE
 | |
| 	 */
 | |
| 	fde->cie_pointer = (unsigned long)(p - entry_type - 4);
 | |
| 
 | |
| 	cie = dwarf_lookup_cie(fde->cie_pointer);
 | |
| 	fde->cie = cie;
 | |
| 
 | |
| 	if (cie->encoding)
 | |
| 		count = dwarf_read_encoded_value(p, &fde->initial_location,
 | |
| 						 cie->encoding);
 | |
| 	else
 | |
| 		count = dwarf_read_addr(p, &fde->initial_location);
 | |
| 
 | |
| 	p += count;
 | |
| 
 | |
| 	if (cie->encoding)
 | |
| 		count = dwarf_read_encoded_value(p, &fde->address_range,
 | |
| 						 cie->encoding & 0x0f);
 | |
| 	else
 | |
| 		count = dwarf_read_addr(p, &fde->address_range);
 | |
| 
 | |
| 	p += count;
 | |
| 
 | |
| 	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
 | |
| 		unsigned int length;
 | |
| 		count = dwarf_read_uleb128(p, &length);
 | |
| 		p += count + length;
 | |
| 	}
 | |
| 
 | |
| 	/* Call frame instructions. */
 | |
| 	fde->instructions = p;
 | |
| 	fde->end = end;
 | |
| 
 | |
| 	/* Add to list. */
 | |
| 	spin_lock_irqsave(&dwarf_fde_lock, flags);
 | |
| 
 | |
| 	while (*rb_node) {
 | |
| 		struct dwarf_fde *fde_tmp;
 | |
| 		unsigned long tmp_start, tmp_end;
 | |
| 		unsigned long start, end;
 | |
| 
 | |
| 		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
 | |
| 
 | |
| 		start = fde->initial_location;
 | |
| 		end = fde->initial_location + fde->address_range;
 | |
| 
 | |
| 		tmp_start = fde_tmp->initial_location;
 | |
| 		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
 | |
| 
 | |
| 		parent = *rb_node;
 | |
| 
 | |
| 		if (start < tmp_start)
 | |
| 			rb_node = &parent->rb_left;
 | |
| 		else if (start >= tmp_end)
 | |
| 			rb_node = &parent->rb_right;
 | |
| 		else
 | |
| 			WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&fde->node, parent, rb_node);
 | |
| 	rb_insert_color(&fde->node, &fde_root);
 | |
| 
 | |
| #ifdef CONFIG_MODULES
 | |
| 	if (mod != NULL)
 | |
| 		list_add_tail(&fde->link, &mod->arch.fde_list);
 | |
| #endif
 | |
| 
 | |
| 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dwarf_unwinder_dump(struct task_struct *task,
 | |
| 				struct pt_regs *regs,
 | |
| 				unsigned long *sp,
 | |
| 				const struct stacktrace_ops *ops,
 | |
| 				void *data)
 | |
| {
 | |
| 	struct dwarf_frame *frame, *_frame;
 | |
| 	unsigned long return_addr;
 | |
| 
 | |
| 	_frame = NULL;
 | |
| 	return_addr = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		frame = dwarf_unwind_stack(return_addr, _frame);
 | |
| 
 | |
| 		if (_frame)
 | |
| 			dwarf_free_frame(_frame);
 | |
| 
 | |
| 		_frame = frame;
 | |
| 
 | |
| 		if (!frame || !frame->return_addr)
 | |
| 			break;
 | |
| 
 | |
| 		return_addr = frame->return_addr;
 | |
| 		ops->address(data, return_addr, 1);
 | |
| 	}
 | |
| 
 | |
| 	if (frame)
 | |
| 		dwarf_free_frame(frame);
 | |
| }
 | |
| 
 | |
| static struct unwinder dwarf_unwinder = {
 | |
| 	.name = "dwarf-unwinder",
 | |
| 	.dump = dwarf_unwinder_dump,
 | |
| 	.rating = 150,
 | |
| };
 | |
| 
 | |
| static void dwarf_unwinder_cleanup(void)
 | |
| {
 | |
| 	struct rb_node **fde_rb_node = &fde_root.rb_node;
 | |
| 	struct rb_node **cie_rb_node = &cie_root.rb_node;
 | |
| 
 | |
| 	/*
 | |
| 	 * Deallocate all the memory allocated for the DWARF unwinder.
 | |
| 	 * Traverse all the FDE/CIE lists and remove and free all the
 | |
| 	 * memory associated with those data structures.
 | |
| 	 */
 | |
| 	while (*fde_rb_node) {
 | |
| 		struct dwarf_fde *fde;
 | |
| 
 | |
| 		fde = rb_entry(*fde_rb_node, struct dwarf_fde, node);
 | |
| 		rb_erase(*fde_rb_node, &fde_root);
 | |
| 		kfree(fde);
 | |
| 	}
 | |
| 
 | |
| 	while (*cie_rb_node) {
 | |
| 		struct dwarf_cie *cie;
 | |
| 
 | |
| 		cie = rb_entry(*cie_rb_node, struct dwarf_cie, node);
 | |
| 		rb_erase(*cie_rb_node, &cie_root);
 | |
| 		kfree(cie);
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_destroy(dwarf_reg_cachep);
 | |
| 	kmem_cache_destroy(dwarf_frame_cachep);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dwarf_parse_section - parse DWARF section
 | |
|  *	@eh_frame_start: start address of the .eh_frame section
 | |
|  *	@eh_frame_end: end address of the .eh_frame section
 | |
|  *	@mod: the kernel module containing the .eh_frame section
 | |
|  *
 | |
|  *	Parse the information in a .eh_frame section.
 | |
|  */
 | |
| static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
 | |
| 			       struct module *mod)
 | |
| {
 | |
| 	u32 entry_type;
 | |
| 	void *p, *entry;
 | |
| 	int count, err = 0;
 | |
| 	unsigned long len = 0;
 | |
| 	unsigned int c_entries, f_entries;
 | |
| 	unsigned char *end;
 | |
| 
 | |
| 	c_entries = 0;
 | |
| 	f_entries = 0;
 | |
| 	entry = eh_frame_start;
 | |
| 
 | |
| 	while ((char *)entry < eh_frame_end) {
 | |
| 		p = entry;
 | |
| 
 | |
| 		count = dwarf_entry_len(p, &len);
 | |
| 		if (count == 0) {
 | |
| 			/*
 | |
| 			 * We read a bogus length field value. There is
 | |
| 			 * nothing we can do here apart from disabling
 | |
| 			 * the DWARF unwinder. We can't even skip this
 | |
| 			 * entry and move to the next one because 'len'
 | |
| 			 * tells us where our next entry is.
 | |
| 			 */
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		} else
 | |
| 			p += count;
 | |
| 
 | |
| 		/* initial length does not include itself */
 | |
| 		end = p + len;
 | |
| 
 | |
| 		entry_type = get_unaligned((u32 *)p);
 | |
| 		p += 4;
 | |
| 
 | |
| 		if (entry_type == DW_EH_FRAME_CIE) {
 | |
| 			err = dwarf_parse_cie(entry, p, len, end, mod);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 			else
 | |
| 				c_entries++;
 | |
| 		} else {
 | |
| 			err = dwarf_parse_fde(entry, entry_type, p, len,
 | |
| 					      end, mod);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 			else
 | |
| 				f_entries++;
 | |
| 		}
 | |
| 
 | |
| 		entry = (char *)entry + len + 4;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
 | |
| 	       c_entries, f_entries);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MODULES
 | |
| int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
 | |
| 			  struct module *me)
 | |
| {
 | |
| 	unsigned int i, err;
 | |
| 	unsigned long start, end;
 | |
| 	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
 | |
| 
 | |
| 	start = end = 0;
 | |
| 
 | |
| 	for (i = 1; i < hdr->e_shnum; i++) {
 | |
| 		/* Alloc bit cleared means "ignore it." */
 | |
| 		if ((sechdrs[i].sh_flags & SHF_ALLOC)
 | |
| 		    && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
 | |
| 			start = sechdrs[i].sh_addr;
 | |
| 			end = start + sechdrs[i].sh_size;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Did we find the .eh_frame section? */
 | |
| 	if (i != hdr->e_shnum) {
 | |
| 		INIT_LIST_HEAD(&me->arch.cie_list);
 | |
| 		INIT_LIST_HEAD(&me->arch.fde_list);
 | |
| 		err = dwarf_parse_section((char *)start, (char *)end, me);
 | |
| 		if (err) {
 | |
| 			printk(KERN_WARNING "%s: failed to parse DWARF info\n",
 | |
| 			       me->name);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	module_dwarf_cleanup - remove FDE/CIEs associated with @mod
 | |
|  *	@mod: the module that is being unloaded
 | |
|  *
 | |
|  *	Remove any FDEs and CIEs from the global lists that came from
 | |
|  *	@mod's .eh_frame section because @mod is being unloaded.
 | |
|  */
 | |
| void module_dwarf_cleanup(struct module *mod)
 | |
| {
 | |
| 	struct dwarf_fde *fde, *ftmp;
 | |
| 	struct dwarf_cie *cie, *ctmp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dwarf_cie_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
 | |
| 		list_del(&cie->link);
 | |
| 		rb_erase(&cie->node, &cie_root);
 | |
| 		kfree(cie);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
 | |
| 
 | |
| 	spin_lock_irqsave(&dwarf_fde_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
 | |
| 		list_del(&fde->link);
 | |
| 		rb_erase(&fde->node, &fde_root);
 | |
| 		kfree(fde);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
 | |
| }
 | |
| #endif /* CONFIG_MODULES */
 | |
| 
 | |
| /**
 | |
|  *	dwarf_unwinder_init - initialise the dwarf unwinder
 | |
|  *
 | |
|  *	Build the data structures describing the .dwarf_frame section to
 | |
|  *	make it easier to lookup CIE and FDE entries. Because the
 | |
|  *	.eh_frame section is packed as tightly as possible it is not
 | |
|  *	easy to lookup the FDE for a given PC, so we build a list of FDE
 | |
|  *	and CIE entries that make it easier.
 | |
|  */
 | |
| static int __init dwarf_unwinder_init(void)
 | |
| {
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| 	dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
 | |
| 			sizeof(struct dwarf_frame), 0,
 | |
| 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
 | |
| 
 | |
| 	dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
 | |
| 			sizeof(struct dwarf_reg), 0,
 | |
| 			SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
 | |
| 
 | |
| 	dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
 | |
| 					  mempool_alloc_slab,
 | |
| 					  mempool_free_slab,
 | |
| 					  dwarf_frame_cachep);
 | |
| 	if (!dwarf_frame_pool)
 | |
| 		goto out;
 | |
| 
 | |
| 	dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
 | |
| 					 mempool_alloc_slab,
 | |
| 					 mempool_free_slab,
 | |
| 					 dwarf_reg_cachep);
 | |
| 	if (!dwarf_reg_pool)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = unwinder_register(&dwarf_unwinder);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	dwarf_unwinder_ready = 1;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
 | |
| 	dwarf_unwinder_cleanup();
 | |
| 	return err;
 | |
| }
 | |
| early_initcall(dwarf_unwinder_init);
 |