 265c1ffa59
			
		
	
	
	265c1ffa59
	
	
	
		
			
			Fix following sparse warnings: kernel/perf_event.c:113:1: warning: symbol 'cpu_hw_events' was not declared. Should it be static? kernel/perf_event.c:1156:6: warning: symbol 'perf_event_grab_pmc' was not declared. Should it be static? kernel/perf_event.c:1172:6: warning: symbol 'perf_event_release_pmc' was not declared. Should it be static? kernel/perf_event.c:1672:12: warning: symbol 'init_hw_perf_events' was not declared. Should it be static? kernel/perf_event.c:1749:52: warning: incorrect type in argument 2 (different address spaces) kernel/perf_event.c:1772:60: warning: incorrect type in argument 2 (different address spaces) kernel/perf_event.c:1779:60: warning: incorrect type in argument 2 (different address spaces) Define the functions static as they are not used outside this file. Fix it so copy_from_user are supplied with pointers annotated _user Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1804 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1804 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Performance event support for sparc64.
 | |
|  *
 | |
|  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
 | |
|  *
 | |
|  * This code is based almost entirely upon the x86 perf event
 | |
|  * code, which is:
 | |
|  *
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2009 Jaswinder Singh Rajput
 | |
|  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/mutex.h>
 | |
| 
 | |
| #include <asm/stacktrace.h>
 | |
| #include <asm/cpudata.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <asm/nmi.h>
 | |
| #include <asm/pcr.h>
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| #include "kernel.h"
 | |
| #include "kstack.h"
 | |
| 
 | |
| /* Two classes of sparc64 chips currently exist.  All of which have
 | |
|  * 32-bit counters which can generate overflow interrupts on the
 | |
|  * transition from 0xffffffff to 0.
 | |
|  *
 | |
|  * All chips upto and including SPARC-T3 have two performance
 | |
|  * counters.  The two 32-bit counters are accessed in one go using a
 | |
|  * single 64-bit register.
 | |
|  *
 | |
|  * On these older chips both counters are controlled using a single
 | |
|  * control register.  The only way to stop all sampling is to clear
 | |
|  * all of the context (user, supervisor, hypervisor) sampling enable
 | |
|  * bits.  But these bits apply to both counters, thus the two counters
 | |
|  * can't be enabled/disabled individually.
 | |
|  *
 | |
|  * Furthermore, the control register on these older chips have two
 | |
|  * event fields, one for each of the two counters.  It's thus nearly
 | |
|  * impossible to have one counter going while keeping the other one
 | |
|  * stopped.  Therefore it is possible to get overflow interrupts for
 | |
|  * counters not currently "in use" and that condition must be checked
 | |
|  * in the overflow interrupt handler.
 | |
|  *
 | |
|  * So we use a hack, in that we program inactive counters with the
 | |
|  * "sw_count0" and "sw_count1" events.  These count how many times
 | |
|  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 | |
|  * unusual way to encode a NOP and therefore will not trigger in
 | |
|  * normal code.
 | |
|  *
 | |
|  * Starting with SPARC-T4 we have one control register per counter.
 | |
|  * And the counters are stored in individual registers.  The registers
 | |
|  * for the counters are 64-bit but only a 32-bit counter is
 | |
|  * implemented.  The event selections on SPARC-T4 lack any
 | |
|  * restrictions, therefore we can elide all of the complicated
 | |
|  * conflict resolution code we have for SPARC-T3 and earlier chips.
 | |
|  */
 | |
| 
 | |
| #define MAX_HWEVENTS			4
 | |
| #define MAX_PCRS			4
 | |
| #define MAX_PERIOD			((1UL << 32) - 1)
 | |
| 
 | |
| #define PIC_UPPER_INDEX			0
 | |
| #define PIC_LOWER_INDEX			1
 | |
| #define PIC_NO_INDEX			-1
 | |
| 
 | |
| struct cpu_hw_events {
 | |
| 	/* Number of events currently scheduled onto this cpu.
 | |
| 	 * This tells how many entries in the arrays below
 | |
| 	 * are valid.
 | |
| 	 */
 | |
| 	int			n_events;
 | |
| 
 | |
| 	/* Number of new events added since the last hw_perf_disable().
 | |
| 	 * This works because the perf event layer always adds new
 | |
| 	 * events inside of a perf_{disable,enable}() sequence.
 | |
| 	 */
 | |
| 	int			n_added;
 | |
| 
 | |
| 	/* Array of events current scheduled on this cpu.  */
 | |
| 	struct perf_event	*event[MAX_HWEVENTS];
 | |
| 
 | |
| 	/* Array of encoded longs, specifying the %pcr register
 | |
| 	 * encoding and the mask of PIC counters this even can
 | |
| 	 * be scheduled on.  See perf_event_encode() et al.
 | |
| 	 */
 | |
| 	unsigned long		events[MAX_HWEVENTS];
 | |
| 
 | |
| 	/* The current counter index assigned to an event.  When the
 | |
| 	 * event hasn't been programmed into the cpu yet, this will
 | |
| 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 | |
| 	 * we ought to schedule the event.
 | |
| 	 */
 | |
| 	int			current_idx[MAX_HWEVENTS];
 | |
| 
 | |
| 	/* Software copy of %pcr register(s) on this cpu.  */
 | |
| 	u64			pcr[MAX_HWEVENTS];
 | |
| 
 | |
| 	/* Enabled/disable state.  */
 | |
| 	int			enabled;
 | |
| 
 | |
| 	unsigned int		group_flag;
 | |
| };
 | |
| static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 | |
| 
 | |
| /* An event map describes the characteristics of a performance
 | |
|  * counter event.  In particular it gives the encoding as well as
 | |
|  * a mask telling which counters the event can be measured on.
 | |
|  *
 | |
|  * The mask is unused on SPARC-T4 and later.
 | |
|  */
 | |
| struct perf_event_map {
 | |
| 	u16	encoding;
 | |
| 	u8	pic_mask;
 | |
| #define PIC_NONE	0x00
 | |
| #define PIC_UPPER	0x01
 | |
| #define PIC_LOWER	0x02
 | |
| };
 | |
| 
 | |
| /* Encode a perf_event_map entry into a long.  */
 | |
| static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 | |
| {
 | |
| 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 | |
| }
 | |
| 
 | |
| static u8 perf_event_get_msk(unsigned long val)
 | |
| {
 | |
| 	return val & 0xff;
 | |
| }
 | |
| 
 | |
| static u64 perf_event_get_enc(unsigned long val)
 | |
| {
 | |
| 	return val >> 16;
 | |
| }
 | |
| 
 | |
| #define C(x) PERF_COUNT_HW_CACHE_##x
 | |
| 
 | |
| #define CACHE_OP_UNSUPPORTED	0xfffe
 | |
| #define CACHE_OP_NONSENSE	0xffff
 | |
| 
 | |
| typedef struct perf_event_map cache_map_t
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 | |
| 
 | |
| struct sparc_pmu {
 | |
| 	const struct perf_event_map	*(*event_map)(int);
 | |
| 	const cache_map_t		*cache_map;
 | |
| 	int				max_events;
 | |
| 	u32				(*read_pmc)(int);
 | |
| 	void				(*write_pmc)(int, u64);
 | |
| 	int				upper_shift;
 | |
| 	int				lower_shift;
 | |
| 	int				event_mask;
 | |
| 	int				user_bit;
 | |
| 	int				priv_bit;
 | |
| 	int				hv_bit;
 | |
| 	int				irq_bit;
 | |
| 	int				upper_nop;
 | |
| 	int				lower_nop;
 | |
| 	unsigned int			flags;
 | |
| #define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 | |
| #define SPARC_PMU_HAS_CONFLICTS		0x00000002
 | |
| 	int				max_hw_events;
 | |
| 	int				num_pcrs;
 | |
| 	int				num_pic_regs;
 | |
| };
 | |
| 
 | |
| static u32 sparc_default_read_pmc(int idx)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	val = pcr_ops->read_pic(0);
 | |
| 	if (idx == PIC_UPPER_INDEX)
 | |
| 		val >>= 32;
 | |
| 
 | |
| 	return val & 0xffffffff;
 | |
| }
 | |
| 
 | |
| static void sparc_default_write_pmc(int idx, u64 val)
 | |
| {
 | |
| 	u64 shift, mask, pic;
 | |
| 
 | |
| 	shift = 0;
 | |
| 	if (idx == PIC_UPPER_INDEX)
 | |
| 		shift = 32;
 | |
| 
 | |
| 	mask = ((u64) 0xffffffff) << shift;
 | |
| 	val <<= shift;
 | |
| 
 | |
| 	pic = pcr_ops->read_pic(0);
 | |
| 	pic &= ~mask;
 | |
| 	pic |= val;
 | |
| 	pcr_ops->write_pic(0, pic);
 | |
| }
 | |
| 
 | |
| static const struct perf_event_map ultra3_perfmon_event_map[] = {
 | |
| 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 | |
| };
 | |
| 
 | |
| static const struct perf_event_map *ultra3_event_map(int event_id)
 | |
| {
 | |
| 	return &ultra3_perfmon_event_map[event_id];
 | |
| }
 | |
| 
 | |
| static const cache_map_t ultra3_cache_map = {
 | |
| [C(L1D)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 | |
| 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(L1I)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(LL)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 | |
| 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(DTLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(ITLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(BPU)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(NODE)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| };
 | |
| 
 | |
| static const struct sparc_pmu ultra3_pmu = {
 | |
| 	.event_map	= ultra3_event_map,
 | |
| 	.cache_map	= &ultra3_cache_map,
 | |
| 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 | |
| 	.read_pmc	= sparc_default_read_pmc,
 | |
| 	.write_pmc	= sparc_default_write_pmc,
 | |
| 	.upper_shift	= 11,
 | |
| 	.lower_shift	= 4,
 | |
| 	.event_mask	= 0x3f,
 | |
| 	.user_bit	= PCR_UTRACE,
 | |
| 	.priv_bit	= PCR_STRACE,
 | |
| 	.upper_nop	= 0x1c,
 | |
| 	.lower_nop	= 0x14,
 | |
| 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 | |
| 			   SPARC_PMU_HAS_CONFLICTS),
 | |
| 	.max_hw_events	= 2,
 | |
| 	.num_pcrs	= 1,
 | |
| 	.num_pic_regs	= 1,
 | |
| };
 | |
| 
 | |
| /* Niagara1 is very limited.  The upper PIC is hard-locked to count
 | |
|  * only instructions, so it is free running which creates all kinds of
 | |
|  * problems.  Some hardware designs make one wonder if the creator
 | |
|  * even looked at how this stuff gets used by software.
 | |
|  */
 | |
| static const struct perf_event_map niagara1_perfmon_event_map[] = {
 | |
| 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 | |
| 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 | |
| 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 | |
| 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 | |
| };
 | |
| 
 | |
| static const struct perf_event_map *niagara1_event_map(int event_id)
 | |
| {
 | |
| 	return &niagara1_perfmon_event_map[event_id];
 | |
| }
 | |
| 
 | |
| static const cache_map_t niagara1_cache_map = {
 | |
| [C(L1D)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(L1I)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 | |
| 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(LL)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(DTLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(ITLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(BPU)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(NODE)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| };
 | |
| 
 | |
| static const struct sparc_pmu niagara1_pmu = {
 | |
| 	.event_map	= niagara1_event_map,
 | |
| 	.cache_map	= &niagara1_cache_map,
 | |
| 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 | |
| 	.read_pmc	= sparc_default_read_pmc,
 | |
| 	.write_pmc	= sparc_default_write_pmc,
 | |
| 	.upper_shift	= 0,
 | |
| 	.lower_shift	= 4,
 | |
| 	.event_mask	= 0x7,
 | |
| 	.user_bit	= PCR_UTRACE,
 | |
| 	.priv_bit	= PCR_STRACE,
 | |
| 	.upper_nop	= 0x0,
 | |
| 	.lower_nop	= 0x0,
 | |
| 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 | |
| 			   SPARC_PMU_HAS_CONFLICTS),
 | |
| 	.max_hw_events	= 2,
 | |
| 	.num_pcrs	= 1,
 | |
| 	.num_pic_regs	= 1,
 | |
| };
 | |
| 
 | |
| static const struct perf_event_map niagara2_perfmon_event_map[] = {
 | |
| 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 | |
| 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 | |
| };
 | |
| 
 | |
| static const struct perf_event_map *niagara2_event_map(int event_id)
 | |
| {
 | |
| 	return &niagara2_perfmon_event_map[event_id];
 | |
| }
 | |
| 
 | |
| static const cache_map_t niagara2_cache_map = {
 | |
| [C(L1D)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(L1I)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(LL)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 | |
| 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(DTLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(ITLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(BPU)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(NODE)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| };
 | |
| 
 | |
| static const struct sparc_pmu niagara2_pmu = {
 | |
| 	.event_map	= niagara2_event_map,
 | |
| 	.cache_map	= &niagara2_cache_map,
 | |
| 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 | |
| 	.read_pmc	= sparc_default_read_pmc,
 | |
| 	.write_pmc	= sparc_default_write_pmc,
 | |
| 	.upper_shift	= 19,
 | |
| 	.lower_shift	= 6,
 | |
| 	.event_mask	= 0xfff,
 | |
| 	.user_bit	= PCR_UTRACE,
 | |
| 	.priv_bit	= PCR_STRACE,
 | |
| 	.hv_bit		= PCR_N2_HTRACE,
 | |
| 	.irq_bit	= 0x30,
 | |
| 	.upper_nop	= 0x220,
 | |
| 	.lower_nop	= 0x220,
 | |
| 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 | |
| 			   SPARC_PMU_HAS_CONFLICTS),
 | |
| 	.max_hw_events	= 2,
 | |
| 	.num_pcrs	= 1,
 | |
| 	.num_pic_regs	= 1,
 | |
| };
 | |
| 
 | |
| static const struct perf_event_map niagara4_perfmon_event_map[] = {
 | |
| 	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 | |
| 	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 | |
| 	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 | |
| 	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 | |
| 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 | |
| 	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 | |
| };
 | |
| 
 | |
| static const struct perf_event_map *niagara4_event_map(int event_id)
 | |
| {
 | |
| 	return &niagara4_perfmon_event_map[event_id];
 | |
| }
 | |
| 
 | |
| static const cache_map_t niagara4_cache_map = {
 | |
| [C(L1D)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 | |
| 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 | |
| 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(L1I)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 | |
| 		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(LL)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[C(OP_WRITE)] = {
 | |
| 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[C(OP_PREFETCH)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(DTLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(ITLB)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(BPU)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| [C(NODE)] = {
 | |
| 	[C(OP_READ)] = {
 | |
| 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_WRITE) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| 	[ C(OP_PREFETCH) ] = {
 | |
| 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 | |
| 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 | |
| 	},
 | |
| },
 | |
| };
 | |
| 
 | |
| static u32 sparc_vt_read_pmc(int idx)
 | |
| {
 | |
| 	u64 val = pcr_ops->read_pic(idx);
 | |
| 
 | |
| 	return val & 0xffffffff;
 | |
| }
 | |
| 
 | |
| static void sparc_vt_write_pmc(int idx, u64 val)
 | |
| {
 | |
| 	u64 pcr;
 | |
| 
 | |
| 	/* There seems to be an internal latch on the overflow event
 | |
| 	 * on SPARC-T4 that prevents it from triggering unless you
 | |
| 	 * update the PIC exactly as we do here.  The requirement
 | |
| 	 * seems to be that you have to turn off event counting in the
 | |
| 	 * PCR around the PIC update.
 | |
| 	 *
 | |
| 	 * For example, after the following sequence:
 | |
| 	 *
 | |
| 	 * 1) set PIC to -1
 | |
| 	 * 2) enable event counting and overflow reporting in PCR
 | |
| 	 * 3) overflow triggers, softint 15 handler invoked
 | |
| 	 * 4) clear OV bit in PCR
 | |
| 	 * 5) write PIC to -1
 | |
| 	 *
 | |
| 	 * a subsequent overflow event will not trigger.  This
 | |
| 	 * sequence works on SPARC-T3 and previous chips.
 | |
| 	 */
 | |
| 	pcr = pcr_ops->read_pcr(idx);
 | |
| 	pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
 | |
| 
 | |
| 	pcr_ops->write_pic(idx, val & 0xffffffff);
 | |
| 
 | |
| 	pcr_ops->write_pcr(idx, pcr);
 | |
| }
 | |
| 
 | |
| static const struct sparc_pmu niagara4_pmu = {
 | |
| 	.event_map	= niagara4_event_map,
 | |
| 	.cache_map	= &niagara4_cache_map,
 | |
| 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 | |
| 	.read_pmc	= sparc_vt_read_pmc,
 | |
| 	.write_pmc	= sparc_vt_write_pmc,
 | |
| 	.upper_shift	= 5,
 | |
| 	.lower_shift	= 5,
 | |
| 	.event_mask	= 0x7ff,
 | |
| 	.user_bit	= PCR_N4_UTRACE,
 | |
| 	.priv_bit	= PCR_N4_STRACE,
 | |
| 
 | |
| 	/* We explicitly don't support hypervisor tracing.  The T4
 | |
| 	 * generates the overflow event for precise events via a trap
 | |
| 	 * which will not be generated (ie. it's completely lost) if
 | |
| 	 * we happen to be in the hypervisor when the event triggers.
 | |
| 	 * Essentially, the overflow event reporting is completely
 | |
| 	 * unusable when you have hypervisor mode tracing enabled.
 | |
| 	 */
 | |
| 	.hv_bit		= 0,
 | |
| 
 | |
| 	.irq_bit	= PCR_N4_TOE,
 | |
| 	.upper_nop	= 0,
 | |
| 	.lower_nop	= 0,
 | |
| 	.flags		= 0,
 | |
| 	.max_hw_events	= 4,
 | |
| 	.num_pcrs	= 4,
 | |
| 	.num_pic_regs	= 4,
 | |
| };
 | |
| 
 | |
| static const struct sparc_pmu *sparc_pmu __read_mostly;
 | |
| 
 | |
| static u64 event_encoding(u64 event_id, int idx)
 | |
| {
 | |
| 	if (idx == PIC_UPPER_INDEX)
 | |
| 		event_id <<= sparc_pmu->upper_shift;
 | |
| 	else
 | |
| 		event_id <<= sparc_pmu->lower_shift;
 | |
| 	return event_id;
 | |
| }
 | |
| 
 | |
| static u64 mask_for_index(int idx)
 | |
| {
 | |
| 	return event_encoding(sparc_pmu->event_mask, idx);
 | |
| }
 | |
| 
 | |
| static u64 nop_for_index(int idx)
 | |
| {
 | |
| 	return event_encoding(idx == PIC_UPPER_INDEX ?
 | |
| 			      sparc_pmu->upper_nop :
 | |
| 			      sparc_pmu->lower_nop, idx);
 | |
| }
 | |
| 
 | |
| static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 | |
| {
 | |
| 	u64 enc, val, mask = mask_for_index(idx);
 | |
| 	int pcr_index = 0;
 | |
| 
 | |
| 	if (sparc_pmu->num_pcrs > 1)
 | |
| 		pcr_index = idx;
 | |
| 
 | |
| 	enc = perf_event_get_enc(cpuc->events[idx]);
 | |
| 
 | |
| 	val = cpuc->pcr[pcr_index];
 | |
| 	val &= ~mask;
 | |
| 	val |= event_encoding(enc, idx);
 | |
| 	cpuc->pcr[pcr_index] = val;
 | |
| 
 | |
| 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 | |
| }
 | |
| 
 | |
| static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 | |
| {
 | |
| 	u64 mask = mask_for_index(idx);
 | |
| 	u64 nop = nop_for_index(idx);
 | |
| 	int pcr_index = 0;
 | |
| 	u64 val;
 | |
| 
 | |
| 	if (sparc_pmu->num_pcrs > 1)
 | |
| 		pcr_index = idx;
 | |
| 
 | |
| 	val = cpuc->pcr[pcr_index];
 | |
| 	val &= ~mask;
 | |
| 	val |= nop;
 | |
| 	cpuc->pcr[pcr_index] = val;
 | |
| 
 | |
| 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 | |
| }
 | |
| 
 | |
| static u64 sparc_perf_event_update(struct perf_event *event,
 | |
| 				   struct hw_perf_event *hwc, int idx)
 | |
| {
 | |
| 	int shift = 64 - 32;
 | |
| 	u64 prev_raw_count, new_raw_count;
 | |
| 	s64 delta;
 | |
| 
 | |
| again:
 | |
| 	prev_raw_count = local64_read(&hwc->prev_count);
 | |
| 	new_raw_count = sparc_pmu->read_pmc(idx);
 | |
| 
 | |
| 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 | |
| 			     new_raw_count) != prev_raw_count)
 | |
| 		goto again;
 | |
| 
 | |
| 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 | |
| 	delta >>= shift;
 | |
| 
 | |
| 	local64_add(delta, &event->count);
 | |
| 	local64_sub(delta, &hwc->period_left);
 | |
| 
 | |
| 	return new_raw_count;
 | |
| }
 | |
| 
 | |
| static int sparc_perf_event_set_period(struct perf_event *event,
 | |
| 				       struct hw_perf_event *hwc, int idx)
 | |
| {
 | |
| 	s64 left = local64_read(&hwc->period_left);
 | |
| 	s64 period = hwc->sample_period;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (unlikely(left <= -period)) {
 | |
| 		left = period;
 | |
| 		local64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(left <= 0)) {
 | |
| 		left += period;
 | |
| 		local64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	if (left > MAX_PERIOD)
 | |
| 		left = MAX_PERIOD;
 | |
| 
 | |
| 	local64_set(&hwc->prev_count, (u64)-left);
 | |
| 
 | |
| 	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void read_in_all_counters(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		struct perf_event *cp = cpuc->event[i];
 | |
| 
 | |
| 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 | |
| 		    cpuc->current_idx[i] != cp->hw.idx) {
 | |
| 			sparc_perf_event_update(cp, &cp->hw,
 | |
| 						cpuc->current_idx[i]);
 | |
| 			cpuc->current_idx[i] = PIC_NO_INDEX;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* On this PMU all PICs are programmed using a single PCR.  Calculate
 | |
|  * the combined control register value.
 | |
|  *
 | |
|  * For such chips we require that all of the events have the same
 | |
|  * configuration, so just fetch the settings from the first entry.
 | |
|  */
 | |
| static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cpuc->n_added)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Assign to counters all unassigned events.  */
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		struct perf_event *cp = cpuc->event[i];
 | |
| 		struct hw_perf_event *hwc = &cp->hw;
 | |
| 		int idx = hwc->idx;
 | |
| 		u64 enc;
 | |
| 
 | |
| 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 | |
| 			continue;
 | |
| 
 | |
| 		sparc_perf_event_set_period(cp, hwc, idx);
 | |
| 		cpuc->current_idx[i] = idx;
 | |
| 
 | |
| 		enc = perf_event_get_enc(cpuc->events[i]);
 | |
| 		cpuc->pcr[0] &= ~mask_for_index(idx);
 | |
| 		if (hwc->state & PERF_HES_STOPPED)
 | |
| 			cpuc->pcr[0] |= nop_for_index(idx);
 | |
| 		else
 | |
| 			cpuc->pcr[0] |= event_encoding(enc, idx);
 | |
| 	}
 | |
| out:
 | |
| 	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 | |
| }
 | |
| 
 | |
| /* On this PMU each PIC has it's own PCR control register.  */
 | |
| static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cpuc->n_added)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		struct perf_event *cp = cpuc->event[i];
 | |
| 		struct hw_perf_event *hwc = &cp->hw;
 | |
| 		int idx = hwc->idx;
 | |
| 		u64 enc;
 | |
| 
 | |
| 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 | |
| 			continue;
 | |
| 
 | |
| 		sparc_perf_event_set_period(cp, hwc, idx);
 | |
| 		cpuc->current_idx[i] = idx;
 | |
| 
 | |
| 		enc = perf_event_get_enc(cpuc->events[i]);
 | |
| 		cpuc->pcr[idx] &= ~mask_for_index(idx);
 | |
| 		if (hwc->state & PERF_HES_STOPPED)
 | |
| 			cpuc->pcr[idx] |= nop_for_index(idx);
 | |
| 		else
 | |
| 			cpuc->pcr[idx] |= event_encoding(enc, idx);
 | |
| 	}
 | |
| out:
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		struct perf_event *cp = cpuc->event[i];
 | |
| 		int idx = cp->hw.idx;
 | |
| 
 | |
| 		cpuc->pcr[idx] |= cp->hw.config_base;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* If performance event entries have been added, move existing events
 | |
|  * around (if necessary) and then assign new entries to counters.
 | |
|  */
 | |
| static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	if (cpuc->n_added)
 | |
| 		read_in_all_counters(cpuc);
 | |
| 
 | |
| 	if (sparc_pmu->num_pcrs == 1) {
 | |
| 		calculate_single_pcr(cpuc);
 | |
| 	} else {
 | |
| 		calculate_multiple_pcrs(cpuc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sparc_pmu_enable(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int i;
 | |
| 
 | |
| 	if (cpuc->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	cpuc->enabled = 1;
 | |
| 	barrier();
 | |
| 
 | |
| 	if (cpuc->n_events)
 | |
| 		update_pcrs_for_enable(cpuc);
 | |
| 
 | |
| 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
 | |
| 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
 | |
| }
 | |
| 
 | |
| static void sparc_pmu_disable(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cpuc->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	cpuc->enabled = 0;
 | |
| 	cpuc->n_added = 0;
 | |
| 
 | |
| 	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
 | |
| 		u64 val = cpuc->pcr[i];
 | |
| 
 | |
| 		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
 | |
| 			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
 | |
| 		cpuc->pcr[i] = val;
 | |
| 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int active_event_index(struct cpu_hw_events *cpuc,
 | |
| 			      struct perf_event *event)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		if (cpuc->event[i] == event)
 | |
| 			break;
 | |
| 	}
 | |
| 	BUG_ON(i == cpuc->n_events);
 | |
| 	return cpuc->current_idx[i];
 | |
| }
 | |
| 
 | |
| static void sparc_pmu_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int idx = active_event_index(cpuc, event);
 | |
| 
 | |
| 	if (flags & PERF_EF_RELOAD) {
 | |
| 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 | |
| 		sparc_perf_event_set_period(event, &event->hw, idx);
 | |
| 	}
 | |
| 
 | |
| 	event->hw.state = 0;
 | |
| 
 | |
| 	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 | |
| }
 | |
| 
 | |
| static void sparc_pmu_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int idx = active_event_index(cpuc, event);
 | |
| 
 | |
| 	if (!(event->hw.state & PERF_HES_STOPPED)) {
 | |
| 		sparc_pmu_disable_event(cpuc, &event->hw, idx);
 | |
| 		event->hw.state |= PERF_HES_STOPPED;
 | |
| 	}
 | |
| 
 | |
| 	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
 | |
| 		sparc_perf_event_update(event, &event->hw, idx);
 | |
| 		event->hw.state |= PERF_HES_UPTODATE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sparc_pmu_del(struct perf_event *event, int _flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		if (event == cpuc->event[i]) {
 | |
| 			/* Absorb the final count and turn off the
 | |
| 			 * event.
 | |
| 			 */
 | |
| 			sparc_pmu_stop(event, PERF_EF_UPDATE);
 | |
| 
 | |
| 			/* Shift remaining entries down into
 | |
| 			 * the existing slot.
 | |
| 			 */
 | |
| 			while (++i < cpuc->n_events) {
 | |
| 				cpuc->event[i - 1] = cpuc->event[i];
 | |
| 				cpuc->events[i - 1] = cpuc->events[i];
 | |
| 				cpuc->current_idx[i - 1] =
 | |
| 					cpuc->current_idx[i];
 | |
| 			}
 | |
| 
 | |
| 			perf_event_update_userpage(event);
 | |
| 
 | |
| 			cpuc->n_events--;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void sparc_pmu_read(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int idx = active_event_index(cpuc, event);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	sparc_perf_event_update(event, hwc, idx);
 | |
| }
 | |
| 
 | |
| static atomic_t active_events = ATOMIC_INIT(0);
 | |
| static DEFINE_MUTEX(pmc_grab_mutex);
 | |
| 
 | |
| static void perf_stop_nmi_watchdog(void *unused)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int i;
 | |
| 
 | |
| 	stop_nmi_watchdog(NULL);
 | |
| 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
 | |
| 		cpuc->pcr[i] = pcr_ops->read_pcr(i);
 | |
| }
 | |
| 
 | |
| static void perf_event_grab_pmc(void)
 | |
| {
 | |
| 	if (atomic_inc_not_zero(&active_events))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&pmc_grab_mutex);
 | |
| 	if (atomic_read(&active_events) == 0) {
 | |
| 		if (atomic_read(&nmi_active) > 0) {
 | |
| 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
 | |
| 			BUG_ON(atomic_read(&nmi_active) != 0);
 | |
| 		}
 | |
| 		atomic_inc(&active_events);
 | |
| 	}
 | |
| 	mutex_unlock(&pmc_grab_mutex);
 | |
| }
 | |
| 
 | |
| static void perf_event_release_pmc(void)
 | |
| {
 | |
| 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
 | |
| 		if (atomic_read(&nmi_active) == 0)
 | |
| 			on_each_cpu(start_nmi_watchdog, NULL, 1);
 | |
| 		mutex_unlock(&pmc_grab_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct perf_event_map *sparc_map_cache_event(u64 config)
 | |
| {
 | |
| 	unsigned int cache_type, cache_op, cache_result;
 | |
| 	const struct perf_event_map *pmap;
 | |
| 
 | |
| 	if (!sparc_pmu->cache_map)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	cache_type = (config >>  0) & 0xff;
 | |
| 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	cache_op = (config >>  8) & 0xff;
 | |
| 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	cache_result = (config >> 16) & 0xff;
 | |
| 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
 | |
| 
 | |
| 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	if (pmap->encoding == CACHE_OP_NONSENSE)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	return pmap;
 | |
| }
 | |
| 
 | |
| static void hw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	perf_event_release_pmc();
 | |
| }
 | |
| 
 | |
| /* Make sure all events can be scheduled into the hardware at
 | |
|  * the same time.  This is simplified by the fact that we only
 | |
|  * need to support 2 simultaneous HW events.
 | |
|  *
 | |
|  * As a side effect, the evts[]->hw.idx values will be assigned
 | |
|  * on success.  These are pending indexes.  When the events are
 | |
|  * actually programmed into the chip, these values will propagate
 | |
|  * to the per-cpu cpuc->current_idx[] slots, see the code in
 | |
|  * maybe_change_configuration() for details.
 | |
|  */
 | |
| static int sparc_check_constraints(struct perf_event **evts,
 | |
| 				   unsigned long *events, int n_ev)
 | |
| {
 | |
| 	u8 msk0 = 0, msk1 = 0;
 | |
| 	int idx0 = 0;
 | |
| 
 | |
| 	/* This case is possible when we are invoked from
 | |
| 	 * hw_perf_group_sched_in().
 | |
| 	 */
 | |
| 	if (!n_ev)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (n_ev > sparc_pmu->max_hw_events)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < n_ev; i++)
 | |
| 			evts[i]->hw.idx = i;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	msk0 = perf_event_get_msk(events[0]);
 | |
| 	if (n_ev == 1) {
 | |
| 		if (msk0 & PIC_LOWER)
 | |
| 			idx0 = 1;
 | |
| 		goto success;
 | |
| 	}
 | |
| 	BUG_ON(n_ev != 2);
 | |
| 	msk1 = perf_event_get_msk(events[1]);
 | |
| 
 | |
| 	/* If both events can go on any counter, OK.  */
 | |
| 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
 | |
| 	    msk1 == (PIC_UPPER | PIC_LOWER))
 | |
| 		goto success;
 | |
| 
 | |
| 	/* If one event is limited to a specific counter,
 | |
| 	 * and the other can go on both, OK.
 | |
| 	 */
 | |
| 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
 | |
| 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
 | |
| 		if (msk0 & PIC_LOWER)
 | |
| 			idx0 = 1;
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
 | |
| 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
 | |
| 		if (msk1 & PIC_UPPER)
 | |
| 			idx0 = 1;
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	/* If the events are fixed to different counters, OK.  */
 | |
| 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
 | |
| 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
 | |
| 		if (msk0 & PIC_LOWER)
 | |
| 			idx0 = 1;
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	/* Otherwise, there is a conflict.  */
 | |
| 	return -1;
 | |
| 
 | |
| success:
 | |
| 	evts[0]->hw.idx = idx0;
 | |
| 	if (n_ev == 2)
 | |
| 		evts[1]->hw.idx = idx0 ^ 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
 | |
| {
 | |
| 	int eu = 0, ek = 0, eh = 0;
 | |
| 	struct perf_event *event;
 | |
| 	int i, n, first;
 | |
| 
 | |
| 	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
 | |
| 		return 0;
 | |
| 
 | |
| 	n = n_prev + n_new;
 | |
| 	if (n <= 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	first = 1;
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		event = evts[i];
 | |
| 		if (first) {
 | |
| 			eu = event->attr.exclude_user;
 | |
| 			ek = event->attr.exclude_kernel;
 | |
| 			eh = event->attr.exclude_hv;
 | |
| 			first = 0;
 | |
| 		} else if (event->attr.exclude_user != eu ||
 | |
| 			   event->attr.exclude_kernel != ek ||
 | |
| 			   event->attr.exclude_hv != eh) {
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int collect_events(struct perf_event *group, int max_count,
 | |
| 			  struct perf_event *evts[], unsigned long *events,
 | |
| 			  int *current_idx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int n = 0;
 | |
| 
 | |
| 	if (!is_software_event(group)) {
 | |
| 		if (n >= max_count)
 | |
| 			return -1;
 | |
| 		evts[n] = group;
 | |
| 		events[n] = group->hw.event_base;
 | |
| 		current_idx[n++] = PIC_NO_INDEX;
 | |
| 	}
 | |
| 	list_for_each_entry(event, &group->sibling_list, group_entry) {
 | |
| 		if (!is_software_event(event) &&
 | |
| 		    event->state != PERF_EVENT_STATE_OFF) {
 | |
| 			if (n >= max_count)
 | |
| 				return -1;
 | |
| 			evts[n] = event;
 | |
| 			events[n] = event->hw.event_base;
 | |
| 			current_idx[n++] = PIC_NO_INDEX;
 | |
| 		}
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static int sparc_pmu_add(struct perf_event *event, int ef_flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int n0, ret = -EAGAIN;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	n0 = cpuc->n_events;
 | |
| 	if (n0 >= sparc_pmu->max_hw_events)
 | |
| 		goto out;
 | |
| 
 | |
| 	cpuc->event[n0] = event;
 | |
| 	cpuc->events[n0] = event->hw.event_base;
 | |
| 	cpuc->current_idx[n0] = PIC_NO_INDEX;
 | |
| 
 | |
| 	event->hw.state = PERF_HES_UPTODATE;
 | |
| 	if (!(ef_flags & PERF_EF_START))
 | |
| 		event->hw.state |= PERF_HES_STOPPED;
 | |
| 
 | |
| 	/*
 | |
| 	 * If group events scheduling transaction was started,
 | |
| 	 * skip the schedulability test here, it will be performed
 | |
| 	 * at commit time(->commit_txn) as a whole
 | |
| 	 */
 | |
| 	if (cpuc->group_flag & PERF_EVENT_TXN)
 | |
| 		goto nocheck;
 | |
| 
 | |
| 	if (check_excludes(cpuc->event, n0, 1))
 | |
| 		goto out;
 | |
| 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
 | |
| 		goto out;
 | |
| 
 | |
| nocheck:
 | |
| 	cpuc->n_events++;
 | |
| 	cpuc->n_added++;
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sparc_pmu_event_init(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_attr *attr = &event->attr;
 | |
| 	struct perf_event *evts[MAX_HWEVENTS];
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	unsigned long events[MAX_HWEVENTS];
 | |
| 	int current_idx_dmy[MAX_HWEVENTS];
 | |
| 	const struct perf_event_map *pmap;
 | |
| 	int n;
 | |
| 
 | |
| 	if (atomic_read(&nmi_active) < 0)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* does not support taken branch sampling */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	switch (attr->type) {
 | |
| 	case PERF_TYPE_HARDWARE:
 | |
| 		if (attr->config >= sparc_pmu->max_events)
 | |
| 			return -EINVAL;
 | |
| 		pmap = sparc_pmu->event_map(attr->config);
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_TYPE_HW_CACHE:
 | |
| 		pmap = sparc_map_cache_event(attr->config);
 | |
| 		if (IS_ERR(pmap))
 | |
| 			return PTR_ERR(pmap);
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_TYPE_RAW:
 | |
| 		pmap = NULL;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	if (pmap) {
 | |
| 		hwc->event_base = perf_event_encode(pmap);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * User gives us "(encoding << 16) | pic_mask" for
 | |
| 		 * PERF_TYPE_RAW events.
 | |
| 		 */
 | |
| 		hwc->event_base = attr->config;
 | |
| 	}
 | |
| 
 | |
| 	/* We save the enable bits in the config_base.  */
 | |
| 	hwc->config_base = sparc_pmu->irq_bit;
 | |
| 	if (!attr->exclude_user)
 | |
| 		hwc->config_base |= sparc_pmu->user_bit;
 | |
| 	if (!attr->exclude_kernel)
 | |
| 		hwc->config_base |= sparc_pmu->priv_bit;
 | |
| 	if (!attr->exclude_hv)
 | |
| 		hwc->config_base |= sparc_pmu->hv_bit;
 | |
| 
 | |
| 	n = 0;
 | |
| 	if (event->group_leader != event) {
 | |
| 		n = collect_events(event->group_leader,
 | |
| 				   sparc_pmu->max_hw_events - 1,
 | |
| 				   evts, events, current_idx_dmy);
 | |
| 		if (n < 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	events[n] = hwc->event_base;
 | |
| 	evts[n] = event;
 | |
| 
 | |
| 	if (check_excludes(evts, n, 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (sparc_check_constraints(evts, events, n + 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hwc->idx = PIC_NO_INDEX;
 | |
| 
 | |
| 	/* Try to do all error checking before this point, as unwinding
 | |
| 	 * state after grabbing the PMC is difficult.
 | |
| 	 */
 | |
| 	perf_event_grab_pmc();
 | |
| 	event->destroy = hw_perf_event_destroy;
 | |
| 
 | |
| 	if (!hwc->sample_period) {
 | |
| 		hwc->sample_period = MAX_PERIOD;
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start group events scheduling transaction
 | |
|  * Set the flag to make pmu::enable() not perform the
 | |
|  * schedulability test, it will be performed at commit time
 | |
|  */
 | |
| static void sparc_pmu_start_txn(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	perf_pmu_disable(pmu);
 | |
| 	cpuhw->group_flag |= PERF_EVENT_TXN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop group events scheduling transaction
 | |
|  * Clear the flag and pmu::enable() will perform the
 | |
|  * schedulability test.
 | |
|  */
 | |
| static void sparc_pmu_cancel_txn(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
 | |
| 	perf_pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit group events scheduling transaction
 | |
|  * Perform the group schedulability test as a whole
 | |
|  * Return 0 if success
 | |
|  */
 | |
| static int sparc_pmu_commit_txn(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	int n;
 | |
| 
 | |
| 	if (!sparc_pmu)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	n = cpuc->n_events;
 | |
| 	if (check_excludes(cpuc->event, 0, n))
 | |
| 		return -EINVAL;
 | |
| 	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	cpuc->group_flag &= ~PERF_EVENT_TXN;
 | |
| 	perf_pmu_enable(pmu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu pmu = {
 | |
| 	.pmu_enable	= sparc_pmu_enable,
 | |
| 	.pmu_disable	= sparc_pmu_disable,
 | |
| 	.event_init	= sparc_pmu_event_init,
 | |
| 	.add		= sparc_pmu_add,
 | |
| 	.del		= sparc_pmu_del,
 | |
| 	.start		= sparc_pmu_start,
 | |
| 	.stop		= sparc_pmu_stop,
 | |
| 	.read		= sparc_pmu_read,
 | |
| 	.start_txn	= sparc_pmu_start_txn,
 | |
| 	.cancel_txn	= sparc_pmu_cancel_txn,
 | |
| 	.commit_txn	= sparc_pmu_commit_txn,
 | |
| };
 | |
| 
 | |
| void perf_event_print_debug(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int cpu, i;
 | |
| 
 | |
| 	if (!sparc_pmu)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 
 | |
| 	pr_info("\n");
 | |
| 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
 | |
| 		pr_info("CPU#%d: PCR%d[%016llx]\n",
 | |
| 			cpu, i, pcr_ops->read_pcr(i));
 | |
| 	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
 | |
| 		pr_info("CPU#%d: PIC%d[%016llx]\n",
 | |
| 			cpu, i, pcr_ops->read_pic(i));
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
 | |
| 					    unsigned long cmd, void *__args)
 | |
| {
 | |
| 	struct die_args *args = __args;
 | |
| 	struct perf_sample_data data;
 | |
| 	struct cpu_hw_events *cpuc;
 | |
| 	struct pt_regs *regs;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!atomic_read(&active_events))
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case DIE_NMI:
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| 
 | |
| 	regs = args->regs;
 | |
| 
 | |
| 	cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 
 | |
| 	/* If the PMU has the TOE IRQ enable bits, we need to do a
 | |
| 	 * dummy write to the %pcr to clear the overflow bits and thus
 | |
| 	 * the interrupt.
 | |
| 	 *
 | |
| 	 * Do this before we peek at the counters to determine
 | |
| 	 * overflow so we don't lose any events.
 | |
| 	 */
 | |
| 	if (sparc_pmu->irq_bit &&
 | |
| 	    sparc_pmu->num_pcrs == 1)
 | |
| 		pcr_ops->write_pcr(0, cpuc->pcr[0]);
 | |
| 
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		struct perf_event *event = cpuc->event[i];
 | |
| 		int idx = cpuc->current_idx[i];
 | |
| 		struct hw_perf_event *hwc;
 | |
| 		u64 val;
 | |
| 
 | |
| 		if (sparc_pmu->irq_bit &&
 | |
| 		    sparc_pmu->num_pcrs > 1)
 | |
| 			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
 | |
| 
 | |
| 		hwc = &event->hw;
 | |
| 		val = sparc_perf_event_update(event, hwc, idx);
 | |
| 		if (val & (1ULL << 31))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_sample_data_init(&data, 0, hwc->last_period);
 | |
| 		if (!sparc_perf_event_set_period(event, hwc, idx))
 | |
| 			continue;
 | |
| 
 | |
| 		if (perf_event_overflow(event, &data, regs))
 | |
| 			sparc_pmu_stop(event, 0);
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_STOP;
 | |
| }
 | |
| 
 | |
| static __read_mostly struct notifier_block perf_event_nmi_notifier = {
 | |
| 	.notifier_call		= perf_event_nmi_handler,
 | |
| };
 | |
| 
 | |
| static bool __init supported_pmu(void)
 | |
| {
 | |
| 	if (!strcmp(sparc_pmu_type, "ultra3") ||
 | |
| 	    !strcmp(sparc_pmu_type, "ultra3+") ||
 | |
| 	    !strcmp(sparc_pmu_type, "ultra3i") ||
 | |
| 	    !strcmp(sparc_pmu_type, "ultra4+")) {
 | |
| 		sparc_pmu = &ultra3_pmu;
 | |
| 		return true;
 | |
| 	}
 | |
| 	if (!strcmp(sparc_pmu_type, "niagara")) {
 | |
| 		sparc_pmu = &niagara1_pmu;
 | |
| 		return true;
 | |
| 	}
 | |
| 	if (!strcmp(sparc_pmu_type, "niagara2") ||
 | |
| 	    !strcmp(sparc_pmu_type, "niagara3")) {
 | |
| 		sparc_pmu = &niagara2_pmu;
 | |
| 		return true;
 | |
| 	}
 | |
| 	if (!strcmp(sparc_pmu_type, "niagara4")) {
 | |
| 		sparc_pmu = &niagara4_pmu;
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int __init init_hw_perf_events(void)
 | |
| {
 | |
| 	pr_info("Performance events: ");
 | |
| 
 | |
| 	if (!supported_pmu()) {
 | |
| 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
 | |
| 
 | |
| 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
 | |
| 	register_die_notifier(&perf_event_nmi_notifier);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(init_hw_perf_events);
 | |
| 
 | |
| void perf_callchain_kernel(struct perf_callchain_entry *entry,
 | |
| 			   struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long ksp, fp;
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 	int graph = 0;
 | |
| #endif
 | |
| 
 | |
| 	stack_trace_flush();
 | |
| 
 | |
| 	perf_callchain_store(entry, regs->tpc);
 | |
| 
 | |
| 	ksp = regs->u_regs[UREG_I6];
 | |
| 	fp = ksp + STACK_BIAS;
 | |
| 	do {
 | |
| 		struct sparc_stackf *sf;
 | |
| 		struct pt_regs *regs;
 | |
| 		unsigned long pc;
 | |
| 
 | |
| 		if (!kstack_valid(current_thread_info(), fp))
 | |
| 			break;
 | |
| 
 | |
| 		sf = (struct sparc_stackf *) fp;
 | |
| 		regs = (struct pt_regs *) (sf + 1);
 | |
| 
 | |
| 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
 | |
| 			if (user_mode(regs))
 | |
| 				break;
 | |
| 			pc = regs->tpc;
 | |
| 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
 | |
| 		} else {
 | |
| 			pc = sf->callers_pc;
 | |
| 			fp = (unsigned long)sf->fp + STACK_BIAS;
 | |
| 		}
 | |
| 		perf_callchain_store(entry, pc);
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
 | |
| 			int index = current->curr_ret_stack;
 | |
| 			if (current->ret_stack && index >= graph) {
 | |
| 				pc = current->ret_stack[index - graph].ret;
 | |
| 				perf_callchain_store(entry, pc);
 | |
| 				graph++;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 | |
| }
 | |
| 
 | |
| static void perf_callchain_user_64(struct perf_callchain_entry *entry,
 | |
| 				   struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long ufp;
 | |
| 
 | |
| 	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
 | |
| 	do {
 | |
| 		struct sparc_stackf __user *usf;
 | |
| 		struct sparc_stackf sf;
 | |
| 		unsigned long pc;
 | |
| 
 | |
| 		usf = (struct sparc_stackf __user *)ufp;
 | |
| 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
 | |
| 			break;
 | |
| 
 | |
| 		pc = sf.callers_pc;
 | |
| 		ufp = (unsigned long)sf.fp + STACK_BIAS;
 | |
| 		perf_callchain_store(entry, pc);
 | |
| 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 | |
| }
 | |
| 
 | |
| static void perf_callchain_user_32(struct perf_callchain_entry *entry,
 | |
| 				   struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long ufp;
 | |
| 
 | |
| 	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
 | |
| 	do {
 | |
| 		unsigned long pc;
 | |
| 
 | |
| 		if (thread32_stack_is_64bit(ufp)) {
 | |
| 			struct sparc_stackf __user *usf;
 | |
| 			struct sparc_stackf sf;
 | |
| 
 | |
| 			ufp += STACK_BIAS;
 | |
| 			usf = (struct sparc_stackf __user *)ufp;
 | |
| 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
 | |
| 				break;
 | |
| 			pc = sf.callers_pc & 0xffffffff;
 | |
| 			ufp = ((unsigned long) sf.fp) & 0xffffffff;
 | |
| 		} else {
 | |
| 			struct sparc_stackf32 __user *usf;
 | |
| 			struct sparc_stackf32 sf;
 | |
| 			usf = (struct sparc_stackf32 __user *)ufp;
 | |
| 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
 | |
| 				break;
 | |
| 			pc = sf.callers_pc;
 | |
| 			ufp = (unsigned long)sf.fp;
 | |
| 		}
 | |
| 		perf_callchain_store(entry, pc);
 | |
| 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
 | |
| }
 | |
| 
 | |
| void
 | |
| perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
 | |
| {
 | |
| 	perf_callchain_store(entry, regs->tpc);
 | |
| 
 | |
| 	if (!current->mm)
 | |
| 		return;
 | |
| 
 | |
| 	flushw_user();
 | |
| 	if (test_thread_flag(TIF_32BIT))
 | |
| 		perf_callchain_user_32(entry, regs);
 | |
| 	else
 | |
| 		perf_callchain_user_64(entry, regs);
 | |
| }
 |