looking at it one more time: (1) it looks to me that there is no need to call sched_rt_ratio_exceeded() from pick_next_rt_entity() - [ for CONFIG_FAIR_GROUP_SCHED ] queues with rt_rq->rt_throttled are not within this 'tree-like hierarchy' (or whatever we should call it :-) - there is also no need to re-check 'rt_rq->rt_time > ratio' at this point as 'rt_rq->rt_time' couldn't have been increased since the last call to update_curr_rt() (which obviously calls sched_rt_ratio_esceeded()) well, it might be that 'ratio' for this rt_rq has been re-configured (and the period over which this rt_rq was active has not yet been finished)... but I don't think we should really take this into account. (2) now pick_next_rt_entity() must never return NULL, so let's change pick_next_task_rt() accordingly. Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
			
				
	
	
		
			1194 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1194 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 | 
						|
 * policies)
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
static inline int rt_overloaded(struct rq *rq)
 | 
						|
{
 | 
						|
	return atomic_read(&rq->rd->rto_count);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rt_set_overload(struct rq *rq)
 | 
						|
{
 | 
						|
	cpu_set(rq->cpu, rq->rd->rto_mask);
 | 
						|
	/*
 | 
						|
	 * Make sure the mask is visible before we set
 | 
						|
	 * the overload count. That is checked to determine
 | 
						|
	 * if we should look at the mask. It would be a shame
 | 
						|
	 * if we looked at the mask, but the mask was not
 | 
						|
	 * updated yet.
 | 
						|
	 */
 | 
						|
	wmb();
 | 
						|
	atomic_inc(&rq->rd->rto_count);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rt_clear_overload(struct rq *rq)
 | 
						|
{
 | 
						|
	/* the order here really doesn't matter */
 | 
						|
	atomic_dec(&rq->rd->rto_count);
 | 
						|
	cpu_clear(rq->cpu, rq->rd->rto_mask);
 | 
						|
}
 | 
						|
 | 
						|
static void update_rt_migration(struct rq *rq)
 | 
						|
{
 | 
						|
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
 | 
						|
		if (!rq->rt.overloaded) {
 | 
						|
			rt_set_overload(rq);
 | 
						|
			rq->rt.overloaded = 1;
 | 
						|
		}
 | 
						|
	} else if (rq->rt.overloaded) {
 | 
						|
		rt_clear_overload(rq);
 | 
						|
		rq->rt.overloaded = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return container_of(rt_se, struct task_struct, rt);
 | 
						|
}
 | 
						|
 | 
						|
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return !list_empty(&rt_se->run_list);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_FAIR_GROUP_SCHED
 | 
						|
 | 
						|
static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	if (!rt_rq->tg)
 | 
						|
		return SCHED_RT_FRAC;
 | 
						|
 | 
						|
	return rt_rq->tg->rt_ratio;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_leaf_rt_rq(rt_rq, rq) \
 | 
						|
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
 | 
						|
 | 
						|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return rt_rq->rq;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return rt_se->rt_rq;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_sched_rt_entity(rt_se) \
 | 
						|
	for (; rt_se; rt_se = rt_se->parent)
 | 
						|
 | 
						|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return rt_se->my_q;
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
 | 
						|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
 | 
						|
 | 
						|
static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = rt_rq->rt_se;
 | 
						|
 | 
						|
	if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
 | 
						|
		struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 | 
						|
 | 
						|
		enqueue_rt_entity(rt_se);
 | 
						|
		if (rt_rq->highest_prio < curr->prio)
 | 
						|
			resched_task(curr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = rt_rq->rt_se;
 | 
						|
 | 
						|
	if (rt_se && on_rt_rq(rt_se))
 | 
						|
		dequeue_rt_entity(rt_se);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return sysctl_sched_rt_ratio;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_leaf_rt_rq(rt_rq, rq) \
 | 
						|
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 | 
						|
 | 
						|
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	return container_of(rt_rq, struct rq, rt);
 | 
						|
}
 | 
						|
 | 
						|
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct task_struct *p = rt_task_of(rt_se);
 | 
						|
	struct rq *rq = task_rq(p);
 | 
						|
 | 
						|
	return &rq->rt;
 | 
						|
}
 | 
						|
 | 
						|
#define for_each_sched_rt_entity(rt_se) \
 | 
						|
	for (; rt_se; rt_se = NULL)
 | 
						|
 | 
						|
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
#ifdef CONFIG_FAIR_GROUP_SCHED
 | 
						|
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
 | 
						|
 | 
						|
	if (rt_rq)
 | 
						|
		return rt_rq->highest_prio;
 | 
						|
#endif
 | 
						|
 | 
						|
	return rt_task_of(rt_se)->prio;
 | 
						|
}
 | 
						|
 | 
						|
static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	unsigned int rt_ratio = sched_rt_ratio(rt_rq);
 | 
						|
	u64 period, ratio;
 | 
						|
 | 
						|
	if (rt_ratio == SCHED_RT_FRAC)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (rt_rq->rt_throttled)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
 | 
						|
	ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
 | 
						|
 | 
						|
	if (rt_rq->rt_time > ratio) {
 | 
						|
		struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
 | 
						|
		rq->rt_throttled = 1;
 | 
						|
		rt_rq->rt_throttled = 1;
 | 
						|
 | 
						|
		sched_rt_ratio_dequeue(rt_rq);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void update_sched_rt_period(struct rq *rq)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
	u64 period;
 | 
						|
 | 
						|
	while (rq->clock > rq->rt_period_expire) {
 | 
						|
		period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
 | 
						|
		rq->rt_period_expire += period;
 | 
						|
 | 
						|
		for_each_leaf_rt_rq(rt_rq, rq) {
 | 
						|
			unsigned long rt_ratio = sched_rt_ratio(rt_rq);
 | 
						|
			u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
 | 
						|
 | 
						|
			rt_rq->rt_time -= min(rt_rq->rt_time, ratio);
 | 
						|
			if (rt_rq->rt_throttled) {
 | 
						|
				rt_rq->rt_throttled = 0;
 | 
						|
				sched_rt_ratio_enqueue(rt_rq);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		rq->rt_throttled = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the current task's runtime statistics. Skip current tasks that
 | 
						|
 * are not in our scheduling class.
 | 
						|
 */
 | 
						|
static void update_curr_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *curr = rq->curr;
 | 
						|
	struct sched_rt_entity *rt_se = &curr->rt;
 | 
						|
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | 
						|
	u64 delta_exec;
 | 
						|
 | 
						|
	if (!task_has_rt_policy(curr))
 | 
						|
		return;
 | 
						|
 | 
						|
	delta_exec = rq->clock - curr->se.exec_start;
 | 
						|
	if (unlikely((s64)delta_exec < 0))
 | 
						|
		delta_exec = 0;
 | 
						|
 | 
						|
	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
 | 
						|
 | 
						|
	curr->se.sum_exec_runtime += delta_exec;
 | 
						|
	curr->se.exec_start = rq->clock;
 | 
						|
	cpuacct_charge(curr, delta_exec);
 | 
						|
 | 
						|
	rt_rq->rt_time += delta_exec;
 | 
						|
	/*
 | 
						|
	 * might make it a tad more accurate:
 | 
						|
	 *
 | 
						|
	 * update_sched_rt_period(rq);
 | 
						|
	 */
 | 
						|
	if (sched_rt_ratio_exceeded(rt_rq))
 | 
						|
		resched_task(curr);
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
 | 
						|
	rt_rq->rt_nr_running++;
 | 
						|
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
 | 
						|
	if (rt_se_prio(rt_se) < rt_rq->highest_prio)
 | 
						|
		rt_rq->highest_prio = rt_se_prio(rt_se);
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (rt_se->nr_cpus_allowed > 1) {
 | 
						|
		struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
		rq->rt.rt_nr_migratory++;
 | 
						|
	}
 | 
						|
 | 
						|
	update_rt_migration(rq_of_rt_rq(rt_rq));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
 | 
						|
	WARN_ON(!rt_rq->rt_nr_running);
 | 
						|
	rt_rq->rt_nr_running--;
 | 
						|
#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
 | 
						|
	if (rt_rq->rt_nr_running) {
 | 
						|
		struct rt_prio_array *array;
 | 
						|
 | 
						|
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
 | 
						|
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
 | 
						|
			/* recalculate */
 | 
						|
			array = &rt_rq->active;
 | 
						|
			rt_rq->highest_prio =
 | 
						|
				sched_find_first_bit(array->bitmap);
 | 
						|
		} /* otherwise leave rq->highest prio alone */
 | 
						|
	} else
 | 
						|
		rt_rq->highest_prio = MAX_RT_PRIO;
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	if (rt_se->nr_cpus_allowed > 1) {
 | 
						|
		struct rq *rq = rq_of_rt_rq(rt_rq);
 | 
						|
		rq->rt.rt_nr_migratory--;
 | 
						|
	}
 | 
						|
 | 
						|
	update_rt_migration(rq_of_rt_rq(rt_rq));
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
}
 | 
						|
 | 
						|
static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | 
						|
	struct rt_prio_array *array = &rt_rq->active;
 | 
						|
	struct rt_rq *group_rq = group_rt_rq(rt_se);
 | 
						|
 | 
						|
	if (group_rq && group_rq->rt_throttled)
 | 
						|
		return;
 | 
						|
 | 
						|
	list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
 | 
						|
	__set_bit(rt_se_prio(rt_se), array->bitmap);
 | 
						|
 | 
						|
	inc_rt_tasks(rt_se, rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 | 
						|
	struct rt_prio_array *array = &rt_rq->active;
 | 
						|
 | 
						|
	list_del_init(&rt_se->run_list);
 | 
						|
	if (list_empty(array->queue + rt_se_prio(rt_se)))
 | 
						|
		__clear_bit(rt_se_prio(rt_se), array->bitmap);
 | 
						|
 | 
						|
	dec_rt_tasks(rt_se, rt_rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Because the prio of an upper entry depends on the lower
 | 
						|
 * entries, we must remove entries top - down.
 | 
						|
 *
 | 
						|
 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
 | 
						|
 *      doesn't matter much for now, as h=2 for GROUP_SCHED.
 | 
						|
 */
 | 
						|
static void dequeue_rt_stack(struct task_struct *p)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se, *top_se;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * dequeue all, top - down.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		rt_se = &p->rt;
 | 
						|
		top_se = NULL;
 | 
						|
		for_each_sched_rt_entity(rt_se) {
 | 
						|
			if (on_rt_rq(rt_se))
 | 
						|
				top_se = rt_se;
 | 
						|
		}
 | 
						|
		if (top_se)
 | 
						|
			dequeue_rt_entity(top_se);
 | 
						|
	} while (top_se);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Adding/removing a task to/from a priority array:
 | 
						|
 */
 | 
						|
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = &p->rt;
 | 
						|
 | 
						|
	if (wakeup)
 | 
						|
		rt_se->timeout = 0;
 | 
						|
 | 
						|
	dequeue_rt_stack(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * enqueue everybody, bottom - up.
 | 
						|
	 */
 | 
						|
	for_each_sched_rt_entity(rt_se)
 | 
						|
		enqueue_rt_entity(rt_se);
 | 
						|
 | 
						|
	inc_cpu_load(rq, p->se.load.weight);
 | 
						|
}
 | 
						|
 | 
						|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = &p->rt;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
 | 
						|
	update_curr_rt(rq);
 | 
						|
 | 
						|
	dequeue_rt_stack(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * re-enqueue all non-empty rt_rq entities.
 | 
						|
	 */
 | 
						|
	for_each_sched_rt_entity(rt_se) {
 | 
						|
		rt_rq = group_rt_rq(rt_se);
 | 
						|
		if (rt_rq && rt_rq->rt_nr_running)
 | 
						|
			enqueue_rt_entity(rt_se);
 | 
						|
	}
 | 
						|
 | 
						|
	dec_cpu_load(rq, p->se.load.weight);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put task to the end of the run list without the overhead of dequeue
 | 
						|
 * followed by enqueue.
 | 
						|
 */
 | 
						|
static
 | 
						|
void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array = &rt_rq->active;
 | 
						|
 | 
						|
	list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
 | 
						|
}
 | 
						|
 | 
						|
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se = &p->rt;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
 | 
						|
	for_each_sched_rt_entity(rt_se) {
 | 
						|
		rt_rq = rt_rq_of_se(rt_se);
 | 
						|
		requeue_rt_entity(rt_rq, rt_se);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void yield_task_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	requeue_task_rt(rq, rq->curr);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static int find_lowest_rq(struct task_struct *task);
 | 
						|
 | 
						|
static int select_task_rq_rt(struct task_struct *p, int sync)
 | 
						|
{
 | 
						|
	struct rq *rq = task_rq(p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the current task is an RT task, then
 | 
						|
	 * try to see if we can wake this RT task up on another
 | 
						|
	 * runqueue. Otherwise simply start this RT task
 | 
						|
	 * on its current runqueue.
 | 
						|
	 *
 | 
						|
	 * We want to avoid overloading runqueues. Even if
 | 
						|
	 * the RT task is of higher priority than the current RT task.
 | 
						|
	 * RT tasks behave differently than other tasks. If
 | 
						|
	 * one gets preempted, we try to push it off to another queue.
 | 
						|
	 * So trying to keep a preempting RT task on the same
 | 
						|
	 * cache hot CPU will force the running RT task to
 | 
						|
	 * a cold CPU. So we waste all the cache for the lower
 | 
						|
	 * RT task in hopes of saving some of a RT task
 | 
						|
	 * that is just being woken and probably will have
 | 
						|
	 * cold cache anyway.
 | 
						|
	 */
 | 
						|
	if (unlikely(rt_task(rq->curr)) &&
 | 
						|
	    (p->rt.nr_cpus_allowed > 1)) {
 | 
						|
		int cpu = find_lowest_rq(p);
 | 
						|
 | 
						|
		return (cpu == -1) ? task_cpu(p) : cpu;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise, just let it ride on the affined RQ and the
 | 
						|
	 * post-schedule router will push the preempted task away
 | 
						|
	 */
 | 
						|
	return task_cpu(p);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
/*
 | 
						|
 * Preempt the current task with a newly woken task if needed:
 | 
						|
 */
 | 
						|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	if (p->prio < rq->curr->prio)
 | 
						|
		resched_task(rq->curr);
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
 | 
						|
						   struct rt_rq *rt_rq)
 | 
						|
{
 | 
						|
	struct rt_prio_array *array = &rt_rq->active;
 | 
						|
	struct sched_rt_entity *next = NULL;
 | 
						|
	struct list_head *queue;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	idx = sched_find_first_bit(array->bitmap);
 | 
						|
	BUG_ON(idx >= MAX_RT_PRIO);
 | 
						|
 | 
						|
	queue = array->queue + idx;
 | 
						|
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
 | 
						|
 | 
						|
	return next;
 | 
						|
}
 | 
						|
 | 
						|
static struct task_struct *pick_next_task_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	struct sched_rt_entity *rt_se;
 | 
						|
	struct task_struct *p;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
 | 
						|
	rt_rq = &rq->rt;
 | 
						|
 | 
						|
	if (unlikely(!rt_rq->rt_nr_running))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (sched_rt_ratio_exceeded(rt_rq))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	do {
 | 
						|
		rt_se = pick_next_rt_entity(rq, rt_rq);
 | 
						|
		BUG_ON(!rt_se);
 | 
						|
		rt_rq = group_rt_rq(rt_se);
 | 
						|
	} while (rt_rq);
 | 
						|
 | 
						|
	p = rt_task_of(rt_se);
 | 
						|
	p->se.exec_start = rq->clock;
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	update_curr_rt(rq);
 | 
						|
	p->se.exec_start = 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
 | 
						|
/* Only try algorithms three times */
 | 
						|
#define RT_MAX_TRIES 3
 | 
						|
 | 
						|
static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
 | 
						|
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
 | 
						|
 | 
						|
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
 | 
						|
{
 | 
						|
	if (!task_running(rq, p) &&
 | 
						|
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
 | 
						|
	    (p->rt.nr_cpus_allowed > 1))
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the second highest RT task, NULL otherwise */
 | 
						|
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
 | 
						|
{
 | 
						|
	struct task_struct *next = NULL;
 | 
						|
	struct sched_rt_entity *rt_se;
 | 
						|
	struct rt_prio_array *array;
 | 
						|
	struct rt_rq *rt_rq;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	for_each_leaf_rt_rq(rt_rq, rq) {
 | 
						|
		array = &rt_rq->active;
 | 
						|
		idx = sched_find_first_bit(array->bitmap);
 | 
						|
 next_idx:
 | 
						|
		if (idx >= MAX_RT_PRIO)
 | 
						|
			continue;
 | 
						|
		if (next && next->prio < idx)
 | 
						|
			continue;
 | 
						|
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
 | 
						|
			struct task_struct *p = rt_task_of(rt_se);
 | 
						|
			if (pick_rt_task(rq, p, cpu)) {
 | 
						|
				next = p;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!next) {
 | 
						|
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
 | 
						|
			goto next_idx;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return next;
 | 
						|
}
 | 
						|
 | 
						|
static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
 | 
						|
 | 
						|
static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
 | 
						|
{
 | 
						|
	int       lowest_prio = -1;
 | 
						|
	int       lowest_cpu  = -1;
 | 
						|
	int       count       = 0;
 | 
						|
	int       cpu;
 | 
						|
 | 
						|
	cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Scan each rq for the lowest prio.
 | 
						|
	 */
 | 
						|
	for_each_cpu_mask(cpu, *lowest_mask) {
 | 
						|
		struct rq *rq = cpu_rq(cpu);
 | 
						|
 | 
						|
		/* We look for lowest RT prio or non-rt CPU */
 | 
						|
		if (rq->rt.highest_prio >= MAX_RT_PRIO) {
 | 
						|
			/*
 | 
						|
			 * if we already found a low RT queue
 | 
						|
			 * and now we found this non-rt queue
 | 
						|
			 * clear the mask and set our bit.
 | 
						|
			 * Otherwise just return the queue as is
 | 
						|
			 * and the count==1 will cause the algorithm
 | 
						|
			 * to use the first bit found.
 | 
						|
			 */
 | 
						|
			if (lowest_cpu != -1) {
 | 
						|
				cpus_clear(*lowest_mask);
 | 
						|
				cpu_set(rq->cpu, *lowest_mask);
 | 
						|
			}
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* no locking for now */
 | 
						|
		if ((rq->rt.highest_prio > task->prio)
 | 
						|
		    && (rq->rt.highest_prio >= lowest_prio)) {
 | 
						|
			if (rq->rt.highest_prio > lowest_prio) {
 | 
						|
				/* new low - clear old data */
 | 
						|
				lowest_prio = rq->rt.highest_prio;
 | 
						|
				lowest_cpu = cpu;
 | 
						|
				count = 0;
 | 
						|
			}
 | 
						|
			count++;
 | 
						|
		} else
 | 
						|
			cpu_clear(cpu, *lowest_mask);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear out all the set bits that represent
 | 
						|
	 * runqueues that were of higher prio than
 | 
						|
	 * the lowest_prio.
 | 
						|
	 */
 | 
						|
	if (lowest_cpu > 0) {
 | 
						|
		/*
 | 
						|
		 * Perhaps we could add another cpumask op to
 | 
						|
		 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
 | 
						|
		 * Then that could be optimized to use memset and such.
 | 
						|
		 */
 | 
						|
		for_each_cpu_mask(cpu, *lowest_mask) {
 | 
						|
			if (cpu >= lowest_cpu)
 | 
						|
				break;
 | 
						|
			cpu_clear(cpu, *lowest_mask);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
 | 
						|
{
 | 
						|
	int first;
 | 
						|
 | 
						|
	/* "this_cpu" is cheaper to preempt than a remote processor */
 | 
						|
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
 | 
						|
		return this_cpu;
 | 
						|
 | 
						|
	first = first_cpu(*mask);
 | 
						|
	if (first != NR_CPUS)
 | 
						|
		return first;
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int find_lowest_rq(struct task_struct *task)
 | 
						|
{
 | 
						|
	struct sched_domain *sd;
 | 
						|
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
 | 
						|
	int this_cpu = smp_processor_id();
 | 
						|
	int cpu      = task_cpu(task);
 | 
						|
	int count    = find_lowest_cpus(task, lowest_mask);
 | 
						|
 | 
						|
	if (!count)
 | 
						|
		return -1; /* No targets found */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There is no sense in performing an optimal search if only one
 | 
						|
	 * target is found.
 | 
						|
	 */
 | 
						|
	if (count == 1)
 | 
						|
		return first_cpu(*lowest_mask);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point we have built a mask of cpus representing the
 | 
						|
	 * lowest priority tasks in the system.  Now we want to elect
 | 
						|
	 * the best one based on our affinity and topology.
 | 
						|
	 *
 | 
						|
	 * We prioritize the last cpu that the task executed on since
 | 
						|
	 * it is most likely cache-hot in that location.
 | 
						|
	 */
 | 
						|
	if (cpu_isset(cpu, *lowest_mask))
 | 
						|
		return cpu;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise, we consult the sched_domains span maps to figure
 | 
						|
	 * out which cpu is logically closest to our hot cache data.
 | 
						|
	 */
 | 
						|
	if (this_cpu == cpu)
 | 
						|
		this_cpu = -1; /* Skip this_cpu opt if the same */
 | 
						|
 | 
						|
	for_each_domain(cpu, sd) {
 | 
						|
		if (sd->flags & SD_WAKE_AFFINE) {
 | 
						|
			cpumask_t domain_mask;
 | 
						|
			int       best_cpu;
 | 
						|
 | 
						|
			cpus_and(domain_mask, sd->span, *lowest_mask);
 | 
						|
 | 
						|
			best_cpu = pick_optimal_cpu(this_cpu,
 | 
						|
						    &domain_mask);
 | 
						|
			if (best_cpu != -1)
 | 
						|
				return best_cpu;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * And finally, if there were no matches within the domains
 | 
						|
	 * just give the caller *something* to work with from the compatible
 | 
						|
	 * locations.
 | 
						|
	 */
 | 
						|
	return pick_optimal_cpu(this_cpu, lowest_mask);
 | 
						|
}
 | 
						|
 | 
						|
/* Will lock the rq it finds */
 | 
						|
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
 | 
						|
{
 | 
						|
	struct rq *lowest_rq = NULL;
 | 
						|
	int tries;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
 | 
						|
		cpu = find_lowest_rq(task);
 | 
						|
 | 
						|
		if ((cpu == -1) || (cpu == rq->cpu))
 | 
						|
			break;
 | 
						|
 | 
						|
		lowest_rq = cpu_rq(cpu);
 | 
						|
 | 
						|
		/* if the prio of this runqueue changed, try again */
 | 
						|
		if (double_lock_balance(rq, lowest_rq)) {
 | 
						|
			/*
 | 
						|
			 * We had to unlock the run queue. In
 | 
						|
			 * the mean time, task could have
 | 
						|
			 * migrated already or had its affinity changed.
 | 
						|
			 * Also make sure that it wasn't scheduled on its rq.
 | 
						|
			 */
 | 
						|
			if (unlikely(task_rq(task) != rq ||
 | 
						|
				     !cpu_isset(lowest_rq->cpu,
 | 
						|
						task->cpus_allowed) ||
 | 
						|
				     task_running(rq, task) ||
 | 
						|
				     !task->se.on_rq)) {
 | 
						|
 | 
						|
				spin_unlock(&lowest_rq->lock);
 | 
						|
				lowest_rq = NULL;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* If this rq is still suitable use it. */
 | 
						|
		if (lowest_rq->rt.highest_prio > task->prio)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* try again */
 | 
						|
		spin_unlock(&lowest_rq->lock);
 | 
						|
		lowest_rq = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return lowest_rq;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If the current CPU has more than one RT task, see if the non
 | 
						|
 * running task can migrate over to a CPU that is running a task
 | 
						|
 * of lesser priority.
 | 
						|
 */
 | 
						|
static int push_rt_task(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *next_task;
 | 
						|
	struct rq *lowest_rq;
 | 
						|
	int ret = 0;
 | 
						|
	int paranoid = RT_MAX_TRIES;
 | 
						|
 | 
						|
	if (!rq->rt.overloaded)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	next_task = pick_next_highest_task_rt(rq, -1);
 | 
						|
	if (!next_task)
 | 
						|
		return 0;
 | 
						|
 | 
						|
 retry:
 | 
						|
	if (unlikely(next_task == rq->curr)) {
 | 
						|
		WARN_ON(1);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It's possible that the next_task slipped in of
 | 
						|
	 * higher priority than current. If that's the case
 | 
						|
	 * just reschedule current.
 | 
						|
	 */
 | 
						|
	if (unlikely(next_task->prio < rq->curr->prio)) {
 | 
						|
		resched_task(rq->curr);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We might release rq lock */
 | 
						|
	get_task_struct(next_task);
 | 
						|
 | 
						|
	/* find_lock_lowest_rq locks the rq if found */
 | 
						|
	lowest_rq = find_lock_lowest_rq(next_task, rq);
 | 
						|
	if (!lowest_rq) {
 | 
						|
		struct task_struct *task;
 | 
						|
		/*
 | 
						|
		 * find lock_lowest_rq releases rq->lock
 | 
						|
		 * so it is possible that next_task has changed.
 | 
						|
		 * If it has, then try again.
 | 
						|
		 */
 | 
						|
		task = pick_next_highest_task_rt(rq, -1);
 | 
						|
		if (unlikely(task != next_task) && task && paranoid--) {
 | 
						|
			put_task_struct(next_task);
 | 
						|
			next_task = task;
 | 
						|
			goto retry;
 | 
						|
		}
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	deactivate_task(rq, next_task, 0);
 | 
						|
	set_task_cpu(next_task, lowest_rq->cpu);
 | 
						|
	activate_task(lowest_rq, next_task, 0);
 | 
						|
 | 
						|
	resched_task(lowest_rq->curr);
 | 
						|
 | 
						|
	spin_unlock(&lowest_rq->lock);
 | 
						|
 | 
						|
	ret = 1;
 | 
						|
out:
 | 
						|
	put_task_struct(next_task);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * TODO: Currently we just use the second highest prio task on
 | 
						|
 *       the queue, and stop when it can't migrate (or there's
 | 
						|
 *       no more RT tasks).  There may be a case where a lower
 | 
						|
 *       priority RT task has a different affinity than the
 | 
						|
 *       higher RT task. In this case the lower RT task could
 | 
						|
 *       possibly be able to migrate where as the higher priority
 | 
						|
 *       RT task could not.  We currently ignore this issue.
 | 
						|
 *       Enhancements are welcome!
 | 
						|
 */
 | 
						|
static void push_rt_tasks(struct rq *rq)
 | 
						|
{
 | 
						|
	/* push_rt_task will return true if it moved an RT */
 | 
						|
	while (push_rt_task(rq))
 | 
						|
		;
 | 
						|
}
 | 
						|
 | 
						|
static int pull_rt_task(struct rq *this_rq)
 | 
						|
{
 | 
						|
	int this_cpu = this_rq->cpu, ret = 0, cpu;
 | 
						|
	struct task_struct *p, *next;
 | 
						|
	struct rq *src_rq;
 | 
						|
 | 
						|
	if (likely(!rt_overloaded(this_rq)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	next = pick_next_task_rt(this_rq);
 | 
						|
 | 
						|
	for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
 | 
						|
		if (this_cpu == cpu)
 | 
						|
			continue;
 | 
						|
 | 
						|
		src_rq = cpu_rq(cpu);
 | 
						|
		/*
 | 
						|
		 * We can potentially drop this_rq's lock in
 | 
						|
		 * double_lock_balance, and another CPU could
 | 
						|
		 * steal our next task - hence we must cause
 | 
						|
		 * the caller to recalculate the next task
 | 
						|
		 * in that case:
 | 
						|
		 */
 | 
						|
		if (double_lock_balance(this_rq, src_rq)) {
 | 
						|
			struct task_struct *old_next = next;
 | 
						|
 | 
						|
			next = pick_next_task_rt(this_rq);
 | 
						|
			if (next != old_next)
 | 
						|
				ret = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Are there still pullable RT tasks?
 | 
						|
		 */
 | 
						|
		if (src_rq->rt.rt_nr_running <= 1)
 | 
						|
			goto skip;
 | 
						|
 | 
						|
		p = pick_next_highest_task_rt(src_rq, this_cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Do we have an RT task that preempts
 | 
						|
		 * the to-be-scheduled task?
 | 
						|
		 */
 | 
						|
		if (p && (!next || (p->prio < next->prio))) {
 | 
						|
			WARN_ON(p == src_rq->curr);
 | 
						|
			WARN_ON(!p->se.on_rq);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * There's a chance that p is higher in priority
 | 
						|
			 * than what's currently running on its cpu.
 | 
						|
			 * This is just that p is wakeing up and hasn't
 | 
						|
			 * had a chance to schedule. We only pull
 | 
						|
			 * p if it is lower in priority than the
 | 
						|
			 * current task on the run queue or
 | 
						|
			 * this_rq next task is lower in prio than
 | 
						|
			 * the current task on that rq.
 | 
						|
			 */
 | 
						|
			if (p->prio < src_rq->curr->prio ||
 | 
						|
			    (next && next->prio < src_rq->curr->prio))
 | 
						|
				goto skip;
 | 
						|
 | 
						|
			ret = 1;
 | 
						|
 | 
						|
			deactivate_task(src_rq, p, 0);
 | 
						|
			set_task_cpu(p, this_cpu);
 | 
						|
			activate_task(this_rq, p, 0);
 | 
						|
			/*
 | 
						|
			 * We continue with the search, just in
 | 
						|
			 * case there's an even higher prio task
 | 
						|
			 * in another runqueue. (low likelyhood
 | 
						|
			 * but possible)
 | 
						|
			 *
 | 
						|
			 * Update next so that we won't pick a task
 | 
						|
			 * on another cpu with a priority lower (or equal)
 | 
						|
			 * than the one we just picked.
 | 
						|
			 */
 | 
						|
			next = p;
 | 
						|
 | 
						|
		}
 | 
						|
 skip:
 | 
						|
		spin_unlock(&src_rq->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
 | 
						|
{
 | 
						|
	/* Try to pull RT tasks here if we lower this rq's prio */
 | 
						|
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
 | 
						|
		pull_rt_task(rq);
 | 
						|
}
 | 
						|
 | 
						|
static void post_schedule_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If we have more than one rt_task queued, then
 | 
						|
	 * see if we can push the other rt_tasks off to other CPUS.
 | 
						|
	 * Note we may release the rq lock, and since
 | 
						|
	 * the lock was owned by prev, we need to release it
 | 
						|
	 * first via finish_lock_switch and then reaquire it here.
 | 
						|
	 */
 | 
						|
	if (unlikely(rq->rt.overloaded)) {
 | 
						|
		spin_lock_irq(&rq->lock);
 | 
						|
		push_rt_tasks(rq);
 | 
						|
		spin_unlock_irq(&rq->lock);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	if (!task_running(rq, p) &&
 | 
						|
	    (p->prio >= rq->rt.highest_prio) &&
 | 
						|
	    rq->rt.overloaded)
 | 
						|
		push_rt_tasks(rq);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | 
						|
		unsigned long max_load_move,
 | 
						|
		struct sched_domain *sd, enum cpu_idle_type idle,
 | 
						|
		int *all_pinned, int *this_best_prio)
 | 
						|
{
 | 
						|
	/* don't touch RT tasks */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | 
						|
		 struct sched_domain *sd, enum cpu_idle_type idle)
 | 
						|
{
 | 
						|
	/* don't touch RT tasks */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
 | 
						|
{
 | 
						|
	int weight = cpus_weight(*new_mask);
 | 
						|
 | 
						|
	BUG_ON(!rt_task(p));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Update the migration status of the RQ if we have an RT task
 | 
						|
	 * which is running AND changing its weight value.
 | 
						|
	 */
 | 
						|
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
 | 
						|
		struct rq *rq = task_rq(p);
 | 
						|
 | 
						|
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
 | 
						|
			rq->rt.rt_nr_migratory++;
 | 
						|
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
 | 
						|
			BUG_ON(!rq->rt.rt_nr_migratory);
 | 
						|
			rq->rt.rt_nr_migratory--;
 | 
						|
		}
 | 
						|
 | 
						|
		update_rt_migration(rq);
 | 
						|
	}
 | 
						|
 | 
						|
	p->cpus_allowed    = *new_mask;
 | 
						|
	p->rt.nr_cpus_allowed = weight;
 | 
						|
}
 | 
						|
 | 
						|
/* Assumes rq->lock is held */
 | 
						|
static void join_domain_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	if (rq->rt.overloaded)
 | 
						|
		rt_set_overload(rq);
 | 
						|
}
 | 
						|
 | 
						|
/* Assumes rq->lock is held */
 | 
						|
static void leave_domain_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	if (rq->rt.overloaded)
 | 
						|
		rt_clear_overload(rq);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When switch from the rt queue, we bring ourselves to a position
 | 
						|
 * that we might want to pull RT tasks from other runqueues.
 | 
						|
 */
 | 
						|
static void switched_from_rt(struct rq *rq, struct task_struct *p,
 | 
						|
			   int running)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If there are other RT tasks then we will reschedule
 | 
						|
	 * and the scheduling of the other RT tasks will handle
 | 
						|
	 * the balancing. But if we are the last RT task
 | 
						|
	 * we may need to handle the pulling of RT tasks
 | 
						|
	 * now.
 | 
						|
	 */
 | 
						|
	if (!rq->rt.rt_nr_running)
 | 
						|
		pull_rt_task(rq);
 | 
						|
}
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
/*
 | 
						|
 * When switching a task to RT, we may overload the runqueue
 | 
						|
 * with RT tasks. In this case we try to push them off to
 | 
						|
 * other runqueues.
 | 
						|
 */
 | 
						|
static void switched_to_rt(struct rq *rq, struct task_struct *p,
 | 
						|
			   int running)
 | 
						|
{
 | 
						|
	int check_resched = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are already running, then there's nothing
 | 
						|
	 * that needs to be done. But if we are not running
 | 
						|
	 * we may need to preempt the current running task.
 | 
						|
	 * If that current running task is also an RT task
 | 
						|
	 * then see if we can move to another run queue.
 | 
						|
	 */
 | 
						|
	if (!running) {
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		if (rq->rt.overloaded && push_rt_task(rq) &&
 | 
						|
		    /* Don't resched if we changed runqueues */
 | 
						|
		    rq != task_rq(p))
 | 
						|
			check_resched = 0;
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
		if (check_resched && p->prio < rq->curr->prio)
 | 
						|
			resched_task(rq->curr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Priority of the task has changed. This may cause
 | 
						|
 * us to initiate a push or pull.
 | 
						|
 */
 | 
						|
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
 | 
						|
			    int oldprio, int running)
 | 
						|
{
 | 
						|
	if (running) {
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		/*
 | 
						|
		 * If our priority decreases while running, we
 | 
						|
		 * may need to pull tasks to this runqueue.
 | 
						|
		 */
 | 
						|
		if (oldprio < p->prio)
 | 
						|
			pull_rt_task(rq);
 | 
						|
		/*
 | 
						|
		 * If there's a higher priority task waiting to run
 | 
						|
		 * then reschedule.
 | 
						|
		 */
 | 
						|
		if (p->prio > rq->rt.highest_prio)
 | 
						|
			resched_task(p);
 | 
						|
#else
 | 
						|
		/* For UP simply resched on drop of prio */
 | 
						|
		if (oldprio < p->prio)
 | 
						|
			resched_task(p);
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * This task is not running, but if it is
 | 
						|
		 * greater than the current running task
 | 
						|
		 * then reschedule.
 | 
						|
		 */
 | 
						|
		if (p->prio < rq->curr->prio)
 | 
						|
			resched_task(rq->curr);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void watchdog(struct rq *rq, struct task_struct *p)
 | 
						|
{
 | 
						|
	unsigned long soft, hard;
 | 
						|
 | 
						|
	if (!p->signal)
 | 
						|
		return;
 | 
						|
 | 
						|
	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
 | 
						|
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
 | 
						|
 | 
						|
	if (soft != RLIM_INFINITY) {
 | 
						|
		unsigned long next;
 | 
						|
 | 
						|
		p->rt.timeout++;
 | 
						|
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
 | 
						|
		if (p->rt.timeout > next)
 | 
						|
			p->it_sched_expires = p->se.sum_exec_runtime;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
 | 
						|
{
 | 
						|
	update_curr_rt(rq);
 | 
						|
 | 
						|
	watchdog(rq, p);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * RR tasks need a special form of timeslice management.
 | 
						|
	 * FIFO tasks have no timeslices.
 | 
						|
	 */
 | 
						|
	if (p->policy != SCHED_RR)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (--p->rt.time_slice)
 | 
						|
		return;
 | 
						|
 | 
						|
	p->rt.time_slice = DEF_TIMESLICE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Requeue to the end of queue if we are not the only element
 | 
						|
	 * on the queue:
 | 
						|
	 */
 | 
						|
	if (p->rt.run_list.prev != p->rt.run_list.next) {
 | 
						|
		requeue_task_rt(rq, p);
 | 
						|
		set_tsk_need_resched(p);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_curr_task_rt(struct rq *rq)
 | 
						|
{
 | 
						|
	struct task_struct *p = rq->curr;
 | 
						|
 | 
						|
	p->se.exec_start = rq->clock;
 | 
						|
}
 | 
						|
 | 
						|
const struct sched_class rt_sched_class = {
 | 
						|
	.next			= &fair_sched_class,
 | 
						|
	.enqueue_task		= enqueue_task_rt,
 | 
						|
	.dequeue_task		= dequeue_task_rt,
 | 
						|
	.yield_task		= yield_task_rt,
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	.select_task_rq		= select_task_rq_rt,
 | 
						|
#endif /* CONFIG_SMP */
 | 
						|
 | 
						|
	.check_preempt_curr	= check_preempt_curr_rt,
 | 
						|
 | 
						|
	.pick_next_task		= pick_next_task_rt,
 | 
						|
	.put_prev_task		= put_prev_task_rt,
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
	.load_balance		= load_balance_rt,
 | 
						|
	.move_one_task		= move_one_task_rt,
 | 
						|
	.set_cpus_allowed       = set_cpus_allowed_rt,
 | 
						|
	.join_domain            = join_domain_rt,
 | 
						|
	.leave_domain           = leave_domain_rt,
 | 
						|
	.pre_schedule		= pre_schedule_rt,
 | 
						|
	.post_schedule		= post_schedule_rt,
 | 
						|
	.task_wake_up		= task_wake_up_rt,
 | 
						|
	.switched_from		= switched_from_rt,
 | 
						|
#endif
 | 
						|
 | 
						|
	.set_curr_task          = set_curr_task_rt,
 | 
						|
	.task_tick		= task_tick_rt,
 | 
						|
 | 
						|
	.prio_changed		= prio_changed_rt,
 | 
						|
	.switched_to		= switched_to_rt,
 | 
						|
};
 |