 f893ab41e4
			
		
	
	
	f893ab41e4
	
	
	
		
			
			swapoff clear swap_info's SWP_USED flag prematurely and free its resources after that. A concurrent swapon will reuse this swap_info while its previous resources are not cleared completely. These late freed resources are: - p->percpu_cluster - swap_cgroup_ctrl[type] - block_device setting - inode->i_flags &= ~S_SWAPFILE This patch clears the SWP_USED flag after all its resources are freed, so that swapon can reuse this swap_info by alloc_swap_info() safely. [akpm@linux-foundation.org: tidy up code comment] Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2954 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2954 lines
		
	
	
	
		
			77 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/swapfile.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *  Swap reorganised 29.12.95, Stephen Tweedie
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/oom.h>
 | |
| #include <linux/frontswap.h>
 | |
| #include <linux/swapfile.h>
 | |
| #include <linux/export.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/page_cgroup.h>
 | |
| 
 | |
| static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
 | |
| 				 unsigned char);
 | |
| static void free_swap_count_continuations(struct swap_info_struct *);
 | |
| static sector_t map_swap_entry(swp_entry_t, struct block_device**);
 | |
| 
 | |
| DEFINE_SPINLOCK(swap_lock);
 | |
| static unsigned int nr_swapfiles;
 | |
| atomic_long_t nr_swap_pages;
 | |
| /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
 | |
| long total_swap_pages;
 | |
| static int least_priority;
 | |
| static atomic_t highest_priority_index = ATOMIC_INIT(-1);
 | |
| 
 | |
| static const char Bad_file[] = "Bad swap file entry ";
 | |
| static const char Unused_file[] = "Unused swap file entry ";
 | |
| static const char Bad_offset[] = "Bad swap offset entry ";
 | |
| static const char Unused_offset[] = "Unused swap offset entry ";
 | |
| 
 | |
| struct swap_list_t swap_list = {-1, -1};
 | |
| 
 | |
| struct swap_info_struct *swap_info[MAX_SWAPFILES];
 | |
| 
 | |
| static DEFINE_MUTEX(swapon_mutex);
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 | |
| /* Activity counter to indicate that a swapon or swapoff has occurred */
 | |
| static atomic_t proc_poll_event = ATOMIC_INIT(0);
 | |
| 
 | |
| static inline unsigned char swap_count(unsigned char ent)
 | |
| {
 | |
| 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
 | |
| }
 | |
| 
 | |
| /* returns 1 if swap entry is freed */
 | |
| static int
 | |
| __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 | |
| {
 | |
| 	swp_entry_t entry = swp_entry(si->type, offset);
 | |
| 	struct page *page;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	page = find_get_page(swap_address_space(entry), entry.val);
 | |
| 	if (!page)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * This function is called from scan_swap_map() and it's called
 | |
| 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 | |
| 	 * We have to use trylock for avoiding deadlock. This is a special
 | |
| 	 * case and you should use try_to_free_swap() with explicit lock_page()
 | |
| 	 * in usual operations.
 | |
| 	 */
 | |
| 	if (trylock_page(page)) {
 | |
| 		ret = try_to_free_swap(page);
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	page_cache_release(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swapon tell device that all the old swap contents can be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static int discard_swap(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	sector_t start_block;
 | |
| 	sector_t nr_blocks;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* Do not discard the swap header page! */
 | |
| 	se = &si->first_swap_extent;
 | |
| 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 | |
| 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 | |
| 	if (nr_blocks) {
 | |
| 		err = blkdev_issue_discard(si->bdev, start_block,
 | |
| 				nr_blocks, GFP_KERNEL, 0);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
 | |
| 		start_block = se->start_block << (PAGE_SHIFT - 9);
 | |
| 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 | |
| 
 | |
| 		err = blkdev_issue_discard(si->bdev, start_block,
 | |
| 				nr_blocks, GFP_KERNEL, 0);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return err;		/* That will often be -EOPNOTSUPP */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap allocation tell device that a cluster of swap can now be discarded,
 | |
|  * to allow the swap device to optimize its wear-levelling.
 | |
|  */
 | |
| static void discard_swap_cluster(struct swap_info_struct *si,
 | |
| 				 pgoff_t start_page, pgoff_t nr_pages)
 | |
| {
 | |
| 	struct swap_extent *se = si->curr_swap_extent;
 | |
| 	int found_extent = 0;
 | |
| 
 | |
| 	while (nr_pages) {
 | |
| 		struct list_head *lh;
 | |
| 
 | |
| 		if (se->start_page <= start_page &&
 | |
| 		    start_page < se->start_page + se->nr_pages) {
 | |
| 			pgoff_t offset = start_page - se->start_page;
 | |
| 			sector_t start_block = se->start_block + offset;
 | |
| 			sector_t nr_blocks = se->nr_pages - offset;
 | |
| 
 | |
| 			if (nr_blocks > nr_pages)
 | |
| 				nr_blocks = nr_pages;
 | |
| 			start_page += nr_blocks;
 | |
| 			nr_pages -= nr_blocks;
 | |
| 
 | |
| 			if (!found_extent++)
 | |
| 				si->curr_swap_extent = se;
 | |
| 
 | |
| 			start_block <<= PAGE_SHIFT - 9;
 | |
| 			nr_blocks <<= PAGE_SHIFT - 9;
 | |
| 			if (blkdev_issue_discard(si->bdev, start_block,
 | |
| 				    nr_blocks, GFP_NOIO, 0))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		lh = se->list.next;
 | |
| 		se = list_entry(lh, struct swap_extent, list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define SWAPFILE_CLUSTER	256
 | |
| #define LATENCY_LIMIT		256
 | |
| 
 | |
| static inline void cluster_set_flag(struct swap_cluster_info *info,
 | |
| 	unsigned int flag)
 | |
| {
 | |
| 	info->flags = flag;
 | |
| }
 | |
| 
 | |
| static inline unsigned int cluster_count(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->data;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_count(struct swap_cluster_info *info,
 | |
| 				     unsigned int c)
 | |
| {
 | |
| 	info->data = c;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 | |
| 					 unsigned int c, unsigned int f)
 | |
| {
 | |
| 	info->flags = f;
 | |
| 	info->data = c;
 | |
| }
 | |
| 
 | |
| static inline unsigned int cluster_next(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->data;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_next(struct swap_cluster_info *info,
 | |
| 				    unsigned int n)
 | |
| {
 | |
| 	info->data = n;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 | |
| 					 unsigned int n, unsigned int f)
 | |
| {
 | |
| 	info->flags = f;
 | |
| 	info->data = n;
 | |
| }
 | |
| 
 | |
| static inline bool cluster_is_free(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->flags & CLUSTER_FLAG_FREE;
 | |
| }
 | |
| 
 | |
| static inline bool cluster_is_null(struct swap_cluster_info *info)
 | |
| {
 | |
| 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 | |
| }
 | |
| 
 | |
| static inline void cluster_set_null(struct swap_cluster_info *info)
 | |
| {
 | |
| 	info->flags = CLUSTER_FLAG_NEXT_NULL;
 | |
| 	info->data = 0;
 | |
| }
 | |
| 
 | |
| /* Add a cluster to discard list and schedule it to do discard */
 | |
| static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 | |
| 		unsigned int idx)
 | |
| {
 | |
| 	/*
 | |
| 	 * If scan_swap_map() can't find a free cluster, it will check
 | |
| 	 * si->swap_map directly. To make sure the discarding cluster isn't
 | |
| 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 | |
| 	 * will be cleared after discard
 | |
| 	 */
 | |
| 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 | |
| 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 | |
| 
 | |
| 	if (cluster_is_null(&si->discard_cluster_head)) {
 | |
| 		cluster_set_next_flag(&si->discard_cluster_head,
 | |
| 						idx, 0);
 | |
| 		cluster_set_next_flag(&si->discard_cluster_tail,
 | |
| 						idx, 0);
 | |
| 	} else {
 | |
| 		unsigned int tail = cluster_next(&si->discard_cluster_tail);
 | |
| 		cluster_set_next(&si->cluster_info[tail], idx);
 | |
| 		cluster_set_next_flag(&si->discard_cluster_tail,
 | |
| 						idx, 0);
 | |
| 	}
 | |
| 
 | |
| 	schedule_work(&si->discard_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Doing discard actually. After a cluster discard is finished, the cluster
 | |
|  * will be added to free cluster list. caller should hold si->lock.
 | |
| */
 | |
| static void swap_do_scheduled_discard(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct swap_cluster_info *info;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	info = si->cluster_info;
 | |
| 
 | |
| 	while (!cluster_is_null(&si->discard_cluster_head)) {
 | |
| 		idx = cluster_next(&si->discard_cluster_head);
 | |
| 
 | |
| 		cluster_set_next_flag(&si->discard_cluster_head,
 | |
| 						cluster_next(&info[idx]), 0);
 | |
| 		if (cluster_next(&si->discard_cluster_tail) == idx) {
 | |
| 			cluster_set_null(&si->discard_cluster_head);
 | |
| 			cluster_set_null(&si->discard_cluster_tail);
 | |
| 		}
 | |
| 		spin_unlock(&si->lock);
 | |
| 
 | |
| 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 | |
| 				SWAPFILE_CLUSTER);
 | |
| 
 | |
| 		spin_lock(&si->lock);
 | |
| 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
 | |
| 		if (cluster_is_null(&si->free_cluster_head)) {
 | |
| 			cluster_set_next_flag(&si->free_cluster_head,
 | |
| 						idx, 0);
 | |
| 			cluster_set_next_flag(&si->free_cluster_tail,
 | |
| 						idx, 0);
 | |
| 		} else {
 | |
| 			unsigned int tail;
 | |
| 
 | |
| 			tail = cluster_next(&si->free_cluster_tail);
 | |
| 			cluster_set_next(&info[tail], idx);
 | |
| 			cluster_set_next_flag(&si->free_cluster_tail,
 | |
| 						idx, 0);
 | |
| 		}
 | |
| 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 | |
| 				0, SWAPFILE_CLUSTER);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void swap_discard_work(struct work_struct *work)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 
 | |
| 	si = container_of(work, struct swap_info_struct, discard_work);
 | |
| 
 | |
| 	spin_lock(&si->lock);
 | |
| 	swap_do_scheduled_discard(si);
 | |
| 	spin_unlock(&si->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The cluster corresponding to page_nr will be used. The cluster will be
 | |
|  * removed from free cluster list and its usage counter will be increased.
 | |
|  */
 | |
| static void inc_cluster_info_page(struct swap_info_struct *p,
 | |
| 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 | |
| {
 | |
| 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 | |
| 
 | |
| 	if (!cluster_info)
 | |
| 		return;
 | |
| 	if (cluster_is_free(&cluster_info[idx])) {
 | |
| 		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
 | |
| 		cluster_set_next_flag(&p->free_cluster_head,
 | |
| 			cluster_next(&cluster_info[idx]), 0);
 | |
| 		if (cluster_next(&p->free_cluster_tail) == idx) {
 | |
| 			cluster_set_null(&p->free_cluster_tail);
 | |
| 			cluster_set_null(&p->free_cluster_head);
 | |
| 		}
 | |
| 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 | |
| 	cluster_set_count(&cluster_info[idx],
 | |
| 		cluster_count(&cluster_info[idx]) + 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The cluster corresponding to page_nr decreases one usage. If the usage
 | |
|  * counter becomes 0, which means no page in the cluster is in using, we can
 | |
|  * optionally discard the cluster and add it to free cluster list.
 | |
|  */
 | |
| static void dec_cluster_info_page(struct swap_info_struct *p,
 | |
| 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 | |
| {
 | |
| 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 | |
| 
 | |
| 	if (!cluster_info)
 | |
| 		return;
 | |
| 
 | |
| 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 | |
| 	cluster_set_count(&cluster_info[idx],
 | |
| 		cluster_count(&cluster_info[idx]) - 1);
 | |
| 
 | |
| 	if (cluster_count(&cluster_info[idx]) == 0) {
 | |
| 		/*
 | |
| 		 * If the swap is discardable, prepare discard the cluster
 | |
| 		 * instead of free it immediately. The cluster will be freed
 | |
| 		 * after discard.
 | |
| 		 */
 | |
| 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 | |
| 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 | |
| 			swap_cluster_schedule_discard(p, idx);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
 | |
| 		if (cluster_is_null(&p->free_cluster_head)) {
 | |
| 			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
 | |
| 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 | |
| 		} else {
 | |
| 			unsigned int tail = cluster_next(&p->free_cluster_tail);
 | |
| 			cluster_set_next(&cluster_info[tail], idx);
 | |
| 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's possible scan_swap_map() uses a free cluster in the middle of free
 | |
|  * cluster list. Avoiding such abuse to avoid list corruption.
 | |
|  */
 | |
| static bool
 | |
| scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 | |
| 	unsigned long offset)
 | |
| {
 | |
| 	struct percpu_cluster *percpu_cluster;
 | |
| 	bool conflict;
 | |
| 
 | |
| 	offset /= SWAPFILE_CLUSTER;
 | |
| 	conflict = !cluster_is_null(&si->free_cluster_head) &&
 | |
| 		offset != cluster_next(&si->free_cluster_head) &&
 | |
| 		cluster_is_free(&si->cluster_info[offset]);
 | |
| 
 | |
| 	if (!conflict)
 | |
| 		return false;
 | |
| 
 | |
| 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 | |
| 	cluster_set_null(&percpu_cluster->index);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 | |
|  * might involve allocating a new cluster for current CPU too.
 | |
|  */
 | |
| static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 | |
| 	unsigned long *offset, unsigned long *scan_base)
 | |
| {
 | |
| 	struct percpu_cluster *cluster;
 | |
| 	bool found_free;
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| new_cluster:
 | |
| 	cluster = this_cpu_ptr(si->percpu_cluster);
 | |
| 	if (cluster_is_null(&cluster->index)) {
 | |
| 		if (!cluster_is_null(&si->free_cluster_head)) {
 | |
| 			cluster->index = si->free_cluster_head;
 | |
| 			cluster->next = cluster_next(&cluster->index) *
 | |
| 					SWAPFILE_CLUSTER;
 | |
| 		} else if (!cluster_is_null(&si->discard_cluster_head)) {
 | |
| 			/*
 | |
| 			 * we don't have free cluster but have some clusters in
 | |
| 			 * discarding, do discard now and reclaim them
 | |
| 			 */
 | |
| 			swap_do_scheduled_discard(si);
 | |
| 			*scan_base = *offset = si->cluster_next;
 | |
| 			goto new_cluster;
 | |
| 		} else
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	found_free = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Other CPUs can use our cluster if they can't find a free cluster,
 | |
| 	 * check if there is still free entry in the cluster
 | |
| 	 */
 | |
| 	tmp = cluster->next;
 | |
| 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
 | |
| 	       SWAPFILE_CLUSTER) {
 | |
| 		if (!si->swap_map[tmp]) {
 | |
| 			found_free = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		tmp++;
 | |
| 	}
 | |
| 	if (!found_free) {
 | |
| 		cluster_set_null(&cluster->index);
 | |
| 		goto new_cluster;
 | |
| 	}
 | |
| 	cluster->next = tmp + 1;
 | |
| 	*offset = tmp;
 | |
| 	*scan_base = tmp;
 | |
| }
 | |
| 
 | |
| static unsigned long scan_swap_map(struct swap_info_struct *si,
 | |
| 				   unsigned char usage)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	unsigned long scan_base;
 | |
| 	unsigned long last_in_cluster = 0;
 | |
| 	int latency_ration = LATENCY_LIMIT;
 | |
| 
 | |
| 	/*
 | |
| 	 * We try to cluster swap pages by allocating them sequentially
 | |
| 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 | |
| 	 * way, however, we resort to first-free allocation, starting
 | |
| 	 * a new cluster.  This prevents us from scattering swap pages
 | |
| 	 * all over the entire swap partition, so that we reduce
 | |
| 	 * overall disk seek times between swap pages.  -- sct
 | |
| 	 * But we do now try to find an empty cluster.  -Andrea
 | |
| 	 * And we let swap pages go all over an SSD partition.  Hugh
 | |
| 	 */
 | |
| 
 | |
| 	si->flags += SWP_SCANNING;
 | |
| 	scan_base = offset = si->cluster_next;
 | |
| 
 | |
| 	/* SSD algorithm */
 | |
| 	if (si->cluster_info) {
 | |
| 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 | |
| 		goto checks;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!si->cluster_nr--)) {
 | |
| 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 | |
| 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 			goto checks;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&si->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * If seek is expensive, start searching for new cluster from
 | |
| 		 * start of partition, to minimize the span of allocated swap.
 | |
| 		 * But if seek is cheap, search from our current position, so
 | |
| 		 * that swap is allocated from all over the partition: if the
 | |
| 		 * Flash Translation Layer only remaps within limited zones,
 | |
| 		 * we don't want to wear out the first zone too quickly.
 | |
| 		 */
 | |
| 		if (!(si->flags & SWP_SOLIDSTATE))
 | |
| 			scan_base = offset = si->lowest_bit;
 | |
| 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 | |
| 
 | |
| 		/* Locate the first empty (unaligned) cluster */
 | |
| 		for (; last_in_cluster <= si->highest_bit; offset++) {
 | |
| 			if (si->swap_map[offset])
 | |
| 				last_in_cluster = offset + SWAPFILE_CLUSTER;
 | |
| 			else if (offset == last_in_cluster) {
 | |
| 				spin_lock(&si->lock);
 | |
| 				offset -= SWAPFILE_CLUSTER - 1;
 | |
| 				si->cluster_next = offset;
 | |
| 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 				goto checks;
 | |
| 			}
 | |
| 			if (unlikely(--latency_ration < 0)) {
 | |
| 				cond_resched();
 | |
| 				latency_ration = LATENCY_LIMIT;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		offset = si->lowest_bit;
 | |
| 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 | |
| 
 | |
| 		/* Locate the first empty (unaligned) cluster */
 | |
| 		for (; last_in_cluster < scan_base; offset++) {
 | |
| 			if (si->swap_map[offset])
 | |
| 				last_in_cluster = offset + SWAPFILE_CLUSTER;
 | |
| 			else if (offset == last_in_cluster) {
 | |
| 				spin_lock(&si->lock);
 | |
| 				offset -= SWAPFILE_CLUSTER - 1;
 | |
| 				si->cluster_next = offset;
 | |
| 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 				goto checks;
 | |
| 			}
 | |
| 			if (unlikely(--latency_ration < 0)) {
 | |
| 				cond_resched();
 | |
| 				latency_ration = LATENCY_LIMIT;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		offset = scan_base;
 | |
| 		spin_lock(&si->lock);
 | |
| 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 | |
| 	}
 | |
| 
 | |
| checks:
 | |
| 	if (si->cluster_info) {
 | |
| 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
 | |
| 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
 | |
| 	}
 | |
| 	if (!(si->flags & SWP_WRITEOK))
 | |
| 		goto no_page;
 | |
| 	if (!si->highest_bit)
 | |
| 		goto no_page;
 | |
| 	if (offset > si->highest_bit)
 | |
| 		scan_base = offset = si->lowest_bit;
 | |
| 
 | |
| 	/* reuse swap entry of cache-only swap if not busy. */
 | |
| 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 | |
| 		int swap_was_freed;
 | |
| 		spin_unlock(&si->lock);
 | |
| 		swap_was_freed = __try_to_reclaim_swap(si, offset);
 | |
| 		spin_lock(&si->lock);
 | |
| 		/* entry was freed successfully, try to use this again */
 | |
| 		if (swap_was_freed)
 | |
| 			goto checks;
 | |
| 		goto scan; /* check next one */
 | |
| 	}
 | |
| 
 | |
| 	if (si->swap_map[offset])
 | |
| 		goto scan;
 | |
| 
 | |
| 	if (offset == si->lowest_bit)
 | |
| 		si->lowest_bit++;
 | |
| 	if (offset == si->highest_bit)
 | |
| 		si->highest_bit--;
 | |
| 	si->inuse_pages++;
 | |
| 	if (si->inuse_pages == si->pages) {
 | |
| 		si->lowest_bit = si->max;
 | |
| 		si->highest_bit = 0;
 | |
| 	}
 | |
| 	si->swap_map[offset] = usage;
 | |
| 	inc_cluster_info_page(si, si->cluster_info, offset);
 | |
| 	si->cluster_next = offset + 1;
 | |
| 	si->flags -= SWP_SCANNING;
 | |
| 
 | |
| 	return offset;
 | |
| 
 | |
| scan:
 | |
| 	spin_unlock(&si->lock);
 | |
| 	while (++offset <= si->highest_bit) {
 | |
| 		if (!si->swap_map[offset]) {
 | |
| 			spin_lock(&si->lock);
 | |
| 			goto checks;
 | |
| 		}
 | |
| 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 | |
| 			spin_lock(&si->lock);
 | |
| 			goto checks;
 | |
| 		}
 | |
| 		if (unlikely(--latency_ration < 0)) {
 | |
| 			cond_resched();
 | |
| 			latency_ration = LATENCY_LIMIT;
 | |
| 		}
 | |
| 	}
 | |
| 	offset = si->lowest_bit;
 | |
| 	while (offset < scan_base) {
 | |
| 		if (!si->swap_map[offset]) {
 | |
| 			spin_lock(&si->lock);
 | |
| 			goto checks;
 | |
| 		}
 | |
| 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 | |
| 			spin_lock(&si->lock);
 | |
| 			goto checks;
 | |
| 		}
 | |
| 		if (unlikely(--latency_ration < 0)) {
 | |
| 			cond_resched();
 | |
| 			latency_ration = LATENCY_LIMIT;
 | |
| 		}
 | |
| 		offset++;
 | |
| 	}
 | |
| 	spin_lock(&si->lock);
 | |
| 
 | |
| no_page:
 | |
| 	si->flags -= SWP_SCANNING;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| swp_entry_t get_swap_page(void)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	pgoff_t offset;
 | |
| 	int type, next;
 | |
| 	int wrapped = 0;
 | |
| 	int hp_index;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if (atomic_long_read(&nr_swap_pages) <= 0)
 | |
| 		goto noswap;
 | |
| 	atomic_long_dec(&nr_swap_pages);
 | |
| 
 | |
| 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
 | |
| 		hp_index = atomic_xchg(&highest_priority_index, -1);
 | |
| 		/*
 | |
| 		 * highest_priority_index records current highest priority swap
 | |
| 		 * type which just frees swap entries. If its priority is
 | |
| 		 * higher than that of swap_list.next swap type, we use it.  It
 | |
| 		 * isn't protected by swap_lock, so it can be an invalid value
 | |
| 		 * if the corresponding swap type is swapoff. We double check
 | |
| 		 * the flags here. It's even possible the swap type is swapoff
 | |
| 		 * and swapon again and its priority is changed. In such rare
 | |
| 		 * case, low prority swap type might be used, but eventually
 | |
| 		 * high priority swap will be used after several rounds of
 | |
| 		 * swap.
 | |
| 		 */
 | |
| 		if (hp_index != -1 && hp_index != type &&
 | |
| 		    swap_info[type]->prio < swap_info[hp_index]->prio &&
 | |
| 		    (swap_info[hp_index]->flags & SWP_WRITEOK)) {
 | |
| 			type = hp_index;
 | |
| 			swap_list.next = type;
 | |
| 		}
 | |
| 
 | |
| 		si = swap_info[type];
 | |
| 		next = si->next;
 | |
| 		if (next < 0 ||
 | |
| 		    (!wrapped && si->prio != swap_info[next]->prio)) {
 | |
| 			next = swap_list.head;
 | |
| 			wrapped++;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&si->lock);
 | |
| 		if (!si->highest_bit) {
 | |
| 			spin_unlock(&si->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!(si->flags & SWP_WRITEOK)) {
 | |
| 			spin_unlock(&si->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		swap_list.next = next;
 | |
| 
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		/* This is called for allocating swap entry for cache */
 | |
| 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
 | |
| 		spin_unlock(&si->lock);
 | |
| 		if (offset)
 | |
| 			return swp_entry(type, offset);
 | |
| 		spin_lock(&swap_lock);
 | |
| 		next = swap_list.next;
 | |
| 	}
 | |
| 
 | |
| 	atomic_long_inc(&nr_swap_pages);
 | |
| noswap:
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return (swp_entry_t) {0};
 | |
| }
 | |
| 
 | |
| /* The only caller of this function is now suspend routine */
 | |
| swp_entry_t get_swap_page_of_type(int type)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	si = swap_info[type];
 | |
| 	spin_lock(&si->lock);
 | |
| 	if (si && (si->flags & SWP_WRITEOK)) {
 | |
| 		atomic_long_dec(&nr_swap_pages);
 | |
| 		/* This is called for allocating swap entry, not cache */
 | |
| 		offset = scan_swap_map(si, 1);
 | |
| 		if (offset) {
 | |
| 			spin_unlock(&si->lock);
 | |
| 			return swp_entry(type, offset);
 | |
| 		}
 | |
| 		atomic_long_inc(&nr_swap_pages);
 | |
| 	}
 | |
| 	spin_unlock(&si->lock);
 | |
| 	return (swp_entry_t) {0};
 | |
| }
 | |
| 
 | |
| static struct swap_info_struct *swap_info_get(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	unsigned long offset, type;
 | |
| 
 | |
| 	if (!entry.val)
 | |
| 		goto out;
 | |
| 	type = swp_type(entry);
 | |
| 	if (type >= nr_swapfiles)
 | |
| 		goto bad_nofile;
 | |
| 	p = swap_info[type];
 | |
| 	if (!(p->flags & SWP_USED))
 | |
| 		goto bad_device;
 | |
| 	offset = swp_offset(entry);
 | |
| 	if (offset >= p->max)
 | |
| 		goto bad_offset;
 | |
| 	if (!p->swap_map[offset])
 | |
| 		goto bad_free;
 | |
| 	spin_lock(&p->lock);
 | |
| 	return p;
 | |
| 
 | |
| bad_free:
 | |
| 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_offset:
 | |
| 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
 | |
| 	goto out;
 | |
| bad_device:
 | |
| 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
 | |
| 	goto out;
 | |
| bad_nofile:
 | |
| 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This swap type frees swap entry, check if it is the highest priority swap
 | |
|  * type which just frees swap entry. get_swap_page() uses
 | |
|  * highest_priority_index to search highest priority swap type. The
 | |
|  * swap_info_struct.lock can't protect us if there are multiple swap types
 | |
|  * active, so we use atomic_cmpxchg.
 | |
|  */
 | |
| static void set_highest_priority_index(int type)
 | |
| {
 | |
| 	int old_hp_index, new_hp_index;
 | |
| 
 | |
| 	do {
 | |
| 		old_hp_index = atomic_read(&highest_priority_index);
 | |
| 		if (old_hp_index != -1 &&
 | |
| 			swap_info[old_hp_index]->prio >= swap_info[type]->prio)
 | |
| 			break;
 | |
| 		new_hp_index = type;
 | |
| 	} while (atomic_cmpxchg(&highest_priority_index,
 | |
| 		old_hp_index, new_hp_index) != old_hp_index);
 | |
| }
 | |
| 
 | |
| static unsigned char swap_entry_free(struct swap_info_struct *p,
 | |
| 				     swp_entry_t entry, unsigned char usage)
 | |
| {
 | |
| 	unsigned long offset = swp_offset(entry);
 | |
| 	unsigned char count;
 | |
| 	unsigned char has_cache;
 | |
| 
 | |
| 	count = p->swap_map[offset];
 | |
| 	has_cache = count & SWAP_HAS_CACHE;
 | |
| 	count &= ~SWAP_HAS_CACHE;
 | |
| 
 | |
| 	if (usage == SWAP_HAS_CACHE) {
 | |
| 		VM_BUG_ON(!has_cache);
 | |
| 		has_cache = 0;
 | |
| 	} else if (count == SWAP_MAP_SHMEM) {
 | |
| 		/*
 | |
| 		 * Or we could insist on shmem.c using a special
 | |
| 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
 | |
| 		 */
 | |
| 		count = 0;
 | |
| 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
 | |
| 		if (count == COUNT_CONTINUED) {
 | |
| 			if (swap_count_continued(p, offset, count))
 | |
| 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
 | |
| 			else
 | |
| 				count = SWAP_MAP_MAX;
 | |
| 		} else
 | |
| 			count--;
 | |
| 	}
 | |
| 
 | |
| 	if (!count)
 | |
| 		mem_cgroup_uncharge_swap(entry);
 | |
| 
 | |
| 	usage = count | has_cache;
 | |
| 	p->swap_map[offset] = usage;
 | |
| 
 | |
| 	/* free if no reference */
 | |
| 	if (!usage) {
 | |
| 		dec_cluster_info_page(p, p->cluster_info, offset);
 | |
| 		if (offset < p->lowest_bit)
 | |
| 			p->lowest_bit = offset;
 | |
| 		if (offset > p->highest_bit)
 | |
| 			p->highest_bit = offset;
 | |
| 		set_highest_priority_index(p->type);
 | |
| 		atomic_long_inc(&nr_swap_pages);
 | |
| 		p->inuse_pages--;
 | |
| 		frontswap_invalidate_page(p->type, offset);
 | |
| 		if (p->flags & SWP_BLKDEV) {
 | |
| 			struct gendisk *disk = p->bdev->bd_disk;
 | |
| 			if (disk->fops->swap_slot_free_notify)
 | |
| 				disk->fops->swap_slot_free_notify(p->bdev,
 | |
| 								  offset);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return usage;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller has made sure that the swap device corresponding to entry
 | |
|  * is still around or has not been recycled.
 | |
|  */
 | |
| void swap_free(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 
 | |
| 	p = swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		swap_entry_free(p, entry, 1);
 | |
| 		spin_unlock(&p->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after dropping swapcache to decrease refcnt to swap entries.
 | |
|  */
 | |
| void swapcache_free(swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	unsigned char count;
 | |
| 
 | |
| 	p = swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
 | |
| 		if (page)
 | |
| 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
 | |
| 		spin_unlock(&p->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * How many references to page are currently swapped out?
 | |
|  * This does not give an exact answer when swap count is continued,
 | |
|  * but does include the high COUNT_CONTINUED flag to allow for that.
 | |
|  */
 | |
| int page_swapcount(struct page *page)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	struct swap_info_struct *p;
 | |
| 	swp_entry_t entry;
 | |
| 
 | |
| 	entry.val = page_private(page);
 | |
| 	p = swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		count = swap_count(p->swap_map[swp_offset(entry)]);
 | |
| 		spin_unlock(&p->lock);
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can write to an anon page without COW if there are no other references
 | |
|  * to it.  And as a side-effect, free up its swap: because the old content
 | |
|  * on disk will never be read, and seeking back there to write new content
 | |
|  * later would only waste time away from clustering.
 | |
|  */
 | |
| int reuse_swap_page(struct page *page)
 | |
| {
 | |
| 	int count;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	if (unlikely(PageKsm(page)))
 | |
| 		return 0;
 | |
| 	count = page_mapcount(page);
 | |
| 	if (count <= 1 && PageSwapCache(page)) {
 | |
| 		count += page_swapcount(page);
 | |
| 		if (count == 1 && !PageWriteback(page)) {
 | |
| 			delete_from_swap_cache(page);
 | |
| 			SetPageDirty(page);
 | |
| 		}
 | |
| 	}
 | |
| 	return count <= 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If swap is getting full, or if there are no more mappings of this page,
 | |
|  * then try_to_free_swap is called to free its swap space.
 | |
|  */
 | |
| int try_to_free_swap(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 
 | |
| 	if (!PageSwapCache(page))
 | |
| 		return 0;
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 	if (page_swapcount(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once hibernation has begun to create its image of memory,
 | |
| 	 * there's a danger that one of the calls to try_to_free_swap()
 | |
| 	 * - most probably a call from __try_to_reclaim_swap() while
 | |
| 	 * hibernation is allocating its own swap pages for the image,
 | |
| 	 * but conceivably even a call from memory reclaim - will free
 | |
| 	 * the swap from a page which has already been recorded in the
 | |
| 	 * image as a clean swapcache page, and then reuse its swap for
 | |
| 	 * another page of the image.  On waking from hibernation, the
 | |
| 	 * original page might be freed under memory pressure, then
 | |
| 	 * later read back in from swap, now with the wrong data.
 | |
| 	 *
 | |
| 	 * Hibernation suspends storage while it is writing the image
 | |
| 	 * to disk so check that here.
 | |
| 	 */
 | |
| 	if (pm_suspended_storage())
 | |
| 		return 0;
 | |
| 
 | |
| 	delete_from_swap_cache(page);
 | |
| 	SetPageDirty(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the swap entry like above, but also try to
 | |
|  * free the page cache entry if it is the last user.
 | |
|  */
 | |
| int free_swap_and_cache(swp_entry_t entry)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	if (non_swap_entry(entry))
 | |
| 		return 1;
 | |
| 
 | |
| 	p = swap_info_get(entry);
 | |
| 	if (p) {
 | |
| 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
 | |
| 			page = find_get_page(swap_address_space(entry),
 | |
| 						entry.val);
 | |
| 			if (page && !trylock_page(page)) {
 | |
| 				page_cache_release(page);
 | |
| 				page = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&p->lock);
 | |
| 	}
 | |
| 	if (page) {
 | |
| 		/*
 | |
| 		 * Not mapped elsewhere, or swap space full? Free it!
 | |
| 		 * Also recheck PageSwapCache now page is locked (above).
 | |
| 		 */
 | |
| 		if (PageSwapCache(page) && !PageWriteback(page) &&
 | |
| 				(!page_mapped(page) || vm_swap_full())) {
 | |
| 			delete_from_swap_cache(page);
 | |
| 			SetPageDirty(page);
 | |
| 		}
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 	return p != NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| /*
 | |
|  * Find the swap type that corresponds to given device (if any).
 | |
|  *
 | |
|  * @offset - number of the PAGE_SIZE-sized block of the device, starting
 | |
|  * from 0, in which the swap header is expected to be located.
 | |
|  *
 | |
|  * This is needed for the suspend to disk (aka swsusp).
 | |
|  */
 | |
| int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
 | |
| {
 | |
| 	struct block_device *bdev = NULL;
 | |
| 	int type;
 | |
| 
 | |
| 	if (device)
 | |
| 		bdev = bdget(device);
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		if (!(sis->flags & SWP_WRITEOK))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!bdev) {
 | |
| 			if (bdev_p)
 | |
| 				*bdev_p = bdgrab(sis->bdev);
 | |
| 
 | |
| 			spin_unlock(&swap_lock);
 | |
| 			return type;
 | |
| 		}
 | |
| 		if (bdev == sis->bdev) {
 | |
| 			struct swap_extent *se = &sis->first_swap_extent;
 | |
| 
 | |
| 			if (se->start_block == offset) {
 | |
| 				if (bdev_p)
 | |
| 					*bdev_p = bdgrab(sis->bdev);
 | |
| 
 | |
| 				spin_unlock(&swap_lock);
 | |
| 				bdput(bdev);
 | |
| 				return type;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	if (bdev)
 | |
| 		bdput(bdev);
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
 | |
|  * corresponding to given index in swap_info (swap type).
 | |
|  */
 | |
| sector_t swapdev_block(int type, pgoff_t offset)
 | |
| {
 | |
| 	struct block_device *bdev;
 | |
| 
 | |
| 	if ((unsigned int)type >= nr_swapfiles)
 | |
| 		return 0;
 | |
| 	if (!(swap_info[type]->flags & SWP_WRITEOK))
 | |
| 		return 0;
 | |
| 	return map_swap_entry(swp_entry(type, offset), &bdev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return either the total number of swap pages of given type, or the number
 | |
|  * of free pages of that type (depending on @free)
 | |
|  *
 | |
|  * This is needed for software suspend
 | |
|  */
 | |
| unsigned int count_swap_pages(int type, int free)
 | |
| {
 | |
| 	unsigned int n = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	if ((unsigned int)type < nr_swapfiles) {
 | |
| 		struct swap_info_struct *sis = swap_info[type];
 | |
| 
 | |
| 		spin_lock(&sis->lock);
 | |
| 		if (sis->flags & SWP_WRITEOK) {
 | |
| 			n = sis->pages;
 | |
| 			if (free)
 | |
| 				n -= sis->inuse_pages;
 | |
| 		}
 | |
| 		spin_unlock(&sis->lock);
 | |
| 	}
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	return n;
 | |
| }
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
 | |
| {
 | |
| #ifdef CONFIG_MEM_SOFT_DIRTY
 | |
| 	/*
 | |
| 	 * When pte keeps soft dirty bit the pte generated
 | |
| 	 * from swap entry does not has it, still it's same
 | |
| 	 * pte from logical point of view.
 | |
| 	 */
 | |
| 	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
 | |
| 	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
 | |
| #else
 | |
| 	return pte_same(pte, swp_pte);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No need to decide whether this PTE shares the swap entry with others,
 | |
|  * just let do_wp_page work it out if a write is requested later - to
 | |
|  * force COW, vm_page_prot omits write permission from any private vma.
 | |
|  */
 | |
| static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	struct page *swapcache;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *pte;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	swapcache = page;
 | |
| 	page = ksm_might_need_to_copy(page, vma, addr);
 | |
| 	if (unlikely(!page))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
 | |
| 					 GFP_KERNEL, &memcg)) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
 | |
| 		mem_cgroup_cancel_charge_swapin(memcg);
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
 | |
| 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
 | |
| 	get_page(page);
 | |
| 	set_pte_at(vma->vm_mm, addr, pte,
 | |
| 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
 | |
| 	if (page == swapcache)
 | |
| 		page_add_anon_rmap(page, vma, addr);
 | |
| 	else /* ksm created a completely new copy */
 | |
| 		page_add_new_anon_rmap(page, vma, addr);
 | |
| 	mem_cgroup_commit_charge_swapin(page, memcg);
 | |
| 	swap_free(entry);
 | |
| 	/*
 | |
| 	 * Move the page to the active list so it is not
 | |
| 	 * immediately swapped out again after swapon.
 | |
| 	 */
 | |
| 	activate_page(page);
 | |
| out:
 | |
| 	pte_unmap_unlock(pte, ptl);
 | |
| out_nolock:
 | |
| 	if (page != swapcache) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pte_t swp_pte = swp_entry_to_pte(entry);
 | |
| 	pte_t *pte;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't actually need pte lock while scanning for swp_pte: since
 | |
| 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
 | |
| 	 * page table while we're scanning; though it could get zapped, and on
 | |
| 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
 | |
| 	 * of unmatched parts which look like swp_pte, so unuse_pte must
 | |
| 	 * recheck under pte lock.  Scanning without pte lock lets it be
 | |
| 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
 | |
| 	 */
 | |
| 	pte = pte_offset_map(pmd, addr);
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * swapoff spends a _lot_ of time in this loop!
 | |
| 		 * Test inline before going to call unuse_pte.
 | |
| 		 */
 | |
| 		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
 | |
| 			pte_unmap(pte);
 | |
| 			ret = unuse_pte(vma, pmd, addr, entry, page);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 			pte = pte_offset_map(pmd, addr);
 | |
| 		}
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap(pte - 1);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	int ret;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_vma(struct vm_area_struct *vma,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long addr, end, next;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (page_anon_vma(page)) {
 | |
| 		addr = page_address_in_vma(page, vma);
 | |
| 		if (addr == -EFAULT)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			end = addr + PAGE_SIZE;
 | |
| 	} else {
 | |
| 		addr = vma->vm_start;
 | |
| 		end = vma->vm_end;
 | |
| 	}
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int unuse_mm(struct mm_struct *mm,
 | |
| 				swp_entry_t entry, struct page *page)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!down_read_trylock(&mm->mmap_sem)) {
 | |
| 		/*
 | |
| 		 * Activate page so shrink_inactive_list is unlikely to unmap
 | |
| 		 * its ptes while lock is dropped, so swapoff can make progress.
 | |
| 		 */
 | |
| 		activate_page(page);
 | |
| 		unlock_page(page);
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 		lock_page(page);
 | |
| 	}
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | |
| 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
 | |
| 			break;
 | |
| 	}
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return (ret < 0)? ret: 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan swap_map (or frontswap_map if frontswap parameter is true)
 | |
|  * from current position to next entry still in use.
 | |
|  * Recycle to start on reaching the end, returning 0 when empty.
 | |
|  */
 | |
| static unsigned int find_next_to_unuse(struct swap_info_struct *si,
 | |
| 					unsigned int prev, bool frontswap)
 | |
| {
 | |
| 	unsigned int max = si->max;
 | |
| 	unsigned int i = prev;
 | |
| 	unsigned char count;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need for swap_lock here: we're just looking
 | |
| 	 * for whether an entry is in use, not modifying it; false
 | |
| 	 * hits are okay, and sys_swapoff() has already prevented new
 | |
| 	 * allocations from this area (while holding swap_lock).
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		if (++i >= max) {
 | |
| 			if (!prev) {
 | |
| 				i = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * No entries in use at top of swap_map,
 | |
| 			 * loop back to start and recheck there.
 | |
| 			 */
 | |
| 			max = prev + 1;
 | |
| 			prev = 0;
 | |
| 			i = 1;
 | |
| 		}
 | |
| 		if (frontswap) {
 | |
| 			if (frontswap_test(si, i))
 | |
| 				break;
 | |
| 			else
 | |
| 				continue;
 | |
| 		}
 | |
| 		count = ACCESS_ONCE(si->swap_map[i]);
 | |
| 		if (count && swap_count(count) != SWAP_MAP_BAD)
 | |
| 			break;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We completely avoid races by reading each swap page in advance,
 | |
|  * and then search for the process using it.  All the necessary
 | |
|  * page table adjustments can then be made atomically.
 | |
|  *
 | |
|  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
 | |
|  * pages_to_unuse==0 means all pages; ignored if frontswap is false
 | |
|  */
 | |
| int try_to_unuse(unsigned int type, bool frontswap,
 | |
| 		 unsigned long pages_to_unuse)
 | |
| {
 | |
| 	struct swap_info_struct *si = swap_info[type];
 | |
| 	struct mm_struct *start_mm;
 | |
| 	volatile unsigned char *swap_map; /* swap_map is accessed without
 | |
| 					   * locking. Mark it as volatile
 | |
| 					   * to prevent compiler doing
 | |
| 					   * something odd.
 | |
| 					   */
 | |
| 	unsigned char swcount;
 | |
| 	struct page *page;
 | |
| 	swp_entry_t entry;
 | |
| 	unsigned int i = 0;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * When searching mms for an entry, a good strategy is to
 | |
| 	 * start at the first mm we freed the previous entry from
 | |
| 	 * (though actually we don't notice whether we or coincidence
 | |
| 	 * freed the entry).  Initialize this start_mm with a hold.
 | |
| 	 *
 | |
| 	 * A simpler strategy would be to start at the last mm we
 | |
| 	 * freed the previous entry from; but that would take less
 | |
| 	 * advantage of mmlist ordering, which clusters forked mms
 | |
| 	 * together, child after parent.  If we race with dup_mmap(), we
 | |
| 	 * prefer to resolve parent before child, lest we miss entries
 | |
| 	 * duplicated after we scanned child: using last mm would invert
 | |
| 	 * that.
 | |
| 	 */
 | |
| 	start_mm = &init_mm;
 | |
| 	atomic_inc(&init_mm.mm_users);
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep on scanning until all entries have gone.  Usually,
 | |
| 	 * one pass through swap_map is enough, but not necessarily:
 | |
| 	 * there are races when an instance of an entry might be missed.
 | |
| 	 */
 | |
| 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
 | |
| 		if (signal_pending(current)) {
 | |
| 			retval = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Get a page for the entry, using the existing swap
 | |
| 		 * cache page if there is one.  Otherwise, get a clean
 | |
| 		 * page and read the swap into it.
 | |
| 		 */
 | |
| 		swap_map = &si->swap_map[i];
 | |
| 		entry = swp_entry(type, i);
 | |
| 		page = read_swap_cache_async(entry,
 | |
| 					GFP_HIGHUSER_MOVABLE, NULL, 0);
 | |
| 		if (!page) {
 | |
| 			/*
 | |
| 			 * Either swap_duplicate() failed because entry
 | |
| 			 * has been freed independently, and will not be
 | |
| 			 * reused since sys_swapoff() already disabled
 | |
| 			 * allocation from here, or alloc_page() failed.
 | |
| 			 */
 | |
| 			swcount = *swap_map;
 | |
| 			/*
 | |
| 			 * We don't hold lock here, so the swap entry could be
 | |
| 			 * SWAP_MAP_BAD (when the cluster is discarding).
 | |
| 			 * Instead of fail out, We can just skip the swap
 | |
| 			 * entry because swapoff will wait for discarding
 | |
| 			 * finish anyway.
 | |
| 			 */
 | |
| 			if (!swcount || swcount == SWAP_MAP_BAD)
 | |
| 				continue;
 | |
| 			retval = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't hold on to start_mm if it looks like exiting.
 | |
| 		 */
 | |
| 		if (atomic_read(&start_mm->mm_users) == 1) {
 | |
| 			mmput(start_mm);
 | |
| 			start_mm = &init_mm;
 | |
| 			atomic_inc(&init_mm.mm_users);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Wait for and lock page.  When do_swap_page races with
 | |
| 		 * try_to_unuse, do_swap_page can handle the fault much
 | |
| 		 * faster than try_to_unuse can locate the entry.  This
 | |
| 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
 | |
| 		 * defer to do_swap_page in such a case - in some tests,
 | |
| 		 * do_swap_page and try_to_unuse repeatedly compete.
 | |
| 		 */
 | |
| 		wait_on_page_locked(page);
 | |
| 		wait_on_page_writeback(page);
 | |
| 		lock_page(page);
 | |
| 		wait_on_page_writeback(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove all references to entry.
 | |
| 		 */
 | |
| 		swcount = *swap_map;
 | |
| 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
 | |
| 			retval = shmem_unuse(entry, page);
 | |
| 			/* page has already been unlocked and released */
 | |
| 			if (retval < 0)
 | |
| 				break;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (swap_count(swcount) && start_mm != &init_mm)
 | |
| 			retval = unuse_mm(start_mm, entry, page);
 | |
| 
 | |
| 		if (swap_count(*swap_map)) {
 | |
| 			int set_start_mm = (*swap_map >= swcount);
 | |
| 			struct list_head *p = &start_mm->mmlist;
 | |
| 			struct mm_struct *new_start_mm = start_mm;
 | |
| 			struct mm_struct *prev_mm = start_mm;
 | |
| 			struct mm_struct *mm;
 | |
| 
 | |
| 			atomic_inc(&new_start_mm->mm_users);
 | |
| 			atomic_inc(&prev_mm->mm_users);
 | |
| 			spin_lock(&mmlist_lock);
 | |
| 			while (swap_count(*swap_map) && !retval &&
 | |
| 					(p = p->next) != &start_mm->mmlist) {
 | |
| 				mm = list_entry(p, struct mm_struct, mmlist);
 | |
| 				if (!atomic_inc_not_zero(&mm->mm_users))
 | |
| 					continue;
 | |
| 				spin_unlock(&mmlist_lock);
 | |
| 				mmput(prev_mm);
 | |
| 				prev_mm = mm;
 | |
| 
 | |
| 				cond_resched();
 | |
| 
 | |
| 				swcount = *swap_map;
 | |
| 				if (!swap_count(swcount)) /* any usage ? */
 | |
| 					;
 | |
| 				else if (mm == &init_mm)
 | |
| 					set_start_mm = 1;
 | |
| 				else
 | |
| 					retval = unuse_mm(mm, entry, page);
 | |
| 
 | |
| 				if (set_start_mm && *swap_map < swcount) {
 | |
| 					mmput(new_start_mm);
 | |
| 					atomic_inc(&mm->mm_users);
 | |
| 					new_start_mm = mm;
 | |
| 					set_start_mm = 0;
 | |
| 				}
 | |
| 				spin_lock(&mmlist_lock);
 | |
| 			}
 | |
| 			spin_unlock(&mmlist_lock);
 | |
| 			mmput(prev_mm);
 | |
| 			mmput(start_mm);
 | |
| 			start_mm = new_start_mm;
 | |
| 		}
 | |
| 		if (retval) {
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If a reference remains (rare), we would like to leave
 | |
| 		 * the page in the swap cache; but try_to_unmap could
 | |
| 		 * then re-duplicate the entry once we drop page lock,
 | |
| 		 * so we might loop indefinitely; also, that page could
 | |
| 		 * not be swapped out to other storage meanwhile.  So:
 | |
| 		 * delete from cache even if there's another reference,
 | |
| 		 * after ensuring that the data has been saved to disk -
 | |
| 		 * since if the reference remains (rarer), it will be
 | |
| 		 * read from disk into another page.  Splitting into two
 | |
| 		 * pages would be incorrect if swap supported "shared
 | |
| 		 * private" pages, but they are handled by tmpfs files.
 | |
| 		 *
 | |
| 		 * Given how unuse_vma() targets one particular offset
 | |
| 		 * in an anon_vma, once the anon_vma has been determined,
 | |
| 		 * this splitting happens to be just what is needed to
 | |
| 		 * handle where KSM pages have been swapped out: re-reading
 | |
| 		 * is unnecessarily slow, but we can fix that later on.
 | |
| 		 */
 | |
| 		if (swap_count(*swap_map) &&
 | |
| 		     PageDirty(page) && PageSwapCache(page)) {
 | |
| 			struct writeback_control wbc = {
 | |
| 				.sync_mode = WB_SYNC_NONE,
 | |
| 			};
 | |
| 
 | |
| 			swap_writepage(page, &wbc);
 | |
| 			lock_page(page);
 | |
| 			wait_on_page_writeback(page);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * It is conceivable that a racing task removed this page from
 | |
| 		 * swap cache just before we acquired the page lock at the top,
 | |
| 		 * or while we dropped it in unuse_mm().  The page might even
 | |
| 		 * be back in swap cache on another swap area: that we must not
 | |
| 		 * delete, since it may not have been written out to swap yet.
 | |
| 		 */
 | |
| 		if (PageSwapCache(page) &&
 | |
| 		    likely(page_private(page) == entry.val))
 | |
| 			delete_from_swap_cache(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * So we could skip searching mms once swap count went
 | |
| 		 * to 1, we did not mark any present ptes as dirty: must
 | |
| 		 * mark page dirty so shrink_page_list will preserve it.
 | |
| 		 */
 | |
| 		SetPageDirty(page);
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure that we aren't completely killing
 | |
| 		 * interactive performance.
 | |
| 		 */
 | |
| 		cond_resched();
 | |
| 		if (frontswap && pages_to_unuse > 0) {
 | |
| 			if (!--pages_to_unuse)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mmput(start_mm);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After a successful try_to_unuse, if no swap is now in use, we know
 | |
|  * we can empty the mmlist.  swap_lock must be held on entry and exit.
 | |
|  * Note that mmlist_lock nests inside swap_lock, and an mm must be
 | |
|  * added to the mmlist just after page_duplicate - before would be racy.
 | |
|  */
 | |
| static void drain_mmlist(void)
 | |
| {
 | |
| 	struct list_head *p, *next;
 | |
| 	unsigned int type;
 | |
| 
 | |
| 	for (type = 0; type < nr_swapfiles; type++)
 | |
| 		if (swap_info[type]->inuse_pages)
 | |
| 			return;
 | |
| 	spin_lock(&mmlist_lock);
 | |
| 	list_for_each_safe(p, next, &init_mm.mmlist)
 | |
| 		list_del_init(p);
 | |
| 	spin_unlock(&mmlist_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
 | |
|  * corresponds to page offset for the specified swap entry.
 | |
|  * Note that the type of this function is sector_t, but it returns page offset
 | |
|  * into the bdev, not sector offset.
 | |
|  */
 | |
| static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
 | |
| {
 | |
| 	struct swap_info_struct *sis;
 | |
| 	struct swap_extent *start_se;
 | |
| 	struct swap_extent *se;
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	sis = swap_info[swp_type(entry)];
 | |
| 	*bdev = sis->bdev;
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 	start_se = sis->curr_swap_extent;
 | |
| 	se = start_se;
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		struct list_head *lh;
 | |
| 
 | |
| 		if (se->start_page <= offset &&
 | |
| 				offset < (se->start_page + se->nr_pages)) {
 | |
| 			return se->start_block + (offset - se->start_page);
 | |
| 		}
 | |
| 		lh = se->list.next;
 | |
| 		se = list_entry(lh, struct swap_extent, list);
 | |
| 		sis->curr_swap_extent = se;
 | |
| 		BUG_ON(se == start_se);		/* It *must* be present */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the page offset into bdev for the specified page's swap entry.
 | |
|  */
 | |
| sector_t map_swap_page(struct page *page, struct block_device **bdev)
 | |
| {
 | |
| 	swp_entry_t entry;
 | |
| 	entry.val = page_private(page);
 | |
| 	return map_swap_entry(entry, bdev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free all of a swapdev's extent information
 | |
|  */
 | |
| static void destroy_swap_extents(struct swap_info_struct *sis)
 | |
| {
 | |
| 	while (!list_empty(&sis->first_swap_extent.list)) {
 | |
| 		struct swap_extent *se;
 | |
| 
 | |
| 		se = list_entry(sis->first_swap_extent.list.next,
 | |
| 				struct swap_extent, list);
 | |
| 		list_del(&se->list);
 | |
| 		kfree(se);
 | |
| 	}
 | |
| 
 | |
| 	if (sis->flags & SWP_FILE) {
 | |
| 		struct file *swap_file = sis->swap_file;
 | |
| 		struct address_space *mapping = swap_file->f_mapping;
 | |
| 
 | |
| 		sis->flags &= ~SWP_FILE;
 | |
| 		mapping->a_ops->swap_deactivate(swap_file);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a block range (and the corresponding page range) into this swapdev's
 | |
|  * extent list.  The extent list is kept sorted in page order.
 | |
|  *
 | |
|  * This function rather assumes that it is called in ascending page order.
 | |
|  */
 | |
| int
 | |
| add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
 | |
| 		unsigned long nr_pages, sector_t start_block)
 | |
| {
 | |
| 	struct swap_extent *se;
 | |
| 	struct swap_extent *new_se;
 | |
| 	struct list_head *lh;
 | |
| 
 | |
| 	if (start_page == 0) {
 | |
| 		se = &sis->first_swap_extent;
 | |
| 		sis->curr_swap_extent = se;
 | |
| 		se->start_page = 0;
 | |
| 		se->nr_pages = nr_pages;
 | |
| 		se->start_block = start_block;
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
 | |
| 		se = list_entry(lh, struct swap_extent, list);
 | |
| 		BUG_ON(se->start_page + se->nr_pages != start_page);
 | |
| 		if (se->start_block + se->nr_pages == start_block) {
 | |
| 			/* Merge it */
 | |
| 			se->nr_pages += nr_pages;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No merge.  Insert a new extent, preserving ordering.
 | |
| 	 */
 | |
| 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
 | |
| 	if (new_se == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	new_se->start_page = start_page;
 | |
| 	new_se->nr_pages = nr_pages;
 | |
| 	new_se->start_block = start_block;
 | |
| 
 | |
| 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A `swap extent' is a simple thing which maps a contiguous range of pages
 | |
|  * onto a contiguous range of disk blocks.  An ordered list of swap extents
 | |
|  * is built at swapon time and is then used at swap_writepage/swap_readpage
 | |
|  * time for locating where on disk a page belongs.
 | |
|  *
 | |
|  * If the swapfile is an S_ISBLK block device, a single extent is installed.
 | |
|  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
 | |
|  * swap files identically.
 | |
|  *
 | |
|  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
 | |
|  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
 | |
|  * swapfiles are handled *identically* after swapon time.
 | |
|  *
 | |
|  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
 | |
|  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
 | |
|  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
 | |
|  * requirements, they are simply tossed out - we will never use those blocks
 | |
|  * for swapping.
 | |
|  *
 | |
|  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
 | |
|  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
 | |
|  * which will scribble on the fs.
 | |
|  *
 | |
|  * The amount of disk space which a single swap extent represents varies.
 | |
|  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
 | |
|  * extents in the list.  To avoid much list walking, we cache the previous
 | |
|  * search location in `curr_swap_extent', and start new searches from there.
 | |
|  * This is extremely effective.  The average number of iterations in
 | |
|  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
 | |
|  */
 | |
| static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
 | |
| {
 | |
| 	struct file *swap_file = sis->swap_file;
 | |
| 	struct address_space *mapping = swap_file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		ret = add_swap_extent(sis, 0, sis->max, 0);
 | |
| 		*span = sis->pages;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (mapping->a_ops->swap_activate) {
 | |
| 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
 | |
| 		if (!ret) {
 | |
| 			sis->flags |= SWP_FILE;
 | |
| 			ret = add_swap_extent(sis, 0, sis->max, 0);
 | |
| 			*span = sis->pages;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return generic_swapfile_activate(sis, swap_file, span);
 | |
| }
 | |
| 
 | |
| static void _enable_swap_info(struct swap_info_struct *p, int prio,
 | |
| 				unsigned char *swap_map,
 | |
| 				struct swap_cluster_info *cluster_info)
 | |
| {
 | |
| 	int i, prev;
 | |
| 
 | |
| 	if (prio >= 0)
 | |
| 		p->prio = prio;
 | |
| 	else
 | |
| 		p->prio = --least_priority;
 | |
| 	p->swap_map = swap_map;
 | |
| 	p->cluster_info = cluster_info;
 | |
| 	p->flags |= SWP_WRITEOK;
 | |
| 	atomic_long_add(p->pages, &nr_swap_pages);
 | |
| 	total_swap_pages += p->pages;
 | |
| 
 | |
| 	/* insert swap space into swap_list: */
 | |
| 	prev = -1;
 | |
| 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
 | |
| 		if (p->prio >= swap_info[i]->prio)
 | |
| 			break;
 | |
| 		prev = i;
 | |
| 	}
 | |
| 	p->next = i;
 | |
| 	if (prev < 0)
 | |
| 		swap_list.head = swap_list.next = p->type;
 | |
| 	else
 | |
| 		swap_info[prev]->next = p->type;
 | |
| }
 | |
| 
 | |
| static void enable_swap_info(struct swap_info_struct *p, int prio,
 | |
| 				unsigned char *swap_map,
 | |
| 				struct swap_cluster_info *cluster_info,
 | |
| 				unsigned long *frontswap_map)
 | |
| {
 | |
| 	frontswap_init(p->type, frontswap_map);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	 _enable_swap_info(p, prio, swap_map, cluster_info);
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| static void reinsert_swap_info(struct swap_info_struct *p)
 | |
| {
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
 | |
| {
 | |
| 	struct swap_info_struct *p = NULL;
 | |
| 	unsigned char *swap_map;
 | |
| 	struct swap_cluster_info *cluster_info;
 | |
| 	unsigned long *frontswap_map;
 | |
| 	struct file *swap_file, *victim;
 | |
| 	struct address_space *mapping;
 | |
| 	struct inode *inode;
 | |
| 	struct filename *pathname;
 | |
| 	int i, type, prev;
 | |
| 	int err;
 | |
| 	unsigned int old_block_size;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	BUG_ON(!current->mm);
 | |
| 
 | |
| 	pathname = getname(specialfile);
 | |
| 	if (IS_ERR(pathname))
 | |
| 		return PTR_ERR(pathname);
 | |
| 
 | |
| 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
 | |
| 	err = PTR_ERR(victim);
 | |
| 	if (IS_ERR(victim))
 | |
| 		goto out;
 | |
| 
 | |
| 	mapping = victim->f_mapping;
 | |
| 	prev = -1;
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
 | |
| 		p = swap_info[type];
 | |
| 		if (p->flags & SWP_WRITEOK) {
 | |
| 			if (p->swap_file->f_mapping == mapping)
 | |
| 				break;
 | |
| 		}
 | |
| 		prev = type;
 | |
| 	}
 | |
| 	if (type < 0) {
 | |
| 		err = -EINVAL;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
 | |
| 		vm_unacct_memory(p->pages);
 | |
| 	else {
 | |
| 		err = -ENOMEM;
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 	if (prev < 0)
 | |
| 		swap_list.head = p->next;
 | |
| 	else
 | |
| 		swap_info[prev]->next = p->next;
 | |
| 	if (type == swap_list.next) {
 | |
| 		/* just pick something that's safe... */
 | |
| 		swap_list.next = swap_list.head;
 | |
| 	}
 | |
| 	spin_lock(&p->lock);
 | |
| 	if (p->prio < 0) {
 | |
| 		for (i = p->next; i >= 0; i = swap_info[i]->next)
 | |
| 			swap_info[i]->prio = p->prio--;
 | |
| 		least_priority++;
 | |
| 	}
 | |
| 	atomic_long_sub(p->pages, &nr_swap_pages);
 | |
| 	total_swap_pages -= p->pages;
 | |
| 	p->flags &= ~SWP_WRITEOK;
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	set_current_oom_origin();
 | |
| 	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
 | |
| 	clear_current_oom_origin();
 | |
| 
 | |
| 	if (err) {
 | |
| 		/* re-insert swap space back into swap_list */
 | |
| 		reinsert_swap_info(p);
 | |
| 		goto out_dput;
 | |
| 	}
 | |
| 
 | |
| 	flush_work(&p->discard_work);
 | |
| 
 | |
| 	destroy_swap_extents(p);
 | |
| 	if (p->flags & SWP_CONTINUED)
 | |
| 		free_swap_count_continuations(p);
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	spin_lock(&p->lock);
 | |
| 	drain_mmlist();
 | |
| 
 | |
| 	/* wait for anyone still in scan_swap_map */
 | |
| 	p->highest_bit = 0;		/* cuts scans short */
 | |
| 	while (p->flags >= SWP_SCANNING) {
 | |
| 		spin_unlock(&p->lock);
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		spin_lock(&swap_lock);
 | |
| 		spin_lock(&p->lock);
 | |
| 	}
 | |
| 
 | |
| 	swap_file = p->swap_file;
 | |
| 	old_block_size = p->old_block_size;
 | |
| 	p->swap_file = NULL;
 | |
| 	p->max = 0;
 | |
| 	swap_map = p->swap_map;
 | |
| 	p->swap_map = NULL;
 | |
| 	cluster_info = p->cluster_info;
 | |
| 	p->cluster_info = NULL;
 | |
| 	frontswap_map = frontswap_map_get(p);
 | |
| 	spin_unlock(&p->lock);
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	frontswap_invalidate_area(type);
 | |
| 	frontswap_map_set(p, NULL);
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	free_percpu(p->percpu_cluster);
 | |
| 	p->percpu_cluster = NULL;
 | |
| 	vfree(swap_map);
 | |
| 	vfree(cluster_info);
 | |
| 	vfree(frontswap_map);
 | |
| 	/* Destroy swap account information */
 | |
| 	swap_cgroup_swapoff(type);
 | |
| 
 | |
| 	inode = mapping->host;
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		struct block_device *bdev = I_BDEV(inode);
 | |
| 		set_blocksize(bdev, old_block_size);
 | |
| 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 | |
| 	} else {
 | |
| 		mutex_lock(&inode->i_mutex);
 | |
| 		inode->i_flags &= ~S_SWAPFILE;
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 	}
 | |
| 	filp_close(swap_file, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the SWP_USED flag after all resources are freed so that swapon
 | |
| 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
 | |
| 	 * not hold p->lock after we cleared its SWP_WRITEOK.
 | |
| 	 */
 | |
| 	spin_lock(&swap_lock);
 | |
| 	p->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 
 | |
| 	err = 0;
 | |
| 	atomic_inc(&proc_poll_event);
 | |
| 	wake_up_interruptible(&proc_poll_wait);
 | |
| 
 | |
| out_dput:
 | |
| 	filp_close(victim, NULL);
 | |
| out:
 | |
| 	putname(pathname);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static unsigned swaps_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct seq_file *seq = file->private_data;
 | |
| 
 | |
| 	poll_wait(file, &proc_poll_wait, wait);
 | |
| 
 | |
| 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
 | |
| 		seq->poll_event = atomic_read(&proc_poll_event);
 | |
| 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
 | |
| 	}
 | |
| 
 | |
| 	return POLLIN | POLLRDNORM;
 | |
| }
 | |
| 
 | |
| /* iterator */
 | |
| static void *swap_start(struct seq_file *swap, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	int type;
 | |
| 	loff_t l = *pos;
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 
 | |
| 	if (!l)
 | |
| 		return SEQ_START_TOKEN;
 | |
| 
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
 | |
| 		si = swap_info[type];
 | |
| 		if (!(si->flags & SWP_USED) || !si->swap_map)
 | |
| 			continue;
 | |
| 		if (!--l)
 | |
| 			return si;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct swap_info_struct *si = v;
 | |
| 	int type;
 | |
| 
 | |
| 	if (v == SEQ_START_TOKEN)
 | |
| 		type = 0;
 | |
| 	else
 | |
| 		type = si->type + 1;
 | |
| 
 | |
| 	for (; type < nr_swapfiles; type++) {
 | |
| 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
 | |
| 		si = swap_info[type];
 | |
| 		if (!(si->flags & SWP_USED) || !si->swap_map)
 | |
| 			continue;
 | |
| 		++*pos;
 | |
| 		return si;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void swap_stop(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| }
 | |
| 
 | |
| static int swap_show(struct seq_file *swap, void *v)
 | |
| {
 | |
| 	struct swap_info_struct *si = v;
 | |
| 	struct file *file;
 | |
| 	int len;
 | |
| 
 | |
| 	if (si == SEQ_START_TOKEN) {
 | |
| 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	file = si->swap_file;
 | |
| 	len = seq_path(swap, &file->f_path, " \t\n\\");
 | |
| 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
 | |
| 			len < 40 ? 40 - len : 1, " ",
 | |
| 			S_ISBLK(file_inode(file)->i_mode) ?
 | |
| 				"partition" : "file\t",
 | |
| 			si->pages << (PAGE_SHIFT - 10),
 | |
| 			si->inuse_pages << (PAGE_SHIFT - 10),
 | |
| 			si->prio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations swaps_op = {
 | |
| 	.start =	swap_start,
 | |
| 	.next =		swap_next,
 | |
| 	.stop =		swap_stop,
 | |
| 	.show =		swap_show
 | |
| };
 | |
| 
 | |
| static int swaps_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct seq_file *seq;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = seq_open(file, &swaps_op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	seq = file->private_data;
 | |
| 	seq->poll_event = atomic_read(&proc_poll_event);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_swaps_operations = {
 | |
| 	.open		= swaps_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| 	.poll		= swaps_poll,
 | |
| };
 | |
| 
 | |
| static int __init procswaps_init(void)
 | |
| {
 | |
| 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(procswaps_init);
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| #ifdef MAX_SWAPFILES_CHECK
 | |
| static int __init max_swapfiles_check(void)
 | |
| {
 | |
| 	MAX_SWAPFILES_CHECK();
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(max_swapfiles_check);
 | |
| #endif
 | |
| 
 | |
| static struct swap_info_struct *alloc_swap_info(void)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	unsigned int type;
 | |
| 
 | |
| 	p = kzalloc(sizeof(*p), GFP_KERNEL);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		if (!(swap_info[type]->flags & SWP_USED))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (type >= MAX_SWAPFILES) {
 | |
| 		spin_unlock(&swap_lock);
 | |
| 		kfree(p);
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 	}
 | |
| 	if (type >= nr_swapfiles) {
 | |
| 		p->type = type;
 | |
| 		swap_info[type] = p;
 | |
| 		/*
 | |
| 		 * Write swap_info[type] before nr_swapfiles, in case a
 | |
| 		 * racing procfs swap_start() or swap_next() is reading them.
 | |
| 		 * (We never shrink nr_swapfiles, we never free this entry.)
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 		nr_swapfiles++;
 | |
| 	} else {
 | |
| 		kfree(p);
 | |
| 		p = swap_info[type];
 | |
| 		/*
 | |
| 		 * Do not memset this entry: a racing procfs swap_next()
 | |
| 		 * would be relying on p->type to remain valid.
 | |
| 		 */
 | |
| 	}
 | |
| 	INIT_LIST_HEAD(&p->first_swap_extent.list);
 | |
| 	p->flags = SWP_USED;
 | |
| 	p->next = -1;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	spin_lock_init(&p->lock);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	if (S_ISBLK(inode->i_mode)) {
 | |
| 		p->bdev = bdgrab(I_BDEV(inode));
 | |
| 		error = blkdev_get(p->bdev,
 | |
| 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
 | |
| 				   sys_swapon);
 | |
| 		if (error < 0) {
 | |
| 			p->bdev = NULL;
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		p->old_block_size = block_size(p->bdev);
 | |
| 		error = set_blocksize(p->bdev, PAGE_SIZE);
 | |
| 		if (error < 0)
 | |
| 			return error;
 | |
| 		p->flags |= SWP_BLKDEV;
 | |
| 	} else if (S_ISREG(inode->i_mode)) {
 | |
| 		p->bdev = inode->i_sb->s_bdev;
 | |
| 		mutex_lock(&inode->i_mutex);
 | |
| 		if (IS_SWAPFILE(inode))
 | |
| 			return -EBUSY;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long read_swap_header(struct swap_info_struct *p,
 | |
| 					union swap_header *swap_header,
 | |
| 					struct inode *inode)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long maxpages;
 | |
| 	unsigned long swapfilepages;
 | |
| 	unsigned long last_page;
 | |
| 
 | |
| 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
 | |
| 		pr_err("Unable to find swap-space signature\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* swap partition endianess hack... */
 | |
| 	if (swab32(swap_header->info.version) == 1) {
 | |
| 		swab32s(&swap_header->info.version);
 | |
| 		swab32s(&swap_header->info.last_page);
 | |
| 		swab32s(&swap_header->info.nr_badpages);
 | |
| 		for (i = 0; i < swap_header->info.nr_badpages; i++)
 | |
| 			swab32s(&swap_header->info.badpages[i]);
 | |
| 	}
 | |
| 	/* Check the swap header's sub-version */
 | |
| 	if (swap_header->info.version != 1) {
 | |
| 		pr_warn("Unable to handle swap header version %d\n",
 | |
| 			swap_header->info.version);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	p->lowest_bit  = 1;
 | |
| 	p->cluster_next = 1;
 | |
| 	p->cluster_nr = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find out how many pages are allowed for a single swap
 | |
| 	 * device. There are two limiting factors: 1) the number
 | |
| 	 * of bits for the swap offset in the swp_entry_t type, and
 | |
| 	 * 2) the number of bits in the swap pte as defined by the
 | |
| 	 * different architectures. In order to find the
 | |
| 	 * largest possible bit mask, a swap entry with swap type 0
 | |
| 	 * and swap offset ~0UL is created, encoded to a swap pte,
 | |
| 	 * decoded to a swp_entry_t again, and finally the swap
 | |
| 	 * offset is extracted. This will mask all the bits from
 | |
| 	 * the initial ~0UL mask that can't be encoded in either
 | |
| 	 * the swp_entry_t or the architecture definition of a
 | |
| 	 * swap pte.
 | |
| 	 */
 | |
| 	maxpages = swp_offset(pte_to_swp_entry(
 | |
| 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
 | |
| 	last_page = swap_header->info.last_page;
 | |
| 	if (last_page > maxpages) {
 | |
| 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
 | |
| 			maxpages << (PAGE_SHIFT - 10),
 | |
| 			last_page << (PAGE_SHIFT - 10));
 | |
| 	}
 | |
| 	if (maxpages > last_page) {
 | |
| 		maxpages = last_page + 1;
 | |
| 		/* p->max is an unsigned int: don't overflow it */
 | |
| 		if ((unsigned int)maxpages == 0)
 | |
| 			maxpages = UINT_MAX;
 | |
| 	}
 | |
| 	p->highest_bit = maxpages - 1;
 | |
| 
 | |
| 	if (!maxpages)
 | |
| 		return 0;
 | |
| 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
 | |
| 	if (swapfilepages && maxpages > swapfilepages) {
 | |
| 		pr_warn("Swap area shorter than signature indicates\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
 | |
| 		return 0;
 | |
| 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
 | |
| 		return 0;
 | |
| 
 | |
| 	return maxpages;
 | |
| }
 | |
| 
 | |
| static int setup_swap_map_and_extents(struct swap_info_struct *p,
 | |
| 					union swap_header *swap_header,
 | |
| 					unsigned char *swap_map,
 | |
| 					struct swap_cluster_info *cluster_info,
 | |
| 					unsigned long maxpages,
 | |
| 					sector_t *span)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int nr_good_pages;
 | |
| 	int nr_extents;
 | |
| 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
 | |
| 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
 | |
| 
 | |
| 	nr_good_pages = maxpages - 1;	/* omit header page */
 | |
| 
 | |
| 	cluster_set_null(&p->free_cluster_head);
 | |
| 	cluster_set_null(&p->free_cluster_tail);
 | |
| 	cluster_set_null(&p->discard_cluster_head);
 | |
| 	cluster_set_null(&p->discard_cluster_tail);
 | |
| 
 | |
| 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
 | |
| 		unsigned int page_nr = swap_header->info.badpages[i];
 | |
| 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
 | |
| 			return -EINVAL;
 | |
| 		if (page_nr < maxpages) {
 | |
| 			swap_map[page_nr] = SWAP_MAP_BAD;
 | |
| 			nr_good_pages--;
 | |
| 			/*
 | |
| 			 * Haven't marked the cluster free yet, no list
 | |
| 			 * operation involved
 | |
| 			 */
 | |
| 			inc_cluster_info_page(p, cluster_info, page_nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Haven't marked the cluster free yet, no list operation involved */
 | |
| 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
 | |
| 		inc_cluster_info_page(p, cluster_info, i);
 | |
| 
 | |
| 	if (nr_good_pages) {
 | |
| 		swap_map[0] = SWAP_MAP_BAD;
 | |
| 		/*
 | |
| 		 * Not mark the cluster free yet, no list
 | |
| 		 * operation involved
 | |
| 		 */
 | |
| 		inc_cluster_info_page(p, cluster_info, 0);
 | |
| 		p->max = maxpages;
 | |
| 		p->pages = nr_good_pages;
 | |
| 		nr_extents = setup_swap_extents(p, span);
 | |
| 		if (nr_extents < 0)
 | |
| 			return nr_extents;
 | |
| 		nr_good_pages = p->pages;
 | |
| 	}
 | |
| 	if (!nr_good_pages) {
 | |
| 		pr_warn("Empty swap-file\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!cluster_info)
 | |
| 		return nr_extents;
 | |
| 
 | |
| 	for (i = 0; i < nr_clusters; i++) {
 | |
| 		if (!cluster_count(&cluster_info[idx])) {
 | |
| 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
 | |
| 			if (cluster_is_null(&p->free_cluster_head)) {
 | |
| 				cluster_set_next_flag(&p->free_cluster_head,
 | |
| 								idx, 0);
 | |
| 				cluster_set_next_flag(&p->free_cluster_tail,
 | |
| 								idx, 0);
 | |
| 			} else {
 | |
| 				unsigned int tail;
 | |
| 
 | |
| 				tail = cluster_next(&p->free_cluster_tail);
 | |
| 				cluster_set_next(&cluster_info[tail], idx);
 | |
| 				cluster_set_next_flag(&p->free_cluster_tail,
 | |
| 								idx, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		idx++;
 | |
| 		if (idx == nr_clusters)
 | |
| 			idx = 0;
 | |
| 	}
 | |
| 	return nr_extents;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper to sys_swapon determining if a given swap
 | |
|  * backing device queue supports DISCARD operations.
 | |
|  */
 | |
| static bool swap_discardable(struct swap_info_struct *si)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(si->bdev);
 | |
| 
 | |
| 	if (!q || !blk_queue_discard(q))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	struct filename *name;
 | |
| 	struct file *swap_file = NULL;
 | |
| 	struct address_space *mapping;
 | |
| 	int i;
 | |
| 	int prio;
 | |
| 	int error;
 | |
| 	union swap_header *swap_header;
 | |
| 	int nr_extents;
 | |
| 	sector_t span;
 | |
| 	unsigned long maxpages;
 | |
| 	unsigned char *swap_map = NULL;
 | |
| 	struct swap_cluster_info *cluster_info = NULL;
 | |
| 	unsigned long *frontswap_map = NULL;
 | |
| 	struct page *page = NULL;
 | |
| 	struct inode *inode = NULL;
 | |
| 
 | |
| 	if (swap_flags & ~SWAP_FLAGS_VALID)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	p = alloc_swap_info();
 | |
| 	if (IS_ERR(p))
 | |
| 		return PTR_ERR(p);
 | |
| 
 | |
| 	INIT_WORK(&p->discard_work, swap_discard_work);
 | |
| 
 | |
| 	name = getname(specialfile);
 | |
| 	if (IS_ERR(name)) {
 | |
| 		error = PTR_ERR(name);
 | |
| 		name = NULL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
 | |
| 	if (IS_ERR(swap_file)) {
 | |
| 		error = PTR_ERR(swap_file);
 | |
| 		swap_file = NULL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	p->swap_file = swap_file;
 | |
| 	mapping = swap_file->f_mapping;
 | |
| 
 | |
| 	for (i = 0; i < nr_swapfiles; i++) {
 | |
| 		struct swap_info_struct *q = swap_info[i];
 | |
| 
 | |
| 		if (q == p || !q->swap_file)
 | |
| 			continue;
 | |
| 		if (mapping == q->swap_file->f_mapping) {
 | |
| 			error = -EBUSY;
 | |
| 			goto bad_swap;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	inode = mapping->host;
 | |
| 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
 | |
| 	error = claim_swapfile(p, inode);
 | |
| 	if (unlikely(error))
 | |
| 		goto bad_swap;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the swap header.
 | |
| 	 */
 | |
| 	if (!mapping->a_ops->readpage) {
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	page = read_mapping_page(mapping, 0, swap_file);
 | |
| 	if (IS_ERR(page)) {
 | |
| 		error = PTR_ERR(page);
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	swap_header = kmap(page);
 | |
| 
 | |
| 	maxpages = read_swap_header(p, swap_header, inode);
 | |
| 	if (unlikely(!maxpages)) {
 | |
| 		error = -EINVAL;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 
 | |
| 	/* OK, set up the swap map and apply the bad block list */
 | |
| 	swap_map = vzalloc(maxpages);
 | |
| 	if (!swap_map) {
 | |
| 		error = -ENOMEM;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
 | |
| 		p->flags |= SWP_SOLIDSTATE;
 | |
| 		/*
 | |
| 		 * select a random position to start with to help wear leveling
 | |
| 		 * SSD
 | |
| 		 */
 | |
| 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
 | |
| 
 | |
| 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
 | |
| 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
 | |
| 		if (!cluster_info) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto bad_swap;
 | |
| 		}
 | |
| 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
 | |
| 		if (!p->percpu_cluster) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto bad_swap;
 | |
| 		}
 | |
| 		for_each_possible_cpu(i) {
 | |
| 			struct percpu_cluster *cluster;
 | |
| 			cluster = per_cpu_ptr(p->percpu_cluster, i);
 | |
| 			cluster_set_null(&cluster->index);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = swap_cgroup_swapon(p->type, maxpages);
 | |
| 	if (error)
 | |
| 		goto bad_swap;
 | |
| 
 | |
| 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
 | |
| 		cluster_info, maxpages, &span);
 | |
| 	if (unlikely(nr_extents < 0)) {
 | |
| 		error = nr_extents;
 | |
| 		goto bad_swap;
 | |
| 	}
 | |
| 	/* frontswap enabled? set up bit-per-page map for frontswap */
 | |
| 	if (frontswap_enabled)
 | |
| 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
 | |
| 
 | |
| 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
 | |
| 		/*
 | |
| 		 * When discard is enabled for swap with no particular
 | |
| 		 * policy flagged, we set all swap discard flags here in
 | |
| 		 * order to sustain backward compatibility with older
 | |
| 		 * swapon(8) releases.
 | |
| 		 */
 | |
| 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
 | |
| 			     SWP_PAGE_DISCARD);
 | |
| 
 | |
| 		/*
 | |
| 		 * By flagging sys_swapon, a sysadmin can tell us to
 | |
| 		 * either do single-time area discards only, or to just
 | |
| 		 * perform discards for released swap page-clusters.
 | |
| 		 * Now it's time to adjust the p->flags accordingly.
 | |
| 		 */
 | |
| 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
 | |
| 			p->flags &= ~SWP_PAGE_DISCARD;
 | |
| 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
 | |
| 			p->flags &= ~SWP_AREA_DISCARD;
 | |
| 
 | |
| 		/* issue a swapon-time discard if it's still required */
 | |
| 		if (p->flags & SWP_AREA_DISCARD) {
 | |
| 			int err = discard_swap(p);
 | |
| 			if (unlikely(err))
 | |
| 				pr_err("swapon: discard_swap(%p): %d\n",
 | |
| 					p, err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&swapon_mutex);
 | |
| 	prio = -1;
 | |
| 	if (swap_flags & SWAP_FLAG_PREFER)
 | |
| 		prio =
 | |
| 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
 | |
| 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
 | |
| 
 | |
| 	pr_info("Adding %uk swap on %s.  "
 | |
| 			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
 | |
| 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
 | |
| 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
 | |
| 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
 | |
| 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
 | |
| 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
 | |
| 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
 | |
| 		(frontswap_map) ? "FS" : "");
 | |
| 
 | |
| 	mutex_unlock(&swapon_mutex);
 | |
| 	atomic_inc(&proc_poll_event);
 | |
| 	wake_up_interruptible(&proc_poll_wait);
 | |
| 
 | |
| 	if (S_ISREG(inode->i_mode))
 | |
| 		inode->i_flags |= S_SWAPFILE;
 | |
| 	error = 0;
 | |
| 	goto out;
 | |
| bad_swap:
 | |
| 	free_percpu(p->percpu_cluster);
 | |
| 	p->percpu_cluster = NULL;
 | |
| 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
 | |
| 		set_blocksize(p->bdev, p->old_block_size);
 | |
| 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 | |
| 	}
 | |
| 	destroy_swap_extents(p);
 | |
| 	swap_cgroup_swapoff(p->type);
 | |
| 	spin_lock(&swap_lock);
 | |
| 	p->swap_file = NULL;
 | |
| 	p->flags = 0;
 | |
| 	spin_unlock(&swap_lock);
 | |
| 	vfree(swap_map);
 | |
| 	vfree(cluster_info);
 | |
| 	if (swap_file) {
 | |
| 		if (inode && S_ISREG(inode->i_mode)) {
 | |
| 			mutex_unlock(&inode->i_mutex);
 | |
| 			inode = NULL;
 | |
| 		}
 | |
| 		filp_close(swap_file, NULL);
 | |
| 	}
 | |
| out:
 | |
| 	if (page && !IS_ERR(page)) {
 | |
| 		kunmap(page);
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 	if (name)
 | |
| 		putname(name);
 | |
| 	if (inode && S_ISREG(inode->i_mode))
 | |
| 		mutex_unlock(&inode->i_mutex);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void si_swapinfo(struct sysinfo *val)
 | |
| {
 | |
| 	unsigned int type;
 | |
| 	unsigned long nr_to_be_unused = 0;
 | |
| 
 | |
| 	spin_lock(&swap_lock);
 | |
| 	for (type = 0; type < nr_swapfiles; type++) {
 | |
| 		struct swap_info_struct *si = swap_info[type];
 | |
| 
 | |
| 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
 | |
| 			nr_to_be_unused += si->inuse_pages;
 | |
| 	}
 | |
| 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
 | |
| 	val->totalswap = total_swap_pages + nr_to_be_unused;
 | |
| 	spin_unlock(&swap_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that a swap entry is valid and increment its swap map count.
 | |
|  *
 | |
|  * Returns error code in following case.
 | |
|  * - success -> 0
 | |
|  * - swp_entry is invalid -> EINVAL
 | |
|  * - swp_entry is migration entry -> EINVAL
 | |
|  * - swap-cache reference is requested but there is already one. -> EEXIST
 | |
|  * - swap-cache reference is requested but the entry is not used. -> ENOENT
 | |
|  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
 | |
|  */
 | |
| static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
 | |
| {
 | |
| 	struct swap_info_struct *p;
 | |
| 	unsigned long offset, type;
 | |
| 	unsigned char count;
 | |
| 	unsigned char has_cache;
 | |
| 	int err = -EINVAL;
 | |
| 
 | |
| 	if (non_swap_entry(entry))
 | |
| 		goto out;
 | |
| 
 | |
| 	type = swp_type(entry);
 | |
| 	if (type >= nr_swapfiles)
 | |
| 		goto bad_file;
 | |
| 	p = swap_info[type];
 | |
| 	offset = swp_offset(entry);
 | |
| 
 | |
| 	spin_lock(&p->lock);
 | |
| 	if (unlikely(offset >= p->max))
 | |
| 		goto unlock_out;
 | |
| 
 | |
| 	count = p->swap_map[offset];
 | |
| 
 | |
| 	/*
 | |
| 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
 | |
| 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
 | |
| 	 */
 | |
| 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
 | |
| 		err = -ENOENT;
 | |
| 		goto unlock_out;
 | |
| 	}
 | |
| 
 | |
| 	has_cache = count & SWAP_HAS_CACHE;
 | |
| 	count &= ~SWAP_HAS_CACHE;
 | |
| 	err = 0;
 | |
| 
 | |
| 	if (usage == SWAP_HAS_CACHE) {
 | |
| 
 | |
| 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
 | |
| 		if (!has_cache && count)
 | |
| 			has_cache = SWAP_HAS_CACHE;
 | |
| 		else if (has_cache)		/* someone else added cache */
 | |
| 			err = -EEXIST;
 | |
| 		else				/* no users remaining */
 | |
| 			err = -ENOENT;
 | |
| 
 | |
| 	} else if (count || has_cache) {
 | |
| 
 | |
| 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
 | |
| 			count += usage;
 | |
| 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
 | |
| 			err = -EINVAL;
 | |
| 		else if (swap_count_continued(p, offset, count))
 | |
| 			count = COUNT_CONTINUED;
 | |
| 		else
 | |
| 			err = -ENOMEM;
 | |
| 	} else
 | |
| 		err = -ENOENT;			/* unused swap entry */
 | |
| 
 | |
| 	p->swap_map[offset] = count | has_cache;
 | |
| 
 | |
| unlock_out:
 | |
| 	spin_unlock(&p->lock);
 | |
| out:
 | |
| 	return err;
 | |
| 
 | |
| bad_file:
 | |
| 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
 | |
|  * (in which case its reference count is never incremented).
 | |
|  */
 | |
| void swap_shmem_alloc(swp_entry_t entry)
 | |
| {
 | |
| 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increase reference count of swap entry by 1.
 | |
|  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
 | |
|  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
 | |
|  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
 | |
|  * might occur if a page table entry has got corrupted.
 | |
|  */
 | |
| int swap_duplicate(swp_entry_t entry)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
 | |
| 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @entry: swap entry for which we allocate swap cache.
 | |
|  *
 | |
|  * Called when allocating swap cache for existing swap entry,
 | |
|  * This can return error codes. Returns 0 at success.
 | |
|  * -EBUSY means there is a swap cache.
 | |
|  * Note: return code is different from swap_duplicate().
 | |
|  */
 | |
| int swapcache_prepare(swp_entry_t entry)
 | |
| {
 | |
| 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
 | |
| }
 | |
| 
 | |
| struct swap_info_struct *page_swap_info(struct page *page)
 | |
| {
 | |
| 	swp_entry_t swap = { .val = page_private(page) };
 | |
| 	BUG_ON(!PageSwapCache(page));
 | |
| 	return swap_info[swp_type(swap)];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * out-of-line __page_file_ methods to avoid include hell.
 | |
|  */
 | |
| struct address_space *__page_file_mapping(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 | |
| 	return page_swap_info(page)->swap_file->f_mapping;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__page_file_mapping);
 | |
| 
 | |
| pgoff_t __page_file_index(struct page *page)
 | |
| {
 | |
| 	swp_entry_t swap = { .val = page_private(page) };
 | |
| 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 | |
| 	return swp_offset(swap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__page_file_index);
 | |
| 
 | |
| /*
 | |
|  * add_swap_count_continuation - called when a swap count is duplicated
 | |
|  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
 | |
|  * page of the original vmalloc'ed swap_map, to hold the continuation count
 | |
|  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
 | |
|  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
 | |
|  *
 | |
|  * These continuation pages are seldom referenced: the common paths all work
 | |
|  * on the original swap_map, only referring to a continuation page when the
 | |
|  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
 | |
|  *
 | |
|  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
 | |
|  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
 | |
|  * can be called after dropping locks.
 | |
|  */
 | |
| int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct swap_info_struct *si;
 | |
| 	struct page *head;
 | |
| 	struct page *page;
 | |
| 	struct page *list_page;
 | |
| 	pgoff_t offset;
 | |
| 	unsigned char count;
 | |
| 
 | |
| 	/*
 | |
| 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
 | |
| 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
 | |
| 	 */
 | |
| 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
 | |
| 
 | |
| 	si = swap_info_get(entry);
 | |
| 	if (!si) {
 | |
| 		/*
 | |
| 		 * An acceptable race has occurred since the failing
 | |
| 		 * __swap_duplicate(): the swap entry has been freed,
 | |
| 		 * perhaps even the whole swap_map cleared for swapoff.
 | |
| 		 */
 | |
| 		goto outer;
 | |
| 	}
 | |
| 
 | |
| 	offset = swp_offset(entry);
 | |
| 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
 | |
| 
 | |
| 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
 | |
| 		/*
 | |
| 		 * The higher the swap count, the more likely it is that tasks
 | |
| 		 * will race to add swap count continuation: we need to avoid
 | |
| 		 * over-provisioning.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!page) {
 | |
| 		spin_unlock(&si->lock);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
 | |
| 	 * no architecture is using highmem pages for kernel page tables: so it
 | |
| 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
 | |
| 	 */
 | |
| 	head = vmalloc_to_page(si->swap_map + offset);
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Page allocation does not initialize the page's lru field,
 | |
| 	 * but it does always reset its private field.
 | |
| 	 */
 | |
| 	if (!page_private(head)) {
 | |
| 		BUG_ON(count & COUNT_CONTINUED);
 | |
| 		INIT_LIST_HEAD(&head->lru);
 | |
| 		set_page_private(head, SWP_CONTINUED);
 | |
| 		si->flags |= SWP_CONTINUED;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(list_page, &head->lru, lru) {
 | |
| 		unsigned char *map;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the previous map said no continuation, but we've found
 | |
| 		 * a continuation page, free our allocation and use this one.
 | |
| 		 */
 | |
| 		if (!(count & COUNT_CONTINUED))
 | |
| 			goto out;
 | |
| 
 | |
| 		map = kmap_atomic(list_page) + offset;
 | |
| 		count = *map;
 | |
| 		kunmap_atomic(map);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this continuation count now has some space in it,
 | |
| 		 * free our allocation and use this one.
 | |
| 		 */
 | |
| 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&page->lru, &head->lru);
 | |
| 	page = NULL;			/* now it's attached, don't free it */
 | |
| out:
 | |
| 	spin_unlock(&si->lock);
 | |
| outer:
 | |
| 	if (page)
 | |
| 		__free_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * swap_count_continued - when the original swap_map count is incremented
 | |
|  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
 | |
|  * into, carry if so, or else fail until a new continuation page is allocated;
 | |
|  * when the original swap_map count is decremented from 0 with continuation,
 | |
|  * borrow from the continuation and report whether it still holds more.
 | |
|  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
 | |
|  */
 | |
| static bool swap_count_continued(struct swap_info_struct *si,
 | |
| 				 pgoff_t offset, unsigned char count)
 | |
| {
 | |
| 	struct page *head;
 | |
| 	struct page *page;
 | |
| 	unsigned char *map;
 | |
| 
 | |
| 	head = vmalloc_to_page(si->swap_map + offset);
 | |
| 	if (page_private(head) != SWP_CONTINUED) {
 | |
| 		BUG_ON(count & COUNT_CONTINUED);
 | |
| 		return false;		/* need to add count continuation */
 | |
| 	}
 | |
| 
 | |
| 	offset &= ~PAGE_MASK;
 | |
| 	page = list_entry(head->lru.next, struct page, lru);
 | |
| 	map = kmap_atomic(page) + offset;
 | |
| 
 | |
| 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
 | |
| 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
 | |
| 
 | |
| 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
 | |
| 		/*
 | |
| 		 * Think of how you add 1 to 999
 | |
| 		 */
 | |
| 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_entry(page->lru.next, struct page, lru);
 | |
| 			BUG_ON(page == head);
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 		}
 | |
| 		if (*map == SWAP_CONT_MAX) {
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_entry(page->lru.next, struct page, lru);
 | |
| 			if (page == head)
 | |
| 				return false;	/* add count continuation */
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| init_map:		*map = 0;		/* we didn't zero the page */
 | |
| 		}
 | |
| 		*map += 1;
 | |
| 		kunmap_atomic(map);
 | |
| 		page = list_entry(page->lru.prev, struct page, lru);
 | |
| 		while (page != head) {
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 			*map = COUNT_CONTINUED;
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_entry(page->lru.prev, struct page, lru);
 | |
| 		}
 | |
| 		return true;			/* incremented */
 | |
| 
 | |
| 	} else {				/* decrementing */
 | |
| 		/*
 | |
| 		 * Think of how you subtract 1 from 1000
 | |
| 		 */
 | |
| 		BUG_ON(count != COUNT_CONTINUED);
 | |
| 		while (*map == COUNT_CONTINUED) {
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_entry(page->lru.next, struct page, lru);
 | |
| 			BUG_ON(page == head);
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 		}
 | |
| 		BUG_ON(*map == 0);
 | |
| 		*map -= 1;
 | |
| 		if (*map == 0)
 | |
| 			count = 0;
 | |
| 		kunmap_atomic(map);
 | |
| 		page = list_entry(page->lru.prev, struct page, lru);
 | |
| 		while (page != head) {
 | |
| 			map = kmap_atomic(page) + offset;
 | |
| 			*map = SWAP_CONT_MAX | count;
 | |
| 			count = COUNT_CONTINUED;
 | |
| 			kunmap_atomic(map);
 | |
| 			page = list_entry(page->lru.prev, struct page, lru);
 | |
| 		}
 | |
| 		return count == COUNT_CONTINUED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free_swap_count_continuations - swapoff free all the continuation pages
 | |
|  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
 | |
|  */
 | |
| static void free_swap_count_continuations(struct swap_info_struct *si)
 | |
| {
 | |
| 	pgoff_t offset;
 | |
| 
 | |
| 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
 | |
| 		struct page *head;
 | |
| 		head = vmalloc_to_page(si->swap_map + offset);
 | |
| 		if (page_private(head)) {
 | |
| 			struct list_head *this, *next;
 | |
| 			list_for_each_safe(this, next, &head->lru) {
 | |
| 				struct page *page;
 | |
| 				page = list_entry(this, struct page, lru);
 | |
| 				list_del(this);
 | |
| 				__free_page(page);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 |