 efe120a067
			
		
	
	
	efe120a067
	
	
	
		
			
			Convert all applicable cases of printk and pr_* to the btrfs_* macros. Fix all uses of the BTRFS prefix. Signed-off-by: Frank Holton <fholton@gmail.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
		
			
				
	
	
		
			1134 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1134 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include "ctree.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "extent_io.h"
 | |
| #include "disk-io.h"
 | |
| 
 | |
| static struct kmem_cache *btrfs_ordered_extent_cache;
 | |
| 
 | |
| static u64 entry_end(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	if (entry->file_offset + entry->len < entry->file_offset)
 | |
| 		return (u64)-1;
 | |
| 	return entry->file_offset + entry->len;
 | |
| }
 | |
| 
 | |
| /* returns NULL if the insertion worked, or it returns the node it did find
 | |
|  * in the tree
 | |
|  */
 | |
| static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 | |
| 				   struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		if (file_offset < entry->file_offset)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (file_offset >= entry_end(entry))
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return parent;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void ordered_data_tree_panic(struct inode *inode, int errno,
 | |
| 					       u64 offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
 | |
| 		    "%llu\n", offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look for a given offset in the tree, and if it can't be found return the
 | |
|  * first lesser offset
 | |
|  */
 | |
| static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 | |
| 				     struct rb_node **prev_ret)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *test;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 	struct btrfs_ordered_extent *prev_entry = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 | |
| 		prev = n;
 | |
| 		prev_entry = entry;
 | |
| 
 | |
| 		if (file_offset < entry->file_offset)
 | |
| 			n = n->rb_left;
 | |
| 		else if (file_offset >= entry_end(entry))
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return n;
 | |
| 	}
 | |
| 	if (!prev_ret)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (prev && file_offset >= entry_end(prev_entry)) {
 | |
| 		test = rb_next(prev);
 | |
| 		if (!test)
 | |
| 			break;
 | |
| 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 		if (file_offset < entry_end(prev_entry))
 | |
| 			break;
 | |
| 
 | |
| 		prev = test;
 | |
| 	}
 | |
| 	if (prev)
 | |
| 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 	while (prev && file_offset < entry_end(prev_entry)) {
 | |
| 		test = rb_prev(prev);
 | |
| 		if (!test)
 | |
| 			break;
 | |
| 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 		prev = test;
 | |
| 	}
 | |
| 	*prev_ret = prev;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to check if a given offset is inside a given entry
 | |
|  */
 | |
| static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 | |
| {
 | |
| 	if (file_offset < entry->file_offset ||
 | |
| 	    entry->file_offset + entry->len <= file_offset)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 | |
| 			  u64 len)
 | |
| {
 | |
| 	if (file_offset + len <= entry->file_offset ||
 | |
| 	    entry->file_offset + entry->len <= file_offset)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look find the first ordered struct that has this offset, otherwise
 | |
|  * the first one less than this offset
 | |
|  */
 | |
| static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 | |
| 					  u64 file_offset)
 | |
| {
 | |
| 	struct rb_root *root = &tree->tree;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *ret;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	if (tree->last) {
 | |
| 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 | |
| 				 rb_node);
 | |
| 		if (offset_in_entry(entry, file_offset))
 | |
| 			return tree->last;
 | |
| 	}
 | |
| 	ret = __tree_search(root, file_offset, &prev);
 | |
| 	if (!ret)
 | |
| 		ret = prev;
 | |
| 	if (ret)
 | |
| 		tree->last = ret;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* allocate and add a new ordered_extent into the per-inode tree.
 | |
|  * file_offset is the logical offset in the file
 | |
|  *
 | |
|  * start is the disk block number of an extent already reserved in the
 | |
|  * extent allocation tree
 | |
|  *
 | |
|  * len is the length of the extent
 | |
|  *
 | |
|  * The tree is given a single reference on the ordered extent that was
 | |
|  * inserted.
 | |
|  */
 | |
| static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 | |
| 				      u64 start, u64 len, u64 disk_len,
 | |
| 				      int type, int dio, int compress_type)
 | |
| {
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 | |
| 	if (!entry)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	entry->file_offset = file_offset;
 | |
| 	entry->start = start;
 | |
| 	entry->len = len;
 | |
| 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
 | |
| 	    !(type == BTRFS_ORDERED_NOCOW))
 | |
| 		entry->csum_bytes_left = disk_len;
 | |
| 	entry->disk_len = disk_len;
 | |
| 	entry->bytes_left = len;
 | |
| 	entry->inode = igrab(inode);
 | |
| 	entry->compress_type = compress_type;
 | |
| 	entry->truncated_len = (u64)-1;
 | |
| 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 | |
| 		set_bit(type, &entry->flags);
 | |
| 
 | |
| 	if (dio)
 | |
| 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 | |
| 
 | |
| 	/* one ref for the tree */
 | |
| 	atomic_set(&entry->refs, 1);
 | |
| 	init_waitqueue_head(&entry->wait);
 | |
| 	INIT_LIST_HEAD(&entry->list);
 | |
| 	INIT_LIST_HEAD(&entry->root_extent_list);
 | |
| 	INIT_LIST_HEAD(&entry->work_list);
 | |
| 	init_completion(&entry->completion);
 | |
| 	INIT_LIST_HEAD(&entry->log_list);
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_add(inode, entry);
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_insert(&tree->tree, file_offset,
 | |
| 			   &entry->rb_node);
 | |
| 	if (node)
 | |
| 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	list_add_tail(&entry->root_extent_list,
 | |
| 		      &root->ordered_extents);
 | |
| 	root->nr_ordered_extents++;
 | |
| 	if (root->nr_ordered_extents == 1) {
 | |
| 		spin_lock(&root->fs_info->ordered_root_lock);
 | |
| 		BUG_ON(!list_empty(&root->ordered_root));
 | |
| 		list_add_tail(&root->ordered_root,
 | |
| 			      &root->fs_info->ordered_roots);
 | |
| 		spin_unlock(&root->fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 | |
| 			     u64 start, u64 len, u64 disk_len, int type)
 | |
| {
 | |
| 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 | |
| 					  disk_len, type, 0,
 | |
| 					  BTRFS_COMPRESS_NONE);
 | |
| }
 | |
| 
 | |
| int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 | |
| 				 u64 start, u64 len, u64 disk_len, int type)
 | |
| {
 | |
| 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 | |
| 					  disk_len, type, 1,
 | |
| 					  BTRFS_COMPRESS_NONE);
 | |
| }
 | |
| 
 | |
| int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 | |
| 				      u64 start, u64 len, u64 disk_len,
 | |
| 				      int type, int compress_type)
 | |
| {
 | |
| 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 | |
| 					  disk_len, type, 0,
 | |
| 					  compress_type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 | |
|  * when an ordered extent is finished.  If the list covers more than one
 | |
|  * ordered extent, it is split across multiples.
 | |
|  */
 | |
| void btrfs_add_ordered_sum(struct inode *inode,
 | |
| 			   struct btrfs_ordered_extent *entry,
 | |
| 			   struct btrfs_ordered_sum *sum)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	list_add_tail(&sum->list, &entry->list);
 | |
| 	WARN_ON(entry->csum_bytes_left < sum->len);
 | |
| 	entry->csum_bytes_left -= sum->len;
 | |
| 	if (entry->csum_bytes_left == 0)
 | |
| 		wake_up(&entry->wait);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used to account for finished IO across a given range
 | |
|  * of the file.  The IO may span ordered extents.  If
 | |
|  * a given ordered_extent is completely done, 1 is returned, otherwise
 | |
|  * 0.
 | |
|  *
 | |
|  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 | |
|  * to make sure this function only returns 1 once for a given ordered extent.
 | |
|  *
 | |
|  * file_offset is updated to one byte past the range that is recorded as
 | |
|  * complete.  This allows you to walk forward in the file.
 | |
|  */
 | |
| int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 | |
| 				   struct btrfs_ordered_extent **cached,
 | |
| 				   u64 *file_offset, u64 io_size, int uptodate)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 	u64 dec_end;
 | |
| 	u64 dec_start;
 | |
| 	u64 to_dec;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irqsave(&tree->lock, flags);
 | |
| 	node = tree_search(tree, *file_offset);
 | |
| 	if (!node) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	if (!offset_in_entry(entry, *file_offset)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dec_start = max(*file_offset, entry->file_offset);
 | |
| 	dec_end = min(*file_offset + io_size, entry->file_offset +
 | |
| 		      entry->len);
 | |
| 	*file_offset = dec_end;
 | |
| 	if (dec_start > dec_end) {
 | |
| 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 | |
| 			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
 | |
| 	}
 | |
| 	to_dec = dec_end - dec_start;
 | |
| 	if (to_dec > entry->bytes_left) {
 | |
| 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 | |
| 			"bad ordered accounting left %llu size %llu",
 | |
| 			entry->bytes_left, to_dec);
 | |
| 	}
 | |
| 	entry->bytes_left -= to_dec;
 | |
| 	if (!uptodate)
 | |
| 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 | |
| 
 | |
| 	if (entry->bytes_left == 0)
 | |
| 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 | |
| 	else
 | |
| 		ret = 1;
 | |
| out:
 | |
| 	if (!ret && cached && entry) {
 | |
| 		*cached = entry;
 | |
| 		atomic_inc(&entry->refs);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tree->lock, flags);
 | |
| 	return ret == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used to account for finished IO across a given range
 | |
|  * of the file.  The IO should not span ordered extents.  If
 | |
|  * a given ordered_extent is completely done, 1 is returned, otherwise
 | |
|  * 0.
 | |
|  *
 | |
|  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 | |
|  * to make sure this function only returns 1 once for a given ordered extent.
 | |
|  */
 | |
| int btrfs_dec_test_ordered_pending(struct inode *inode,
 | |
| 				   struct btrfs_ordered_extent **cached,
 | |
| 				   u64 file_offset, u64 io_size, int uptodate)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irqsave(&tree->lock, flags);
 | |
| 	if (cached && *cached) {
 | |
| 		entry = *cached;
 | |
| 		goto have_entry;
 | |
| 	}
 | |
| 
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| have_entry:
 | |
| 	if (!offset_in_entry(entry, file_offset)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (io_size > entry->bytes_left) {
 | |
| 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 | |
| 			   "bad ordered accounting left %llu size %llu",
 | |
| 		       entry->bytes_left, io_size);
 | |
| 	}
 | |
| 	entry->bytes_left -= io_size;
 | |
| 	if (!uptodate)
 | |
| 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 | |
| 
 | |
| 	if (entry->bytes_left == 0)
 | |
| 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 | |
| 	else
 | |
| 		ret = 1;
 | |
| out:
 | |
| 	if (!ret && cached && entry) {
 | |
| 		*cached = entry;
 | |
| 		atomic_inc(&entry->refs);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tree->lock, flags);
 | |
| 	return ret == 0;
 | |
| }
 | |
| 
 | |
| /* Needs to either be called under a log transaction or the log_mutex */
 | |
| void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	struct rb_node *n;
 | |
| 	int index = log->log_transid % 2;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 | |
| 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 | |
| 		spin_lock(&log->log_extents_lock[index]);
 | |
| 		if (list_empty(&ordered->log_list)) {
 | |
| 			list_add_tail(&ordered->log_list, &log->logged_list[index]);
 | |
| 			atomic_inc(&ordered->refs);
 | |
| 		}
 | |
| 		spin_unlock(&log->log_extents_lock[index]);
 | |
| 	}
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| }
 | |
| 
 | |
| void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	int index = transid % 2;
 | |
| 
 | |
| 	spin_lock_irq(&log->log_extents_lock[index]);
 | |
| 	while (!list_empty(&log->logged_list[index])) {
 | |
| 		ordered = list_first_entry(&log->logged_list[index],
 | |
| 					   struct btrfs_ordered_extent,
 | |
| 					   log_list);
 | |
| 		list_del_init(&ordered->log_list);
 | |
| 		spin_unlock_irq(&log->log_extents_lock[index]);
 | |
| 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 | |
| 						   &ordered->flags));
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		spin_lock_irq(&log->log_extents_lock[index]);
 | |
| 	}
 | |
| 	spin_unlock_irq(&log->log_extents_lock[index]);
 | |
| }
 | |
| 
 | |
| void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	int index = transid % 2;
 | |
| 
 | |
| 	spin_lock_irq(&log->log_extents_lock[index]);
 | |
| 	while (!list_empty(&log->logged_list[index])) {
 | |
| 		ordered = list_first_entry(&log->logged_list[index],
 | |
| 					   struct btrfs_ordered_extent,
 | |
| 					   log_list);
 | |
| 		list_del_init(&ordered->log_list);
 | |
| 		spin_unlock_irq(&log->log_extents_lock[index]);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		spin_lock_irq(&log->log_extents_lock[index]);
 | |
| 	}
 | |
| 	spin_unlock_irq(&log->log_extents_lock[index]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * used to drop a reference on an ordered extent.  This will free
 | |
|  * the extent if the last reference is dropped
 | |
|  */
 | |
| void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	struct list_head *cur;
 | |
| 	struct btrfs_ordered_sum *sum;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_put(entry->inode, entry);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&entry->refs)) {
 | |
| 		if (entry->inode)
 | |
| 			btrfs_add_delayed_iput(entry->inode);
 | |
| 		while (!list_empty(&entry->list)) {
 | |
| 			cur = entry->list.next;
 | |
| 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 | |
| 			list_del(&sum->list);
 | |
| 			kfree(sum);
 | |
| 		}
 | |
| 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove an ordered extent from the tree.  No references are dropped
 | |
|  * and waiters are woken up.
 | |
|  */
 | |
| void btrfs_remove_ordered_extent(struct inode *inode,
 | |
| 				 struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = &entry->rb_node;
 | |
| 	rb_erase(node, &tree->tree);
 | |
| 	if (tree->last == node)
 | |
| 		tree->last = NULL;
 | |
| 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	list_del_init(&entry->root_extent_list);
 | |
| 	root->nr_ordered_extents--;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_remove(inode, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have no more ordered extents for this inode and
 | |
| 	 * no dirty pages.  We can safely remove it from the
 | |
| 	 * list of ordered extents
 | |
| 	 */
 | |
| 	if (RB_EMPTY_ROOT(&tree->tree) &&
 | |
| 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 | |
| 		spin_lock(&root->fs_info->ordered_root_lock);
 | |
| 		list_del_init(&BTRFS_I(inode)->ordered_operations);
 | |
| 		spin_unlock(&root->fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!root->nr_ordered_extents) {
 | |
| 		spin_lock(&root->fs_info->ordered_root_lock);
 | |
| 		BUG_ON(list_empty(&root->ordered_root));
 | |
| 		list_del_init(&root->ordered_root);
 | |
| 		spin_unlock(&root->fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| 	wake_up(&entry->wait);
 | |
| }
 | |
| 
 | |
| static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 | |
| 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 | |
| 	complete(&ordered->completion);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait for all the ordered extents in a root.  This is done when balancing
 | |
|  * space between drives.
 | |
|  */
 | |
| int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
 | |
| {
 | |
| 	struct list_head splice, works;
 | |
| 	struct btrfs_ordered_extent *ordered, *next;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 	INIT_LIST_HEAD(&works);
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->ordered_operations_mutex);
 | |
| 	spin_lock(&root->ordered_extent_lock);
 | |
| 	list_splice_init(&root->ordered_extents, &splice);
 | |
| 	while (!list_empty(&splice) && nr) {
 | |
| 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 | |
| 					   root_extent_list);
 | |
| 		list_move_tail(&ordered->root_extent_list,
 | |
| 			       &root->ordered_extents);
 | |
| 		atomic_inc(&ordered->refs);
 | |
| 		spin_unlock(&root->ordered_extent_lock);
 | |
| 
 | |
| 		ordered->flush_work.func = btrfs_run_ordered_extent_work;
 | |
| 		list_add_tail(&ordered->work_list, &works);
 | |
| 		btrfs_queue_worker(&root->fs_info->flush_workers,
 | |
| 				   &ordered->flush_work);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		spin_lock(&root->ordered_extent_lock);
 | |
| 		if (nr != -1)
 | |
| 			nr--;
 | |
| 		count++;
 | |
| 	}
 | |
| 	list_splice_tail(&splice, &root->ordered_extents);
 | |
| 	spin_unlock(&root->ordered_extent_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(ordered, next, &works, work_list) {
 | |
| 		list_del_init(&ordered->work_list);
 | |
| 		wait_for_completion(&ordered->completion);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
 | |
| {
 | |
| 	struct btrfs_root *root;
 | |
| 	struct list_head splice;
 | |
| 	int done;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 
 | |
| 	spin_lock(&fs_info->ordered_root_lock);
 | |
| 	list_splice_init(&fs_info->ordered_roots, &splice);
 | |
| 	while (!list_empty(&splice) && nr) {
 | |
| 		root = list_first_entry(&splice, struct btrfs_root,
 | |
| 					ordered_root);
 | |
| 		root = btrfs_grab_fs_root(root);
 | |
| 		BUG_ON(!root);
 | |
| 		list_move_tail(&root->ordered_root,
 | |
| 			       &fs_info->ordered_roots);
 | |
| 		spin_unlock(&fs_info->ordered_root_lock);
 | |
| 
 | |
| 		done = btrfs_wait_ordered_extents(root, nr);
 | |
| 		btrfs_put_fs_root(root);
 | |
| 
 | |
| 		spin_lock(&fs_info->ordered_root_lock);
 | |
| 		if (nr != -1) {
 | |
| 			nr -= done;
 | |
| 			WARN_ON(nr < 0);
 | |
| 		}
 | |
| 	}
 | |
| 	list_splice_tail(&splice, &fs_info->ordered_roots);
 | |
| 	spin_unlock(&fs_info->ordered_root_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used during transaction commit to write all the inodes
 | |
|  * added to the ordered operation list.  These files must be fully on
 | |
|  * disk before the transaction commits.
 | |
|  *
 | |
|  * we have two modes here, one is to just start the IO via filemap_flush
 | |
|  * and the other is to wait for all the io.  When we wait, we have an
 | |
|  * extra check to make sure the ordered operation list really is empty
 | |
|  * before we return
 | |
|  */
 | |
| int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root, int wait)
 | |
| {
 | |
| 	struct btrfs_inode *btrfs_inode;
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_transaction *cur_trans = trans->transaction;
 | |
| 	struct list_head splice;
 | |
| 	struct list_head works;
 | |
| 	struct btrfs_delalloc_work *work, *next;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 	INIT_LIST_HEAD(&works);
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
 | |
| 	spin_lock(&root->fs_info->ordered_root_lock);
 | |
| 	list_splice_init(&cur_trans->ordered_operations, &splice);
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
 | |
| 				   ordered_operations);
 | |
| 		inode = &btrfs_inode->vfs_inode;
 | |
| 
 | |
| 		list_del_init(&btrfs_inode->ordered_operations);
 | |
| 
 | |
| 		/*
 | |
| 		 * the inode may be getting freed (in sys_unlink path).
 | |
| 		 */
 | |
| 		inode = igrab(inode);
 | |
| 		if (!inode)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!wait)
 | |
| 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
 | |
| 				      &cur_trans->ordered_operations);
 | |
| 		spin_unlock(&root->fs_info->ordered_root_lock);
 | |
| 
 | |
| 		work = btrfs_alloc_delalloc_work(inode, wait, 1);
 | |
| 		if (!work) {
 | |
| 			spin_lock(&root->fs_info->ordered_root_lock);
 | |
| 			if (list_empty(&BTRFS_I(inode)->ordered_operations))
 | |
| 				list_add_tail(&btrfs_inode->ordered_operations,
 | |
| 					      &splice);
 | |
| 			list_splice_tail(&splice,
 | |
| 					 &cur_trans->ordered_operations);
 | |
| 			spin_unlock(&root->fs_info->ordered_root_lock);
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		list_add_tail(&work->list, &works);
 | |
| 		btrfs_queue_worker(&root->fs_info->flush_workers,
 | |
| 				   &work->work);
 | |
| 
 | |
| 		cond_resched();
 | |
| 		spin_lock(&root->fs_info->ordered_root_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->ordered_root_lock);
 | |
| out:
 | |
| 	list_for_each_entry_safe(work, next, &works, list) {
 | |
| 		list_del_init(&work->list);
 | |
| 		btrfs_wait_and_free_delalloc_work(work);
 | |
| 	}
 | |
| 	mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to start IO or wait for a given ordered extent to finish.
 | |
|  *
 | |
|  * If wait is one, this effectively waits on page writeback for all the pages
 | |
|  * in the extent, and it waits on the io completion code to insert
 | |
|  * metadata into the btree corresponding to the extent
 | |
|  */
 | |
| void btrfs_start_ordered_extent(struct inode *inode,
 | |
| 				       struct btrfs_ordered_extent *entry,
 | |
| 				       int wait)
 | |
| {
 | |
| 	u64 start = entry->file_offset;
 | |
| 	u64 end = start + entry->len - 1;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_start(inode, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * pages in the range can be dirty, clean or writeback.  We
 | |
| 	 * start IO on any dirty ones so the wait doesn't stall waiting
 | |
| 	 * for the flusher thread to find them
 | |
| 	 */
 | |
| 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 | |
| 		filemap_fdatawrite_range(inode->i_mapping, start, end);
 | |
| 	if (wait) {
 | |
| 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 | |
| 						 &entry->flags));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to wait on ordered extents across a large range of bytes.
 | |
|  */
 | |
| int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u64 end;
 | |
| 	u64 orig_end;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 
 | |
| 	if (start + len < start) {
 | |
| 		orig_end = INT_LIMIT(loff_t);
 | |
| 	} else {
 | |
| 		orig_end = start + len - 1;
 | |
| 		if (orig_end > INT_LIMIT(loff_t))
 | |
| 			orig_end = INT_LIMIT(loff_t);
 | |
| 	}
 | |
| 
 | |
| 	/* start IO across the range first to instantiate any delalloc
 | |
| 	 * extents
 | |
| 	 */
 | |
| 	ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * So with compression we will find and lock a dirty page and clear the
 | |
| 	 * first one as dirty, setup an async extent, and immediately return
 | |
| 	 * with the entire range locked but with nobody actually marked with
 | |
| 	 * writeback.  So we can't just filemap_write_and_wait_range() and
 | |
| 	 * expect it to work since it will just kick off a thread to do the
 | |
| 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
 | |
| 	 * since it will wait on the page lock, which won't be unlocked until
 | |
| 	 * after the pages have been marked as writeback and so we're good to go
 | |
| 	 * from there.  We have to do this otherwise we'll miss the ordered
 | |
| 	 * extents and that results in badness.  Please Josef, do not think you
 | |
| 	 * know better and pull this out at some point in the future, it is
 | |
| 	 * right and you are wrong.
 | |
| 	 */
 | |
| 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 | |
| 		     &BTRFS_I(inode)->runtime_flags)) {
 | |
| 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
 | |
| 					       orig_end);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	end = orig_end;
 | |
| 	while (1) {
 | |
| 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 | |
| 		if (!ordered)
 | |
| 			break;
 | |
| 		if (ordered->file_offset > orig_end) {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ordered->file_offset + ordered->len <= start) {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 		end = ordered->file_offset;
 | |
| 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 | |
| 			ret = -EIO;
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		if (ret || end == 0 || end == start)
 | |
| 			break;
 | |
| 		end--;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find an ordered extent corresponding to file_offset.  return NULL if
 | |
|  * nothing is found, otherwise take a reference on the extent and return it
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 | |
| 							 u64 file_offset)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	if (!offset_in_entry(entry, file_offset))
 | |
| 		entry = NULL;
 | |
| 	if (entry)
 | |
| 		atomic_inc(&entry->refs);
 | |
| out:
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /* Since the DIO code tries to lock a wide area we need to look for any ordered
 | |
|  * extents that exist in the range, rather than just the start of the range.
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 | |
| 							u64 file_offset,
 | |
| 							u64 len)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node) {
 | |
| 		node = tree_search(tree, file_offset + len);
 | |
| 		if (!node)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 		if (range_overlaps(entry, file_offset, len))
 | |
| 			break;
 | |
| 
 | |
| 		if (entry->file_offset >= file_offset + len) {
 | |
| 			entry = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		entry = NULL;
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	if (entry)
 | |
| 		atomic_inc(&entry->refs);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lookup and return any extent before 'file_offset'.  NULL is returned
 | |
|  * if none is found
 | |
|  */
 | |
| struct btrfs_ordered_extent *
 | |
| btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	atomic_inc(&entry->refs);
 | |
| out:
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After an extent is done, call this to conditionally update the on disk
 | |
|  * i_size.  i_size is updated to cover any fully written part of the file.
 | |
|  */
 | |
| int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 | |
| 				struct btrfs_ordered_extent *ordered)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	u64 disk_i_size;
 | |
| 	u64 new_i_size;
 | |
| 	u64 i_size = i_size_read(inode);
 | |
| 	struct rb_node *node;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct btrfs_ordered_extent *test;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	if (ordered) {
 | |
| 		offset = entry_end(ordered);
 | |
| 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 | |
| 			offset = min(offset,
 | |
| 				     ordered->file_offset +
 | |
| 				     ordered->truncated_len);
 | |
| 	} else {
 | |
| 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 | |
| 	}
 | |
| 	disk_i_size = BTRFS_I(inode)->disk_i_size;
 | |
| 
 | |
| 	/* truncate file */
 | |
| 	if (disk_i_size > i_size) {
 | |
| 		BTRFS_I(inode)->disk_i_size = i_size;
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if the disk i_size is already at the inode->i_size, or
 | |
| 	 * this ordered extent is inside the disk i_size, we're done
 | |
| 	 */
 | |
| 	if (disk_i_size == i_size)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We still need to update disk_i_size if outstanding_isize is greater
 | |
| 	 * than disk_i_size.
 | |
| 	 */
 | |
| 	if (offset <= disk_i_size &&
 | |
| 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * walk backward from this ordered extent to disk_i_size.
 | |
| 	 * if we find an ordered extent then we can't update disk i_size
 | |
| 	 * yet
 | |
| 	 */
 | |
| 	if (ordered) {
 | |
| 		node = rb_prev(&ordered->rb_node);
 | |
| 	} else {
 | |
| 		prev = tree_search(tree, offset);
 | |
| 		/*
 | |
| 		 * we insert file extents without involving ordered struct,
 | |
| 		 * so there should be no ordered struct cover this offset
 | |
| 		 */
 | |
| 		if (prev) {
 | |
| 			test = rb_entry(prev, struct btrfs_ordered_extent,
 | |
| 					rb_node);
 | |
| 			BUG_ON(offset_in_entry(test, offset));
 | |
| 		}
 | |
| 		node = prev;
 | |
| 	}
 | |
| 	for (; node; node = rb_prev(node)) {
 | |
| 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		/* We treat this entry as if it doesnt exist */
 | |
| 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 | |
| 			continue;
 | |
| 		if (test->file_offset + test->len <= disk_i_size)
 | |
| 			break;
 | |
| 		if (test->file_offset >= i_size)
 | |
| 			break;
 | |
| 		if (entry_end(test) > disk_i_size) {
 | |
| 			/*
 | |
| 			 * we don't update disk_i_size now, so record this
 | |
| 			 * undealt i_size. Or we will not know the real
 | |
| 			 * i_size.
 | |
| 			 */
 | |
| 			if (test->outstanding_isize < offset)
 | |
| 				test->outstanding_isize = offset;
 | |
| 			if (ordered &&
 | |
| 			    ordered->outstanding_isize >
 | |
| 			    test->outstanding_isize)
 | |
| 				test->outstanding_isize =
 | |
| 						ordered->outstanding_isize;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	new_i_size = min_t(u64, offset, i_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some ordered extents may completed before the current one, and
 | |
| 	 * we hold the real i_size in ->outstanding_isize.
 | |
| 	 */
 | |
| 	if (ordered && ordered->outstanding_isize > new_i_size)
 | |
| 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
 | |
| 	BTRFS_I(inode)->disk_i_size = new_i_size;
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	/*
 | |
| 	 * We need to do this because we can't remove ordered extents until
 | |
| 	 * after the i_disk_size has been updated and then the inode has been
 | |
| 	 * updated to reflect the change, so we need to tell anybody who finds
 | |
| 	 * this ordered extent that we've already done all the real work, we
 | |
| 	 * just haven't completed all the other work.
 | |
| 	 */
 | |
| 	if (ordered)
 | |
| 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search the ordered extents for one corresponding to 'offset' and
 | |
|  * try to find a checksum.  This is used because we allow pages to
 | |
|  * be reclaimed before their checksum is actually put into the btree
 | |
|  */
 | |
| int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
 | |
| 			   u32 *sum, int len)
 | |
| {
 | |
| 	struct btrfs_ordered_sum *ordered_sum;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	unsigned long num_sectors;
 | |
| 	unsigned long i;
 | |
| 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
 | |
| 	int index = 0;
 | |
| 
 | |
| 	ordered = btrfs_lookup_ordered_extent(inode, offset);
 | |
| 	if (!ordered)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
 | |
| 		if (disk_bytenr >= ordered_sum->bytenr &&
 | |
| 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
 | |
| 			i = (disk_bytenr - ordered_sum->bytenr) >>
 | |
| 			    inode->i_sb->s_blocksize_bits;
 | |
| 			num_sectors = ordered_sum->len >>
 | |
| 				      inode->i_sb->s_blocksize_bits;
 | |
| 			num_sectors = min_t(int, len - index, num_sectors - i);
 | |
| 			memcpy(sum + index, ordered_sum->sums + i,
 | |
| 			       num_sectors);
 | |
| 
 | |
| 			index += (int)num_sectors;
 | |
| 			if (index == len)
 | |
| 				goto out;
 | |
| 			disk_bytenr += num_sectors * sectorsize;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	btrfs_put_ordered_extent(ordered);
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * add a given inode to the list of inodes that must be fully on
 | |
|  * disk before a transaction commit finishes.
 | |
|  *
 | |
|  * This basically gives us the ext3 style data=ordered mode, and it is mostly
 | |
|  * used to make sure renamed files are fully on disk.
 | |
|  *
 | |
|  * It is a noop if the inode is already fully on disk.
 | |
|  *
 | |
|  * If trans is not null, we'll do a friendly check for a transaction that
 | |
|  * is already flushing things and force the IO down ourselves.
 | |
|  */
 | |
| void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root, struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_transaction *cur_trans = trans->transaction;
 | |
| 	u64 last_mod;
 | |
| 
 | |
| 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
 | |
| 
 | |
| 	/*
 | |
| 	 * if this file hasn't been changed since the last transaction
 | |
| 	 * commit, we can safely return without doing anything
 | |
| 	 */
 | |
| 	if (last_mod <= root->fs_info->last_trans_committed)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&root->fs_info->ordered_root_lock);
 | |
| 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
 | |
| 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
 | |
| 			      &cur_trans->ordered_operations);
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->ordered_root_lock);
 | |
| }
 | |
| 
 | |
| int __init ordered_data_init(void)
 | |
| {
 | |
| 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
 | |
| 				     sizeof(struct btrfs_ordered_extent), 0,
 | |
| 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 | |
| 				     NULL);
 | |
| 	if (!btrfs_ordered_extent_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void ordered_data_exit(void)
 | |
| {
 | |
| 	if (btrfs_ordered_extent_cache)
 | |
| 		kmem_cache_destroy(btrfs_ordered_extent_cache);
 | |
| }
 |