 fbdd17ec5c
			
		
	
	
	fbdd17ec5c
	
	
	
		
			
			Conflicts: tools/perf/bench/numa.c Pull perf fixes from Jiri Olsa. Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			1744 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1744 lines
		
	
	
	
		
			41 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * numa.c
 | |
|  *
 | |
|  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
 | |
|  */
 | |
| 
 | |
| #include "../perf.h"
 | |
| #include "../builtin.h"
 | |
| #include "../util/util.h"
 | |
| #include "../util/parse-options.h"
 | |
| 
 | |
| #include "bench.h"
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <sched.h>
 | |
| #include <stdio.h>
 | |
| #include <assert.h>
 | |
| #include <malloc.h>
 | |
| #include <signal.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <unistd.h>
 | |
| #include <pthread.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/time.h>
 | |
| #include <sys/wait.h>
 | |
| #include <sys/prctl.h>
 | |
| #include <sys/types.h>
 | |
| 
 | |
| #include <numa.h>
 | |
| #include <numaif.h>
 | |
| 
 | |
| /*
 | |
|  * Regular printout to the terminal, supressed if -q is specified:
 | |
|  */
 | |
| #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
 | |
| 
 | |
| /*
 | |
|  * Debug printf:
 | |
|  */
 | |
| #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
 | |
| 
 | |
| struct thread_data {
 | |
| 	int			curr_cpu;
 | |
| 	cpu_set_t		bind_cpumask;
 | |
| 	int			bind_node;
 | |
| 	u8			*process_data;
 | |
| 	int			process_nr;
 | |
| 	int			thread_nr;
 | |
| 	int			task_nr;
 | |
| 	unsigned int		loops_done;
 | |
| 	u64			val;
 | |
| 	u64			runtime_ns;
 | |
| 	pthread_mutex_t		*process_lock;
 | |
| };
 | |
| 
 | |
| /* Parameters set by options: */
 | |
| 
 | |
| struct params {
 | |
| 	/* Startup synchronization: */
 | |
| 	bool			serialize_startup;
 | |
| 
 | |
| 	/* Task hierarchy: */
 | |
| 	int			nr_proc;
 | |
| 	int			nr_threads;
 | |
| 
 | |
| 	/* Working set sizes: */
 | |
| 	const char		*mb_global_str;
 | |
| 	const char		*mb_proc_str;
 | |
| 	const char		*mb_proc_locked_str;
 | |
| 	const char		*mb_thread_str;
 | |
| 
 | |
| 	double			mb_global;
 | |
| 	double			mb_proc;
 | |
| 	double			mb_proc_locked;
 | |
| 	double			mb_thread;
 | |
| 
 | |
| 	/* Access patterns to the working set: */
 | |
| 	bool			data_reads;
 | |
| 	bool			data_writes;
 | |
| 	bool			data_backwards;
 | |
| 	bool			data_zero_memset;
 | |
| 	bool			data_rand_walk;
 | |
| 	u32			nr_loops;
 | |
| 	u32			nr_secs;
 | |
| 	u32			sleep_usecs;
 | |
| 
 | |
| 	/* Working set initialization: */
 | |
| 	bool			init_zero;
 | |
| 	bool			init_random;
 | |
| 	bool			init_cpu0;
 | |
| 
 | |
| 	/* Misc options: */
 | |
| 	int			show_details;
 | |
| 	int			run_all;
 | |
| 	int			thp;
 | |
| 
 | |
| 	long			bytes_global;
 | |
| 	long			bytes_process;
 | |
| 	long			bytes_process_locked;
 | |
| 	long			bytes_thread;
 | |
| 
 | |
| 	int			nr_tasks;
 | |
| 	bool			show_quiet;
 | |
| 
 | |
| 	bool			show_convergence;
 | |
| 	bool			measure_convergence;
 | |
| 
 | |
| 	int			perturb_secs;
 | |
| 	int			nr_cpus;
 | |
| 	int			nr_nodes;
 | |
| 
 | |
| 	/* Affinity options -C and -N: */
 | |
| 	char			*cpu_list_str;
 | |
| 	char			*node_list_str;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Global, read-writable area, accessible to all processes and threads: */
 | |
| 
 | |
| struct global_info {
 | |
| 	u8			*data;
 | |
| 
 | |
| 	pthread_mutex_t		startup_mutex;
 | |
| 	int			nr_tasks_started;
 | |
| 
 | |
| 	pthread_mutex_t		startup_done_mutex;
 | |
| 
 | |
| 	pthread_mutex_t		start_work_mutex;
 | |
| 	int			nr_tasks_working;
 | |
| 
 | |
| 	pthread_mutex_t		stop_work_mutex;
 | |
| 	u64			bytes_done;
 | |
| 
 | |
| 	struct thread_data	*threads;
 | |
| 
 | |
| 	/* Convergence latency measurement: */
 | |
| 	bool			all_converged;
 | |
| 	bool			stop_work;
 | |
| 
 | |
| 	int			print_once;
 | |
| 
 | |
| 	struct params		p;
 | |
| };
 | |
| 
 | |
| static struct global_info	*g = NULL;
 | |
| 
 | |
| static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 | |
| static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 | |
| 
 | |
| struct params p0;
 | |
| 
 | |
| static const struct option options[] = {
 | |
| 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 | |
| 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 | |
| 
 | |
| 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 | |
| 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 | |
| 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 | |
| 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 | |
| 
 | |
| 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
 | |
| 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
 | |
| 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 | |
| 
 | |
| 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
 | |
| 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 | |
| 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 | |
| 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 | |
| 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 | |
| 
 | |
| 
 | |
| 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 | |
| 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 | |
| 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 | |
| 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 | |
| 
 | |
| 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 | |
| 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 | |
| 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 | |
| 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 | |
| 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 | |
| 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"),
 | |
| 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 | |
| 
 | |
| 	/* Special option string parsing callbacks: */
 | |
|         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 | |
| 			"bind the first N tasks to these specific cpus (the rest is unbound)",
 | |
| 			parse_cpus_opt),
 | |
|         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 | |
| 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 | |
| 			parse_nodes_opt),
 | |
| 	OPT_END()
 | |
| };
 | |
| 
 | |
| static const char * const bench_numa_usage[] = {
 | |
| 	"perf bench numa <options>",
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const char * const numa_usage[] = {
 | |
| 	"perf bench numa mem [<options>]",
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static cpu_set_t bind_to_cpu(int target_cpu)
 | |
| {
 | |
| 	cpu_set_t orig_mask, mask;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	CPU_ZERO(&mask);
 | |
| 
 | |
| 	if (target_cpu == -1) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 | |
| 			CPU_SET(cpu, &mask);
 | |
| 	} else {
 | |
| 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 | |
| 		CPU_SET(target_cpu, &mask);
 | |
| 	}
 | |
| 
 | |
| 	ret = sched_setaffinity(0, sizeof(mask), &mask);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	return orig_mask;
 | |
| }
 | |
| 
 | |
| static cpu_set_t bind_to_node(int target_node)
 | |
| {
 | |
| 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 | |
| 	cpu_set_t orig_mask, mask;
 | |
| 	int cpu;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 | |
| 	BUG_ON(!cpus_per_node);
 | |
| 
 | |
| 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	CPU_ZERO(&mask);
 | |
| 
 | |
| 	if (target_node == -1) {
 | |
| 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 | |
| 			CPU_SET(cpu, &mask);
 | |
| 	} else {
 | |
| 		int cpu_start = (target_node + 0) * cpus_per_node;
 | |
| 		int cpu_stop  = (target_node + 1) * cpus_per_node;
 | |
| 
 | |
| 		BUG_ON(cpu_stop > g->p.nr_cpus);
 | |
| 
 | |
| 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 | |
| 			CPU_SET(cpu, &mask);
 | |
| 	}
 | |
| 
 | |
| 	ret = sched_setaffinity(0, sizeof(mask), &mask);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	return orig_mask;
 | |
| }
 | |
| 
 | |
| static void bind_to_cpumask(cpu_set_t mask)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sched_setaffinity(0, sizeof(mask), &mask);
 | |
| 	BUG_ON(ret);
 | |
| }
 | |
| 
 | |
| static void mempol_restore(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 | |
| 
 | |
| 	BUG_ON(ret);
 | |
| }
 | |
| 
 | |
| static void bind_to_memnode(int node)
 | |
| {
 | |
| 	unsigned long nodemask;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (node == -1)
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
 | |
| 	nodemask = 1L << node;
 | |
| 
 | |
| 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 | |
| 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 | |
| 
 | |
| 	BUG_ON(ret);
 | |
| }
 | |
| 
 | |
| #define HPSIZE (2*1024*1024)
 | |
| 
 | |
| #define set_taskname(fmt...)				\
 | |
| do {							\
 | |
| 	char name[20];					\
 | |
| 							\
 | |
| 	snprintf(name, 20, fmt);			\
 | |
| 	prctl(PR_SET_NAME, name);			\
 | |
| } while (0)
 | |
| 
 | |
| static u8 *alloc_data(ssize_t bytes0, int map_flags,
 | |
| 		      int init_zero, int init_cpu0, int thp, int init_random)
 | |
| {
 | |
| 	cpu_set_t orig_mask;
 | |
| 	ssize_t bytes;
 | |
| 	u8 *buf;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!bytes0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Allocate and initialize all memory on CPU#0: */
 | |
| 	if (init_cpu0) {
 | |
| 		orig_mask = bind_to_node(0);
 | |
| 		bind_to_memnode(0);
 | |
| 	}
 | |
| 
 | |
| 	bytes = bytes0 + HPSIZE;
 | |
| 
 | |
| 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 | |
| 	BUG_ON(buf == (void *)-1);
 | |
| 
 | |
| 	if (map_flags == MAP_PRIVATE) {
 | |
| 		if (thp > 0) {
 | |
| 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 | |
| 			if (ret && !g->print_once) {
 | |
| 				g->print_once = 1;
 | |
| 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 | |
| 			}
 | |
| 		}
 | |
| 		if (thp < 0) {
 | |
| 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 | |
| 			if (ret && !g->print_once) {
 | |
| 				g->print_once = 1;
 | |
| 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (init_zero) {
 | |
| 		bzero(buf, bytes);
 | |
| 	} else {
 | |
| 		/* Initialize random contents, different in each word: */
 | |
| 		if (init_random) {
 | |
| 			u64 *wbuf = (void *)buf;
 | |
| 			long off = rand();
 | |
| 			long i;
 | |
| 
 | |
| 			for (i = 0; i < bytes/8; i++)
 | |
| 				wbuf[i] = i + off;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Align to 2MB boundary: */
 | |
| 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 | |
| 
 | |
| 	/* Restore affinity: */
 | |
| 	if (init_cpu0) {
 | |
| 		bind_to_cpumask(orig_mask);
 | |
| 		mempol_restore();
 | |
| 	}
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static void free_data(void *data, ssize_t bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return;
 | |
| 
 | |
| 	ret = munmap(data, bytes);
 | |
| 	BUG_ON(ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a shared memory buffer that can be shared between processes, zeroed:
 | |
|  */
 | |
| static void * zalloc_shared_data(ssize_t bytes)
 | |
| {
 | |
| 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a shared memory buffer that can be shared between processes:
 | |
|  */
 | |
| static void * setup_shared_data(ssize_t bytes)
 | |
| {
 | |
| 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate process-local memory - this will either be shared between
 | |
|  * threads of this process, or only be accessed by this thread:
 | |
|  */
 | |
| static void * setup_private_data(ssize_t bytes)
 | |
| {
 | |
| 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a process-shared (global) mutex:
 | |
|  */
 | |
| static void init_global_mutex(pthread_mutex_t *mutex)
 | |
| {
 | |
| 	pthread_mutexattr_t attr;
 | |
| 
 | |
| 	pthread_mutexattr_init(&attr);
 | |
| 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 | |
| 	pthread_mutex_init(mutex, &attr);
 | |
| }
 | |
| 
 | |
| static int parse_cpu_list(const char *arg)
 | |
| {
 | |
| 	p0.cpu_list_str = strdup(arg);
 | |
| 
 | |
| 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_setup_cpu_list(void)
 | |
| {
 | |
| 	struct thread_data *td;
 | |
| 	char *str0, *str;
 | |
| 	int t;
 | |
| 
 | |
| 	if (!g->p.cpu_list_str)
 | |
| 		return 0;
 | |
| 
 | |
| 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 | |
| 
 | |
| 	str0 = str = strdup(g->p.cpu_list_str);
 | |
| 	t = 0;
 | |
| 
 | |
| 	BUG_ON(!str);
 | |
| 
 | |
| 	tprintf("# binding tasks to CPUs:\n");
 | |
| 	tprintf("#  ");
 | |
| 
 | |
| 	while (true) {
 | |
| 		int bind_cpu, bind_cpu_0, bind_cpu_1;
 | |
| 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 | |
| 		int bind_len;
 | |
| 		int step;
 | |
| 		int mul;
 | |
| 
 | |
| 		tok = strsep(&str, ",");
 | |
| 		if (!tok)
 | |
| 			break;
 | |
| 
 | |
| 		tok_end = strstr(tok, "-");
 | |
| 
 | |
| 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 | |
| 		if (!tok_end) {
 | |
| 			/* Single CPU specified: */
 | |
| 			bind_cpu_0 = bind_cpu_1 = atol(tok);
 | |
| 		} else {
 | |
| 			/* CPU range specified (for example: "5-11"): */
 | |
| 			bind_cpu_0 = atol(tok);
 | |
| 			bind_cpu_1 = atol(tok_end + 1);
 | |
| 		}
 | |
| 
 | |
| 		step = 1;
 | |
| 		tok_step = strstr(tok, "#");
 | |
| 		if (tok_step) {
 | |
| 			step = atol(tok_step + 1);
 | |
| 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Mask length.
 | |
| 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 | |
| 		 * where the _4 means the next 4 CPUs are allowed.
 | |
| 		 */
 | |
| 		bind_len = 1;
 | |
| 		tok_len = strstr(tok, "_");
 | |
| 		if (tok_len) {
 | |
| 			bind_len = atol(tok_len + 1);
 | |
| 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 | |
| 		}
 | |
| 
 | |
| 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 | |
| 		mul = 1;
 | |
| 		tok_mul = strstr(tok, "x");
 | |
| 		if (tok_mul) {
 | |
| 			mul = atol(tok_mul + 1);
 | |
| 			BUG_ON(mul <= 0);
 | |
| 		}
 | |
| 
 | |
| 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 | |
| 
 | |
| 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 | |
| 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 | |
| 		BUG_ON(bind_cpu_0 > bind_cpu_1);
 | |
| 
 | |
| 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 | |
| 			int i;
 | |
| 
 | |
| 			for (i = 0; i < mul; i++) {
 | |
| 				int cpu;
 | |
| 
 | |
| 				if (t >= g->p.nr_tasks) {
 | |
| 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 | |
| 					goto out;
 | |
| 				}
 | |
| 				td = g->threads + t;
 | |
| 
 | |
| 				if (t)
 | |
| 					tprintf(",");
 | |
| 				if (bind_len > 1) {
 | |
| 					tprintf("%2d/%d", bind_cpu, bind_len);
 | |
| 				} else {
 | |
| 					tprintf("%2d", bind_cpu);
 | |
| 				}
 | |
| 
 | |
| 				CPU_ZERO(&td->bind_cpumask);
 | |
| 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 | |
| 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 | |
| 					CPU_SET(cpu, &td->bind_cpumask);
 | |
| 				}
 | |
| 				t++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 
 | |
| 	tprintf("\n");
 | |
| 
 | |
| 	if (t < g->p.nr_tasks)
 | |
| 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 | |
| 
 | |
| 	free(str0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_cpus_opt(const struct option *opt __maybe_unused,
 | |
| 			  const char *arg, int unset __maybe_unused)
 | |
| {
 | |
| 	if (!arg)
 | |
| 		return -1;
 | |
| 
 | |
| 	return parse_cpu_list(arg);
 | |
| }
 | |
| 
 | |
| static int parse_node_list(const char *arg)
 | |
| {
 | |
| 	p0.node_list_str = strdup(arg);
 | |
| 
 | |
| 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_setup_node_list(void)
 | |
| {
 | |
| 	struct thread_data *td;
 | |
| 	char *str0, *str;
 | |
| 	int t;
 | |
| 
 | |
| 	if (!g->p.node_list_str)
 | |
| 		return 0;
 | |
| 
 | |
| 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 | |
| 
 | |
| 	str0 = str = strdup(g->p.node_list_str);
 | |
| 	t = 0;
 | |
| 
 | |
| 	BUG_ON(!str);
 | |
| 
 | |
| 	tprintf("# binding tasks to NODEs:\n");
 | |
| 	tprintf("# ");
 | |
| 
 | |
| 	while (true) {
 | |
| 		int bind_node, bind_node_0, bind_node_1;
 | |
| 		char *tok, *tok_end, *tok_step, *tok_mul;
 | |
| 		int step;
 | |
| 		int mul;
 | |
| 
 | |
| 		tok = strsep(&str, ",");
 | |
| 		if (!tok)
 | |
| 			break;
 | |
| 
 | |
| 		tok_end = strstr(tok, "-");
 | |
| 
 | |
| 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 | |
| 		if (!tok_end) {
 | |
| 			/* Single NODE specified: */
 | |
| 			bind_node_0 = bind_node_1 = atol(tok);
 | |
| 		} else {
 | |
| 			/* NODE range specified (for example: "5-11"): */
 | |
| 			bind_node_0 = atol(tok);
 | |
| 			bind_node_1 = atol(tok_end + 1);
 | |
| 		}
 | |
| 
 | |
| 		step = 1;
 | |
| 		tok_step = strstr(tok, "#");
 | |
| 		if (tok_step) {
 | |
| 			step = atol(tok_step + 1);
 | |
| 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 | |
| 		}
 | |
| 
 | |
| 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 | |
| 		mul = 1;
 | |
| 		tok_mul = strstr(tok, "x");
 | |
| 		if (tok_mul) {
 | |
| 			mul = atol(tok_mul + 1);
 | |
| 			BUG_ON(mul <= 0);
 | |
| 		}
 | |
| 
 | |
| 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 | |
| 
 | |
| 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 | |
| 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 | |
| 		BUG_ON(bind_node_0 > bind_node_1);
 | |
| 
 | |
| 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 | |
| 			int i;
 | |
| 
 | |
| 			for (i = 0; i < mul; i++) {
 | |
| 				if (t >= g->p.nr_tasks) {
 | |
| 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 | |
| 					goto out;
 | |
| 				}
 | |
| 				td = g->threads + t;
 | |
| 
 | |
| 				if (!t)
 | |
| 					tprintf(" %2d", bind_node);
 | |
| 				else
 | |
| 					tprintf(",%2d", bind_node);
 | |
| 
 | |
| 				td->bind_node = bind_node;
 | |
| 				t++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 
 | |
| 	tprintf("\n");
 | |
| 
 | |
| 	if (t < g->p.nr_tasks)
 | |
| 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 | |
| 
 | |
| 	free(str0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_nodes_opt(const struct option *opt __maybe_unused,
 | |
| 			  const char *arg, int unset __maybe_unused)
 | |
| {
 | |
| 	if (!arg)
 | |
| 		return -1;
 | |
| 
 | |
| 	return parse_node_list(arg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define BIT(x) (1ul << x)
 | |
| 
 | |
| static inline uint32_t lfsr_32(uint32_t lfsr)
 | |
| {
 | |
| 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 | |
| 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure there's real data dependency to RAM (when read
 | |
|  * accesses are enabled), so the compiler, the CPU and the
 | |
|  * kernel (KSM, zero page, etc.) cannot optimize away RAM
 | |
|  * accesses:
 | |
|  */
 | |
| static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 | |
| {
 | |
| 	if (g->p.data_reads)
 | |
| 		val += *data;
 | |
| 	if (g->p.data_writes)
 | |
| 		*data = val + 1;
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The worker process does two types of work, a forwards going
 | |
|  * loop and a backwards going loop.
 | |
|  *
 | |
|  * We do this so that on multiprocessor systems we do not create
 | |
|  * a 'train' of processing, with highly synchronized processes,
 | |
|  * skewing the whole benchmark.
 | |
|  */
 | |
| static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 | |
| {
 | |
| 	long words = bytes/sizeof(u64);
 | |
| 	u64 *data = (void *)__data;
 | |
| 	long chunk_0, chunk_1;
 | |
| 	u64 *d0, *d, *d1;
 | |
| 	long off;
 | |
| 	long i;
 | |
| 
 | |
| 	BUG_ON(!data && words);
 | |
| 	BUG_ON(data && !words);
 | |
| 
 | |
| 	if (!data)
 | |
| 		return val;
 | |
| 
 | |
| 	/* Very simple memset() work variant: */
 | |
| 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 | |
| 		bzero(data, bytes);
 | |
| 		return val;
 | |
| 	}
 | |
| 
 | |
| 	/* Spread out by PID/TID nr and by loop nr: */
 | |
| 	chunk_0 = words/nr_max;
 | |
| 	chunk_1 = words/g->p.nr_loops;
 | |
| 	off = nr*chunk_0 + loop*chunk_1;
 | |
| 
 | |
| 	while (off >= words)
 | |
| 		off -= words;
 | |
| 
 | |
| 	if (g->p.data_rand_walk) {
 | |
| 		u32 lfsr = nr + loop + val;
 | |
| 		int j;
 | |
| 
 | |
| 		for (i = 0; i < words/1024; i++) {
 | |
| 			long start, end;
 | |
| 
 | |
| 			lfsr = lfsr_32(lfsr);
 | |
| 
 | |
| 			start = lfsr % words;
 | |
| 			end = min(start + 1024, words-1);
 | |
| 
 | |
| 			if (g->p.data_zero_memset) {
 | |
| 				bzero(data + start, (end-start) * sizeof(u64));
 | |
| 			} else {
 | |
| 				for (j = start; j < end; j++)
 | |
| 					val = access_data(data + j, val);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 | |
| 
 | |
| 		d0 = data + off;
 | |
| 		d  = data + off + 1;
 | |
| 		d1 = data + words;
 | |
| 
 | |
| 		/* Process data forwards: */
 | |
| 		for (;;) {
 | |
| 			if (unlikely(d >= d1))
 | |
| 				d = data;
 | |
| 			if (unlikely(d == d0))
 | |
| 				break;
 | |
| 
 | |
| 			val = access_data(d, val);
 | |
| 
 | |
| 			d++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Process data backwards: */
 | |
| 
 | |
| 		d0 = data + off;
 | |
| 		d  = data + off - 1;
 | |
| 		d1 = data + words;
 | |
| 
 | |
| 		/* Process data forwards: */
 | |
| 		for (;;) {
 | |
| 			if (unlikely(d < data))
 | |
| 				d = data + words-1;
 | |
| 			if (unlikely(d == d0))
 | |
| 				break;
 | |
| 
 | |
| 			val = access_data(d, val);
 | |
| 
 | |
| 			d--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpu = sched_getcpu();
 | |
| 
 | |
| 	g->threads[task_nr].curr_cpu = cpu;
 | |
| 	prctl(0, bytes_worked);
 | |
| }
 | |
| 
 | |
| #define MAX_NR_NODES	64
 | |
| 
 | |
| /*
 | |
|  * Count the number of nodes a process's threads
 | |
|  * are spread out on.
 | |
|  *
 | |
|  * A count of 1 means that the process is compressed
 | |
|  * to a single node. A count of g->p.nr_nodes means it's
 | |
|  * spread out on the whole system.
 | |
|  */
 | |
| static int count_process_nodes(int process_nr)
 | |
| {
 | |
| 	char node_present[MAX_NR_NODES] = { 0, };
 | |
| 	int nodes;
 | |
| 	int n, t;
 | |
| 
 | |
| 	for (t = 0; t < g->p.nr_threads; t++) {
 | |
| 		struct thread_data *td;
 | |
| 		int task_nr;
 | |
| 		int node;
 | |
| 
 | |
| 		task_nr = process_nr*g->p.nr_threads + t;
 | |
| 		td = g->threads + task_nr;
 | |
| 
 | |
| 		node = numa_node_of_cpu(td->curr_cpu);
 | |
| 		node_present[node] = 1;
 | |
| 	}
 | |
| 
 | |
| 	nodes = 0;
 | |
| 
 | |
| 	for (n = 0; n < MAX_NR_NODES; n++)
 | |
| 		nodes += node_present[n];
 | |
| 
 | |
| 	return nodes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count the number of distinct process-threads a node contains.
 | |
|  *
 | |
|  * A count of 1 means that the node contains only a single
 | |
|  * process. If all nodes on the system contain at most one
 | |
|  * process then we are well-converged.
 | |
|  */
 | |
| static int count_node_processes(int node)
 | |
| {
 | |
| 	int processes = 0;
 | |
| 	int t, p;
 | |
| 
 | |
| 	for (p = 0; p < g->p.nr_proc; p++) {
 | |
| 		for (t = 0; t < g->p.nr_threads; t++) {
 | |
| 			struct thread_data *td;
 | |
| 			int task_nr;
 | |
| 			int n;
 | |
| 
 | |
| 			task_nr = p*g->p.nr_threads + t;
 | |
| 			td = g->threads + task_nr;
 | |
| 
 | |
| 			n = numa_node_of_cpu(td->curr_cpu);
 | |
| 			if (n == node) {
 | |
| 				processes++;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return processes;
 | |
| }
 | |
| 
 | |
| static void calc_convergence_compression(int *strong)
 | |
| {
 | |
| 	unsigned int nodes_min, nodes_max;
 | |
| 	int p;
 | |
| 
 | |
| 	nodes_min = -1;
 | |
| 	nodes_max =  0;
 | |
| 
 | |
| 	for (p = 0; p < g->p.nr_proc; p++) {
 | |
| 		unsigned int nodes = count_process_nodes(p);
 | |
| 
 | |
| 		nodes_min = min(nodes, nodes_min);
 | |
| 		nodes_max = max(nodes, nodes_max);
 | |
| 	}
 | |
| 
 | |
| 	/* Strong convergence: all threads compress on a single node: */
 | |
| 	if (nodes_min == 1 && nodes_max == 1) {
 | |
| 		*strong = 1;
 | |
| 	} else {
 | |
| 		*strong = 0;
 | |
| 		tprintf(" {%d-%d}", nodes_min, nodes_max);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void calc_convergence(double runtime_ns_max, double *convergence)
 | |
| {
 | |
| 	unsigned int loops_done_min, loops_done_max;
 | |
| 	int process_groups;
 | |
| 	int nodes[MAX_NR_NODES];
 | |
| 	int distance;
 | |
| 	int nr_min;
 | |
| 	int nr_max;
 | |
| 	int strong;
 | |
| 	int sum;
 | |
| 	int nr;
 | |
| 	int node;
 | |
| 	int cpu;
 | |
| 	int t;
 | |
| 
 | |
| 	if (!g->p.show_convergence && !g->p.measure_convergence)
 | |
| 		return;
 | |
| 
 | |
| 	for (node = 0; node < g->p.nr_nodes; node++)
 | |
| 		nodes[node] = 0;
 | |
| 
 | |
| 	loops_done_min = -1;
 | |
| 	loops_done_max = 0;
 | |
| 
 | |
| 	for (t = 0; t < g->p.nr_tasks; t++) {
 | |
| 		struct thread_data *td = g->threads + t;
 | |
| 		unsigned int loops_done;
 | |
| 
 | |
| 		cpu = td->curr_cpu;
 | |
| 
 | |
| 		/* Not all threads have written it yet: */
 | |
| 		if (cpu < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		node = numa_node_of_cpu(cpu);
 | |
| 
 | |
| 		nodes[node]++;
 | |
| 
 | |
| 		loops_done = td->loops_done;
 | |
| 		loops_done_min = min(loops_done, loops_done_min);
 | |
| 		loops_done_max = max(loops_done, loops_done_max);
 | |
| 	}
 | |
| 
 | |
| 	nr_max = 0;
 | |
| 	nr_min = g->p.nr_tasks;
 | |
| 	sum = 0;
 | |
| 
 | |
| 	for (node = 0; node < g->p.nr_nodes; node++) {
 | |
| 		nr = nodes[node];
 | |
| 		nr_min = min(nr, nr_min);
 | |
| 		nr_max = max(nr, nr_max);
 | |
| 		sum += nr;
 | |
| 	}
 | |
| 	BUG_ON(nr_min > nr_max);
 | |
| 
 | |
| 	BUG_ON(sum > g->p.nr_tasks);
 | |
| 
 | |
| 	if (0 && (sum < g->p.nr_tasks))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Count the number of distinct process groups present
 | |
| 	 * on nodes - when we are converged this will decrease
 | |
| 	 * to g->p.nr_proc:
 | |
| 	 */
 | |
| 	process_groups = 0;
 | |
| 
 | |
| 	for (node = 0; node < g->p.nr_nodes; node++) {
 | |
| 		int processes = count_node_processes(node);
 | |
| 
 | |
| 		nr = nodes[node];
 | |
| 		tprintf(" %2d/%-2d", nr, processes);
 | |
| 
 | |
| 		process_groups += processes;
 | |
| 	}
 | |
| 
 | |
| 	distance = nr_max - nr_min;
 | |
| 
 | |
| 	tprintf(" [%2d/%-2d]", distance, process_groups);
 | |
| 
 | |
| 	tprintf(" l:%3d-%-3d (%3d)",
 | |
| 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 | |
| 
 | |
| 	if (loops_done_min && loops_done_max) {
 | |
| 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
 | |
| 
 | |
| 		tprintf(" [%4.1f%%]", skew * 100.0);
 | |
| 	}
 | |
| 
 | |
| 	calc_convergence_compression(&strong);
 | |
| 
 | |
| 	if (strong && process_groups == g->p.nr_proc) {
 | |
| 		if (!*convergence) {
 | |
| 			*convergence = runtime_ns_max;
 | |
| 			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
 | |
| 			if (g->p.measure_convergence) {
 | |
| 				g->all_converged = true;
 | |
| 				g->stop_work = true;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (*convergence) {
 | |
| 			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
 | |
| 			*convergence = 0;
 | |
| 		}
 | |
| 		tprintf("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void show_summary(double runtime_ns_max, int l, double *convergence)
 | |
| {
 | |
| 	tprintf("\r #  %5.1f%%  [%.1f mins]",
 | |
| 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
 | |
| 
 | |
| 	calc_convergence(runtime_ns_max, convergence);
 | |
| 
 | |
| 	if (g->p.show_details >= 0)
 | |
| 		fflush(stdout);
 | |
| }
 | |
| 
 | |
| static void *worker_thread(void *__tdata)
 | |
| {
 | |
| 	struct thread_data *td = __tdata;
 | |
| 	struct timeval start0, start, stop, diff;
 | |
| 	int process_nr = td->process_nr;
 | |
| 	int thread_nr = td->thread_nr;
 | |
| 	unsigned long last_perturbance;
 | |
| 	int task_nr = td->task_nr;
 | |
| 	int details = g->p.show_details;
 | |
| 	int first_task, last_task;
 | |
| 	double convergence = 0;
 | |
| 	u64 val = td->val;
 | |
| 	double runtime_ns_max;
 | |
| 	u8 *global_data;
 | |
| 	u8 *process_data;
 | |
| 	u8 *thread_data;
 | |
| 	u64 bytes_done;
 | |
| 	long work_done;
 | |
| 	u32 l;
 | |
| 
 | |
| 	bind_to_cpumask(td->bind_cpumask);
 | |
| 	bind_to_memnode(td->bind_node);
 | |
| 
 | |
| 	set_taskname("thread %d/%d", process_nr, thread_nr);
 | |
| 
 | |
| 	global_data = g->data;
 | |
| 	process_data = td->process_data;
 | |
| 	thread_data = setup_private_data(g->p.bytes_thread);
 | |
| 
 | |
| 	bytes_done = 0;
 | |
| 
 | |
| 	last_task = 0;
 | |
| 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
 | |
| 		last_task = 1;
 | |
| 
 | |
| 	first_task = 0;
 | |
| 	if (process_nr == 0 && thread_nr == 0)
 | |
| 		first_task = 1;
 | |
| 
 | |
| 	if (details >= 2) {
 | |
| 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
 | |
| 			process_nr, thread_nr, global_data, process_data, thread_data);
 | |
| 	}
 | |
| 
 | |
| 	if (g->p.serialize_startup) {
 | |
| 		pthread_mutex_lock(&g->startup_mutex);
 | |
| 		g->nr_tasks_started++;
 | |
| 		pthread_mutex_unlock(&g->startup_mutex);
 | |
| 
 | |
| 		/* Here we will wait for the main process to start us all at once: */
 | |
| 		pthread_mutex_lock(&g->start_work_mutex);
 | |
| 		g->nr_tasks_working++;
 | |
| 
 | |
| 		/* Last one wake the main process: */
 | |
| 		if (g->nr_tasks_working == g->p.nr_tasks)
 | |
| 			pthread_mutex_unlock(&g->startup_done_mutex);
 | |
| 
 | |
| 		pthread_mutex_unlock(&g->start_work_mutex);
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&start0, NULL);
 | |
| 
 | |
| 	start = stop = start0;
 | |
| 	last_perturbance = start.tv_sec;
 | |
| 
 | |
| 	for (l = 0; l < g->p.nr_loops; l++) {
 | |
| 		start = stop;
 | |
| 
 | |
| 		if (g->stop_work)
 | |
| 			break;
 | |
| 
 | |
| 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
 | |
| 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
 | |
| 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
 | |
| 
 | |
| 		if (g->p.sleep_usecs) {
 | |
| 			pthread_mutex_lock(td->process_lock);
 | |
| 			usleep(g->p.sleep_usecs);
 | |
| 			pthread_mutex_unlock(td->process_lock);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Amount of work to be done under a process-global lock:
 | |
| 		 */
 | |
| 		if (g->p.bytes_process_locked) {
 | |
| 			pthread_mutex_lock(td->process_lock);
 | |
| 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
 | |
| 			pthread_mutex_unlock(td->process_lock);
 | |
| 		}
 | |
| 
 | |
| 		work_done = g->p.bytes_global + g->p.bytes_process +
 | |
| 			    g->p.bytes_process_locked + g->p.bytes_thread;
 | |
| 
 | |
| 		update_curr_cpu(task_nr, work_done);
 | |
| 		bytes_done += work_done;
 | |
| 
 | |
| 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
 | |
| 			continue;
 | |
| 
 | |
| 		td->loops_done = l;
 | |
| 
 | |
| 		gettimeofday(&stop, NULL);
 | |
| 
 | |
| 		/* Check whether our max runtime timed out: */
 | |
| 		if (g->p.nr_secs) {
 | |
| 			timersub(&stop, &start0, &diff);
 | |
| 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
 | |
| 				g->stop_work = true;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Update the summary at most once per second: */
 | |
| 		if (start.tv_sec == stop.tv_sec)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
 | |
| 		 * by migrating to CPU#0:
 | |
| 		 */
 | |
| 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
 | |
| 			cpu_set_t orig_mask;
 | |
| 			int target_cpu;
 | |
| 			int this_cpu;
 | |
| 
 | |
| 			last_perturbance = stop.tv_sec;
 | |
| 
 | |
| 			/*
 | |
| 			 * Depending on where we are running, move into
 | |
| 			 * the other half of the system, to create some
 | |
| 			 * real disturbance:
 | |
| 			 */
 | |
| 			this_cpu = g->threads[task_nr].curr_cpu;
 | |
| 			if (this_cpu < g->p.nr_cpus/2)
 | |
| 				target_cpu = g->p.nr_cpus-1;
 | |
| 			else
 | |
| 				target_cpu = 0;
 | |
| 
 | |
| 			orig_mask = bind_to_cpu(target_cpu);
 | |
| 
 | |
| 			/* Here we are running on the target CPU already */
 | |
| 			if (details >= 1)
 | |
| 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
 | |
| 
 | |
| 			bind_to_cpumask(orig_mask);
 | |
| 		}
 | |
| 
 | |
| 		if (details >= 3) {
 | |
| 			timersub(&stop, &start, &diff);
 | |
| 			runtime_ns_max = diff.tv_sec * 1000000000;
 | |
| 			runtime_ns_max += diff.tv_usec * 1000;
 | |
| 
 | |
| 			if (details >= 0) {
 | |
| 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
 | |
| 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
 | |
| 			}
 | |
| 			fflush(stdout);
 | |
| 		}
 | |
| 		if (!last_task)
 | |
| 			continue;
 | |
| 
 | |
| 		timersub(&stop, &start0, &diff);
 | |
| 		runtime_ns_max = diff.tv_sec * 1000000000ULL;
 | |
| 		runtime_ns_max += diff.tv_usec * 1000ULL;
 | |
| 
 | |
| 		show_summary(runtime_ns_max, l, &convergence);
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&stop, NULL);
 | |
| 	timersub(&stop, &start0, &diff);
 | |
| 	td->runtime_ns = diff.tv_sec * 1000000000ULL;
 | |
| 	td->runtime_ns += diff.tv_usec * 1000ULL;
 | |
| 
 | |
| 	free_data(thread_data, g->p.bytes_thread);
 | |
| 
 | |
| 	pthread_mutex_lock(&g->stop_work_mutex);
 | |
| 	g->bytes_done += bytes_done;
 | |
| 	pthread_mutex_unlock(&g->stop_work_mutex);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A worker process starts a couple of threads:
 | |
|  */
 | |
| static void worker_process(int process_nr)
 | |
| {
 | |
| 	pthread_mutex_t process_lock;
 | |
| 	struct thread_data *td;
 | |
| 	pthread_t *pthreads;
 | |
| 	u8 *process_data;
 | |
| 	int task_nr;
 | |
| 	int ret;
 | |
| 	int t;
 | |
| 
 | |
| 	pthread_mutex_init(&process_lock, NULL);
 | |
| 	set_taskname("process %d", process_nr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pick up the memory policy and the CPU binding of our first thread,
 | |
| 	 * so that we initialize memory accordingly:
 | |
| 	 */
 | |
| 	task_nr = process_nr*g->p.nr_threads;
 | |
| 	td = g->threads + task_nr;
 | |
| 
 | |
| 	bind_to_memnode(td->bind_node);
 | |
| 	bind_to_cpumask(td->bind_cpumask);
 | |
| 
 | |
| 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
 | |
| 	process_data = setup_private_data(g->p.bytes_process);
 | |
| 
 | |
| 	if (g->p.show_details >= 3) {
 | |
| 		printf(" # process %2d global mem: %p, process mem: %p\n",
 | |
| 			process_nr, g->data, process_data);
 | |
| 	}
 | |
| 
 | |
| 	for (t = 0; t < g->p.nr_threads; t++) {
 | |
| 		task_nr = process_nr*g->p.nr_threads + t;
 | |
| 		td = g->threads + task_nr;
 | |
| 
 | |
| 		td->process_data = process_data;
 | |
| 		td->process_nr   = process_nr;
 | |
| 		td->thread_nr    = t;
 | |
| 		td->task_nr	 = task_nr;
 | |
| 		td->val          = rand();
 | |
| 		td->curr_cpu	 = -1;
 | |
| 		td->process_lock = &process_lock;
 | |
| 
 | |
| 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	for (t = 0; t < g->p.nr_threads; t++) {
 | |
|                 ret = pthread_join(pthreads[t], NULL);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	free_data(process_data, g->p.bytes_process);
 | |
| 	free(pthreads);
 | |
| }
 | |
| 
 | |
| static void print_summary(void)
 | |
| {
 | |
| 	if (g->p.show_details < 0)
 | |
| 		return;
 | |
| 
 | |
| 	printf("\n ###\n");
 | |
| 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
 | |
| 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
 | |
| 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
 | |
| 			g->p.nr_loops, g->p.bytes_global/1024/1024);
 | |
| 	printf(" #      %5dx %5ldMB process shared mem operations\n",
 | |
| 			g->p.nr_loops, g->p.bytes_process/1024/1024);
 | |
| 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
 | |
| 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
 | |
| 
 | |
| 	printf(" ###\n");
 | |
| 
 | |
| 	printf("\n ###\n"); fflush(stdout);
 | |
| }
 | |
| 
 | |
| static void init_thread_data(void)
 | |
| {
 | |
| 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
 | |
| 	int t;
 | |
| 
 | |
| 	g->threads = zalloc_shared_data(size);
 | |
| 
 | |
| 	for (t = 0; t < g->p.nr_tasks; t++) {
 | |
| 		struct thread_data *td = g->threads + t;
 | |
| 		int cpu;
 | |
| 
 | |
| 		/* Allow all nodes by default: */
 | |
| 		td->bind_node = -1;
 | |
| 
 | |
| 		/* Allow all CPUs by default: */
 | |
| 		CPU_ZERO(&td->bind_cpumask);
 | |
| 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 | |
| 			CPU_SET(cpu, &td->bind_cpumask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void deinit_thread_data(void)
 | |
| {
 | |
| 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
 | |
| 
 | |
| 	free_data(g->threads, size);
 | |
| }
 | |
| 
 | |
| static int init(void)
 | |
| {
 | |
| 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
 | |
| 
 | |
| 	/* Copy over options: */
 | |
| 	g->p = p0;
 | |
| 
 | |
| 	g->p.nr_cpus = numa_num_configured_cpus();
 | |
| 
 | |
| 	g->p.nr_nodes = numa_max_node() + 1;
 | |
| 
 | |
| 	/* char array in count_process_nodes(): */
 | |
| 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
 | |
| 
 | |
| 	if (g->p.show_quiet && !g->p.show_details)
 | |
| 		g->p.show_details = -1;
 | |
| 
 | |
| 	/* Some memory should be specified: */
 | |
| 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (g->p.mb_global_str) {
 | |
| 		g->p.mb_global = atof(g->p.mb_global_str);
 | |
| 		BUG_ON(g->p.mb_global < 0);
 | |
| 	}
 | |
| 
 | |
| 	if (g->p.mb_proc_str) {
 | |
| 		g->p.mb_proc = atof(g->p.mb_proc_str);
 | |
| 		BUG_ON(g->p.mb_proc < 0);
 | |
| 	}
 | |
| 
 | |
| 	if (g->p.mb_proc_locked_str) {
 | |
| 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
 | |
| 		BUG_ON(g->p.mb_proc_locked < 0);
 | |
| 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
 | |
| 	}
 | |
| 
 | |
| 	if (g->p.mb_thread_str) {
 | |
| 		g->p.mb_thread = atof(g->p.mb_thread_str);
 | |
| 		BUG_ON(g->p.mb_thread < 0);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(g->p.nr_threads <= 0);
 | |
| 	BUG_ON(g->p.nr_proc <= 0);
 | |
| 
 | |
| 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
 | |
| 
 | |
| 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
 | |
| 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
 | |
| 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
 | |
| 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
 | |
| 
 | |
| 	g->data = setup_shared_data(g->p.bytes_global);
 | |
| 
 | |
| 	/* Startup serialization: */
 | |
| 	init_global_mutex(&g->start_work_mutex);
 | |
| 	init_global_mutex(&g->startup_mutex);
 | |
| 	init_global_mutex(&g->startup_done_mutex);
 | |
| 	init_global_mutex(&g->stop_work_mutex);
 | |
| 
 | |
| 	init_thread_data();
 | |
| 
 | |
| 	tprintf("#\n");
 | |
| 	if (parse_setup_cpu_list() || parse_setup_node_list())
 | |
| 		return -1;
 | |
| 	tprintf("#\n");
 | |
| 
 | |
| 	print_summary();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void deinit(void)
 | |
| {
 | |
| 	free_data(g->data, g->p.bytes_global);
 | |
| 	g->data = NULL;
 | |
| 
 | |
| 	deinit_thread_data();
 | |
| 
 | |
| 	free_data(g, sizeof(*g));
 | |
| 	g = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print a short or long result, depending on the verbosity setting:
 | |
|  */
 | |
| static void print_res(const char *name, double val,
 | |
| 		      const char *txt_unit, const char *txt_short, const char *txt_long)
 | |
| {
 | |
| 	if (!name)
 | |
| 		name = "main,";
 | |
| 
 | |
| 	if (g->p.show_quiet)
 | |
| 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
 | |
| 	else
 | |
| 		printf(" %14.3f %s\n", val, txt_long);
 | |
| }
 | |
| 
 | |
| static int __bench_numa(const char *name)
 | |
| {
 | |
| 	struct timeval start, stop, diff;
 | |
| 	u64 runtime_ns_min, runtime_ns_sum;
 | |
| 	pid_t *pids, pid, wpid;
 | |
| 	double delta_runtime;
 | |
| 	double runtime_avg;
 | |
| 	double runtime_sec_max;
 | |
| 	double runtime_sec_min;
 | |
| 	int wait_stat;
 | |
| 	double bytes;
 | |
| 	int i, t;
 | |
| 
 | |
| 	if (init())
 | |
| 		return -1;
 | |
| 
 | |
| 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
 | |
| 	pid = -1;
 | |
| 
 | |
| 	/* All threads try to acquire it, this way we can wait for them to start up: */
 | |
| 	pthread_mutex_lock(&g->start_work_mutex);
 | |
| 
 | |
| 	if (g->p.serialize_startup) {
 | |
| 		tprintf(" #\n");
 | |
| 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&start, NULL);
 | |
| 
 | |
| 	for (i = 0; i < g->p.nr_proc; i++) {
 | |
| 		pid = fork();
 | |
| 		dprintf(" # process %2d: PID %d\n", i, pid);
 | |
| 
 | |
| 		BUG_ON(pid < 0);
 | |
| 		if (!pid) {
 | |
| 			/* Child process: */
 | |
| 			worker_process(i);
 | |
| 
 | |
| 			exit(0);
 | |
| 		}
 | |
| 		pids[i] = pid;
 | |
| 
 | |
| 	}
 | |
| 	/* Wait for all the threads to start up: */
 | |
| 	while (g->nr_tasks_started != g->p.nr_tasks)
 | |
| 		usleep(1000);
 | |
| 
 | |
| 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
 | |
| 
 | |
| 	if (g->p.serialize_startup) {
 | |
| 		double startup_sec;
 | |
| 
 | |
| 		pthread_mutex_lock(&g->startup_done_mutex);
 | |
| 
 | |
| 		/* This will start all threads: */
 | |
| 		pthread_mutex_unlock(&g->start_work_mutex);
 | |
| 
 | |
| 		/* This mutex is locked - the last started thread will wake us: */
 | |
| 		pthread_mutex_lock(&g->startup_done_mutex);
 | |
| 
 | |
| 		gettimeofday(&stop, NULL);
 | |
| 
 | |
| 		timersub(&stop, &start, &diff);
 | |
| 
 | |
| 		startup_sec = diff.tv_sec * 1000000000.0;
 | |
| 		startup_sec += diff.tv_usec * 1000.0;
 | |
| 		startup_sec /= 1e9;
 | |
| 
 | |
| 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
 | |
| 		tprintf(" #\n");
 | |
| 
 | |
| 		start = stop;
 | |
| 		pthread_mutex_unlock(&g->startup_done_mutex);
 | |
| 	} else {
 | |
| 		gettimeofday(&start, NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* Parent process: */
 | |
| 
 | |
| 
 | |
| 	for (i = 0; i < g->p.nr_proc; i++) {
 | |
| 		wpid = waitpid(pids[i], &wait_stat, 0);
 | |
| 		BUG_ON(wpid < 0);
 | |
| 		BUG_ON(!WIFEXITED(wait_stat));
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	runtime_ns_sum = 0;
 | |
| 	runtime_ns_min = -1LL;
 | |
| 
 | |
| 	for (t = 0; t < g->p.nr_tasks; t++) {
 | |
| 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
 | |
| 
 | |
| 		runtime_ns_sum += thread_runtime_ns;
 | |
| 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&stop, NULL);
 | |
| 	timersub(&stop, &start, &diff);
 | |
| 
 | |
| 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
 | |
| 
 | |
| 	tprintf("\n ###\n");
 | |
| 	tprintf("\n");
 | |
| 
 | |
| 	runtime_sec_max = diff.tv_sec * 1000000000.0;
 | |
| 	runtime_sec_max += diff.tv_usec * 1000.0;
 | |
| 	runtime_sec_max /= 1e9;
 | |
| 
 | |
| 	runtime_sec_min = runtime_ns_min/1e9;
 | |
| 
 | |
| 	bytes = g->bytes_done;
 | |
| 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
 | |
| 
 | |
| 	if (g->p.measure_convergence) {
 | |
| 		print_res(name, runtime_sec_max,
 | |
| 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
 | |
| 	}
 | |
| 
 | |
| 	print_res(name, runtime_sec_max,
 | |
| 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
 | |
| 
 | |
| 	print_res(name, runtime_sec_min,
 | |
| 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
 | |
| 
 | |
| 	print_res(name, runtime_avg,
 | |
| 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
 | |
| 
 | |
| 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
 | |
| 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
 | |
| 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
 | |
| 
 | |
| 	print_res(name, bytes / g->p.nr_tasks / 1e9,
 | |
| 		"GB,", "data/thread",		"GB data processed, per thread");
 | |
| 
 | |
| 	print_res(name, bytes / 1e9,
 | |
| 		"GB,", "data-total",		"GB data processed, total");
 | |
| 
 | |
| 	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
 | |
| 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
 | |
| 
 | |
| 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
 | |
| 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
 | |
| 
 | |
| 	print_res(name, bytes / runtime_sec_max / 1e9,
 | |
| 		"GB/sec,", "total-speed",	"GB/sec total speed");
 | |
| 
 | |
| 	free(pids);
 | |
| 
 | |
| 	deinit();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define MAX_ARGS 50
 | |
| 
 | |
| static int command_size(const char **argv)
 | |
| {
 | |
| 	int size = 0;
 | |
| 
 | |
| 	while (*argv) {
 | |
| 		size++;
 | |
| 		argv++;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(size >= MAX_ARGS);
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static void init_params(struct params *p, const char *name, int argc, const char **argv)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	printf("\n # Running %s \"perf bench numa", name);
 | |
| 
 | |
| 	for (i = 0; i < argc; i++)
 | |
| 		printf(" %s", argv[i]);
 | |
| 
 | |
| 	printf("\"\n");
 | |
| 
 | |
| 	memset(p, 0, sizeof(*p));
 | |
| 
 | |
| 	/* Initialize nonzero defaults: */
 | |
| 
 | |
| 	p->serialize_startup		= 1;
 | |
| 	p->data_reads			= true;
 | |
| 	p->data_writes			= true;
 | |
| 	p->data_backwards		= true;
 | |
| 	p->data_rand_walk		= true;
 | |
| 	p->nr_loops			= -1;
 | |
| 	p->init_random			= true;
 | |
| 	p->mb_global_str		= "1";
 | |
| 	p->nr_proc			= 1;
 | |
| 	p->nr_threads			= 1;
 | |
| 	p->nr_secs			= 5;
 | |
| 	p->run_all			= argc == 1;
 | |
| }
 | |
| 
 | |
| static int run_bench_numa(const char *name, const char **argv)
 | |
| {
 | |
| 	int argc = command_size(argv);
 | |
| 
 | |
| 	init_params(&p0, name, argc, argv);
 | |
| 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
 | |
| 	if (argc)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (__bench_numa(name))
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
 | |
| #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
 | |
| 
 | |
| #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
 | |
| #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
 | |
| 
 | |
| #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
 | |
| #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
 | |
| 
 | |
| /*
 | |
|  * The built-in test-suite executed by "perf bench numa -a".
 | |
|  *
 | |
|  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
 | |
|  */
 | |
| static const char *tests[][MAX_ARGS] = {
 | |
|    /* Basic single-stream NUMA bandwidth measurements: */
 | |
|    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
 | |
| 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
 | |
|    { "RAM-bw-local-NOTHP,",
 | |
| 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
 | |
| 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
 | |
|    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
 | |
| 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
 | |
| 
 | |
|    /* 2-stream NUMA bandwidth measurements: */
 | |
|    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
 | |
| 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
 | |
|    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
 | |
| 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
 | |
| 
 | |
|    /* Cross-stream NUMA bandwidth measurement: */
 | |
|    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
 | |
| 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
 | |
| 
 | |
|    /* Convergence latency measurements: */
 | |
|    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
 | |
|    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
 | |
|    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
 | |
|    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
 | |
|    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
 | |
|    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
 | |
|    { " 4x4-convergence-NOTHP,",
 | |
| 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
 | |
|    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
 | |
|    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
 | |
|    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
 | |
|    { " 8x4-convergence-NOTHP,",
 | |
| 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
 | |
|    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
 | |
|    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
 | |
|    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
 | |
|    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
 | |
|    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
 | |
| 
 | |
|    /* Various NUMA process/thread layout bandwidth measurements: */
 | |
|    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
 | |
|    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
 | |
|    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
 | |
|    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
 | |
|    { " 8x1-bw-process-NOTHP,",
 | |
| 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
 | |
|    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
 | |
| 
 | |
|    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
 | |
|    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
 | |
|    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
 | |
|    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
 | |
| 
 | |
|    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
 | |
|    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
 | |
|    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
 | |
|    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
 | |
|    { " 4x8-bw-thread-NOTHP,",
 | |
| 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
 | |
|    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
 | |
|    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
 | |
| 
 | |
|    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
 | |
|    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
 | |
| 
 | |
|    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
 | |
|    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
 | |
|    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
 | |
|    { "numa01-bw-thread-NOTHP,",
 | |
| 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
 | |
| };
 | |
| 
 | |
| static int bench_all(void)
 | |
| {
 | |
| 	int nr = ARRAY_SIZE(tests);
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
 | |
| 	BUG_ON(ret < 0);
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		run_bench_numa(tests[i][0], tests[i] + 1);
 | |
| 	}
 | |
| 
 | |
| 	printf("\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
 | |
| {
 | |
| 	init_params(&p0, "main,", argc, argv);
 | |
| 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
 | |
| 	if (argc)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (p0.run_all)
 | |
| 		return bench_all();
 | |
| 
 | |
| 	if (__bench_numa(NULL))
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	usage_with_options(numa_usage, options);
 | |
| 	return -1;
 | |
| }
 |