 4cb28970a2
			
		
	
	
	4cb28970a2
	
	
	
		
			
			It is available since v3.15-rc5. Cc: Pablo Neira Ayuso <pablo@netfilter.org> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1129 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1129 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * net/sched/sch_netem.c	Network emulator
 | |
|  *
 | |
|  * 		This program is free software; you can redistribute it and/or
 | |
|  * 		modify it under the terms of the GNU General Public License
 | |
|  * 		as published by the Free Software Foundation; either version
 | |
|  * 		2 of the License.
 | |
|  *
 | |
|  *  		Many of the algorithms and ideas for this came from
 | |
|  *		NIST Net which is not copyrighted.
 | |
|  *
 | |
|  * Authors:	Stephen Hemminger <shemminger@osdl.org>
 | |
|  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/reciprocal_div.h>
 | |
| #include <linux/rbtree.h>
 | |
| 
 | |
| #include <net/netlink.h>
 | |
| #include <net/pkt_sched.h>
 | |
| #include <net/inet_ecn.h>
 | |
| 
 | |
| #define VERSION "1.3"
 | |
| 
 | |
| /*	Network Emulation Queuing algorithm.
 | |
| 	====================================
 | |
| 
 | |
| 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
 | |
| 		 Network Emulation Tool
 | |
| 		 [2] Luigi Rizzo, DummyNet for FreeBSD
 | |
| 
 | |
| 	 ----------------------------------------------------------------
 | |
| 
 | |
| 	 This started out as a simple way to delay outgoing packets to
 | |
| 	 test TCP but has grown to include most of the functionality
 | |
| 	 of a full blown network emulator like NISTnet. It can delay
 | |
| 	 packets and add random jitter (and correlation). The random
 | |
| 	 distribution can be loaded from a table as well to provide
 | |
| 	 normal, Pareto, or experimental curves. Packet loss,
 | |
| 	 duplication, and reordering can also be emulated.
 | |
| 
 | |
| 	 This qdisc does not do classification that can be handled in
 | |
| 	 layering other disciplines.  It does not need to do bandwidth
 | |
| 	 control either since that can be handled by using token
 | |
| 	 bucket or other rate control.
 | |
| 
 | |
|      Correlated Loss Generator models
 | |
| 
 | |
| 	Added generation of correlated loss according to the
 | |
| 	"Gilbert-Elliot" model, a 4-state markov model.
 | |
| 
 | |
| 	References:
 | |
| 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
 | |
| 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
 | |
| 	and intuitive loss model for packet networks and its implementation
 | |
| 	in the Netem module in the Linux kernel", available in [1]
 | |
| 
 | |
| 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
 | |
| 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
 | |
| */
 | |
| 
 | |
| struct netem_sched_data {
 | |
| 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
 | |
| 	struct rb_root t_root;
 | |
| 
 | |
| 	/* optional qdisc for classful handling (NULL at netem init) */
 | |
| 	struct Qdisc	*qdisc;
 | |
| 
 | |
| 	struct qdisc_watchdog watchdog;
 | |
| 
 | |
| 	psched_tdiff_t latency;
 | |
| 	psched_tdiff_t jitter;
 | |
| 
 | |
| 	u32 loss;
 | |
| 	u32 ecn;
 | |
| 	u32 limit;
 | |
| 	u32 counter;
 | |
| 	u32 gap;
 | |
| 	u32 duplicate;
 | |
| 	u32 reorder;
 | |
| 	u32 corrupt;
 | |
| 	u64 rate;
 | |
| 	s32 packet_overhead;
 | |
| 	u32 cell_size;
 | |
| 	struct reciprocal_value cell_size_reciprocal;
 | |
| 	s32 cell_overhead;
 | |
| 
 | |
| 	struct crndstate {
 | |
| 		u32 last;
 | |
| 		u32 rho;
 | |
| 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 | |
| 
 | |
| 	struct disttable {
 | |
| 		u32  size;
 | |
| 		s16 table[0];
 | |
| 	} *delay_dist;
 | |
| 
 | |
| 	enum  {
 | |
| 		CLG_RANDOM,
 | |
| 		CLG_4_STATES,
 | |
| 		CLG_GILB_ELL,
 | |
| 	} loss_model;
 | |
| 
 | |
| 	enum {
 | |
| 		TX_IN_GAP_PERIOD = 1,
 | |
| 		TX_IN_BURST_PERIOD,
 | |
| 		LOST_IN_GAP_PERIOD,
 | |
| 		LOST_IN_BURST_PERIOD,
 | |
| 	} _4_state_model;
 | |
| 
 | |
| 	enum {
 | |
| 		GOOD_STATE = 1,
 | |
| 		BAD_STATE,
 | |
| 	} GE_state_model;
 | |
| 
 | |
| 	/* Correlated Loss Generation models */
 | |
| 	struct clgstate {
 | |
| 		/* state of the Markov chain */
 | |
| 		u8 state;
 | |
| 
 | |
| 		/* 4-states and Gilbert-Elliot models */
 | |
| 		u32 a1;	/* p13 for 4-states or p for GE */
 | |
| 		u32 a2;	/* p31 for 4-states or r for GE */
 | |
| 		u32 a3;	/* p32 for 4-states or h for GE */
 | |
| 		u32 a4;	/* p14 for 4-states or 1-k for GE */
 | |
| 		u32 a5; /* p23 used only in 4-states */
 | |
| 	} clg;
 | |
| 
 | |
| };
 | |
| 
 | |
| /* Time stamp put into socket buffer control block
 | |
|  * Only valid when skbs are in our internal t(ime)fifo queue.
 | |
|  */
 | |
| struct netem_skb_cb {
 | |
| 	psched_time_t	time_to_send;
 | |
| 	ktime_t		tstamp_save;
 | |
| };
 | |
| 
 | |
| /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
 | |
|  * to hold a rb_node structure.
 | |
|  *
 | |
|  * If struct sk_buff layout is changed, the following checks will complain.
 | |
|  */
 | |
| static struct rb_node *netem_rb_node(struct sk_buff *skb)
 | |
| {
 | |
| 	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
 | |
| 	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
 | |
| 		     offsetof(struct sk_buff, next) + sizeof(skb->next));
 | |
| 	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
 | |
| 		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
 | |
| 	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
 | |
| 					      sizeof(skb->prev) +
 | |
| 					      sizeof(skb->tstamp));
 | |
| 	return (struct rb_node *)&skb->next;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
 | |
| {
 | |
| 	return (struct sk_buff *)rb;
 | |
| }
 | |
| 
 | |
| static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 | |
| {
 | |
| 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 | |
| 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 | |
| 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 | |
| }
 | |
| 
 | |
| /* init_crandom - initialize correlated random number generator
 | |
|  * Use entropy source for initial seed.
 | |
|  */
 | |
| static void init_crandom(struct crndstate *state, unsigned long rho)
 | |
| {
 | |
| 	state->rho = rho;
 | |
| 	state->last = prandom_u32();
 | |
| }
 | |
| 
 | |
| /* get_crandom - correlated random number generator
 | |
|  * Next number depends on last value.
 | |
|  * rho is scaled to avoid floating point.
 | |
|  */
 | |
| static u32 get_crandom(struct crndstate *state)
 | |
| {
 | |
| 	u64 value, rho;
 | |
| 	unsigned long answer;
 | |
| 
 | |
| 	if (state->rho == 0)	/* no correlation */
 | |
| 		return prandom_u32();
 | |
| 
 | |
| 	value = prandom_u32();
 | |
| 	rho = (u64)state->rho + 1;
 | |
| 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 | |
| 	state->last = answer;
 | |
| 	return answer;
 | |
| }
 | |
| 
 | |
| /* loss_4state - 4-state model loss generator
 | |
|  * Generates losses according to the 4-state Markov chain adopted in
 | |
|  * the GI (General and Intuitive) loss model.
 | |
|  */
 | |
| static bool loss_4state(struct netem_sched_data *q)
 | |
| {
 | |
| 	struct clgstate *clg = &q->clg;
 | |
| 	u32 rnd = prandom_u32();
 | |
| 
 | |
| 	/*
 | |
| 	 * Makes a comparison between rnd and the transition
 | |
| 	 * probabilities outgoing from the current state, then decides the
 | |
| 	 * next state and if the next packet has to be transmitted or lost.
 | |
| 	 * The four states correspond to:
 | |
| 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 | |
| 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 | |
| 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 | |
| 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 | |
| 	 */
 | |
| 	switch (clg->state) {
 | |
| 	case TX_IN_GAP_PERIOD:
 | |
| 		if (rnd < clg->a4) {
 | |
| 			clg->state = LOST_IN_BURST_PERIOD;
 | |
| 			return true;
 | |
| 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 | |
| 			clg->state = LOST_IN_GAP_PERIOD;
 | |
| 			return true;
 | |
| 		} else if (clg->a1 + clg->a4 < rnd) {
 | |
| 			clg->state = TX_IN_GAP_PERIOD;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	case TX_IN_BURST_PERIOD:
 | |
| 		if (rnd < clg->a5) {
 | |
| 			clg->state = LOST_IN_GAP_PERIOD;
 | |
| 			return true;
 | |
| 		} else {
 | |
| 			clg->state = TX_IN_BURST_PERIOD;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	case LOST_IN_GAP_PERIOD:
 | |
| 		if (rnd < clg->a3)
 | |
| 			clg->state = TX_IN_BURST_PERIOD;
 | |
| 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 | |
| 			clg->state = TX_IN_GAP_PERIOD;
 | |
| 		} else if (clg->a2 + clg->a3 < rnd) {
 | |
| 			clg->state = LOST_IN_GAP_PERIOD;
 | |
| 			return true;
 | |
| 		}
 | |
| 		break;
 | |
| 	case LOST_IN_BURST_PERIOD:
 | |
| 		clg->state = TX_IN_GAP_PERIOD;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* loss_gilb_ell - Gilbert-Elliot model loss generator
 | |
|  * Generates losses according to the Gilbert-Elliot loss model or
 | |
|  * its special cases  (Gilbert or Simple Gilbert)
 | |
|  *
 | |
|  * Makes a comparison between random number and the transition
 | |
|  * probabilities outgoing from the current state, then decides the
 | |
|  * next state. A second random number is extracted and the comparison
 | |
|  * with the loss probability of the current state decides if the next
 | |
|  * packet will be transmitted or lost.
 | |
|  */
 | |
| static bool loss_gilb_ell(struct netem_sched_data *q)
 | |
| {
 | |
| 	struct clgstate *clg = &q->clg;
 | |
| 
 | |
| 	switch (clg->state) {
 | |
| 	case GOOD_STATE:
 | |
| 		if (prandom_u32() < clg->a1)
 | |
| 			clg->state = BAD_STATE;
 | |
| 		if (prandom_u32() < clg->a4)
 | |
| 			return true;
 | |
| 		break;
 | |
| 	case BAD_STATE:
 | |
| 		if (prandom_u32() < clg->a2)
 | |
| 			clg->state = GOOD_STATE;
 | |
| 		if (prandom_u32() > clg->a3)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool loss_event(struct netem_sched_data *q)
 | |
| {
 | |
| 	switch (q->loss_model) {
 | |
| 	case CLG_RANDOM:
 | |
| 		/* Random packet drop 0 => none, ~0 => all */
 | |
| 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 | |
| 
 | |
| 	case CLG_4_STATES:
 | |
| 		/* 4state loss model algorithm (used also for GI model)
 | |
| 		* Extracts a value from the markov 4 state loss generator,
 | |
| 		* if it is 1 drops a packet and if needed writes the event in
 | |
| 		* the kernel logs
 | |
| 		*/
 | |
| 		return loss_4state(q);
 | |
| 
 | |
| 	case CLG_GILB_ELL:
 | |
| 		/* Gilbert-Elliot loss model algorithm
 | |
| 		* Extracts a value from the Gilbert-Elliot loss generator,
 | |
| 		* if it is 1 drops a packet and if needed writes the event in
 | |
| 		* the kernel logs
 | |
| 		*/
 | |
| 		return loss_gilb_ell(q);
 | |
| 	}
 | |
| 
 | |
| 	return false;	/* not reached */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* tabledist - return a pseudo-randomly distributed value with mean mu and
 | |
|  * std deviation sigma.  Uses table lookup to approximate the desired
 | |
|  * distribution, and a uniformly-distributed pseudo-random source.
 | |
|  */
 | |
| static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 | |
| 				struct crndstate *state,
 | |
| 				const struct disttable *dist)
 | |
| {
 | |
| 	psched_tdiff_t x;
 | |
| 	long t;
 | |
| 	u32 rnd;
 | |
| 
 | |
| 	if (sigma == 0)
 | |
| 		return mu;
 | |
| 
 | |
| 	rnd = get_crandom(state);
 | |
| 
 | |
| 	/* default uniform distribution */
 | |
| 	if (dist == NULL)
 | |
| 		return (rnd % (2*sigma)) - sigma + mu;
 | |
| 
 | |
| 	t = dist->table[rnd % dist->size];
 | |
| 	x = (sigma % NETEM_DIST_SCALE) * t;
 | |
| 	if (x >= 0)
 | |
| 		x += NETEM_DIST_SCALE/2;
 | |
| 	else
 | |
| 		x -= NETEM_DIST_SCALE/2;
 | |
| 
 | |
| 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 | |
| }
 | |
| 
 | |
| static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 | |
| {
 | |
| 	u64 ticks;
 | |
| 
 | |
| 	len += q->packet_overhead;
 | |
| 
 | |
| 	if (q->cell_size) {
 | |
| 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 | |
| 
 | |
| 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 | |
| 			cells++;
 | |
| 		len = cells * (q->cell_size + q->cell_overhead);
 | |
| 	}
 | |
| 
 | |
| 	ticks = (u64)len * NSEC_PER_SEC;
 | |
| 
 | |
| 	do_div(ticks, q->rate);
 | |
| 	return PSCHED_NS2TICKS(ticks);
 | |
| }
 | |
| 
 | |
| static void tfifo_reset(struct Qdisc *sch)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	while ((p = rb_first(&q->t_root))) {
 | |
| 		struct sk_buff *skb = netem_rb_to_skb(p);
 | |
| 
 | |
| 		rb_erase(p, &q->t_root);
 | |
| 		skb->next = NULL;
 | |
| 		skb->prev = NULL;
 | |
| 		kfree_skb(skb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 | |
| 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		parent = *p;
 | |
| 		skb = netem_rb_to_skb(parent);
 | |
| 		if (tnext >= netem_skb_cb(skb)->time_to_send)
 | |
| 			p = &parent->rb_right;
 | |
| 		else
 | |
| 			p = &parent->rb_left;
 | |
| 	}
 | |
| 	rb_link_node(netem_rb_node(nskb), parent, p);
 | |
| 	rb_insert_color(netem_rb_node(nskb), &q->t_root);
 | |
| 	sch->q.qlen++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert one skb into qdisc.
 | |
|  * Note: parent depends on return value to account for queue length.
 | |
|  * 	NET_XMIT_DROP: queue length didn't change.
 | |
|  *      NET_XMIT_SUCCESS: one skb was queued.
 | |
|  */
 | |
| static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	/* We don't fill cb now as skb_unshare() may invalidate it */
 | |
| 	struct netem_skb_cb *cb;
 | |
| 	struct sk_buff *skb2;
 | |
| 	int count = 1;
 | |
| 
 | |
| 	/* Random duplication */
 | |
| 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 | |
| 		++count;
 | |
| 
 | |
| 	/* Drop packet? */
 | |
| 	if (loss_event(q)) {
 | |
| 		if (q->ecn && INET_ECN_set_ce(skb))
 | |
| 			sch->qstats.drops++; /* mark packet */
 | |
| 		else
 | |
| 			--count;
 | |
| 	}
 | |
| 	if (count == 0) {
 | |
| 		sch->qstats.drops++;
 | |
| 		kfree_skb(skb);
 | |
| 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 | |
| 	}
 | |
| 
 | |
| 	/* If a delay is expected, orphan the skb. (orphaning usually takes
 | |
| 	 * place at TX completion time, so _before_ the link transit delay)
 | |
| 	 */
 | |
| 	if (q->latency || q->jitter)
 | |
| 		skb_orphan_partial(skb);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to duplicate packet, then re-insert at top of the
 | |
| 	 * qdisc tree, since parent queuer expects that only one
 | |
| 	 * skb will be queued.
 | |
| 	 */
 | |
| 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 | |
| 		struct Qdisc *rootq = qdisc_root(sch);
 | |
| 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 | |
| 		q->duplicate = 0;
 | |
| 
 | |
| 		qdisc_enqueue_root(skb2, rootq);
 | |
| 		q->duplicate = dupsave;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Randomized packet corruption.
 | |
| 	 * Make copy if needed since we are modifying
 | |
| 	 * If packet is going to be hardware checksummed, then
 | |
| 	 * do it now in software before we mangle it.
 | |
| 	 */
 | |
| 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 | |
| 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 | |
| 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 | |
| 		     skb_checksum_help(skb)))
 | |
| 			return qdisc_drop(skb, sch);
 | |
| 
 | |
| 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 | |
| 			1<<(prandom_u32() % 8);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 | |
| 		return qdisc_reshape_fail(skb, sch);
 | |
| 
 | |
| 	sch->qstats.backlog += qdisc_pkt_len(skb);
 | |
| 
 | |
| 	cb = netem_skb_cb(skb);
 | |
| 	if (q->gap == 0 ||		/* not doing reordering */
 | |
| 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 | |
| 	    q->reorder < get_crandom(&q->reorder_cor)) {
 | |
| 		psched_time_t now;
 | |
| 		psched_tdiff_t delay;
 | |
| 
 | |
| 		delay = tabledist(q->latency, q->jitter,
 | |
| 				  &q->delay_cor, q->delay_dist);
 | |
| 
 | |
| 		now = psched_get_time();
 | |
| 
 | |
| 		if (q->rate) {
 | |
| 			struct sk_buff *last;
 | |
| 
 | |
| 			if (!skb_queue_empty(&sch->q))
 | |
| 				last = skb_peek_tail(&sch->q);
 | |
| 			else
 | |
| 				last = netem_rb_to_skb(rb_last(&q->t_root));
 | |
| 			if (last) {
 | |
| 				/*
 | |
| 				 * Last packet in queue is reference point (now),
 | |
| 				 * calculate this time bonus and subtract
 | |
| 				 * from delay.
 | |
| 				 */
 | |
| 				delay -= netem_skb_cb(last)->time_to_send - now;
 | |
| 				delay = max_t(psched_tdiff_t, 0, delay);
 | |
| 				now = netem_skb_cb(last)->time_to_send;
 | |
| 			}
 | |
| 
 | |
| 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
 | |
| 		}
 | |
| 
 | |
| 		cb->time_to_send = now + delay;
 | |
| 		cb->tstamp_save = skb->tstamp;
 | |
| 		++q->counter;
 | |
| 		tfifo_enqueue(skb, sch);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Do re-ordering by putting one out of N packets at the front
 | |
| 		 * of the queue.
 | |
| 		 */
 | |
| 		cb->time_to_send = psched_get_time();
 | |
| 		q->counter = 0;
 | |
| 
 | |
| 		__skb_queue_head(&sch->q, skb);
 | |
| 		sch->qstats.requeues++;
 | |
| 	}
 | |
| 
 | |
| 	return NET_XMIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| static unsigned int netem_drop(struct Qdisc *sch)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	unsigned int len;
 | |
| 
 | |
| 	len = qdisc_queue_drop(sch);
 | |
| 
 | |
| 	if (!len) {
 | |
| 		struct rb_node *p = rb_first(&q->t_root);
 | |
| 
 | |
| 		if (p) {
 | |
| 			struct sk_buff *skb = netem_rb_to_skb(p);
 | |
| 
 | |
| 			rb_erase(p, &q->t_root);
 | |
| 			sch->q.qlen--;
 | |
| 			skb->next = NULL;
 | |
| 			skb->prev = NULL;
 | |
| 			len = qdisc_pkt_len(skb);
 | |
| 			sch->qstats.backlog -= len;
 | |
| 			kfree_skb(skb);
 | |
| 		}
 | |
| 	}
 | |
| 	if (!len && q->qdisc && q->qdisc->ops->drop)
 | |
| 	    len = q->qdisc->ops->drop(q->qdisc);
 | |
| 	if (len)
 | |
| 		sch->qstats.drops++;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	struct sk_buff *skb;
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	if (qdisc_is_throttled(sch))
 | |
| 		return NULL;
 | |
| 
 | |
| tfifo_dequeue:
 | |
| 	skb = __skb_dequeue(&sch->q);
 | |
| 	if (skb) {
 | |
| deliver:
 | |
| 		sch->qstats.backlog -= qdisc_pkt_len(skb);
 | |
| 		qdisc_unthrottled(sch);
 | |
| 		qdisc_bstats_update(sch, skb);
 | |
| 		return skb;
 | |
| 	}
 | |
| 	p = rb_first(&q->t_root);
 | |
| 	if (p) {
 | |
| 		psched_time_t time_to_send;
 | |
| 
 | |
| 		skb = netem_rb_to_skb(p);
 | |
| 
 | |
| 		/* if more time remaining? */
 | |
| 		time_to_send = netem_skb_cb(skb)->time_to_send;
 | |
| 		if (time_to_send <= psched_get_time()) {
 | |
| 			rb_erase(p, &q->t_root);
 | |
| 
 | |
| 			sch->q.qlen--;
 | |
| 			skb->next = NULL;
 | |
| 			skb->prev = NULL;
 | |
| 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
 | |
| 
 | |
| #ifdef CONFIG_NET_CLS_ACT
 | |
| 			/*
 | |
| 			 * If it's at ingress let's pretend the delay is
 | |
| 			 * from the network (tstamp will be updated).
 | |
| 			 */
 | |
| 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 | |
| 				skb->tstamp.tv64 = 0;
 | |
| #endif
 | |
| 
 | |
| 			if (q->qdisc) {
 | |
| 				int err = qdisc_enqueue(skb, q->qdisc);
 | |
| 
 | |
| 				if (unlikely(err != NET_XMIT_SUCCESS)) {
 | |
| 					if (net_xmit_drop_count(err)) {
 | |
| 						sch->qstats.drops++;
 | |
| 						qdisc_tree_decrease_qlen(sch, 1);
 | |
| 					}
 | |
| 				}
 | |
| 				goto tfifo_dequeue;
 | |
| 			}
 | |
| 			goto deliver;
 | |
| 		}
 | |
| 
 | |
| 		if (q->qdisc) {
 | |
| 			skb = q->qdisc->ops->dequeue(q->qdisc);
 | |
| 			if (skb)
 | |
| 				goto deliver;
 | |
| 		}
 | |
| 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
 | |
| 	}
 | |
| 
 | |
| 	if (q->qdisc) {
 | |
| 		skb = q->qdisc->ops->dequeue(q->qdisc);
 | |
| 		if (skb)
 | |
| 			goto deliver;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void netem_reset(struct Qdisc *sch)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	qdisc_reset_queue(sch);
 | |
| 	tfifo_reset(sch);
 | |
| 	if (q->qdisc)
 | |
| 		qdisc_reset(q->qdisc);
 | |
| 	qdisc_watchdog_cancel(&q->watchdog);
 | |
| }
 | |
| 
 | |
| static void dist_free(struct disttable *d)
 | |
| {
 | |
| 	kvfree(d);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Distribution data is a variable size payload containing
 | |
|  * signed 16 bit values.
 | |
|  */
 | |
| static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	size_t n = nla_len(attr)/sizeof(__s16);
 | |
| 	const __s16 *data = nla_data(attr);
 | |
| 	spinlock_t *root_lock;
 | |
| 	struct disttable *d;
 | |
| 	int i;
 | |
| 	size_t s;
 | |
| 
 | |
| 	if (n > NETEM_DIST_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	s = sizeof(struct disttable) + n * sizeof(s16);
 | |
| 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!d)
 | |
| 		d = vmalloc(s);
 | |
| 	if (!d)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	d->size = n;
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		d->table[i] = data[i];
 | |
| 
 | |
| 	root_lock = qdisc_root_sleeping_lock(sch);
 | |
| 
 | |
| 	spin_lock_bh(root_lock);
 | |
| 	swap(q->delay_dist, d);
 | |
| 	spin_unlock_bh(root_lock);
 | |
| 
 | |
| 	dist_free(d);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 | |
| {
 | |
| 	const struct tc_netem_corr *c = nla_data(attr);
 | |
| 
 | |
| 	init_crandom(&q->delay_cor, c->delay_corr);
 | |
| 	init_crandom(&q->loss_cor, c->loss_corr);
 | |
| 	init_crandom(&q->dup_cor, c->dup_corr);
 | |
| }
 | |
| 
 | |
| static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 | |
| {
 | |
| 	const struct tc_netem_reorder *r = nla_data(attr);
 | |
| 
 | |
| 	q->reorder = r->probability;
 | |
| 	init_crandom(&q->reorder_cor, r->correlation);
 | |
| }
 | |
| 
 | |
| static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 | |
| {
 | |
| 	const struct tc_netem_corrupt *r = nla_data(attr);
 | |
| 
 | |
| 	q->corrupt = r->probability;
 | |
| 	init_crandom(&q->corrupt_cor, r->correlation);
 | |
| }
 | |
| 
 | |
| static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 | |
| {
 | |
| 	const struct tc_netem_rate *r = nla_data(attr);
 | |
| 
 | |
| 	q->rate = r->rate;
 | |
| 	q->packet_overhead = r->packet_overhead;
 | |
| 	q->cell_size = r->cell_size;
 | |
| 	q->cell_overhead = r->cell_overhead;
 | |
| 	if (q->cell_size)
 | |
| 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 | |
| 	else
 | |
| 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 | |
| }
 | |
| 
 | |
| static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 | |
| {
 | |
| 	const struct nlattr *la;
 | |
| 	int rem;
 | |
| 
 | |
| 	nla_for_each_nested(la, attr, rem) {
 | |
| 		u16 type = nla_type(la);
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case NETEM_LOSS_GI: {
 | |
| 			const struct tc_netem_gimodel *gi = nla_data(la);
 | |
| 
 | |
| 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 | |
| 				pr_info("netem: incorrect gi model size\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			q->loss_model = CLG_4_STATES;
 | |
| 
 | |
| 			q->clg.state = TX_IN_GAP_PERIOD;
 | |
| 			q->clg.a1 = gi->p13;
 | |
| 			q->clg.a2 = gi->p31;
 | |
| 			q->clg.a3 = gi->p32;
 | |
| 			q->clg.a4 = gi->p14;
 | |
| 			q->clg.a5 = gi->p23;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case NETEM_LOSS_GE: {
 | |
| 			const struct tc_netem_gemodel *ge = nla_data(la);
 | |
| 
 | |
| 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 | |
| 				pr_info("netem: incorrect ge model size\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			q->loss_model = CLG_GILB_ELL;
 | |
| 			q->clg.state = GOOD_STATE;
 | |
| 			q->clg.a1 = ge->p;
 | |
| 			q->clg.a2 = ge->r;
 | |
| 			q->clg.a3 = ge->h;
 | |
| 			q->clg.a4 = ge->k1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		default:
 | |
| 			pr_info("netem: unknown loss type %u\n", type);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 | |
| 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 | |
| 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 | |
| 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 | |
| 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 | |
| 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 | |
| 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 | |
| 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 | |
| };
 | |
| 
 | |
| static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 | |
| 		      const struct nla_policy *policy, int len)
 | |
| {
 | |
| 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 | |
| 
 | |
| 	if (nested_len < 0) {
 | |
| 		pr_info("netem: invalid attributes len %d\n", nested_len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (nested_len >= nla_attr_size(0))
 | |
| 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 | |
| 				 nested_len, policy);
 | |
| 
 | |
| 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Parse netlink message to set options */
 | |
| static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *tb[TCA_NETEM_MAX + 1];
 | |
| 	struct tc_netem_qopt *qopt;
 | |
| 	struct clgstate old_clg;
 | |
| 	int old_loss_model = CLG_RANDOM;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (opt == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	qopt = nla_data(opt);
 | |
| 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* backup q->clg and q->loss_model */
 | |
| 	old_clg = q->clg;
 | |
| 	old_loss_model = q->loss_model;
 | |
| 
 | |
| 	if (tb[TCA_NETEM_LOSS]) {
 | |
| 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 | |
| 		if (ret) {
 | |
| 			q->loss_model = old_loss_model;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	} else {
 | |
| 		q->loss_model = CLG_RANDOM;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_NETEM_DELAY_DIST]) {
 | |
| 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 | |
| 		if (ret) {
 | |
| 			/* recover clg and loss_model, in case of
 | |
| 			 * q->clg and q->loss_model were modified
 | |
| 			 * in get_loss_clg()
 | |
| 			 */
 | |
| 			q->clg = old_clg;
 | |
| 			q->loss_model = old_loss_model;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sch->limit = qopt->limit;
 | |
| 
 | |
| 	q->latency = qopt->latency;
 | |
| 	q->jitter = qopt->jitter;
 | |
| 	q->limit = qopt->limit;
 | |
| 	q->gap = qopt->gap;
 | |
| 	q->counter = 0;
 | |
| 	q->loss = qopt->loss;
 | |
| 	q->duplicate = qopt->duplicate;
 | |
| 
 | |
| 	/* for compatibility with earlier versions.
 | |
| 	 * if gap is set, need to assume 100% probability
 | |
| 	 */
 | |
| 	if (q->gap)
 | |
| 		q->reorder = ~0;
 | |
| 
 | |
| 	if (tb[TCA_NETEM_CORR])
 | |
| 		get_correlation(q, tb[TCA_NETEM_CORR]);
 | |
| 
 | |
| 	if (tb[TCA_NETEM_REORDER])
 | |
| 		get_reorder(q, tb[TCA_NETEM_REORDER]);
 | |
| 
 | |
| 	if (tb[TCA_NETEM_CORRUPT])
 | |
| 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 | |
| 
 | |
| 	if (tb[TCA_NETEM_RATE])
 | |
| 		get_rate(q, tb[TCA_NETEM_RATE]);
 | |
| 
 | |
| 	if (tb[TCA_NETEM_RATE64])
 | |
| 		q->rate = max_t(u64, q->rate,
 | |
| 				nla_get_u64(tb[TCA_NETEM_RATE64]));
 | |
| 
 | |
| 	if (tb[TCA_NETEM_ECN])
 | |
| 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!opt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	qdisc_watchdog_init(&q->watchdog, sch);
 | |
| 
 | |
| 	q->loss_model = CLG_RANDOM;
 | |
| 	ret = netem_change(sch, opt);
 | |
| 	if (ret)
 | |
| 		pr_info("netem: change failed\n");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void netem_destroy(struct Qdisc *sch)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	qdisc_watchdog_cancel(&q->watchdog);
 | |
| 	if (q->qdisc)
 | |
| 		qdisc_destroy(q->qdisc);
 | |
| 	dist_free(q->delay_dist);
 | |
| }
 | |
| 
 | |
| static int dump_loss_model(const struct netem_sched_data *q,
 | |
| 			   struct sk_buff *skb)
 | |
| {
 | |
| 	struct nlattr *nest;
 | |
| 
 | |
| 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 | |
| 	if (nest == NULL)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	switch (q->loss_model) {
 | |
| 	case CLG_RANDOM:
 | |
| 		/* legacy loss model */
 | |
| 		nla_nest_cancel(skb, nest);
 | |
| 		return 0;	/* no data */
 | |
| 
 | |
| 	case CLG_4_STATES: {
 | |
| 		struct tc_netem_gimodel gi = {
 | |
| 			.p13 = q->clg.a1,
 | |
| 			.p31 = q->clg.a2,
 | |
| 			.p32 = q->clg.a3,
 | |
| 			.p14 = q->clg.a4,
 | |
| 			.p23 = q->clg.a5,
 | |
| 		};
 | |
| 
 | |
| 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 | |
| 			goto nla_put_failure;
 | |
| 		break;
 | |
| 	}
 | |
| 	case CLG_GILB_ELL: {
 | |
| 		struct tc_netem_gemodel ge = {
 | |
| 			.p = q->clg.a1,
 | |
| 			.r = q->clg.a2,
 | |
| 			.h = q->clg.a3,
 | |
| 			.k1 = q->clg.a4,
 | |
| 		};
 | |
| 
 | |
| 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 | |
| 			goto nla_put_failure;
 | |
| 		break;
 | |
| 	}
 | |
| 	}
 | |
| 
 | |
| 	nla_nest_end(skb, nest);
 | |
| 	return 0;
 | |
| 
 | |
| nla_put_failure:
 | |
| 	nla_nest_cancel(skb, nest);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 | |
| 	struct tc_netem_qopt qopt;
 | |
| 	struct tc_netem_corr cor;
 | |
| 	struct tc_netem_reorder reorder;
 | |
| 	struct tc_netem_corrupt corrupt;
 | |
| 	struct tc_netem_rate rate;
 | |
| 
 | |
| 	qopt.latency = q->latency;
 | |
| 	qopt.jitter = q->jitter;
 | |
| 	qopt.limit = q->limit;
 | |
| 	qopt.loss = q->loss;
 | |
| 	qopt.gap = q->gap;
 | |
| 	qopt.duplicate = q->duplicate;
 | |
| 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	cor.delay_corr = q->delay_cor.rho;
 | |
| 	cor.loss_corr = q->loss_cor.rho;
 | |
| 	cor.dup_corr = q->dup_cor.rho;
 | |
| 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	reorder.probability = q->reorder;
 | |
| 	reorder.correlation = q->reorder_cor.rho;
 | |
| 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	corrupt.probability = q->corrupt;
 | |
| 	corrupt.correlation = q->corrupt_cor.rho;
 | |
| 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (q->rate >= (1ULL << 32)) {
 | |
| 		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
 | |
| 			goto nla_put_failure;
 | |
| 		rate.rate = ~0U;
 | |
| 	} else {
 | |
| 		rate.rate = q->rate;
 | |
| 	}
 | |
| 	rate.packet_overhead = q->packet_overhead;
 | |
| 	rate.cell_size = q->cell_size;
 | |
| 	rate.cell_overhead = q->cell_overhead;
 | |
| 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (dump_loss_model(q, skb) != 0)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	return nla_nest_end(skb, nla);
 | |
| 
 | |
| nla_put_failure:
 | |
| 	nlmsg_trim(skb, nla);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
 | |
| 			  struct sk_buff *skb, struct tcmsg *tcm)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	if (cl != 1 || !q->qdisc) 	/* only one class */
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	tcm->tcm_handle |= TC_H_MIN(1);
 | |
| 	tcm->tcm_info = q->qdisc->handle;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
 | |
| 		     struct Qdisc **old)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	sch_tree_lock(sch);
 | |
| 	*old = q->qdisc;
 | |
| 	q->qdisc = new;
 | |
| 	if (*old) {
 | |
| 		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
 | |
| 		qdisc_reset(*old);
 | |
| 	}
 | |
| 	sch_tree_unlock(sch);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
 | |
| {
 | |
| 	struct netem_sched_data *q = qdisc_priv(sch);
 | |
| 	return q->qdisc;
 | |
| }
 | |
| 
 | |
| static unsigned long netem_get(struct Qdisc *sch, u32 classid)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void netem_put(struct Qdisc *sch, unsigned long arg)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
 | |
| {
 | |
| 	if (!walker->stop) {
 | |
| 		if (walker->count >= walker->skip)
 | |
| 			if (walker->fn(sch, 1, walker) < 0) {
 | |
| 				walker->stop = 1;
 | |
| 				return;
 | |
| 			}
 | |
| 		walker->count++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct Qdisc_class_ops netem_class_ops = {
 | |
| 	.graft		=	netem_graft,
 | |
| 	.leaf		=	netem_leaf,
 | |
| 	.get		=	netem_get,
 | |
| 	.put		=	netem_put,
 | |
| 	.walk		=	netem_walk,
 | |
| 	.dump		=	netem_dump_class,
 | |
| };
 | |
| 
 | |
| static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
 | |
| 	.id		=	"netem",
 | |
| 	.cl_ops		=	&netem_class_ops,
 | |
| 	.priv_size	=	sizeof(struct netem_sched_data),
 | |
| 	.enqueue	=	netem_enqueue,
 | |
| 	.dequeue	=	netem_dequeue,
 | |
| 	.peek		=	qdisc_peek_dequeued,
 | |
| 	.drop		=	netem_drop,
 | |
| 	.init		=	netem_init,
 | |
| 	.reset		=	netem_reset,
 | |
| 	.destroy	=	netem_destroy,
 | |
| 	.change		=	netem_change,
 | |
| 	.dump		=	netem_dump,
 | |
| 	.owner		=	THIS_MODULE,
 | |
| };
 | |
| 
 | |
| 
 | |
| static int __init netem_module_init(void)
 | |
| {
 | |
| 	pr_info("netem: version " VERSION "\n");
 | |
| 	return register_qdisc(&netem_qdisc_ops);
 | |
| }
 | |
| static void __exit netem_module_exit(void)
 | |
| {
 | |
| 	unregister_qdisc(&netem_qdisc_ops);
 | |
| }
 | |
| module_init(netem_module_init)
 | |
| module_exit(netem_module_exit)
 | |
| MODULE_LICENSE("GPL");
 |