 4cb28970a2
			
		
	
	
	4cb28970a2
	
	
	
		
			
			It is available since v3.15-rc5. Cc: Pablo Neira Ayuso <pablo@netfilter.org> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			849 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			849 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
 | |
|  *
 | |
|  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
 | |
|  *
 | |
|  *	This program is free software; you can redistribute it and/or
 | |
|  *	modify it under the terms of the GNU General Public License
 | |
|  *	as published by the Free Software Foundation; either version
 | |
|  *	2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  *  Meant to be mostly used for localy generated traffic :
 | |
|  *  Fast classification depends on skb->sk being set before reaching us.
 | |
|  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
 | |
|  *  All packets belonging to a socket are considered as a 'flow'.
 | |
|  *
 | |
|  *  Flows are dynamically allocated and stored in a hash table of RB trees
 | |
|  *  They are also part of one Round Robin 'queues' (new or old flows)
 | |
|  *
 | |
|  *  Burst avoidance (aka pacing) capability :
 | |
|  *
 | |
|  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
 | |
|  *  bunch of packets, and this packet scheduler adds delay between
 | |
|  *  packets to respect rate limitation.
 | |
|  *
 | |
|  *  enqueue() :
 | |
|  *   - lookup one RB tree (out of 1024 or more) to find the flow.
 | |
|  *     If non existent flow, create it, add it to the tree.
 | |
|  *     Add skb to the per flow list of skb (fifo).
 | |
|  *   - Use a special fifo for high prio packets
 | |
|  *
 | |
|  *  dequeue() : serves flows in Round Robin
 | |
|  *  Note : When a flow becomes empty, we do not immediately remove it from
 | |
|  *  rb trees, for performance reasons (its expected to send additional packets,
 | |
|  *  or SLAB cache will reuse socket for another flow)
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <net/netlink.h>
 | |
| #include <net/pkt_sched.h>
 | |
| #include <net/sock.h>
 | |
| #include <net/tcp_states.h>
 | |
| 
 | |
| /*
 | |
|  * Per flow structure, dynamically allocated
 | |
|  */
 | |
| struct fq_flow {
 | |
| 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
 | |
| 	union {
 | |
| 		struct sk_buff *tail;	/* last skb in the list */
 | |
| 		unsigned long  age;	/* jiffies when flow was emptied, for gc */
 | |
| 	};
 | |
| 	struct rb_node	fq_node; 	/* anchor in fq_root[] trees */
 | |
| 	struct sock	*sk;
 | |
| 	int		qlen;		/* number of packets in flow queue */
 | |
| 	int		credit;
 | |
| 	u32		socket_hash;	/* sk_hash */
 | |
| 	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
 | |
| 
 | |
| 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
 | |
| 	u64		time_next_packet;
 | |
| };
 | |
| 
 | |
| struct fq_flow_head {
 | |
| 	struct fq_flow *first;
 | |
| 	struct fq_flow *last;
 | |
| };
 | |
| 
 | |
| struct fq_sched_data {
 | |
| 	struct fq_flow_head new_flows;
 | |
| 
 | |
| 	struct fq_flow_head old_flows;
 | |
| 
 | |
| 	struct rb_root	delayed;	/* for rate limited flows */
 | |
| 	u64		time_next_delayed_flow;
 | |
| 
 | |
| 	struct fq_flow	internal;	/* for non classified or high prio packets */
 | |
| 	u32		quantum;
 | |
| 	u32		initial_quantum;
 | |
| 	u32		flow_refill_delay;
 | |
| 	u32		flow_max_rate;	/* optional max rate per flow */
 | |
| 	u32		flow_plimit;	/* max packets per flow */
 | |
| 	struct rb_root	*fq_root;
 | |
| 	u8		rate_enable;
 | |
| 	u8		fq_trees_log;
 | |
| 
 | |
| 	u32		flows;
 | |
| 	u32		inactive_flows;
 | |
| 	u32		throttled_flows;
 | |
| 
 | |
| 	u64		stat_gc_flows;
 | |
| 	u64		stat_internal_packets;
 | |
| 	u64		stat_tcp_retrans;
 | |
| 	u64		stat_throttled;
 | |
| 	u64		stat_flows_plimit;
 | |
| 	u64		stat_pkts_too_long;
 | |
| 	u64		stat_allocation_errors;
 | |
| 	struct qdisc_watchdog watchdog;
 | |
| };
 | |
| 
 | |
| /* special value to mark a detached flow (not on old/new list) */
 | |
| static struct fq_flow detached, throttled;
 | |
| 
 | |
| static void fq_flow_set_detached(struct fq_flow *f)
 | |
| {
 | |
| 	f->next = &detached;
 | |
| 	f->age = jiffies;
 | |
| }
 | |
| 
 | |
| static bool fq_flow_is_detached(const struct fq_flow *f)
 | |
| {
 | |
| 	return f->next == &detached;
 | |
| }
 | |
| 
 | |
| static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 | |
| {
 | |
| 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		struct fq_flow *aux;
 | |
| 
 | |
| 		parent = *p;
 | |
| 		aux = container_of(parent, struct fq_flow, rate_node);
 | |
| 		if (f->time_next_packet >= aux->time_next_packet)
 | |
| 			p = &parent->rb_right;
 | |
| 		else
 | |
| 			p = &parent->rb_left;
 | |
| 	}
 | |
| 	rb_link_node(&f->rate_node, parent, p);
 | |
| 	rb_insert_color(&f->rate_node, &q->delayed);
 | |
| 	q->throttled_flows++;
 | |
| 	q->stat_throttled++;
 | |
| 
 | |
| 	f->next = &throttled;
 | |
| 	if (q->time_next_delayed_flow > f->time_next_packet)
 | |
| 		q->time_next_delayed_flow = f->time_next_packet;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct kmem_cache *fq_flow_cachep __read_mostly;
 | |
| 
 | |
| static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 | |
| {
 | |
| 	if (head->first)
 | |
| 		head->last->next = flow;
 | |
| 	else
 | |
| 		head->first = flow;
 | |
| 	head->last = flow;
 | |
| 	flow->next = NULL;
 | |
| }
 | |
| 
 | |
| /* limit number of collected flows per round */
 | |
| #define FQ_GC_MAX 8
 | |
| #define FQ_GC_AGE (3*HZ)
 | |
| 
 | |
| static bool fq_gc_candidate(const struct fq_flow *f)
 | |
| {
 | |
| 	return fq_flow_is_detached(f) &&
 | |
| 	       time_after(jiffies, f->age + FQ_GC_AGE);
 | |
| }
 | |
| 
 | |
| static void fq_gc(struct fq_sched_data *q,
 | |
| 		  struct rb_root *root,
 | |
| 		  struct sock *sk)
 | |
| {
 | |
| 	struct fq_flow *f, *tofree[FQ_GC_MAX];
 | |
| 	struct rb_node **p, *parent;
 | |
| 	int fcnt = 0;
 | |
| 
 | |
| 	p = &root->rb_node;
 | |
| 	parent = NULL;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 
 | |
| 		f = container_of(parent, struct fq_flow, fq_node);
 | |
| 		if (f->sk == sk)
 | |
| 			break;
 | |
| 
 | |
| 		if (fq_gc_candidate(f)) {
 | |
| 			tofree[fcnt++] = f;
 | |
| 			if (fcnt == FQ_GC_MAX)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (f->sk > sk)
 | |
| 			p = &parent->rb_right;
 | |
| 		else
 | |
| 			p = &parent->rb_left;
 | |
| 	}
 | |
| 
 | |
| 	q->flows -= fcnt;
 | |
| 	q->inactive_flows -= fcnt;
 | |
| 	q->stat_gc_flows += fcnt;
 | |
| 	while (fcnt) {
 | |
| 		struct fq_flow *f = tofree[--fcnt];
 | |
| 
 | |
| 		rb_erase(&f->fq_node, root);
 | |
| 		kmem_cache_free(fq_flow_cachep, f);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 | |
| {
 | |
| 	struct rb_node **p, *parent;
 | |
| 	struct sock *sk = skb->sk;
 | |
| 	struct rb_root *root;
 | |
| 	struct fq_flow *f;
 | |
| 
 | |
| 	/* warning: no starvation prevention... */
 | |
| 	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
 | |
| 		return &q->internal;
 | |
| 
 | |
| 	if (unlikely(!sk)) {
 | |
| 		/* By forcing low order bit to 1, we make sure to not
 | |
| 		 * collide with a local flow (socket pointers are word aligned)
 | |
| 		 */
 | |
| 		sk = (struct sock *)(skb_get_hash(skb) | 1L);
 | |
| 	}
 | |
| 
 | |
| 	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
 | |
| 
 | |
| 	if (q->flows >= (2U << q->fq_trees_log) &&
 | |
| 	    q->inactive_flows > q->flows/2)
 | |
| 		fq_gc(q, root, sk);
 | |
| 
 | |
| 	p = &root->rb_node;
 | |
| 	parent = NULL;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 
 | |
| 		f = container_of(parent, struct fq_flow, fq_node);
 | |
| 		if (f->sk == sk) {
 | |
| 			/* socket might have been reallocated, so check
 | |
| 			 * if its sk_hash is the same.
 | |
| 			 * It not, we need to refill credit with
 | |
| 			 * initial quantum
 | |
| 			 */
 | |
| 			if (unlikely(skb->sk &&
 | |
| 				     f->socket_hash != sk->sk_hash)) {
 | |
| 				f->credit = q->initial_quantum;
 | |
| 				f->socket_hash = sk->sk_hash;
 | |
| 				f->time_next_packet = 0ULL;
 | |
| 			}
 | |
| 			return f;
 | |
| 		}
 | |
| 		if (f->sk > sk)
 | |
| 			p = &parent->rb_right;
 | |
| 		else
 | |
| 			p = &parent->rb_left;
 | |
| 	}
 | |
| 
 | |
| 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 | |
| 	if (unlikely(!f)) {
 | |
| 		q->stat_allocation_errors++;
 | |
| 		return &q->internal;
 | |
| 	}
 | |
| 	fq_flow_set_detached(f);
 | |
| 	f->sk = sk;
 | |
| 	if (skb->sk)
 | |
| 		f->socket_hash = sk->sk_hash;
 | |
| 	f->credit = q->initial_quantum;
 | |
| 
 | |
| 	rb_link_node(&f->fq_node, parent, p);
 | |
| 	rb_insert_color(&f->fq_node, root);
 | |
| 
 | |
| 	q->flows++;
 | |
| 	q->inactive_flows++;
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* remove one skb from head of flow queue */
 | |
| static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
 | |
| {
 | |
| 	struct sk_buff *skb = flow->head;
 | |
| 
 | |
| 	if (skb) {
 | |
| 		flow->head = skb->next;
 | |
| 		skb->next = NULL;
 | |
| 		flow->qlen--;
 | |
| 		sch->qstats.backlog -= qdisc_pkt_len(skb);
 | |
| 		sch->q.qlen--;
 | |
| 	}
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /* We might add in the future detection of retransmits
 | |
|  * For the time being, just return false
 | |
|  */
 | |
| static bool skb_is_retransmit(struct sk_buff *skb)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* add skb to flow queue
 | |
|  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
 | |
|  * We special case tcp retransmits to be transmitted before other packets.
 | |
|  * We rely on fact that TCP retransmits are unlikely, so we do not waste
 | |
|  * a separate queue or a pointer.
 | |
|  * head->  [retrans pkt 1]
 | |
|  *         [retrans pkt 2]
 | |
|  *         [ normal pkt 1]
 | |
|  *         [ normal pkt 2]
 | |
|  *         [ normal pkt 3]
 | |
|  * tail->  [ normal pkt 4]
 | |
|  */
 | |
| static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 | |
| {
 | |
| 	struct sk_buff *prev, *head = flow->head;
 | |
| 
 | |
| 	skb->next = NULL;
 | |
| 	if (!head) {
 | |
| 		flow->head = skb;
 | |
| 		flow->tail = skb;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (likely(!skb_is_retransmit(skb))) {
 | |
| 		flow->tail->next = skb;
 | |
| 		flow->tail = skb;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* This skb is a tcp retransmit,
 | |
| 	 * find the last retrans packet in the queue
 | |
| 	 */
 | |
| 	prev = NULL;
 | |
| 	while (skb_is_retransmit(head)) {
 | |
| 		prev = head;
 | |
| 		head = head->next;
 | |
| 		if (!head)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!prev) { /* no rtx packet in queue, become the new head */
 | |
| 		skb->next = flow->head;
 | |
| 		flow->head = skb;
 | |
| 	} else {
 | |
| 		if (prev == flow->tail)
 | |
| 			flow->tail = skb;
 | |
| 		else
 | |
| 			skb->next = prev->next;
 | |
| 		prev->next = skb;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	struct fq_flow *f;
 | |
| 
 | |
| 	if (unlikely(sch->q.qlen >= sch->limit))
 | |
| 		return qdisc_drop(skb, sch);
 | |
| 
 | |
| 	f = fq_classify(skb, q);
 | |
| 	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 | |
| 		q->stat_flows_plimit++;
 | |
| 		return qdisc_drop(skb, sch);
 | |
| 	}
 | |
| 
 | |
| 	f->qlen++;
 | |
| 	if (skb_is_retransmit(skb))
 | |
| 		q->stat_tcp_retrans++;
 | |
| 	sch->qstats.backlog += qdisc_pkt_len(skb);
 | |
| 	if (fq_flow_is_detached(f)) {
 | |
| 		fq_flow_add_tail(&q->new_flows, f);
 | |
| 		if (time_after(jiffies, f->age + q->flow_refill_delay))
 | |
| 			f->credit = max_t(u32, f->credit, q->quantum);
 | |
| 		q->inactive_flows--;
 | |
| 		qdisc_unthrottled(sch);
 | |
| 	}
 | |
| 
 | |
| 	/* Note: this overwrites f->age */
 | |
| 	flow_queue_add(f, skb);
 | |
| 
 | |
| 	if (unlikely(f == &q->internal)) {
 | |
| 		q->stat_internal_packets++;
 | |
| 		qdisc_unthrottled(sch);
 | |
| 	}
 | |
| 	sch->q.qlen++;
 | |
| 
 | |
| 	return NET_XMIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 | |
| {
 | |
| 	struct rb_node *p;
 | |
| 
 | |
| 	if (q->time_next_delayed_flow > now)
 | |
| 		return;
 | |
| 
 | |
| 	q->time_next_delayed_flow = ~0ULL;
 | |
| 	while ((p = rb_first(&q->delayed)) != NULL) {
 | |
| 		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
 | |
| 
 | |
| 		if (f->time_next_packet > now) {
 | |
| 			q->time_next_delayed_flow = f->time_next_packet;
 | |
| 			break;
 | |
| 		}
 | |
| 		rb_erase(p, &q->delayed);
 | |
| 		q->throttled_flows--;
 | |
| 		fq_flow_add_tail(&q->old_flows, f);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	u64 now = ktime_to_ns(ktime_get());
 | |
| 	struct fq_flow_head *head;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct fq_flow *f;
 | |
| 	u32 rate;
 | |
| 
 | |
| 	skb = fq_dequeue_head(sch, &q->internal);
 | |
| 	if (skb)
 | |
| 		goto out;
 | |
| 	fq_check_throttled(q, now);
 | |
| begin:
 | |
| 	head = &q->new_flows;
 | |
| 	if (!head->first) {
 | |
| 		head = &q->old_flows;
 | |
| 		if (!head->first) {
 | |
| 			if (q->time_next_delayed_flow != ~0ULL)
 | |
| 				qdisc_watchdog_schedule_ns(&q->watchdog,
 | |
| 							   q->time_next_delayed_flow);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	f = head->first;
 | |
| 
 | |
| 	if (f->credit <= 0) {
 | |
| 		f->credit += q->quantum;
 | |
| 		head->first = f->next;
 | |
| 		fq_flow_add_tail(&q->old_flows, f);
 | |
| 		goto begin;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(f->head && now < f->time_next_packet)) {
 | |
| 		head->first = f->next;
 | |
| 		fq_flow_set_throttled(q, f);
 | |
| 		goto begin;
 | |
| 	}
 | |
| 
 | |
| 	skb = fq_dequeue_head(sch, f);
 | |
| 	if (!skb) {
 | |
| 		head->first = f->next;
 | |
| 		/* force a pass through old_flows to prevent starvation */
 | |
| 		if ((head == &q->new_flows) && q->old_flows.first) {
 | |
| 			fq_flow_add_tail(&q->old_flows, f);
 | |
| 		} else {
 | |
| 			fq_flow_set_detached(f);
 | |
| 			q->inactive_flows++;
 | |
| 		}
 | |
| 		goto begin;
 | |
| 	}
 | |
| 	prefetch(&skb->end);
 | |
| 	f->time_next_packet = now;
 | |
| 	f->credit -= qdisc_pkt_len(skb);
 | |
| 
 | |
| 	if (f->credit > 0 || !q->rate_enable)
 | |
| 		goto out;
 | |
| 
 | |
| 	rate = q->flow_max_rate;
 | |
| 	if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
 | |
| 		rate = min(skb->sk->sk_pacing_rate, rate);
 | |
| 
 | |
| 	if (rate != ~0U) {
 | |
| 		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
 | |
| 		u64 len = (u64)plen * NSEC_PER_SEC;
 | |
| 
 | |
| 		if (likely(rate))
 | |
| 			do_div(len, rate);
 | |
| 		/* Since socket rate can change later,
 | |
| 		 * clamp the delay to 125 ms.
 | |
| 		 * TODO: maybe segment the too big skb, as in commit
 | |
| 		 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
 | |
| 		 */
 | |
| 		if (unlikely(len > 125 * NSEC_PER_MSEC)) {
 | |
| 			len = 125 * NSEC_PER_MSEC;
 | |
| 			q->stat_pkts_too_long++;
 | |
| 		}
 | |
| 
 | |
| 		f->time_next_packet = now + len;
 | |
| 	}
 | |
| out:
 | |
| 	qdisc_bstats_update(sch, skb);
 | |
| 	qdisc_unthrottled(sch);
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static void fq_reset(struct Qdisc *sch)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	struct rb_root *root;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct rb_node *p;
 | |
| 	struct fq_flow *f;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
 | |
| 		kfree_skb(skb);
 | |
| 
 | |
| 	if (!q->fq_root)
 | |
| 		return;
 | |
| 
 | |
| 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 | |
| 		root = &q->fq_root[idx];
 | |
| 		while ((p = rb_first(root)) != NULL) {
 | |
| 			f = container_of(p, struct fq_flow, fq_node);
 | |
| 			rb_erase(p, root);
 | |
| 
 | |
| 			while ((skb = fq_dequeue_head(sch, f)) != NULL)
 | |
| 				kfree_skb(skb);
 | |
| 
 | |
| 			kmem_cache_free(fq_flow_cachep, f);
 | |
| 		}
 | |
| 	}
 | |
| 	q->new_flows.first	= NULL;
 | |
| 	q->old_flows.first	= NULL;
 | |
| 	q->delayed		= RB_ROOT;
 | |
| 	q->flows		= 0;
 | |
| 	q->inactive_flows	= 0;
 | |
| 	q->throttled_flows	= 0;
 | |
| }
 | |
| 
 | |
| static void fq_rehash(struct fq_sched_data *q,
 | |
| 		      struct rb_root *old_array, u32 old_log,
 | |
| 		      struct rb_root *new_array, u32 new_log)
 | |
| {
 | |
| 	struct rb_node *op, **np, *parent;
 | |
| 	struct rb_root *oroot, *nroot;
 | |
| 	struct fq_flow *of, *nf;
 | |
| 	int fcnt = 0;
 | |
| 	u32 idx;
 | |
| 
 | |
| 	for (idx = 0; idx < (1U << old_log); idx++) {
 | |
| 		oroot = &old_array[idx];
 | |
| 		while ((op = rb_first(oroot)) != NULL) {
 | |
| 			rb_erase(op, oroot);
 | |
| 			of = container_of(op, struct fq_flow, fq_node);
 | |
| 			if (fq_gc_candidate(of)) {
 | |
| 				fcnt++;
 | |
| 				kmem_cache_free(fq_flow_cachep, of);
 | |
| 				continue;
 | |
| 			}
 | |
| 			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
 | |
| 
 | |
| 			np = &nroot->rb_node;
 | |
| 			parent = NULL;
 | |
| 			while (*np) {
 | |
| 				parent = *np;
 | |
| 
 | |
| 				nf = container_of(parent, struct fq_flow, fq_node);
 | |
| 				BUG_ON(nf->sk == of->sk);
 | |
| 
 | |
| 				if (nf->sk > of->sk)
 | |
| 					np = &parent->rb_right;
 | |
| 				else
 | |
| 					np = &parent->rb_left;
 | |
| 			}
 | |
| 
 | |
| 			rb_link_node(&of->fq_node, parent, np);
 | |
| 			rb_insert_color(&of->fq_node, nroot);
 | |
| 		}
 | |
| 	}
 | |
| 	q->flows -= fcnt;
 | |
| 	q->inactive_flows -= fcnt;
 | |
| 	q->stat_gc_flows += fcnt;
 | |
| }
 | |
| 
 | |
| static void *fq_alloc_node(size_t sz, int node)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
 | |
| 	if (!ptr)
 | |
| 		ptr = vmalloc_node(sz, node);
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static void fq_free(void *addr)
 | |
| {
 | |
| 	kvfree(addr);
 | |
| }
 | |
| 
 | |
| static int fq_resize(struct Qdisc *sch, u32 log)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	struct rb_root *array;
 | |
| 	void *old_fq_root;
 | |
| 	u32 idx;
 | |
| 
 | |
| 	if (q->fq_root && log == q->fq_trees_log)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If XPS was setup, we can allocate memory on right NUMA node */
 | |
| 	array = fq_alloc_node(sizeof(struct rb_root) << log,
 | |
| 			      netdev_queue_numa_node_read(sch->dev_queue));
 | |
| 	if (!array)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (idx = 0; idx < (1U << log); idx++)
 | |
| 		array[idx] = RB_ROOT;
 | |
| 
 | |
| 	sch_tree_lock(sch);
 | |
| 
 | |
| 	old_fq_root = q->fq_root;
 | |
| 	if (old_fq_root)
 | |
| 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
 | |
| 
 | |
| 	q->fq_root = array;
 | |
| 	q->fq_trees_log = log;
 | |
| 
 | |
| 	sch_tree_unlock(sch);
 | |
| 
 | |
| 	fq_free(old_fq_root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 | |
| 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
 | |
| 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
 | |
| };
 | |
| 
 | |
| static int fq_change(struct Qdisc *sch, struct nlattr *opt)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *tb[TCA_FQ_MAX + 1];
 | |
| 	int err, drop_count = 0;
 | |
| 	u32 fq_log;
 | |
| 
 | |
| 	if (!opt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	sch_tree_lock(sch);
 | |
| 
 | |
| 	fq_log = q->fq_trees_log;
 | |
| 
 | |
| 	if (tb[TCA_FQ_BUCKETS_LOG]) {
 | |
| 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 | |
| 
 | |
| 		if (nval >= 1 && nval <= ilog2(256*1024))
 | |
| 			fq_log = nval;
 | |
| 		else
 | |
| 			err = -EINVAL;
 | |
| 	}
 | |
| 	if (tb[TCA_FQ_PLIMIT])
 | |
| 		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 | |
| 
 | |
| 	if (tb[TCA_FQ_FLOW_PLIMIT])
 | |
| 		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 | |
| 
 | |
| 	if (tb[TCA_FQ_QUANTUM])
 | |
| 		q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 | |
| 
 | |
| 	if (tb[TCA_FQ_INITIAL_QUANTUM])
 | |
| 		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 | |
| 
 | |
| 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 | |
| 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
 | |
| 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
 | |
| 
 | |
| 	if (tb[TCA_FQ_FLOW_MAX_RATE])
 | |
| 		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 | |
| 
 | |
| 	if (tb[TCA_FQ_RATE_ENABLE]) {
 | |
| 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 | |
| 
 | |
| 		if (enable <= 1)
 | |
| 			q->rate_enable = enable;
 | |
| 		else
 | |
| 			err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
 | |
| 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
 | |
| 
 | |
| 		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
 | |
| 	}
 | |
| 
 | |
| 	if (!err) {
 | |
| 		sch_tree_unlock(sch);
 | |
| 		err = fq_resize(sch, fq_log);
 | |
| 		sch_tree_lock(sch);
 | |
| 	}
 | |
| 	while (sch->q.qlen > sch->limit) {
 | |
| 		struct sk_buff *skb = fq_dequeue(sch);
 | |
| 
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 		kfree_skb(skb);
 | |
| 		drop_count++;
 | |
| 	}
 | |
| 	qdisc_tree_decrease_qlen(sch, drop_count);
 | |
| 
 | |
| 	sch_tree_unlock(sch);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void fq_destroy(struct Qdisc *sch)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	fq_reset(sch);
 | |
| 	fq_free(q->fq_root);
 | |
| 	qdisc_watchdog_cancel(&q->watchdog);
 | |
| }
 | |
| 
 | |
| static int fq_init(struct Qdisc *sch, struct nlattr *opt)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	int err;
 | |
| 
 | |
| 	sch->limit		= 10000;
 | |
| 	q->flow_plimit		= 100;
 | |
| 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
 | |
| 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
 | |
| 	q->flow_refill_delay	= msecs_to_jiffies(40);
 | |
| 	q->flow_max_rate	= ~0U;
 | |
| 	q->rate_enable		= 1;
 | |
| 	q->new_flows.first	= NULL;
 | |
| 	q->old_flows.first	= NULL;
 | |
| 	q->delayed		= RB_ROOT;
 | |
| 	q->fq_root		= NULL;
 | |
| 	q->fq_trees_log		= ilog2(1024);
 | |
| 	qdisc_watchdog_init(&q->watchdog, sch);
 | |
| 
 | |
| 	if (opt)
 | |
| 		err = fq_change(sch, opt);
 | |
| 	else
 | |
| 		err = fq_resize(sch, q->fq_trees_log);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *opts;
 | |
| 
 | |
| 	opts = nla_nest_start(skb, TCA_OPTIONS);
 | |
| 	if (opts == NULL)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 | |
| 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 | |
| 	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 | |
| 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 | |
| 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 | |
| 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
 | |
| 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
 | |
| 			jiffies_to_usecs(q->flow_refill_delay)) ||
 | |
| 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	return nla_nest_end(skb, opts);
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 | |
| {
 | |
| 	struct fq_sched_data *q = qdisc_priv(sch);
 | |
| 	u64 now = ktime_to_ns(ktime_get());
 | |
| 	struct tc_fq_qd_stats st = {
 | |
| 		.gc_flows		= q->stat_gc_flows,
 | |
| 		.highprio_packets	= q->stat_internal_packets,
 | |
| 		.tcp_retrans		= q->stat_tcp_retrans,
 | |
| 		.throttled		= q->stat_throttled,
 | |
| 		.flows_plimit		= q->stat_flows_plimit,
 | |
| 		.pkts_too_long		= q->stat_pkts_too_long,
 | |
| 		.allocation_errors	= q->stat_allocation_errors,
 | |
| 		.flows			= q->flows,
 | |
| 		.inactive_flows		= q->inactive_flows,
 | |
| 		.throttled_flows	= q->throttled_flows,
 | |
| 		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
 | |
| 	};
 | |
| 
 | |
| 	return gnet_stats_copy_app(d, &st, sizeof(st));
 | |
| }
 | |
| 
 | |
| static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
 | |
| 	.id		=	"fq",
 | |
| 	.priv_size	=	sizeof(struct fq_sched_data),
 | |
| 
 | |
| 	.enqueue	=	fq_enqueue,
 | |
| 	.dequeue	=	fq_dequeue,
 | |
| 	.peek		=	qdisc_peek_dequeued,
 | |
| 	.init		=	fq_init,
 | |
| 	.reset		=	fq_reset,
 | |
| 	.destroy	=	fq_destroy,
 | |
| 	.change		=	fq_change,
 | |
| 	.dump		=	fq_dump,
 | |
| 	.dump_stats	=	fq_dump_stats,
 | |
| 	.owner		=	THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init fq_module_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
 | |
| 					   sizeof(struct fq_flow),
 | |
| 					   0, 0, NULL);
 | |
| 	if (!fq_flow_cachep)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = register_qdisc(&fq_qdisc_ops);
 | |
| 	if (ret)
 | |
| 		kmem_cache_destroy(fq_flow_cachep);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit fq_module_exit(void)
 | |
| {
 | |
| 	unregister_qdisc(&fq_qdisc_ops);
 | |
| 	kmem_cache_destroy(fq_flow_cachep);
 | |
| }
 | |
| 
 | |
| module_init(fq_module_init)
 | |
| module_exit(fq_module_exit)
 | |
| MODULE_AUTHOR("Eric Dumazet");
 | |
| MODULE_LICENSE("GPL");
 |