 1139e241ec
			
		
	
	
	1139e241ec
	
	
	
		
			
			Minimize padding in sw_flow_key and move 'tp' top the main struct. These changes simplify code when accessing the transport port numbers and the tcp flags, and makes the sw_flow_key 8 bytes smaller on 64-bit systems (128->120 bytes). These changes also make the keys for IPv4 packets to fit in one cache line. There is a valid concern for safety of packing the struct ovs_key_ipv4_tunnel, as it would be possible to take the address of the tun_id member as a __be64 * which could result in unaligned access in some systems. However: - sw_flow_key itself is 64-bit aligned, so the tun_id within is always 64-bit aligned. - We never make arrays of ovs_key_ipv4_tunnel (which would force every second tun_key to be misaligned). - We never take the address of the tun_id in to a __be64 *. - Whereever we use struct ovs_key_ipv4_tunnel outside the sw_flow_key, it is in stack (on tunnel input functions), where compiler has full control of the alignment. Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com> Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
		
			
				
	
	
		
			1576 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1576 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2007-2013 Nicira, Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of version 2 of the GNU General Public
 | |
|  * License as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
|  * 02110-1301, USA
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include "flow.h"
 | |
| #include "datapath.h"
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <net/llc_pdu.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/llc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/ipv6.h>
 | |
| #include <linux/sctp.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/icmp.h>
 | |
| #include <linux/icmpv6.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/ndisc.h>
 | |
| 
 | |
| #include "flow_netlink.h"
 | |
| 
 | |
| static void update_range__(struct sw_flow_match *match,
 | |
| 			   size_t offset, size_t size, bool is_mask)
 | |
| {
 | |
| 	struct sw_flow_key_range *range = NULL;
 | |
| 	size_t start = rounddown(offset, sizeof(long));
 | |
| 	size_t end = roundup(offset + size, sizeof(long));
 | |
| 
 | |
| 	if (!is_mask)
 | |
| 		range = &match->range;
 | |
| 	else if (match->mask)
 | |
| 		range = &match->mask->range;
 | |
| 
 | |
| 	if (!range)
 | |
| 		return;
 | |
| 
 | |
| 	if (range->start == range->end) {
 | |
| 		range->start = start;
 | |
| 		range->end = end;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (range->start > start)
 | |
| 		range->start = start;
 | |
| 
 | |
| 	if (range->end < end)
 | |
| 		range->end = end;
 | |
| }
 | |
| 
 | |
| #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 | |
| 	do { \
 | |
| 		update_range__(match, offsetof(struct sw_flow_key, field),  \
 | |
| 				     sizeof((match)->key->field), is_mask); \
 | |
| 		if (is_mask) {						    \
 | |
| 			if ((match)->mask)				    \
 | |
| 				(match)->mask->key.field = value;	    \
 | |
| 		} else {                                                    \
 | |
| 			(match)->key->field = value;		            \
 | |
| 		}                                                           \
 | |
| 	} while (0)
 | |
| 
 | |
| #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
 | |
| 	do { \
 | |
| 		update_range__(match, offsetof(struct sw_flow_key, field),  \
 | |
| 				len, is_mask);                              \
 | |
| 		if (is_mask) {						    \
 | |
| 			if ((match)->mask)				    \
 | |
| 				memcpy(&(match)->mask->key.field, value_p, len);\
 | |
| 		} else {                                                    \
 | |
| 			memcpy(&(match)->key->field, value_p, len);         \
 | |
| 		}                                                           \
 | |
| 	} while (0)
 | |
| 
 | |
| static u16 range_n_bytes(const struct sw_flow_key_range *range)
 | |
| {
 | |
| 	return range->end - range->start;
 | |
| }
 | |
| 
 | |
| static bool match_validate(const struct sw_flow_match *match,
 | |
| 			   u64 key_attrs, u64 mask_attrs)
 | |
| {
 | |
| 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
 | |
| 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 | |
| 
 | |
| 	/* The following mask attributes allowed only if they
 | |
| 	 * pass the validation tests. */
 | |
| 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 | |
| 			| (1 << OVS_KEY_ATTR_IPV6)
 | |
| 			| (1 << OVS_KEY_ATTR_TCP)
 | |
| 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 | |
| 			| (1 << OVS_KEY_ATTR_UDP)
 | |
| 			| (1 << OVS_KEY_ATTR_SCTP)
 | |
| 			| (1 << OVS_KEY_ATTR_ICMP)
 | |
| 			| (1 << OVS_KEY_ATTR_ICMPV6)
 | |
| 			| (1 << OVS_KEY_ATTR_ARP)
 | |
| 			| (1 << OVS_KEY_ATTR_ND));
 | |
| 
 | |
| 	/* Always allowed mask fields. */
 | |
| 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 | |
| 		       | (1 << OVS_KEY_ATTR_IN_PORT)
 | |
| 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 | |
| 
 | |
| 	/* Check key attributes. */
 | |
| 	if (match->key->eth.type == htons(ETH_P_ARP)
 | |
| 			|| match->key->eth.type == htons(ETH_P_RARP)) {
 | |
| 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 | |
| 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 | |
| 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 | |
| 	}
 | |
| 
 | |
| 	if (match->key->eth.type == htons(ETH_P_IP)) {
 | |
| 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 | |
| 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 | |
| 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 | |
| 
 | |
| 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 			if (match->key->ip.proto == IPPROTO_UDP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_SCTP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_TCP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_ICMP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 | |
| 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 | |
| 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 | |
| 
 | |
| 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 			if (match->key->ip.proto == IPPROTO_UDP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_SCTP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_TCP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 | |
| 
 | |
| 				if (match->key->tp.src ==
 | |
| 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 | |
| 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 | |
| 					key_expected |= 1 << OVS_KEY_ATTR_ND;
 | |
| 					if (match->mask && (match->mask->key.tp.src == htons(0xffff)))
 | |
| 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((key_attrs & key_expected) != key_expected) {
 | |
| 		/* Key attributes check failed. */
 | |
| 		OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
 | |
| 				(unsigned long long)key_attrs, (unsigned long long)key_expected);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if ((mask_attrs & mask_allowed) != mask_attrs) {
 | |
| 		/* Mask attributes check failed. */
 | |
| 		OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
 | |
| 				(unsigned long long)mask_attrs, (unsigned long long)mask_allowed);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 | |
| static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 | |
| 	[OVS_KEY_ATTR_ENCAP] = -1,
 | |
| 	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
 | |
| 	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
 | |
| 	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
 | |
| 	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
 | |
| 	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
 | |
| 	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
 | |
| 	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
 | |
| 	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
 | |
| 	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
 | |
| 	[OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
 | |
| 	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
 | |
| 	[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
 | |
| 	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
 | |
| 	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
 | |
| 	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
 | |
| 	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
 | |
| 	[OVS_KEY_ATTR_TUNNEL] = -1,
 | |
| };
 | |
| 
 | |
| static bool is_all_zero(const u8 *fp, size_t size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fp)
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		if (fp[i])
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int __parse_flow_nlattrs(const struct nlattr *attr,
 | |
| 				const struct nlattr *a[],
 | |
| 				u64 *attrsp, bool nz)
 | |
| {
 | |
| 	const struct nlattr *nla;
 | |
| 	u64 attrs;
 | |
| 	int rem;
 | |
| 
 | |
| 	attrs = *attrsp;
 | |
| 	nla_for_each_nested(nla, attr, rem) {
 | |
| 		u16 type = nla_type(nla);
 | |
| 		int expected_len;
 | |
| 
 | |
| 		if (type > OVS_KEY_ATTR_MAX) {
 | |
| 			OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
 | |
| 				  type, OVS_KEY_ATTR_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (attrs & (1 << type)) {
 | |
| 			OVS_NLERR("Duplicate key attribute (type %d).\n", type);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		expected_len = ovs_key_lens[type];
 | |
| 		if (nla_len(nla) != expected_len && expected_len != -1) {
 | |
| 			OVS_NLERR("Key attribute has unexpected length (type=%d"
 | |
| 				  ", length=%d, expected=%d).\n", type,
 | |
| 				  nla_len(nla), expected_len);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 | |
| 			attrs |= 1 << type;
 | |
| 			a[type] = nla;
 | |
| 		}
 | |
| 	}
 | |
| 	if (rem) {
 | |
| 		OVS_NLERR("Message has %d unknown bytes.\n", rem);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*attrsp = attrs;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 | |
| 				   const struct nlattr *a[], u64 *attrsp)
 | |
| {
 | |
| 	return __parse_flow_nlattrs(attr, a, attrsp, true);
 | |
| }
 | |
| 
 | |
| static int parse_flow_nlattrs(const struct nlattr *attr,
 | |
| 			      const struct nlattr *a[], u64 *attrsp)
 | |
| {
 | |
| 	return __parse_flow_nlattrs(attr, a, attrsp, false);
 | |
| }
 | |
| 
 | |
| static int ipv4_tun_from_nlattr(const struct nlattr *attr,
 | |
| 				struct sw_flow_match *match, bool is_mask)
 | |
| {
 | |
| 	struct nlattr *a;
 | |
| 	int rem;
 | |
| 	bool ttl = false;
 | |
| 	__be16 tun_flags = 0;
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 | |
| 			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
 | |
| 			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
 | |
| 			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
 | |
| 			[OVS_TUNNEL_KEY_ATTR_TOS] = 1,
 | |
| 			[OVS_TUNNEL_KEY_ATTR_TTL] = 1,
 | |
| 			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
 | |
| 			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
 | |
| 		};
 | |
| 
 | |
| 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 | |
| 			OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
 | |
| 			type, OVS_TUNNEL_KEY_ATTR_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (ovs_tunnel_key_lens[type] != nla_len(a)) {
 | |
| 			OVS_NLERR("IPv4 tunnel attribute type has unexpected "
 | |
| 				  " length (type=%d, length=%d, expected=%d).\n",
 | |
| 				  type, nla_len(a), ovs_tunnel_key_lens[type]);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case OVS_TUNNEL_KEY_ATTR_ID:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 | |
| 					nla_get_be64(a), is_mask);
 | |
| 			tun_flags |= TUNNEL_KEY;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
 | |
| 					nla_get_be32(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
 | |
| 					nla_get_be32(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TOS:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
 | |
| 					nla_get_u8(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TTL:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
 | |
| 					nla_get_u8(a), is_mask);
 | |
| 			ttl = true;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 | |
| 			tun_flags |= TUNNEL_DONT_FRAGMENT;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_CSUM:
 | |
| 			tun_flags |= TUNNEL_CSUM;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 | |
| 
 | |
| 	if (rem > 0) {
 | |
| 		OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_mask) {
 | |
| 		if (!match->key->tun_key.ipv4_dst) {
 | |
| 			OVS_NLERR("IPv4 tunnel destination address is zero.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!ttl) {
 | |
| 			OVS_NLERR("IPv4 tunnel TTL not specified.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ipv4_tun_to_nlattr(struct sk_buff *skb,
 | |
| 			      const struct ovs_key_ipv4_tunnel *tun_key,
 | |
| 			      const struct ovs_key_ipv4_tunnel *output)
 | |
| {
 | |
| 	struct nlattr *nla;
 | |
| 
 | |
| 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 | |
| 	if (!nla)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	if (output->tun_flags & TUNNEL_KEY &&
 | |
| 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->ipv4_src &&
 | |
| 		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->ipv4_dst &&
 | |
| 		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->ipv4_tos &&
 | |
| 		nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
 | |
| 		return -EMSGSIZE;
 | |
| 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 | |
| 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 | |
| 		return -EMSGSIZE;
 | |
| 	if ((output->tun_flags & TUNNEL_CSUM) &&
 | |
| 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	nla_nest_end(skb, nla);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
 | |
| 				 const struct nlattr **a, bool is_mask)
 | |
| {
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
 | |
| 		SW_FLOW_KEY_PUT(match, phy.priority,
 | |
| 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
 | |
| 	}
 | |
| 
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
 | |
| 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
 | |
| 
 | |
| 		if (is_mask)
 | |
| 			in_port = 0xffffffff; /* Always exact match in_port. */
 | |
| 		else if (in_port >= DP_MAX_PORTS)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
 | |
| 	} else if (!is_mask) {
 | |
| 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
 | |
| 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
 | |
| 	}
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
 | |
| 		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
 | |
| 					 is_mask))
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
 | |
| 				const struct nlattr **a, bool is_mask)
 | |
| {
 | |
| 	int err;
 | |
| 	u64 orig_attrs = attrs;
 | |
| 
 | |
| 	err = metadata_from_nlattrs(match, &attrs, a, is_mask);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
 | |
| 		const struct ovs_key_ethernet *eth_key;
 | |
| 
 | |
| 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, eth.src,
 | |
| 				eth_key->eth_src, ETH_ALEN, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
 | |
| 				eth_key->eth_dst, ETH_ALEN, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
 | |
| 		__be16 tci;
 | |
| 
 | |
| 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 | |
| 		if (!(tci & htons(VLAN_TAG_PRESENT))) {
 | |
| 			if (is_mask)
 | |
| 				OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
 | |
| 			else
 | |
| 				OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
 | |
| 
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 | |
| 	} else if (!is_mask)
 | |
| 		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
 | |
| 		__be16 eth_type;
 | |
| 
 | |
| 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 | |
| 		if (is_mask) {
 | |
| 			/* Always exact match EtherType. */
 | |
| 			eth_type = htons(0xffff);
 | |
| 		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
 | |
| 			OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
 | |
| 					ntohs(eth_type), ETH_P_802_3_MIN);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 | |
| 	} else if (!is_mask) {
 | |
| 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 | |
| 		const struct ovs_key_ipv4 *ipv4_key;
 | |
| 
 | |
| 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
 | |
| 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
 | |
| 			OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
 | |
| 				ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		SW_FLOW_KEY_PUT(match, ip.proto,
 | |
| 				ipv4_key->ipv4_proto, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.tos,
 | |
| 				ipv4_key->ipv4_tos, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.ttl,
 | |
| 				ipv4_key->ipv4_ttl, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.frag,
 | |
| 				ipv4_key->ipv4_frag, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 | |
| 				ipv4_key->ipv4_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 | |
| 				ipv4_key->ipv4_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
 | |
| 		const struct ovs_key_ipv6 *ipv6_key;
 | |
| 
 | |
| 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
 | |
| 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
 | |
| 			OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
 | |
| 				ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		SW_FLOW_KEY_PUT(match, ipv6.label,
 | |
| 				ipv6_key->ipv6_label, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.proto,
 | |
| 				ipv6_key->ipv6_proto, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.tos,
 | |
| 				ipv6_key->ipv6_tclass, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.ttl,
 | |
| 				ipv6_key->ipv6_hlimit, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.frag,
 | |
| 				ipv6_key->ipv6_frag, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
 | |
| 				ipv6_key->ipv6_src,
 | |
| 				sizeof(match->key->ipv6.addr.src),
 | |
| 				is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
 | |
| 				ipv6_key->ipv6_dst,
 | |
| 				sizeof(match->key->ipv6.addr.dst),
 | |
| 				is_mask);
 | |
| 
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
 | |
| 		const struct ovs_key_arp *arp_key;
 | |
| 
 | |
| 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
 | |
| 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
 | |
| 			OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
 | |
| 				  arp_key->arp_op);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 | |
| 				arp_key->arp_sip, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 | |
| 			arp_key->arp_tip, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.proto,
 | |
| 				ntohs(arp_key->arp_op), is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
 | |
| 				arp_key->arp_sha, ETH_ALEN, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
 | |
| 				arp_key->arp_tha, ETH_ALEN, is_mask);
 | |
| 
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
 | |
| 		const struct ovs_key_tcp *tcp_key;
 | |
| 
 | |
| 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
 | |
| 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 | |
| 			SW_FLOW_KEY_PUT(match, tp.flags,
 | |
| 					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
 | |
| 					is_mask);
 | |
| 		} else {
 | |
| 			SW_FLOW_KEY_PUT(match, tp.flags,
 | |
| 					nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
 | |
| 					is_mask);
 | |
| 		}
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
 | |
| 		const struct ovs_key_udp *udp_key;
 | |
| 
 | |
| 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
 | |
| 		const struct ovs_key_sctp *sctp_key;
 | |
| 
 | |
| 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
 | |
| 		const struct ovs_key_icmp *icmp_key;
 | |
| 
 | |
| 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src,
 | |
| 				htons(icmp_key->icmp_type), is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst,
 | |
| 				htons(icmp_key->icmp_code), is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
 | |
| 		const struct ovs_key_icmpv6 *icmpv6_key;
 | |
| 
 | |
| 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src,
 | |
| 				htons(icmpv6_key->icmpv6_type), is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst,
 | |
| 				htons(icmpv6_key->icmpv6_code), is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
 | |
| 		const struct ovs_key_nd *nd_key;
 | |
| 
 | |
| 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
 | |
| 			nd_key->nd_target,
 | |
| 			sizeof(match->key->ipv6.nd.target),
 | |
| 			is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
 | |
| 			nd_key->nd_sll, ETH_ALEN, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
 | |
| 				nd_key->nd_tll, ETH_ALEN, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sw_flow_mask_set(struct sw_flow_mask *mask,
 | |
| 			     struct sw_flow_key_range *range, u8 val)
 | |
| {
 | |
| 	u8 *m = (u8 *)&mask->key + range->start;
 | |
| 
 | |
| 	mask->range = *range;
 | |
| 	memset(m, val, range_n_bytes(range));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ovs_nla_get_match - parses Netlink attributes into a flow key and
 | |
|  * mask. In case the 'mask' is NULL, the flow is treated as exact match
 | |
|  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 | |
|  * does not include any don't care bit.
 | |
|  * @match: receives the extracted flow match information.
 | |
|  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 | |
|  * sequence. The fields should of the packet that triggered the creation
 | |
|  * of this flow.
 | |
|  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 | |
|  * attribute specifies the mask field of the wildcarded flow.
 | |
|  */
 | |
| int ovs_nla_get_match(struct sw_flow_match *match,
 | |
| 		      const struct nlattr *key,
 | |
| 		      const struct nlattr *mask)
 | |
| {
 | |
| 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 | |
| 	const struct nlattr *encap;
 | |
| 	u64 key_attrs = 0;
 | |
| 	u64 mask_attrs = 0;
 | |
| 	bool encap_valid = false;
 | |
| 	int err;
 | |
| 
 | |
| 	err = parse_flow_nlattrs(key, a, &key_attrs);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 | |
| 	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 | |
| 	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
 | |
| 		__be16 tci;
 | |
| 
 | |
| 		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 | |
| 		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 | |
| 			OVS_NLERR("Invalid Vlan frame.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 | |
| 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 | |
| 		encap = a[OVS_KEY_ATTR_ENCAP];
 | |
| 		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 | |
| 		encap_valid = true;
 | |
| 
 | |
| 		if (tci & htons(VLAN_TAG_PRESENT)) {
 | |
| 			err = parse_flow_nlattrs(encap, a, &key_attrs);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		} else if (!tci) {
 | |
| 			/* Corner case for truncated 802.1Q header. */
 | |
| 			if (nla_len(encap)) {
 | |
| 				OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
 | |
| 			return  -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = ovs_key_from_nlattrs(match, key_attrs, a, false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (mask) {
 | |
| 		err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP)  {
 | |
| 			__be16 eth_type = 0;
 | |
| 			__be16 tci = 0;
 | |
| 
 | |
| 			if (!encap_valid) {
 | |
| 				OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
 | |
| 				return  -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 | |
| 			if (a[OVS_KEY_ATTR_ETHERTYPE])
 | |
| 				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 | |
| 
 | |
| 			if (eth_type == htons(0xffff)) {
 | |
| 				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 | |
| 				encap = a[OVS_KEY_ATTR_ENCAP];
 | |
| 				err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
 | |
| 			} else {
 | |
| 				OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
 | |
| 						ntohs(eth_type));
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			if (a[OVS_KEY_ATTR_VLAN])
 | |
| 				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 | |
| 
 | |
| 			if (!(tci & htons(VLAN_TAG_PRESENT))) {
 | |
| 				OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	} else {
 | |
| 		/* Populate exact match flow's key mask. */
 | |
| 		if (match->mask)
 | |
| 			sw_flow_mask_set(match->mask, &match->range, 0xff);
 | |
| 	}
 | |
| 
 | |
| 	if (!match_validate(match, key_attrs, mask_attrs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
 | |
|  * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
 | |
|  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 | |
|  * sequence.
 | |
|  *
 | |
|  * This parses a series of Netlink attributes that form a flow key, which must
 | |
|  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 | |
|  * get the metadata, that is, the parts of the flow key that cannot be
 | |
|  * extracted from the packet itself.
 | |
|  */
 | |
| 
 | |
| int ovs_nla_get_flow_metadata(struct sw_flow *flow,
 | |
| 			      const struct nlattr *attr)
 | |
| {
 | |
| 	struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
 | |
| 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 | |
| 	u64 attrs = 0;
 | |
| 	int err;
 | |
| 	struct sw_flow_match match;
 | |
| 
 | |
| 	flow->key.phy.in_port = DP_MAX_PORTS;
 | |
| 	flow->key.phy.priority = 0;
 | |
| 	flow->key.phy.skb_mark = 0;
 | |
| 	memset(tun_key, 0, sizeof(flow->key.tun_key));
 | |
| 
 | |
| 	err = parse_flow_nlattrs(attr, a, &attrs);
 | |
| 	if (err)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(&match, 0, sizeof(match));
 | |
| 	match.key = &flow->key;
 | |
| 
 | |
| 	err = metadata_from_nlattrs(&match, &attrs, a, false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_nla_put_flow(const struct sw_flow_key *swkey,
 | |
| 		     const struct sw_flow_key *output, struct sk_buff *skb)
 | |
| {
 | |
| 	struct ovs_key_ethernet *eth_key;
 | |
| 	struct nlattr *nla, *encap;
 | |
| 	bool is_mask = (swkey != output);
 | |
| 
 | |
| 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if ((swkey->tun_key.ipv4_dst || is_mask) &&
 | |
| 	    ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (swkey->phy.in_port == DP_MAX_PORTS) {
 | |
| 		if (is_mask && (output->phy.in_port == 0xffff))
 | |
| 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
 | |
| 				goto nla_put_failure;
 | |
| 	} else {
 | |
| 		u16 upper_u16;
 | |
| 		upper_u16 = !is_mask ? 0 : 0xffff;
 | |
| 
 | |
| 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
 | |
| 				(upper_u16 << 16) | output->phy.in_port))
 | |
| 			goto nla_put_failure;
 | |
| 	}
 | |
| 
 | |
| 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
 | |
| 	if (!nla)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	eth_key = nla_data(nla);
 | |
| 	ether_addr_copy(eth_key->eth_src, output->eth.src);
 | |
| 	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
 | |
| 
 | |
| 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
 | |
| 		__be16 eth_type;
 | |
| 		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
 | |
| 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
 | |
| 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
 | |
| 			goto nla_put_failure;
 | |
| 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
 | |
| 		if (!swkey->eth.tci)
 | |
| 			goto unencap;
 | |
| 	} else
 | |
| 		encap = NULL;
 | |
| 
 | |
| 	if (swkey->eth.type == htons(ETH_P_802_2)) {
 | |
| 		/*
 | |
| 		 * Ethertype 802.2 is represented in the netlink with omitted
 | |
| 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
 | |
| 		 * 0xffff in the mask attribute.  Ethertype can also
 | |
| 		 * be wildcarded.
 | |
| 		 */
 | |
| 		if (is_mask && output->eth.type)
 | |
| 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
 | |
| 						output->eth.type))
 | |
| 				goto nla_put_failure;
 | |
| 		goto unencap;
 | |
| 	}
 | |
| 
 | |
| 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (swkey->eth.type == htons(ETH_P_IP)) {
 | |
| 		struct ovs_key_ipv4 *ipv4_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		ipv4_key = nla_data(nla);
 | |
| 		ipv4_key->ipv4_src = output->ipv4.addr.src;
 | |
| 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
 | |
| 		ipv4_key->ipv4_proto = output->ip.proto;
 | |
| 		ipv4_key->ipv4_tos = output->ip.tos;
 | |
| 		ipv4_key->ipv4_ttl = output->ip.ttl;
 | |
| 		ipv4_key->ipv4_frag = output->ip.frag;
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		struct ovs_key_ipv6 *ipv6_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		ipv6_key = nla_data(nla);
 | |
| 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
 | |
| 				sizeof(ipv6_key->ipv6_src));
 | |
| 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
 | |
| 				sizeof(ipv6_key->ipv6_dst));
 | |
| 		ipv6_key->ipv6_label = output->ipv6.label;
 | |
| 		ipv6_key->ipv6_proto = output->ip.proto;
 | |
| 		ipv6_key->ipv6_tclass = output->ip.tos;
 | |
| 		ipv6_key->ipv6_hlimit = output->ip.ttl;
 | |
| 		ipv6_key->ipv6_frag = output->ip.frag;
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
 | |
| 		   swkey->eth.type == htons(ETH_P_RARP)) {
 | |
| 		struct ovs_key_arp *arp_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		arp_key = nla_data(nla);
 | |
| 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
 | |
| 		arp_key->arp_sip = output->ipv4.addr.src;
 | |
| 		arp_key->arp_tip = output->ipv4.addr.dst;
 | |
| 		arp_key->arp_op = htons(output->ip.proto);
 | |
| 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
 | |
| 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
 | |
| 	}
 | |
| 
 | |
| 	if ((swkey->eth.type == htons(ETH_P_IP) ||
 | |
| 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
 | |
| 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 
 | |
| 		if (swkey->ip.proto == IPPROTO_TCP) {
 | |
| 			struct ovs_key_tcp *tcp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			tcp_key = nla_data(nla);
 | |
| 			tcp_key->tcp_src = output->tp.src;
 | |
| 			tcp_key->tcp_dst = output->tp.dst;
 | |
| 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
 | |
| 					 output->tp.flags))
 | |
| 				goto nla_put_failure;
 | |
| 		} else if (swkey->ip.proto == IPPROTO_UDP) {
 | |
| 			struct ovs_key_udp *udp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			udp_key = nla_data(nla);
 | |
| 			udp_key->udp_src = output->tp.src;
 | |
| 			udp_key->udp_dst = output->tp.dst;
 | |
| 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
 | |
| 			struct ovs_key_sctp *sctp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			sctp_key = nla_data(nla);
 | |
| 			sctp_key->sctp_src = output->tp.src;
 | |
| 			sctp_key->sctp_dst = output->tp.dst;
 | |
| 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
 | |
| 			   swkey->ip.proto == IPPROTO_ICMP) {
 | |
| 			struct ovs_key_icmp *icmp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			icmp_key = nla_data(nla);
 | |
| 			icmp_key->icmp_type = ntohs(output->tp.src);
 | |
| 			icmp_key->icmp_code = ntohs(output->tp.dst);
 | |
| 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
 | |
| 			   swkey->ip.proto == IPPROTO_ICMPV6) {
 | |
| 			struct ovs_key_icmpv6 *icmpv6_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
 | |
| 						sizeof(*icmpv6_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			icmpv6_key = nla_data(nla);
 | |
| 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
 | |
| 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
 | |
| 
 | |
| 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 | |
| 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
 | |
| 				struct ovs_key_nd *nd_key;
 | |
| 
 | |
| 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
 | |
| 				if (!nla)
 | |
| 					goto nla_put_failure;
 | |
| 				nd_key = nla_data(nla);
 | |
| 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
 | |
| 							sizeof(nd_key->nd_target));
 | |
| 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
 | |
| 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unencap:
 | |
| 	if (encap)
 | |
| 		nla_nest_end(skb, encap);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -EMSGSIZE;
 | |
| }
 | |
| 
 | |
| #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
 | |
| 
 | |
| struct sw_flow_actions *ovs_nla_alloc_flow_actions(int size)
 | |
| {
 | |
| 	struct sw_flow_actions *sfa;
 | |
| 
 | |
| 	if (size > MAX_ACTIONS_BUFSIZE)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
 | |
| 	if (!sfa)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	sfa->actions_len = 0;
 | |
| 	return sfa;
 | |
| }
 | |
| 
 | |
| /* Schedules 'sf_acts' to be freed after the next RCU grace period.
 | |
|  * The caller must hold rcu_read_lock for this to be sensible. */
 | |
| void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
 | |
| {
 | |
| 	kfree_rcu(sf_acts, rcu);
 | |
| }
 | |
| 
 | |
| static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
 | |
| 				       int attr_len)
 | |
| {
 | |
| 
 | |
| 	struct sw_flow_actions *acts;
 | |
| 	int new_acts_size;
 | |
| 	int req_size = NLA_ALIGN(attr_len);
 | |
| 	int next_offset = offsetof(struct sw_flow_actions, actions) +
 | |
| 					(*sfa)->actions_len;
 | |
| 
 | |
| 	if (req_size <= (ksize(*sfa) - next_offset))
 | |
| 		goto out;
 | |
| 
 | |
| 	new_acts_size = ksize(*sfa) * 2;
 | |
| 
 | |
| 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
 | |
| 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
 | |
| 			return ERR_PTR(-EMSGSIZE);
 | |
| 		new_acts_size = MAX_ACTIONS_BUFSIZE;
 | |
| 	}
 | |
| 
 | |
| 	acts = ovs_nla_alloc_flow_actions(new_acts_size);
 | |
| 	if (IS_ERR(acts))
 | |
| 		return (void *)acts;
 | |
| 
 | |
| 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
 | |
| 	acts->actions_len = (*sfa)->actions_len;
 | |
| 	kfree(*sfa);
 | |
| 	*sfa = acts;
 | |
| 
 | |
| out:
 | |
| 	(*sfa)->actions_len += req_size;
 | |
| 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
 | |
| }
 | |
| 
 | |
| static int add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len)
 | |
| {
 | |
| 	struct nlattr *a;
 | |
| 
 | |
| 	a = reserve_sfa_size(sfa, nla_attr_size(len));
 | |
| 	if (IS_ERR(a))
 | |
| 		return PTR_ERR(a);
 | |
| 
 | |
| 	a->nla_type = attrtype;
 | |
| 	a->nla_len = nla_attr_size(len);
 | |
| 
 | |
| 	if (data)
 | |
| 		memcpy(nla_data(a), data, len);
 | |
| 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int add_nested_action_start(struct sw_flow_actions **sfa,
 | |
| 					  int attrtype)
 | |
| {
 | |
| 	int used = (*sfa)->actions_len;
 | |
| 	int err;
 | |
| 
 | |
| 	err = add_action(sfa, attrtype, NULL, 0);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return used;
 | |
| }
 | |
| 
 | |
| static inline void add_nested_action_end(struct sw_flow_actions *sfa,
 | |
| 					 int st_offset)
 | |
| {
 | |
| 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
 | |
| 							       st_offset);
 | |
| 
 | |
| 	a->nla_len = sfa->actions_len - st_offset;
 | |
| }
 | |
| 
 | |
| static int validate_and_copy_sample(const struct nlattr *attr,
 | |
| 				    const struct sw_flow_key *key, int depth,
 | |
| 				    struct sw_flow_actions **sfa)
 | |
| {
 | |
| 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
 | |
| 	const struct nlattr *probability, *actions;
 | |
| 	const struct nlattr *a;
 | |
| 	int rem, start, err, st_acts;
 | |
| 
 | |
| 	memset(attrs, 0, sizeof(attrs));
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
 | |
| 			return -EINVAL;
 | |
| 		attrs[type] = a;
 | |
| 	}
 | |
| 	if (rem)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
 | |
| 	if (!probability || nla_len(probability) != sizeof(u32))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
 | |
| 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* validation done, copy sample action. */
 | |
| 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE);
 | |
| 	if (start < 0)
 | |
| 		return start;
 | |
| 	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
 | |
| 			 nla_data(probability), sizeof(u32));
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS);
 | |
| 	if (st_acts < 0)
 | |
| 		return st_acts;
 | |
| 
 | |
| 	err = ovs_nla_copy_actions(actions, key, depth + 1, sfa);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	add_nested_action_end(*sfa, st_acts);
 | |
| 	add_nested_action_end(*sfa, start);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int validate_tp_port(const struct sw_flow_key *flow_key)
 | |
| {
 | |
| 	if ((flow_key->eth.type == htons(ETH_P_IP) ||
 | |
| 	     flow_key->eth.type == htons(ETH_P_IPV6)) &&
 | |
| 	    (flow_key->tp.src || flow_key->tp.dst))
 | |
| 		return 0;
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| void ovs_match_init(struct sw_flow_match *match,
 | |
| 		    struct sw_flow_key *key,
 | |
| 		    struct sw_flow_mask *mask)
 | |
| {
 | |
| 	memset(match, 0, sizeof(*match));
 | |
| 	match->key = key;
 | |
| 	match->mask = mask;
 | |
| 
 | |
| 	memset(key, 0, sizeof(*key));
 | |
| 
 | |
| 	if (mask) {
 | |
| 		memset(&mask->key, 0, sizeof(mask->key));
 | |
| 		mask->range.start = mask->range.end = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int validate_and_copy_set_tun(const struct nlattr *attr,
 | |
| 				     struct sw_flow_actions **sfa)
 | |
| {
 | |
| 	struct sw_flow_match match;
 | |
| 	struct sw_flow_key key;
 | |
| 	int err, start;
 | |
| 
 | |
| 	ovs_match_init(&match, &key, NULL);
 | |
| 	err = ipv4_tun_from_nlattr(nla_data(attr), &match, false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET);
 | |
| 	if (start < 0)
 | |
| 		return start;
 | |
| 
 | |
| 	err = add_action(sfa, OVS_KEY_ATTR_IPV4_TUNNEL, &match.key->tun_key,
 | |
| 			sizeof(match.key->tun_key));
 | |
| 	add_nested_action_end(*sfa, start);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int validate_set(const struct nlattr *a,
 | |
| 			const struct sw_flow_key *flow_key,
 | |
| 			struct sw_flow_actions **sfa,
 | |
| 			bool *set_tun)
 | |
| {
 | |
| 	const struct nlattr *ovs_key = nla_data(a);
 | |
| 	int key_type = nla_type(ovs_key);
 | |
| 
 | |
| 	/* There can be only one key in a action */
 | |
| 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (key_type > OVS_KEY_ATTR_MAX ||
 | |
| 	    (ovs_key_lens[key_type] != nla_len(ovs_key) &&
 | |
| 	     ovs_key_lens[key_type] != -1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (key_type) {
 | |
| 	const struct ovs_key_ipv4 *ipv4_key;
 | |
| 	const struct ovs_key_ipv6 *ipv6_key;
 | |
| 	int err;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_PRIORITY:
 | |
| 	case OVS_KEY_ATTR_SKB_MARK:
 | |
| 	case OVS_KEY_ATTR_ETHERNET:
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_TUNNEL:
 | |
| 		*set_tun = true;
 | |
| 		err = validate_and_copy_set_tun(a, sfa);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_IPV4:
 | |
| 		if (flow_key->eth.type != htons(ETH_P_IP))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!flow_key->ip.proto)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		ipv4_key = nla_data(ovs_key);
 | |
| 		if (ipv4_key->ipv4_proto != flow_key->ip.proto)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (ipv4_key->ipv4_frag != flow_key->ip.frag)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_IPV6:
 | |
| 		if (flow_key->eth.type != htons(ETH_P_IPV6))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!flow_key->ip.proto)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		ipv6_key = nla_data(ovs_key);
 | |
| 		if (ipv6_key->ipv6_proto != flow_key->ip.proto)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (ipv6_key->ipv6_frag != flow_key->ip.frag)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_TCP:
 | |
| 		if (flow_key->ip.proto != IPPROTO_TCP)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		return validate_tp_port(flow_key);
 | |
| 
 | |
| 	case OVS_KEY_ATTR_UDP:
 | |
| 		if (flow_key->ip.proto != IPPROTO_UDP)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		return validate_tp_port(flow_key);
 | |
| 
 | |
| 	case OVS_KEY_ATTR_SCTP:
 | |
| 		if (flow_key->ip.proto != IPPROTO_SCTP)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		return validate_tp_port(flow_key);
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int validate_userspace(const struct nlattr *attr)
 | |
| {
 | |
| 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
 | |
| 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
 | |
| 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
 | |
| 	};
 | |
| 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
 | |
| 	int error;
 | |
| 
 | |
| 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
 | |
| 				 attr, userspace_policy);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (!a[OVS_USERSPACE_ATTR_PID] ||
 | |
| 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_action(const struct nlattr *from,
 | |
| 		       struct sw_flow_actions **sfa)
 | |
| {
 | |
| 	int totlen = NLA_ALIGN(from->nla_len);
 | |
| 	struct nlattr *to;
 | |
| 
 | |
| 	to = reserve_sfa_size(sfa, from->nla_len);
 | |
| 	if (IS_ERR(to))
 | |
| 		return PTR_ERR(to);
 | |
| 
 | |
| 	memcpy(to, from, totlen);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_nla_copy_actions(const struct nlattr *attr,
 | |
| 			 const struct sw_flow_key *key,
 | |
| 			 int depth,
 | |
| 			 struct sw_flow_actions **sfa)
 | |
| {
 | |
| 	const struct nlattr *a;
 | |
| 	int rem, err;
 | |
| 
 | |
| 	if (depth >= SAMPLE_ACTION_DEPTH)
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		/* Expected argument lengths, (u32)-1 for variable length. */
 | |
| 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
 | |
| 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
 | |
| 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
 | |
| 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
 | |
| 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
 | |
| 			[OVS_ACTION_ATTR_SET] = (u32)-1,
 | |
| 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1
 | |
| 		};
 | |
| 		const struct ovs_action_push_vlan *vlan;
 | |
| 		int type = nla_type(a);
 | |
| 		bool skip_copy;
 | |
| 
 | |
| 		if (type > OVS_ACTION_ATTR_MAX ||
 | |
| 		    (action_lens[type] != nla_len(a) &&
 | |
| 		     action_lens[type] != (u32)-1))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		skip_copy = false;
 | |
| 		switch (type) {
 | |
| 		case OVS_ACTION_ATTR_UNSPEC:
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_USERSPACE:
 | |
| 			err = validate_userspace(a);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_OUTPUT:
 | |
| 			if (nla_get_u32(a) >= DP_MAX_PORTS)
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_POP_VLAN:
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PUSH_VLAN:
 | |
| 			vlan = nla_data(a);
 | |
| 			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
 | |
| 				return -EINVAL;
 | |
| 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SET:
 | |
| 			err = validate_set(a, key, sfa, &skip_copy);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SAMPLE:
 | |
| 			err = validate_and_copy_sample(a, key, depth, sfa);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			skip_copy = true;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (!skip_copy) {
 | |
| 			err = copy_action(a, sfa);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rem > 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct nlattr *a;
 | |
| 	struct nlattr *start;
 | |
| 	int err = 0, rem;
 | |
| 
 | |
| 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
 | |
| 	if (!start)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 		struct nlattr *st_sample;
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case OVS_SAMPLE_ATTR_PROBABILITY:
 | |
| 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
 | |
| 				    sizeof(u32), nla_data(a)))
 | |
| 				return -EMSGSIZE;
 | |
| 			break;
 | |
| 		case OVS_SAMPLE_ATTR_ACTIONS:
 | |
| 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
 | |
| 			if (!st_sample)
 | |
| 				return -EMSGSIZE;
 | |
| 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			nla_nest_end(skb, st_sample);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nla_nest_end(skb, start);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct nlattr *ovs_key = nla_data(a);
 | |
| 	int key_type = nla_type(ovs_key);
 | |
| 	struct nlattr *start;
 | |
| 	int err;
 | |
| 
 | |
| 	switch (key_type) {
 | |
| 	case OVS_KEY_ATTR_IPV4_TUNNEL:
 | |
| 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
 | |
| 		if (!start)
 | |
| 			return -EMSGSIZE;
 | |
| 
 | |
| 		err = ipv4_tun_to_nlattr(skb, nla_data(ovs_key),
 | |
| 					     nla_data(ovs_key));
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		nla_nest_end(skb, start);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
 | |
| 			return -EMSGSIZE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct nlattr *a;
 | |
| 	int rem, err;
 | |
| 
 | |
| 	nla_for_each_attr(a, attr, len, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case OVS_ACTION_ATTR_SET:
 | |
| 			err = set_action_to_attr(a, skb);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SAMPLE:
 | |
| 			err = sample_action_to_attr(a, skb);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
 | |
| 				return -EMSGSIZE;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |