 f830b0223c
			
		
	
	
	f830b0223c
	
	
	
		
			
			This reverts commit 30f38d2fdd.
fib_triestat is surrounded by a big lie: while it claims that it's a
seq_file (fib_triestat_seq_open, fib_triestat_seq_show), it isn't:
	static const struct file_operations fib_triestat_fops = {
	        .owner  = THIS_MODULE,
	        .open   = fib_triestat_seq_open,
	        .read   = seq_read,
	        .llseek = seq_lseek,
	        .release = single_release_net,
	};
Yes, fib_triestat is just a regular file.
A small detail (assuming CONFIG_NET_NS=y) is that while for seq_files
you could do seq_file_net() to get the net ptr, doing so for a regular
file would be wrong and would dereference an invalid pointer.
The fib_triestat lie claimed a victim, and trying to show the file would
be bad for the kernel. This patch just reverts the issue and fixes
fib_triestat, which still needs a rewrite to either be a seq_file or
stop claiming it is.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			2610 lines
		
	
	
	
		
			61 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2610 lines
		
	
	
	
		
			61 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation; either version
 | |
|  *   2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
 | |
|  *     & Swedish University of Agricultural Sciences.
 | |
|  *
 | |
|  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
 | |
|  *     Agricultural Sciences.
 | |
|  *
 | |
|  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 | |
|  *
 | |
|  * This work is based on the LPC-trie which is originally described in:
 | |
|  *
 | |
|  * An experimental study of compression methods for dynamic tries
 | |
|  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
 | |
|  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
 | |
|  *
 | |
|  *
 | |
|  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 | |
|  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 | |
|  *
 | |
|  *
 | |
|  * Code from fib_hash has been reused which includes the following header:
 | |
|  *
 | |
|  *
 | |
|  * INET		An implementation of the TCP/IP protocol suite for the LINUX
 | |
|  *		operating system.  INET is implemented using the  BSD Socket
 | |
|  *		interface as the means of communication with the user level.
 | |
|  *
 | |
|  *		IPv4 FIB: lookup engine and maintenance routines.
 | |
|  *
 | |
|  *
 | |
|  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 | |
|  *
 | |
|  *		This program is free software; you can redistribute it and/or
 | |
|  *		modify it under the terms of the GNU General Public License
 | |
|  *		as published by the Free Software Foundation; either version
 | |
|  *		2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Substantial contributions to this work comes from:
 | |
|  *
 | |
|  *		David S. Miller, <davem@davemloft.net>
 | |
|  *		Stephen Hemminger <shemminger@osdl.org>
 | |
|  *		Paul E. McKenney <paulmck@us.ibm.com>
 | |
|  *		Patrick McHardy <kaber@trash.net>
 | |
|  */
 | |
| 
 | |
| #define VERSION "0.409"
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/socket.h>
 | |
| #include <linux/sockios.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/inet.h>
 | |
| #include <linux/inetdevice.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/netlink.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/export.h>
 | |
| #include <net/net_namespace.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/protocol.h>
 | |
| #include <net/route.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/sock.h>
 | |
| #include <net/ip_fib.h>
 | |
| #include "fib_lookup.h"
 | |
| 
 | |
| #define MAX_STAT_DEPTH 32
 | |
| 
 | |
| #define KEYLENGTH (8*sizeof(t_key))
 | |
| 
 | |
| typedef unsigned int t_key;
 | |
| 
 | |
| #define T_TNODE 0
 | |
| #define T_LEAF  1
 | |
| #define NODE_TYPE_MASK	0x1UL
 | |
| #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
 | |
| 
 | |
| #define IS_TNODE(n) (!(n->parent & T_LEAF))
 | |
| #define IS_LEAF(n) (n->parent & T_LEAF)
 | |
| 
 | |
| struct rt_trie_node {
 | |
| 	unsigned long parent;
 | |
| 	t_key key;
 | |
| };
 | |
| 
 | |
| struct leaf {
 | |
| 	unsigned long parent;
 | |
| 	t_key key;
 | |
| 	struct hlist_head list;
 | |
| 	struct rcu_head rcu;
 | |
| };
 | |
| 
 | |
| struct leaf_info {
 | |
| 	struct hlist_node hlist;
 | |
| 	int plen;
 | |
| 	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
 | |
| 	struct list_head falh;
 | |
| 	struct rcu_head rcu;
 | |
| };
 | |
| 
 | |
| struct tnode {
 | |
| 	unsigned long parent;
 | |
| 	t_key key;
 | |
| 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 | |
| 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 | |
| 	unsigned int full_children;	/* KEYLENGTH bits needed */
 | |
| 	unsigned int empty_children;	/* KEYLENGTH bits needed */
 | |
| 	union {
 | |
| 		struct rcu_head rcu;
 | |
| 		struct tnode *tnode_free;
 | |
| 	};
 | |
| 	struct rt_trie_node __rcu *child[0];
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| struct trie_use_stats {
 | |
| 	unsigned int gets;
 | |
| 	unsigned int backtrack;
 | |
| 	unsigned int semantic_match_passed;
 | |
| 	unsigned int semantic_match_miss;
 | |
| 	unsigned int null_node_hit;
 | |
| 	unsigned int resize_node_skipped;
 | |
| };
 | |
| #endif
 | |
| 
 | |
| struct trie_stat {
 | |
| 	unsigned int totdepth;
 | |
| 	unsigned int maxdepth;
 | |
| 	unsigned int tnodes;
 | |
| 	unsigned int leaves;
 | |
| 	unsigned int nullpointers;
 | |
| 	unsigned int prefixes;
 | |
| 	unsigned int nodesizes[MAX_STAT_DEPTH];
 | |
| };
 | |
| 
 | |
| struct trie {
 | |
| 	struct rt_trie_node __rcu *trie;
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 	struct trie_use_stats stats;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
 | |
| 				  int wasfull);
 | |
| static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
 | |
| static struct tnode *inflate(struct trie *t, struct tnode *tn);
 | |
| static struct tnode *halve(struct trie *t, struct tnode *tn);
 | |
| /* tnodes to free after resize(); protected by RTNL */
 | |
| static struct tnode *tnode_free_head;
 | |
| static size_t tnode_free_size;
 | |
| 
 | |
| /*
 | |
|  * synchronize_rcu after call_rcu for that many pages; it should be especially
 | |
|  * useful before resizing the root node with PREEMPT_NONE configs; the value was
 | |
|  * obtained experimentally, aiming to avoid visible slowdown.
 | |
|  */
 | |
| static const int sync_pages = 128;
 | |
| 
 | |
| static struct kmem_cache *fn_alias_kmem __read_mostly;
 | |
| static struct kmem_cache *trie_leaf_kmem __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * caller must hold RTNL
 | |
|  */
 | |
| static inline struct tnode *node_parent(const struct rt_trie_node *node)
 | |
| {
 | |
| 	unsigned long parent;
 | |
| 
 | |
| 	parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
 | |
| 
 | |
| 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * caller must hold RCU read lock or RTNL
 | |
|  */
 | |
| static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
 | |
| {
 | |
| 	unsigned long parent;
 | |
| 
 | |
| 	parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
 | |
| 							   lockdep_rtnl_is_held());
 | |
| 
 | |
| 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
 | |
| }
 | |
| 
 | |
| /* Same as rcu_assign_pointer
 | |
|  * but that macro() assumes that value is a pointer.
 | |
|  */
 | |
| static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
 | |
| {
 | |
| 	smp_wmb();
 | |
| 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * caller must hold RTNL
 | |
|  */
 | |
| static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
 | |
| {
 | |
| 	BUG_ON(i >= 1U << tn->bits);
 | |
| 
 | |
| 	return rtnl_dereference(tn->child[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * caller must hold RCU read lock or RTNL
 | |
|  */
 | |
| static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
 | |
| {
 | |
| 	BUG_ON(i >= 1U << tn->bits);
 | |
| 
 | |
| 	return rcu_dereference_rtnl(tn->child[i]);
 | |
| }
 | |
| 
 | |
| static inline int tnode_child_length(const struct tnode *tn)
 | |
| {
 | |
| 	return 1 << tn->bits;
 | |
| }
 | |
| 
 | |
| static inline t_key mask_pfx(t_key k, unsigned int l)
 | |
| {
 | |
| 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
 | |
| }
 | |
| 
 | |
| static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
 | |
| {
 | |
| 	if (offset < KEYLENGTH)
 | |
| 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static inline int tkey_equals(t_key a, t_key b)
 | |
| {
 | |
| 	return a == b;
 | |
| }
 | |
| 
 | |
| static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
 | |
| {
 | |
| 	if (bits == 0 || offset >= KEYLENGTH)
 | |
| 		return 1;
 | |
| 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
 | |
| 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
 | |
| }
 | |
| 
 | |
| static inline int tkey_mismatch(t_key a, int offset, t_key b)
 | |
| {
 | |
| 	t_key diff = a ^ b;
 | |
| 	int i = offset;
 | |
| 
 | |
| 	if (!diff)
 | |
| 		return 0;
 | |
| 	while ((diff << i) >> (KEYLENGTH-1) == 0)
 | |
| 		i++;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|   To understand this stuff, an understanding of keys and all their bits is
 | |
|   necessary. Every node in the trie has a key associated with it, but not
 | |
|   all of the bits in that key are significant.
 | |
| 
 | |
|   Consider a node 'n' and its parent 'tp'.
 | |
| 
 | |
|   If n is a leaf, every bit in its key is significant. Its presence is
 | |
|   necessitated by path compression, since during a tree traversal (when
 | |
|   searching for a leaf - unless we are doing an insertion) we will completely
 | |
|   ignore all skipped bits we encounter. Thus we need to verify, at the end of
 | |
|   a potentially successful search, that we have indeed been walking the
 | |
|   correct key path.
 | |
| 
 | |
|   Note that we can never "miss" the correct key in the tree if present by
 | |
|   following the wrong path. Path compression ensures that segments of the key
 | |
|   that are the same for all keys with a given prefix are skipped, but the
 | |
|   skipped part *is* identical for each node in the subtrie below the skipped
 | |
|   bit! trie_insert() in this implementation takes care of that - note the
 | |
|   call to tkey_sub_equals() in trie_insert().
 | |
| 
 | |
|   if n is an internal node - a 'tnode' here, the various parts of its key
 | |
|   have many different meanings.
 | |
| 
 | |
|   Example:
 | |
|   _________________________________________________________________
 | |
|   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 | |
|   -----------------------------------------------------------------
 | |
|     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 | |
| 
 | |
|   _________________________________________________________________
 | |
|   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 | |
|   -----------------------------------------------------------------
 | |
|    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
 | |
| 
 | |
|   tp->pos = 7
 | |
|   tp->bits = 3
 | |
|   n->pos = 15
 | |
|   n->bits = 4
 | |
| 
 | |
|   First, let's just ignore the bits that come before the parent tp, that is
 | |
|   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
 | |
|   not use them for anything.
 | |
| 
 | |
|   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 | |
|   index into the parent's child array. That is, they will be used to find
 | |
|   'n' among tp's children.
 | |
| 
 | |
|   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
 | |
|   for the node n.
 | |
| 
 | |
|   All the bits we have seen so far are significant to the node n. The rest
 | |
|   of the bits are really not needed or indeed known in n->key.
 | |
| 
 | |
|   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 | |
|   n's child array, and will of course be different for each child.
 | |
| 
 | |
| 
 | |
|   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
 | |
|   at this point.
 | |
| 
 | |
| */
 | |
| 
 | |
| static inline void check_tnode(const struct tnode *tn)
 | |
| {
 | |
| 	WARN_ON(tn && tn->pos+tn->bits > 32);
 | |
| }
 | |
| 
 | |
| static const int halve_threshold = 25;
 | |
| static const int inflate_threshold = 50;
 | |
| static const int halve_threshold_root = 15;
 | |
| static const int inflate_threshold_root = 30;
 | |
| 
 | |
| static void __alias_free_mem(struct rcu_head *head)
 | |
| {
 | |
| 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 | |
| 	kmem_cache_free(fn_alias_kmem, fa);
 | |
| }
 | |
| 
 | |
| static inline void alias_free_mem_rcu(struct fib_alias *fa)
 | |
| {
 | |
| 	call_rcu(&fa->rcu, __alias_free_mem);
 | |
| }
 | |
| 
 | |
| static void __leaf_free_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct leaf *l = container_of(head, struct leaf, rcu);
 | |
| 	kmem_cache_free(trie_leaf_kmem, l);
 | |
| }
 | |
| 
 | |
| static inline void free_leaf(struct leaf *l)
 | |
| {
 | |
| 	call_rcu(&l->rcu, __leaf_free_rcu);
 | |
| }
 | |
| 
 | |
| static inline void free_leaf_info(struct leaf_info *leaf)
 | |
| {
 | |
| 	kfree_rcu(leaf, rcu);
 | |
| }
 | |
| 
 | |
| static struct tnode *tnode_alloc(size_t size)
 | |
| {
 | |
| 	if (size <= PAGE_SIZE)
 | |
| 		return kzalloc(size, GFP_KERNEL);
 | |
| 	else
 | |
| 		return vzalloc(size);
 | |
| }
 | |
| 
 | |
| static void __tnode_free_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct tnode *tn = container_of(head, struct tnode, rcu);
 | |
| 	size_t size = sizeof(struct tnode) +
 | |
| 		      (sizeof(struct rt_trie_node *) << tn->bits);
 | |
| 
 | |
| 	if (size <= PAGE_SIZE)
 | |
| 		kfree(tn);
 | |
| 	else
 | |
| 		vfree(tn);
 | |
| }
 | |
| 
 | |
| static inline void tnode_free(struct tnode *tn)
 | |
| {
 | |
| 	if (IS_LEAF(tn))
 | |
| 		free_leaf((struct leaf *) tn);
 | |
| 	else
 | |
| 		call_rcu(&tn->rcu, __tnode_free_rcu);
 | |
| }
 | |
| 
 | |
| static void tnode_free_safe(struct tnode *tn)
 | |
| {
 | |
| 	BUG_ON(IS_LEAF(tn));
 | |
| 	tn->tnode_free = tnode_free_head;
 | |
| 	tnode_free_head = tn;
 | |
| 	tnode_free_size += sizeof(struct tnode) +
 | |
| 			   (sizeof(struct rt_trie_node *) << tn->bits);
 | |
| }
 | |
| 
 | |
| static void tnode_free_flush(void)
 | |
| {
 | |
| 	struct tnode *tn;
 | |
| 
 | |
| 	while ((tn = tnode_free_head)) {
 | |
| 		tnode_free_head = tn->tnode_free;
 | |
| 		tn->tnode_free = NULL;
 | |
| 		tnode_free(tn);
 | |
| 	}
 | |
| 
 | |
| 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 | |
| 		tnode_free_size = 0;
 | |
| 		synchronize_rcu();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct leaf *leaf_new(void)
 | |
| {
 | |
| 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 | |
| 	if (l) {
 | |
| 		l->parent = T_LEAF;
 | |
| 		INIT_HLIST_HEAD(&l->list);
 | |
| 	}
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| static struct leaf_info *leaf_info_new(int plen)
 | |
| {
 | |
| 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
 | |
| 	if (li) {
 | |
| 		li->plen = plen;
 | |
| 		li->mask_plen = ntohl(inet_make_mask(plen));
 | |
| 		INIT_LIST_HEAD(&li->falh);
 | |
| 	}
 | |
| 	return li;
 | |
| }
 | |
| 
 | |
| static struct tnode *tnode_new(t_key key, int pos, int bits)
 | |
| {
 | |
| 	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
 | |
| 	struct tnode *tn = tnode_alloc(sz);
 | |
| 
 | |
| 	if (tn) {
 | |
| 		tn->parent = T_TNODE;
 | |
| 		tn->pos = pos;
 | |
| 		tn->bits = bits;
 | |
| 		tn->key = key;
 | |
| 		tn->full_children = 0;
 | |
| 		tn->empty_children = 1<<bits;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
 | |
| 		 sizeof(struct rt_trie_node *) << bits);
 | |
| 	return tn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether a tnode 'n' is "full", i.e. it is an internal node
 | |
|  * and no bits are skipped. See discussion in dyntree paper p. 6
 | |
|  */
 | |
| 
 | |
| static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
 | |
| {
 | |
| 	if (n == NULL || IS_LEAF(n))
 | |
| 		return 0;
 | |
| 
 | |
| 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
 | |
| }
 | |
| 
 | |
| static inline void put_child(struct tnode *tn, int i,
 | |
| 			     struct rt_trie_node *n)
 | |
| {
 | |
| 	tnode_put_child_reorg(tn, i, n, -1);
 | |
| }
 | |
| 
 | |
|  /*
 | |
|   * Add a child at position i overwriting the old value.
 | |
|   * Update the value of full_children and empty_children.
 | |
|   */
 | |
| 
 | |
| static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
 | |
| 				  int wasfull)
 | |
| {
 | |
| 	struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
 | |
| 	int isfull;
 | |
| 
 | |
| 	BUG_ON(i >= 1<<tn->bits);
 | |
| 
 | |
| 	/* update emptyChildren */
 | |
| 	if (n == NULL && chi != NULL)
 | |
| 		tn->empty_children++;
 | |
| 	else if (n != NULL && chi == NULL)
 | |
| 		tn->empty_children--;
 | |
| 
 | |
| 	/* update fullChildren */
 | |
| 	if (wasfull == -1)
 | |
| 		wasfull = tnode_full(tn, chi);
 | |
| 
 | |
| 	isfull = tnode_full(tn, n);
 | |
| 	if (wasfull && !isfull)
 | |
| 		tn->full_children--;
 | |
| 	else if (!wasfull && isfull)
 | |
| 		tn->full_children++;
 | |
| 
 | |
| 	if (n)
 | |
| 		node_set_parent(n, tn);
 | |
| 
 | |
| 	rcu_assign_pointer(tn->child[i], n);
 | |
| }
 | |
| 
 | |
| #define MAX_WORK 10
 | |
| static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
 | |
| {
 | |
| 	int i;
 | |
| 	struct tnode *old_tn;
 | |
| 	int inflate_threshold_use;
 | |
| 	int halve_threshold_use;
 | |
| 	int max_work;
 | |
| 
 | |
| 	if (!tn)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 | |
| 		 tn, inflate_threshold, halve_threshold);
 | |
| 
 | |
| 	/* No children */
 | |
| 	if (tn->empty_children == tnode_child_length(tn)) {
 | |
| 		tnode_free_safe(tn);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* One child */
 | |
| 	if (tn->empty_children == tnode_child_length(tn) - 1)
 | |
| 		goto one_child;
 | |
| 	/*
 | |
| 	 * Double as long as the resulting node has a number of
 | |
| 	 * nonempty nodes that are above the threshold.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 | |
| 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 | |
| 	 * Telecommunications, page 6:
 | |
| 	 * "A node is doubled if the ratio of non-empty children to all
 | |
| 	 * children in the *doubled* node is at least 'high'."
 | |
| 	 *
 | |
| 	 * 'high' in this instance is the variable 'inflate_threshold'. It
 | |
| 	 * is expressed as a percentage, so we multiply it with
 | |
| 	 * tnode_child_length() and instead of multiplying by 2 (since the
 | |
| 	 * child array will be doubled by inflate()) and multiplying
 | |
| 	 * the left-hand side by 100 (to handle the percentage thing) we
 | |
| 	 * multiply the left-hand side by 50.
 | |
| 	 *
 | |
| 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
 | |
| 	 * - tn->empty_children is of course the number of non-null children
 | |
| 	 * in the current node. tn->full_children is the number of "full"
 | |
| 	 * children, that is non-null tnodes with a skip value of 0.
 | |
| 	 * All of those will be doubled in the resulting inflated tnode, so
 | |
| 	 * we just count them one extra time here.
 | |
| 	 *
 | |
| 	 * A clearer way to write this would be:
 | |
| 	 *
 | |
| 	 * to_be_doubled = tn->full_children;
 | |
| 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 | |
| 	 *     tn->full_children;
 | |
| 	 *
 | |
| 	 * new_child_length = tnode_child_length(tn) * 2;
 | |
| 	 *
 | |
| 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 | |
| 	 *      new_child_length;
 | |
| 	 * if (new_fill_factor >= inflate_threshold)
 | |
| 	 *
 | |
| 	 * ...and so on, tho it would mess up the while () loop.
 | |
| 	 *
 | |
| 	 * anyway,
 | |
| 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 | |
| 	 *      inflate_threshold
 | |
| 	 *
 | |
| 	 * avoid a division:
 | |
| 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 | |
| 	 *      inflate_threshold * new_child_length
 | |
| 	 *
 | |
| 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
 | |
| 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
 | |
| 	 *    tn->full_children) >= inflate_threshold * new_child_length
 | |
| 	 *
 | |
| 	 * expand new_child_length:
 | |
| 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
 | |
| 	 *    tn->full_children) >=
 | |
| 	 *      inflate_threshold * tnode_child_length(tn) * 2
 | |
| 	 *
 | |
| 	 * shorten again:
 | |
| 	 * 50 * (tn->full_children + tnode_child_length(tn) -
 | |
| 	 *    tn->empty_children) >= inflate_threshold *
 | |
| 	 *    tnode_child_length(tn)
 | |
| 	 *
 | |
| 	 */
 | |
| 
 | |
| 	check_tnode(tn);
 | |
| 
 | |
| 	/* Keep root node larger  */
 | |
| 
 | |
| 	if (!node_parent((struct rt_trie_node *)tn)) {
 | |
| 		inflate_threshold_use = inflate_threshold_root;
 | |
| 		halve_threshold_use = halve_threshold_root;
 | |
| 	} else {
 | |
| 		inflate_threshold_use = inflate_threshold;
 | |
| 		halve_threshold_use = halve_threshold;
 | |
| 	}
 | |
| 
 | |
| 	max_work = MAX_WORK;
 | |
| 	while ((tn->full_children > 0 &&  max_work-- &&
 | |
| 		50 * (tn->full_children + tnode_child_length(tn)
 | |
| 		      - tn->empty_children)
 | |
| 		>= inflate_threshold_use * tnode_child_length(tn))) {
 | |
| 
 | |
| 		old_tn = tn;
 | |
| 		tn = inflate(t, tn);
 | |
| 
 | |
| 		if (IS_ERR(tn)) {
 | |
| 			tn = old_tn;
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 			t->stats.resize_node_skipped++;
 | |
| #endif
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	check_tnode(tn);
 | |
| 
 | |
| 	/* Return if at least one inflate is run */
 | |
| 	if (max_work != MAX_WORK)
 | |
| 		return (struct rt_trie_node *) tn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Halve as long as the number of empty children in this
 | |
| 	 * node is above threshold.
 | |
| 	 */
 | |
| 
 | |
| 	max_work = MAX_WORK;
 | |
| 	while (tn->bits > 1 &&  max_work-- &&
 | |
| 	       100 * (tnode_child_length(tn) - tn->empty_children) <
 | |
| 	       halve_threshold_use * tnode_child_length(tn)) {
 | |
| 
 | |
| 		old_tn = tn;
 | |
| 		tn = halve(t, tn);
 | |
| 		if (IS_ERR(tn)) {
 | |
| 			tn = old_tn;
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 			t->stats.resize_node_skipped++;
 | |
| #endif
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Only one child remains */
 | |
| 	if (tn->empty_children == tnode_child_length(tn) - 1) {
 | |
| one_child:
 | |
| 		for (i = 0; i < tnode_child_length(tn); i++) {
 | |
| 			struct rt_trie_node *n;
 | |
| 
 | |
| 			n = rtnl_dereference(tn->child[i]);
 | |
| 			if (!n)
 | |
| 				continue;
 | |
| 
 | |
| 			/* compress one level */
 | |
| 
 | |
| 			node_set_parent(n, NULL);
 | |
| 			tnode_free_safe(tn);
 | |
| 			return n;
 | |
| 		}
 | |
| 	}
 | |
| 	return (struct rt_trie_node *) tn;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void tnode_clean_free(struct tnode *tn)
 | |
| {
 | |
| 	int i;
 | |
| 	struct tnode *tofree;
 | |
| 
 | |
| 	for (i = 0; i < tnode_child_length(tn); i++) {
 | |
| 		tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
 | |
| 		if (tofree)
 | |
| 			tnode_free(tofree);
 | |
| 	}
 | |
| 	tnode_free(tn);
 | |
| }
 | |
| 
 | |
| static struct tnode *inflate(struct trie *t, struct tnode *tn)
 | |
| {
 | |
| 	struct tnode *oldtnode = tn;
 | |
| 	int olen = tnode_child_length(tn);
 | |
| 	int i;
 | |
| 
 | |
| 	pr_debug("In inflate\n");
 | |
| 
 | |
| 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
 | |
| 
 | |
| 	if (!tn)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preallocate and store tnodes before the actual work so we
 | |
| 	 * don't get into an inconsistent state if memory allocation
 | |
| 	 * fails. In case of failure we return the oldnode and  inflate
 | |
| 	 * of tnode is ignored.
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < olen; i++) {
 | |
| 		struct tnode *inode;
 | |
| 
 | |
| 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
 | |
| 		if (inode &&
 | |
| 		    IS_TNODE(inode) &&
 | |
| 		    inode->pos == oldtnode->pos + oldtnode->bits &&
 | |
| 		    inode->bits > 1) {
 | |
| 			struct tnode *left, *right;
 | |
| 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
 | |
| 
 | |
| 			left = tnode_new(inode->key&(~m), inode->pos + 1,
 | |
| 					 inode->bits - 1);
 | |
| 			if (!left)
 | |
| 				goto nomem;
 | |
| 
 | |
| 			right = tnode_new(inode->key|m, inode->pos + 1,
 | |
| 					  inode->bits - 1);
 | |
| 
 | |
| 			if (!right) {
 | |
| 				tnode_free(left);
 | |
| 				goto nomem;
 | |
| 			}
 | |
| 
 | |
| 			put_child(tn, 2*i, (struct rt_trie_node *) left);
 | |
| 			put_child(tn, 2*i+1, (struct rt_trie_node *) right);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < olen; i++) {
 | |
| 		struct tnode *inode;
 | |
| 		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
 | |
| 		struct tnode *left, *right;
 | |
| 		int size, j;
 | |
| 
 | |
| 		/* An empty child */
 | |
| 		if (node == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* A leaf or an internal node with skipped bits */
 | |
| 
 | |
| 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
 | |
| 		   tn->pos + tn->bits - 1) {
 | |
| 			put_child(tn,
 | |
| 				tkey_extract_bits(node->key, oldtnode->pos, oldtnode->bits + 1),
 | |
| 				node);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* An internal node with two children */
 | |
| 		inode = (struct tnode *) node;
 | |
| 
 | |
| 		if (inode->bits == 1) {
 | |
| 			put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
 | |
| 			put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
 | |
| 
 | |
| 			tnode_free_safe(inode);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* An internal node with more than two children */
 | |
| 
 | |
| 		/* We will replace this node 'inode' with two new
 | |
| 		 * ones, 'left' and 'right', each with half of the
 | |
| 		 * original children. The two new nodes will have
 | |
| 		 * a position one bit further down the key and this
 | |
| 		 * means that the "significant" part of their keys
 | |
| 		 * (see the discussion near the top of this file)
 | |
| 		 * will differ by one bit, which will be "0" in
 | |
| 		 * left's key and "1" in right's key. Since we are
 | |
| 		 * moving the key position by one step, the bit that
 | |
| 		 * we are moving away from - the bit at position
 | |
| 		 * (inode->pos) - is the one that will differ between
 | |
| 		 * left and right. So... we synthesize that bit in the
 | |
| 		 * two  new keys.
 | |
| 		 * The mask 'm' below will be a single "one" bit at
 | |
| 		 * the position (inode->pos)
 | |
| 		 */
 | |
| 
 | |
| 		/* Use the old key, but set the new significant
 | |
| 		 *   bit to zero.
 | |
| 		 */
 | |
| 
 | |
| 		left = (struct tnode *) tnode_get_child(tn, 2*i);
 | |
| 		put_child(tn, 2*i, NULL);
 | |
| 
 | |
| 		BUG_ON(!left);
 | |
| 
 | |
| 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
 | |
| 		put_child(tn, 2*i+1, NULL);
 | |
| 
 | |
| 		BUG_ON(!right);
 | |
| 
 | |
| 		size = tnode_child_length(left);
 | |
| 		for (j = 0; j < size; j++) {
 | |
| 			put_child(left, j, rtnl_dereference(inode->child[j]));
 | |
| 			put_child(right, j, rtnl_dereference(inode->child[j + size]));
 | |
| 		}
 | |
| 		put_child(tn, 2*i, resize(t, left));
 | |
| 		put_child(tn, 2*i+1, resize(t, right));
 | |
| 
 | |
| 		tnode_free_safe(inode);
 | |
| 	}
 | |
| 	tnode_free_safe(oldtnode);
 | |
| 	return tn;
 | |
| nomem:
 | |
| 	tnode_clean_free(tn);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| static struct tnode *halve(struct trie *t, struct tnode *tn)
 | |
| {
 | |
| 	struct tnode *oldtnode = tn;
 | |
| 	struct rt_trie_node *left, *right;
 | |
| 	int i;
 | |
| 	int olen = tnode_child_length(tn);
 | |
| 
 | |
| 	pr_debug("In halve\n");
 | |
| 
 | |
| 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
 | |
| 
 | |
| 	if (!tn)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preallocate and store tnodes before the actual work so we
 | |
| 	 * don't get into an inconsistent state if memory allocation
 | |
| 	 * fails. In case of failure we return the oldnode and halve
 | |
| 	 * of tnode is ignored.
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < olen; i += 2) {
 | |
| 		left = tnode_get_child(oldtnode, i);
 | |
| 		right = tnode_get_child(oldtnode, i+1);
 | |
| 
 | |
| 		/* Two nonempty children */
 | |
| 		if (left && right) {
 | |
| 			struct tnode *newn;
 | |
| 
 | |
| 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
 | |
| 
 | |
| 			if (!newn)
 | |
| 				goto nomem;
 | |
| 
 | |
| 			put_child(tn, i/2, (struct rt_trie_node *)newn);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < olen; i += 2) {
 | |
| 		struct tnode *newBinNode;
 | |
| 
 | |
| 		left = tnode_get_child(oldtnode, i);
 | |
| 		right = tnode_get_child(oldtnode, i+1);
 | |
| 
 | |
| 		/* At least one of the children is empty */
 | |
| 		if (left == NULL) {
 | |
| 			if (right == NULL)    /* Both are empty */
 | |
| 				continue;
 | |
| 			put_child(tn, i/2, right);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (right == NULL) {
 | |
| 			put_child(tn, i/2, left);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Two nonempty children */
 | |
| 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
 | |
| 		put_child(tn, i/2, NULL);
 | |
| 		put_child(newBinNode, 0, left);
 | |
| 		put_child(newBinNode, 1, right);
 | |
| 		put_child(tn, i/2, resize(t, newBinNode));
 | |
| 	}
 | |
| 	tnode_free_safe(oldtnode);
 | |
| 	return tn;
 | |
| nomem:
 | |
| 	tnode_clean_free(tn);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /* readside must use rcu_read_lock currently dump routines
 | |
|  via get_fa_head and dump */
 | |
| 
 | |
| static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
 | |
| {
 | |
| 	struct hlist_head *head = &l->list;
 | |
| 	struct leaf_info *li;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(li, head, hlist)
 | |
| 		if (li->plen == plen)
 | |
| 			return li;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct list_head *get_fa_head(struct leaf *l, int plen)
 | |
| {
 | |
| 	struct leaf_info *li = find_leaf_info(l, plen);
 | |
| 
 | |
| 	if (!li)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return &li->falh;
 | |
| }
 | |
| 
 | |
| static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
 | |
| {
 | |
| 	struct leaf_info *li = NULL, *last = NULL;
 | |
| 
 | |
| 	if (hlist_empty(head)) {
 | |
| 		hlist_add_head_rcu(&new->hlist, head);
 | |
| 	} else {
 | |
| 		hlist_for_each_entry(li, head, hlist) {
 | |
| 			if (new->plen > li->plen)
 | |
| 				break;
 | |
| 
 | |
| 			last = li;
 | |
| 		}
 | |
| 		if (last)
 | |
| 			hlist_add_after_rcu(&last->hlist, &new->hlist);
 | |
| 		else
 | |
| 			hlist_add_before_rcu(&new->hlist, &li->hlist);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* rcu_read_lock needs to be hold by caller from readside */
 | |
| 
 | |
| static struct leaf *
 | |
| fib_find_node(struct trie *t, u32 key)
 | |
| {
 | |
| 	int pos;
 | |
| 	struct tnode *tn;
 | |
| 	struct rt_trie_node *n;
 | |
| 
 | |
| 	pos = 0;
 | |
| 	n = rcu_dereference_rtnl(t->trie);
 | |
| 
 | |
| 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
 | |
| 		tn = (struct tnode *) n;
 | |
| 
 | |
| 		check_tnode(tn);
 | |
| 
 | |
| 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
 | |
| 			pos = tn->pos + tn->bits;
 | |
| 			n = tnode_get_child_rcu(tn,
 | |
| 						tkey_extract_bits(key,
 | |
| 								  tn->pos,
 | |
| 								  tn->bits));
 | |
| 		} else
 | |
| 			break;
 | |
| 	}
 | |
| 	/* Case we have found a leaf. Compare prefixes */
 | |
| 
 | |
| 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
 | |
| 		return (struct leaf *)n;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void trie_rebalance(struct trie *t, struct tnode *tn)
 | |
| {
 | |
| 	int wasfull;
 | |
| 	t_key cindex, key;
 | |
| 	struct tnode *tp;
 | |
| 
 | |
| 	key = tn->key;
 | |
| 
 | |
| 	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
 | |
| 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
 | |
| 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
 | |
| 		tn = (struct tnode *)resize(t, tn);
 | |
| 
 | |
| 		tnode_put_child_reorg(tp, cindex,
 | |
| 				      (struct rt_trie_node *)tn, wasfull);
 | |
| 
 | |
| 		tp = node_parent((struct rt_trie_node *) tn);
 | |
| 		if (!tp)
 | |
| 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
 | |
| 
 | |
| 		tnode_free_flush();
 | |
| 		if (!tp)
 | |
| 			break;
 | |
| 		tn = tp;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle last (top) tnode */
 | |
| 	if (IS_TNODE(tn))
 | |
| 		tn = (struct tnode *)resize(t, tn);
 | |
| 
 | |
| 	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
 | |
| 	tnode_free_flush();
 | |
| }
 | |
| 
 | |
| /* only used from updater-side */
 | |
| 
 | |
| static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
 | |
| {
 | |
| 	int pos, newpos;
 | |
| 	struct tnode *tp = NULL, *tn = NULL;
 | |
| 	struct rt_trie_node *n;
 | |
| 	struct leaf *l;
 | |
| 	int missbit;
 | |
| 	struct list_head *fa_head = NULL;
 | |
| 	struct leaf_info *li;
 | |
| 	t_key cindex;
 | |
| 
 | |
| 	pos = 0;
 | |
| 	n = rtnl_dereference(t->trie);
 | |
| 
 | |
| 	/* If we point to NULL, stop. Either the tree is empty and we should
 | |
| 	 * just put a new leaf in if, or we have reached an empty child slot,
 | |
| 	 * and we should just put our new leaf in that.
 | |
| 	 * If we point to a T_TNODE, check if it matches our key. Note that
 | |
| 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
 | |
| 	 * not be the parent's 'pos'+'bits'!
 | |
| 	 *
 | |
| 	 * If it does match the current key, get pos/bits from it, extract
 | |
| 	 * the index from our key, push the T_TNODE and walk the tree.
 | |
| 	 *
 | |
| 	 * If it doesn't, we have to replace it with a new T_TNODE.
 | |
| 	 *
 | |
| 	 * If we point to a T_LEAF, it might or might not have the same key
 | |
| 	 * as we do. If it does, just change the value, update the T_LEAF's
 | |
| 	 * value, and return it.
 | |
| 	 * If it doesn't, we need to replace it with a T_TNODE.
 | |
| 	 */
 | |
| 
 | |
| 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
 | |
| 		tn = (struct tnode *) n;
 | |
| 
 | |
| 		check_tnode(tn);
 | |
| 
 | |
| 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
 | |
| 			tp = tn;
 | |
| 			pos = tn->pos + tn->bits;
 | |
| 			n = tnode_get_child(tn,
 | |
| 					    tkey_extract_bits(key,
 | |
| 							      tn->pos,
 | |
| 							      tn->bits));
 | |
| 
 | |
| 			BUG_ON(n && node_parent(n) != tn);
 | |
| 		} else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * n  ----> NULL, LEAF or TNODE
 | |
| 	 *
 | |
| 	 * tp is n's (parent) ----> NULL or TNODE
 | |
| 	 */
 | |
| 
 | |
| 	BUG_ON(tp && IS_LEAF(tp));
 | |
| 
 | |
| 	/* Case 1: n is a leaf. Compare prefixes */
 | |
| 
 | |
| 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
 | |
| 		l = (struct leaf *) n;
 | |
| 		li = leaf_info_new(plen);
 | |
| 
 | |
| 		if (!li)
 | |
| 			return NULL;
 | |
| 
 | |
| 		fa_head = &li->falh;
 | |
| 		insert_leaf_info(&l->list, li);
 | |
| 		goto done;
 | |
| 	}
 | |
| 	l = leaf_new();
 | |
| 
 | |
| 	if (!l)
 | |
| 		return NULL;
 | |
| 
 | |
| 	l->key = key;
 | |
| 	li = leaf_info_new(plen);
 | |
| 
 | |
| 	if (!li) {
 | |
| 		free_leaf(l);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	fa_head = &li->falh;
 | |
| 	insert_leaf_info(&l->list, li);
 | |
| 
 | |
| 	if (t->trie && n == NULL) {
 | |
| 		/* Case 2: n is NULL, and will just insert a new leaf */
 | |
| 
 | |
| 		node_set_parent((struct rt_trie_node *)l, tp);
 | |
| 
 | |
| 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
 | |
| 		put_child(tp, cindex, (struct rt_trie_node *)l);
 | |
| 	} else {
 | |
| 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
 | |
| 		/*
 | |
| 		 *  Add a new tnode here
 | |
| 		 *  first tnode need some special handling
 | |
| 		 */
 | |
| 
 | |
| 		if (n) {
 | |
| 			pos = tp ? tp->pos+tp->bits : 0;
 | |
| 			newpos = tkey_mismatch(key, pos, n->key);
 | |
| 			tn = tnode_new(n->key, newpos, 1);
 | |
| 		} else {
 | |
| 			newpos = 0;
 | |
| 			tn = tnode_new(key, newpos, 1); /* First tnode */
 | |
| 		}
 | |
| 
 | |
| 		if (!tn) {
 | |
| 			free_leaf_info(li);
 | |
| 			free_leaf(l);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		node_set_parent((struct rt_trie_node *)tn, tp);
 | |
| 
 | |
| 		missbit = tkey_extract_bits(key, newpos, 1);
 | |
| 		put_child(tn, missbit, (struct rt_trie_node *)l);
 | |
| 		put_child(tn, 1-missbit, n);
 | |
| 
 | |
| 		if (tp) {
 | |
| 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
 | |
| 			put_child(tp, cindex, (struct rt_trie_node *)tn);
 | |
| 		} else {
 | |
| 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
 | |
| 			tp = tn;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tp && tp->pos + tp->bits > 32)
 | |
| 		pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
 | |
| 			tp, tp->pos, tp->bits, key, plen);
 | |
| 
 | |
| 	/* Rebalance the trie */
 | |
| 
 | |
| 	trie_rebalance(t, tp);
 | |
| done:
 | |
| 	return fa_head;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller must hold RTNL.
 | |
|  */
 | |
| int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
 | |
| {
 | |
| 	struct trie *t = (struct trie *) tb->tb_data;
 | |
| 	struct fib_alias *fa, *new_fa;
 | |
| 	struct list_head *fa_head = NULL;
 | |
| 	struct fib_info *fi;
 | |
| 	int plen = cfg->fc_dst_len;
 | |
| 	u8 tos = cfg->fc_tos;
 | |
| 	u32 key, mask;
 | |
| 	int err;
 | |
| 	struct leaf *l;
 | |
| 
 | |
| 	if (plen > 32)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	key = ntohl(cfg->fc_dst);
 | |
| 
 | |
| 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
 | |
| 
 | |
| 	mask = ntohl(inet_make_mask(plen));
 | |
| 
 | |
| 	if (key & ~mask)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	key = key & mask;
 | |
| 
 | |
| 	fi = fib_create_info(cfg);
 | |
| 	if (IS_ERR(fi)) {
 | |
| 		err = PTR_ERR(fi);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	l = fib_find_node(t, key);
 | |
| 	fa = NULL;
 | |
| 
 | |
| 	if (l) {
 | |
| 		fa_head = get_fa_head(l, plen);
 | |
| 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
 | |
| 	}
 | |
| 
 | |
| 	/* Now fa, if non-NULL, points to the first fib alias
 | |
| 	 * with the same keys [prefix,tos,priority], if such key already
 | |
| 	 * exists or to the node before which we will insert new one.
 | |
| 	 *
 | |
| 	 * If fa is NULL, we will need to allocate a new one and
 | |
| 	 * insert to the head of f.
 | |
| 	 *
 | |
| 	 * If f is NULL, no fib node matched the destination key
 | |
| 	 * and we need to allocate a new one of those as well.
 | |
| 	 */
 | |
| 
 | |
| 	if (fa && fa->fa_tos == tos &&
 | |
| 	    fa->fa_info->fib_priority == fi->fib_priority) {
 | |
| 		struct fib_alias *fa_first, *fa_match;
 | |
| 
 | |
| 		err = -EEXIST;
 | |
| 		if (cfg->fc_nlflags & NLM_F_EXCL)
 | |
| 			goto out;
 | |
| 
 | |
| 		/* We have 2 goals:
 | |
| 		 * 1. Find exact match for type, scope, fib_info to avoid
 | |
| 		 * duplicate routes
 | |
| 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
 | |
| 		 */
 | |
| 		fa_match = NULL;
 | |
| 		fa_first = fa;
 | |
| 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
 | |
| 		list_for_each_entry_continue(fa, fa_head, fa_list) {
 | |
| 			if (fa->fa_tos != tos)
 | |
| 				break;
 | |
| 			if (fa->fa_info->fib_priority != fi->fib_priority)
 | |
| 				break;
 | |
| 			if (fa->fa_type == cfg->fc_type &&
 | |
| 			    fa->fa_info == fi) {
 | |
| 				fa_match = fa;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
 | |
| 			struct fib_info *fi_drop;
 | |
| 			u8 state;
 | |
| 
 | |
| 			fa = fa_first;
 | |
| 			if (fa_match) {
 | |
| 				if (fa == fa_match)
 | |
| 					err = 0;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			err = -ENOBUFS;
 | |
| 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
 | |
| 			if (new_fa == NULL)
 | |
| 				goto out;
 | |
| 
 | |
| 			fi_drop = fa->fa_info;
 | |
| 			new_fa->fa_tos = fa->fa_tos;
 | |
| 			new_fa->fa_info = fi;
 | |
| 			new_fa->fa_type = cfg->fc_type;
 | |
| 			state = fa->fa_state;
 | |
| 			new_fa->fa_state = state & ~FA_S_ACCESSED;
 | |
| 
 | |
| 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
 | |
| 			alias_free_mem_rcu(fa);
 | |
| 
 | |
| 			fib_release_info(fi_drop);
 | |
| 			if (state & FA_S_ACCESSED)
 | |
| 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
 | |
| 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
 | |
| 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
 | |
| 
 | |
| 			goto succeeded;
 | |
| 		}
 | |
| 		/* Error if we find a perfect match which
 | |
| 		 * uses the same scope, type, and nexthop
 | |
| 		 * information.
 | |
| 		 */
 | |
| 		if (fa_match)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
 | |
| 			fa = fa_first;
 | |
| 	}
 | |
| 	err = -ENOENT;
 | |
| 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOBUFS;
 | |
| 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
 | |
| 	if (new_fa == NULL)
 | |
| 		goto out;
 | |
| 
 | |
| 	new_fa->fa_info = fi;
 | |
| 	new_fa->fa_tos = tos;
 | |
| 	new_fa->fa_type = cfg->fc_type;
 | |
| 	new_fa->fa_state = 0;
 | |
| 	/*
 | |
| 	 * Insert new entry to the list.
 | |
| 	 */
 | |
| 
 | |
| 	if (!fa_head) {
 | |
| 		fa_head = fib_insert_node(t, key, plen);
 | |
| 		if (unlikely(!fa_head)) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_free_new_fa;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!plen)
 | |
| 		tb->tb_num_default++;
 | |
| 
 | |
| 	list_add_tail_rcu(&new_fa->fa_list,
 | |
| 			  (fa ? &fa->fa_list : fa_head));
 | |
| 
 | |
| 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
 | |
| 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
 | |
| 		  &cfg->fc_nlinfo, 0);
 | |
| succeeded:
 | |
| 	return 0;
 | |
| 
 | |
| out_free_new_fa:
 | |
| 	kmem_cache_free(fn_alias_kmem, new_fa);
 | |
| out:
 | |
| 	fib_release_info(fi);
 | |
| err:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* should be called with rcu_read_lock */
 | |
| static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
 | |
| 		      t_key key,  const struct flowi4 *flp,
 | |
| 		      struct fib_result *res, int fib_flags)
 | |
| {
 | |
| 	struct leaf_info *li;
 | |
| 	struct hlist_head *hhead = &l->list;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(li, hhead, hlist) {
 | |
| 		struct fib_alias *fa;
 | |
| 
 | |
| 		if (l->key != (key & li->mask_plen))
 | |
| 			continue;
 | |
| 
 | |
| 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
 | |
| 			struct fib_info *fi = fa->fa_info;
 | |
| 			int nhsel, err;
 | |
| 
 | |
| 			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
 | |
| 				continue;
 | |
| 			if (fi->fib_dead)
 | |
| 				continue;
 | |
| 			if (fa->fa_info->fib_scope < flp->flowi4_scope)
 | |
| 				continue;
 | |
| 			fib_alias_accessed(fa);
 | |
| 			err = fib_props[fa->fa_type].error;
 | |
| 			if (err) {
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 				t->stats.semantic_match_passed++;
 | |
| #endif
 | |
| 				return err;
 | |
| 			}
 | |
| 			if (fi->fib_flags & RTNH_F_DEAD)
 | |
| 				continue;
 | |
| 			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
 | |
| 				const struct fib_nh *nh = &fi->fib_nh[nhsel];
 | |
| 
 | |
| 				if (nh->nh_flags & RTNH_F_DEAD)
 | |
| 					continue;
 | |
| 				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
 | |
| 					continue;
 | |
| 
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 				t->stats.semantic_match_passed++;
 | |
| #endif
 | |
| 				res->prefixlen = li->plen;
 | |
| 				res->nh_sel = nhsel;
 | |
| 				res->type = fa->fa_type;
 | |
| 				res->scope = fa->fa_info->fib_scope;
 | |
| 				res->fi = fi;
 | |
| 				res->table = tb;
 | |
| 				res->fa_head = &li->falh;
 | |
| 				if (!(fib_flags & FIB_LOOKUP_NOREF))
 | |
| 					atomic_inc(&fi->fib_clntref);
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 		t->stats.semantic_match_miss++;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
 | |
| 		     struct fib_result *res, int fib_flags)
 | |
| {
 | |
| 	struct trie *t = (struct trie *) tb->tb_data;
 | |
| 	int ret;
 | |
| 	struct rt_trie_node *n;
 | |
| 	struct tnode *pn;
 | |
| 	unsigned int pos, bits;
 | |
| 	t_key key = ntohl(flp->daddr);
 | |
| 	unsigned int chopped_off;
 | |
| 	t_key cindex = 0;
 | |
| 	unsigned int current_prefix_length = KEYLENGTH;
 | |
| 	struct tnode *cn;
 | |
| 	t_key pref_mismatch;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	n = rcu_dereference(t->trie);
 | |
| 	if (!n)
 | |
| 		goto failed;
 | |
| 
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 	t->stats.gets++;
 | |
| #endif
 | |
| 
 | |
| 	/* Just a leaf? */
 | |
| 	if (IS_LEAF(n)) {
 | |
| 		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
 | |
| 		goto found;
 | |
| 	}
 | |
| 
 | |
| 	pn = (struct tnode *) n;
 | |
| 	chopped_off = 0;
 | |
| 
 | |
| 	while (pn) {
 | |
| 		pos = pn->pos;
 | |
| 		bits = pn->bits;
 | |
| 
 | |
| 		if (!chopped_off)
 | |
| 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
 | |
| 						   pos, bits);
 | |
| 
 | |
| 		n = tnode_get_child_rcu(pn, cindex);
 | |
| 
 | |
| 		if (n == NULL) {
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 			t->stats.null_node_hit++;
 | |
| #endif
 | |
| 			goto backtrace;
 | |
| 		}
 | |
| 
 | |
| 		if (IS_LEAF(n)) {
 | |
| 			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
 | |
| 			if (ret > 0)
 | |
| 				goto backtrace;
 | |
| 			goto found;
 | |
| 		}
 | |
| 
 | |
| 		cn = (struct tnode *)n;
 | |
| 
 | |
| 		/*
 | |
| 		 * It's a tnode, and we can do some extra checks here if we
 | |
| 		 * like, to avoid descending into a dead-end branch.
 | |
| 		 * This tnode is in the parent's child array at index
 | |
| 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
 | |
| 		 * chopped off, so in reality the index may be just a
 | |
| 		 * subprefix, padded with zero at the end.
 | |
| 		 * We can also take a look at any skipped bits in this
 | |
| 		 * tnode - everything up to p_pos is supposed to be ok,
 | |
| 		 * and the non-chopped bits of the index (se previous
 | |
| 		 * paragraph) are also guaranteed ok, but the rest is
 | |
| 		 * considered unknown.
 | |
| 		 *
 | |
| 		 * The skipped bits are key[pos+bits..cn->pos].
 | |
| 		 */
 | |
| 
 | |
| 		/* If current_prefix_length < pos+bits, we are already doing
 | |
| 		 * actual prefix  matching, which means everything from
 | |
| 		 * pos+(bits-chopped_off) onward must be zero along some
 | |
| 		 * branch of this subtree - otherwise there is *no* valid
 | |
| 		 * prefix present. Here we can only check the skipped
 | |
| 		 * bits. Remember, since we have already indexed into the
 | |
| 		 * parent's child array, we know that the bits we chopped of
 | |
| 		 * *are* zero.
 | |
| 		 */
 | |
| 
 | |
| 		/* NOTA BENE: Checking only skipped bits
 | |
| 		   for the new node here */
 | |
| 
 | |
| 		if (current_prefix_length < pos+bits) {
 | |
| 			if (tkey_extract_bits(cn->key, current_prefix_length,
 | |
| 						cn->pos - current_prefix_length)
 | |
| 			    || !(cn->child[0]))
 | |
| 				goto backtrace;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If chopped_off=0, the index is fully validated and we
 | |
| 		 * only need to look at the skipped bits for this, the new,
 | |
| 		 * tnode. What we actually want to do is to find out if
 | |
| 		 * these skipped bits match our key perfectly, or if we will
 | |
| 		 * have to count on finding a matching prefix further down,
 | |
| 		 * because if we do, we would like to have some way of
 | |
| 		 * verifying the existence of such a prefix at this point.
 | |
| 		 */
 | |
| 
 | |
| 		/* The only thing we can do at this point is to verify that
 | |
| 		 * any such matching prefix can indeed be a prefix to our
 | |
| 		 * key, and if the bits in the node we are inspecting that
 | |
| 		 * do not match our key are not ZERO, this cannot be true.
 | |
| 		 * Thus, find out where there is a mismatch (before cn->pos)
 | |
| 		 * and verify that all the mismatching bits are zero in the
 | |
| 		 * new tnode's key.
 | |
| 		 */
 | |
| 
 | |
| 		/*
 | |
| 		 * Note: We aren't very concerned about the piece of
 | |
| 		 * the key that precede pn->pos+pn->bits, since these
 | |
| 		 * have already been checked. The bits after cn->pos
 | |
| 		 * aren't checked since these are by definition
 | |
| 		 * "unknown" at this point. Thus, what we want to see
 | |
| 		 * is if we are about to enter the "prefix matching"
 | |
| 		 * state, and in that case verify that the skipped
 | |
| 		 * bits that will prevail throughout this subtree are
 | |
| 		 * zero, as they have to be if we are to find a
 | |
| 		 * matching prefix.
 | |
| 		 */
 | |
| 
 | |
| 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
 | |
| 
 | |
| 		/*
 | |
| 		 * In short: If skipped bits in this node do not match
 | |
| 		 * the search key, enter the "prefix matching"
 | |
| 		 * state.directly.
 | |
| 		 */
 | |
| 		if (pref_mismatch) {
 | |
| 			/* fls(x) = __fls(x) + 1 */
 | |
| 			int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
 | |
| 
 | |
| 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
 | |
| 				goto backtrace;
 | |
| 
 | |
| 			if (current_prefix_length >= cn->pos)
 | |
| 				current_prefix_length = mp;
 | |
| 		}
 | |
| 
 | |
| 		pn = (struct tnode *)n; /* Descend */
 | |
| 		chopped_off = 0;
 | |
| 		continue;
 | |
| 
 | |
| backtrace:
 | |
| 		chopped_off++;
 | |
| 
 | |
| 		/* As zero don't change the child key (cindex) */
 | |
| 		while ((chopped_off <= pn->bits)
 | |
| 		       && !(cindex & (1<<(chopped_off-1))))
 | |
| 			chopped_off++;
 | |
| 
 | |
| 		/* Decrease current_... with bits chopped off */
 | |
| 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
 | |
| 			current_prefix_length = pn->pos + pn->bits
 | |
| 				- chopped_off;
 | |
| 
 | |
| 		/*
 | |
| 		 * Either we do the actual chop off according or if we have
 | |
| 		 * chopped off all bits in this tnode walk up to our parent.
 | |
| 		 */
 | |
| 
 | |
| 		if (chopped_off <= pn->bits) {
 | |
| 			cindex &= ~(1 << (chopped_off-1));
 | |
| 		} else {
 | |
| 			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
 | |
| 			if (!parent)
 | |
| 				goto failed;
 | |
| 
 | |
| 			/* Get Child's index */
 | |
| 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
 | |
| 			pn = parent;
 | |
| 			chopped_off = 0;
 | |
| 
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 			t->stats.backtrack++;
 | |
| #endif
 | |
| 			goto backtrace;
 | |
| 		}
 | |
| 	}
 | |
| failed:
 | |
| 	ret = 1;
 | |
| found:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(fib_table_lookup);
 | |
| 
 | |
| /*
 | |
|  * Remove the leaf and return parent.
 | |
|  */
 | |
| static void trie_leaf_remove(struct trie *t, struct leaf *l)
 | |
| {
 | |
| 	struct tnode *tp = node_parent((struct rt_trie_node *) l);
 | |
| 
 | |
| 	pr_debug("entering trie_leaf_remove(%p)\n", l);
 | |
| 
 | |
| 	if (tp) {
 | |
| 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
 | |
| 		put_child(tp, cindex, NULL);
 | |
| 		trie_rebalance(t, tp);
 | |
| 	} else
 | |
| 		RCU_INIT_POINTER(t->trie, NULL);
 | |
| 
 | |
| 	free_leaf(l);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caller must hold RTNL.
 | |
|  */
 | |
| int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
 | |
| {
 | |
| 	struct trie *t = (struct trie *) tb->tb_data;
 | |
| 	u32 key, mask;
 | |
| 	int plen = cfg->fc_dst_len;
 | |
| 	u8 tos = cfg->fc_tos;
 | |
| 	struct fib_alias *fa, *fa_to_delete;
 | |
| 	struct list_head *fa_head;
 | |
| 	struct leaf *l;
 | |
| 	struct leaf_info *li;
 | |
| 
 | |
| 	if (plen > 32)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	key = ntohl(cfg->fc_dst);
 | |
| 	mask = ntohl(inet_make_mask(plen));
 | |
| 
 | |
| 	if (key & ~mask)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	key = key & mask;
 | |
| 	l = fib_find_node(t, key);
 | |
| 
 | |
| 	if (!l)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	li = find_leaf_info(l, plen);
 | |
| 
 | |
| 	if (!li)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	fa_head = &li->falh;
 | |
| 	fa = fib_find_alias(fa_head, tos, 0);
 | |
| 
 | |
| 	if (!fa)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
 | |
| 
 | |
| 	fa_to_delete = NULL;
 | |
| 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
 | |
| 	list_for_each_entry_continue(fa, fa_head, fa_list) {
 | |
| 		struct fib_info *fi = fa->fa_info;
 | |
| 
 | |
| 		if (fa->fa_tos != tos)
 | |
| 			break;
 | |
| 
 | |
| 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
 | |
| 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
 | |
| 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
 | |
| 		    (!cfg->fc_prefsrc ||
 | |
| 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
 | |
| 		    (!cfg->fc_protocol ||
 | |
| 		     fi->fib_protocol == cfg->fc_protocol) &&
 | |
| 		    fib_nh_match(cfg, fi) == 0) {
 | |
| 			fa_to_delete = fa;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!fa_to_delete)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	fa = fa_to_delete;
 | |
| 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
 | |
| 		  &cfg->fc_nlinfo, 0);
 | |
| 
 | |
| 	list_del_rcu(&fa->fa_list);
 | |
| 
 | |
| 	if (!plen)
 | |
| 		tb->tb_num_default--;
 | |
| 
 | |
| 	if (list_empty(fa_head)) {
 | |
| 		hlist_del_rcu(&li->hlist);
 | |
| 		free_leaf_info(li);
 | |
| 	}
 | |
| 
 | |
| 	if (hlist_empty(&l->list))
 | |
| 		trie_leaf_remove(t, l);
 | |
| 
 | |
| 	if (fa->fa_state & FA_S_ACCESSED)
 | |
| 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
 | |
| 
 | |
| 	fib_release_info(fa->fa_info);
 | |
| 	alias_free_mem_rcu(fa);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int trie_flush_list(struct list_head *head)
 | |
| {
 | |
| 	struct fib_alias *fa, *fa_node;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
 | |
| 		struct fib_info *fi = fa->fa_info;
 | |
| 
 | |
| 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
 | |
| 			list_del_rcu(&fa->fa_list);
 | |
| 			fib_release_info(fa->fa_info);
 | |
| 			alias_free_mem_rcu(fa);
 | |
| 			found++;
 | |
| 		}
 | |
| 	}
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| static int trie_flush_leaf(struct leaf *l)
 | |
| {
 | |
| 	int found = 0;
 | |
| 	struct hlist_head *lih = &l->list;
 | |
| 	struct hlist_node *tmp;
 | |
| 	struct leaf_info *li = NULL;
 | |
| 
 | |
| 	hlist_for_each_entry_safe(li, tmp, lih, hlist) {
 | |
| 		found += trie_flush_list(&li->falh);
 | |
| 
 | |
| 		if (list_empty(&li->falh)) {
 | |
| 			hlist_del_rcu(&li->hlist);
 | |
| 			free_leaf_info(li);
 | |
| 		}
 | |
| 	}
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan for the next right leaf starting at node p->child[idx]
 | |
|  * Since we have back pointer, no recursion necessary.
 | |
|  */
 | |
| static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
 | |
| {
 | |
| 	do {
 | |
| 		t_key idx;
 | |
| 
 | |
| 		if (c)
 | |
| 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
 | |
| 		else
 | |
| 			idx = 0;
 | |
| 
 | |
| 		while (idx < 1u << p->bits) {
 | |
| 			c = tnode_get_child_rcu(p, idx++);
 | |
| 			if (!c)
 | |
| 				continue;
 | |
| 
 | |
| 			if (IS_LEAF(c))
 | |
| 				return (struct leaf *) c;
 | |
| 
 | |
| 			/* Rescan start scanning in new node */
 | |
| 			p = (struct tnode *) c;
 | |
| 			idx = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Node empty, walk back up to parent */
 | |
| 		c = (struct rt_trie_node *) p;
 | |
| 	} while ((p = node_parent_rcu(c)) != NULL);
 | |
| 
 | |
| 	return NULL; /* Root of trie */
 | |
| }
 | |
| 
 | |
| static struct leaf *trie_firstleaf(struct trie *t)
 | |
| {
 | |
| 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
 | |
| 
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (IS_LEAF(n))          /* trie is just a leaf */
 | |
| 		return (struct leaf *) n;
 | |
| 
 | |
| 	return leaf_walk_rcu(n, NULL);
 | |
| }
 | |
| 
 | |
| static struct leaf *trie_nextleaf(struct leaf *l)
 | |
| {
 | |
| 	struct rt_trie_node *c = (struct rt_trie_node *) l;
 | |
| 	struct tnode *p = node_parent_rcu(c);
 | |
| 
 | |
| 	if (!p)
 | |
| 		return NULL;	/* trie with just one leaf */
 | |
| 
 | |
| 	return leaf_walk_rcu(p, c);
 | |
| }
 | |
| 
 | |
| static struct leaf *trie_leafindex(struct trie *t, int index)
 | |
| {
 | |
| 	struct leaf *l = trie_firstleaf(t);
 | |
| 
 | |
| 	while (l && index-- > 0)
 | |
| 		l = trie_nextleaf(l);
 | |
| 
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Caller must hold RTNL.
 | |
|  */
 | |
| int fib_table_flush(struct fib_table *tb)
 | |
| {
 | |
| 	struct trie *t = (struct trie *) tb->tb_data;
 | |
| 	struct leaf *l, *ll = NULL;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
 | |
| 		found += trie_flush_leaf(l);
 | |
| 
 | |
| 		if (ll && hlist_empty(&ll->list))
 | |
| 			trie_leaf_remove(t, ll);
 | |
| 		ll = l;
 | |
| 	}
 | |
| 
 | |
| 	if (ll && hlist_empty(&ll->list))
 | |
| 		trie_leaf_remove(t, ll);
 | |
| 
 | |
| 	pr_debug("trie_flush found=%d\n", found);
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| void fib_free_table(struct fib_table *tb)
 | |
| {
 | |
| 	kfree(tb);
 | |
| }
 | |
| 
 | |
| static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
 | |
| 			   struct fib_table *tb,
 | |
| 			   struct sk_buff *skb, struct netlink_callback *cb)
 | |
| {
 | |
| 	int i, s_i;
 | |
| 	struct fib_alias *fa;
 | |
| 	__be32 xkey = htonl(key);
 | |
| 
 | |
| 	s_i = cb->args[5];
 | |
| 	i = 0;
 | |
| 
 | |
| 	/* rcu_read_lock is hold by caller */
 | |
| 
 | |
| 	list_for_each_entry_rcu(fa, fah, fa_list) {
 | |
| 		if (i < s_i) {
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
 | |
| 				  cb->nlh->nlmsg_seq,
 | |
| 				  RTM_NEWROUTE,
 | |
| 				  tb->tb_id,
 | |
| 				  fa->fa_type,
 | |
| 				  xkey,
 | |
| 				  plen,
 | |
| 				  fa->fa_tos,
 | |
| 				  fa->fa_info, NLM_F_MULTI) < 0) {
 | |
| 			cb->args[5] = i;
 | |
| 			return -1;
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 	cb->args[5] = i;
 | |
| 	return skb->len;
 | |
| }
 | |
| 
 | |
| static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
 | |
| 			struct sk_buff *skb, struct netlink_callback *cb)
 | |
| {
 | |
| 	struct leaf_info *li;
 | |
| 	int i, s_i;
 | |
| 
 | |
| 	s_i = cb->args[4];
 | |
| 	i = 0;
 | |
| 
 | |
| 	/* rcu_read_lock is hold by caller */
 | |
| 	hlist_for_each_entry_rcu(li, &l->list, hlist) {
 | |
| 		if (i < s_i) {
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (i > s_i)
 | |
| 			cb->args[5] = 0;
 | |
| 
 | |
| 		if (list_empty(&li->falh))
 | |
| 			continue;
 | |
| 
 | |
| 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
 | |
| 			cb->args[4] = i;
 | |
| 			return -1;
 | |
| 		}
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	cb->args[4] = i;
 | |
| 	return skb->len;
 | |
| }
 | |
| 
 | |
| int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
 | |
| 		   struct netlink_callback *cb)
 | |
| {
 | |
| 	struct leaf *l;
 | |
| 	struct trie *t = (struct trie *) tb->tb_data;
 | |
| 	t_key key = cb->args[2];
 | |
| 	int count = cb->args[3];
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/* Dump starting at last key.
 | |
| 	 * Note: 0.0.0.0/0 (ie default) is first key.
 | |
| 	 */
 | |
| 	if (count == 0)
 | |
| 		l = trie_firstleaf(t);
 | |
| 	else {
 | |
| 		/* Normally, continue from last key, but if that is missing
 | |
| 		 * fallback to using slow rescan
 | |
| 		 */
 | |
| 		l = fib_find_node(t, key);
 | |
| 		if (!l)
 | |
| 			l = trie_leafindex(t, count);
 | |
| 	}
 | |
| 
 | |
| 	while (l) {
 | |
| 		cb->args[2] = l->key;
 | |
| 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
 | |
| 			cb->args[3] = count;
 | |
| 			rcu_read_unlock();
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		++count;
 | |
| 		l = trie_nextleaf(l);
 | |
| 		memset(&cb->args[4], 0,
 | |
| 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
 | |
| 	}
 | |
| 	cb->args[3] = count;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return skb->len;
 | |
| }
 | |
| 
 | |
| void __init fib_trie_init(void)
 | |
| {
 | |
| 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
 | |
| 					  sizeof(struct fib_alias),
 | |
| 					  0, SLAB_PANIC, NULL);
 | |
| 
 | |
| 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
 | |
| 					   max(sizeof(struct leaf),
 | |
| 					       sizeof(struct leaf_info)),
 | |
| 					   0, SLAB_PANIC, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct fib_table *fib_trie_table(u32 id)
 | |
| {
 | |
| 	struct fib_table *tb;
 | |
| 	struct trie *t;
 | |
| 
 | |
| 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
 | |
| 		     GFP_KERNEL);
 | |
| 	if (tb == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	tb->tb_id = id;
 | |
| 	tb->tb_default = -1;
 | |
| 	tb->tb_num_default = 0;
 | |
| 
 | |
| 	t = (struct trie *) tb->tb_data;
 | |
| 	memset(t, 0, sizeof(*t));
 | |
| 
 | |
| 	return tb;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /* Depth first Trie walk iterator */
 | |
| struct fib_trie_iter {
 | |
| 	struct seq_net_private p;
 | |
| 	struct fib_table *tb;
 | |
| 	struct tnode *tnode;
 | |
| 	unsigned int index;
 | |
| 	unsigned int depth;
 | |
| };
 | |
| 
 | |
| static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
 | |
| {
 | |
| 	struct tnode *tn = iter->tnode;
 | |
| 	unsigned int cindex = iter->index;
 | |
| 	struct tnode *p;
 | |
| 
 | |
| 	/* A single entry routing table */
 | |
| 	if (!tn)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
 | |
| 		 iter->tnode, iter->index, iter->depth);
 | |
| rescan:
 | |
| 	while (cindex < (1<<tn->bits)) {
 | |
| 		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
 | |
| 
 | |
| 		if (n) {
 | |
| 			if (IS_LEAF(n)) {
 | |
| 				iter->tnode = tn;
 | |
| 				iter->index = cindex + 1;
 | |
| 			} else {
 | |
| 				/* push down one level */
 | |
| 				iter->tnode = (struct tnode *) n;
 | |
| 				iter->index = 0;
 | |
| 				++iter->depth;
 | |
| 			}
 | |
| 			return n;
 | |
| 		}
 | |
| 
 | |
| 		++cindex;
 | |
| 	}
 | |
| 
 | |
| 	/* Current node exhausted, pop back up */
 | |
| 	p = node_parent_rcu((struct rt_trie_node *)tn);
 | |
| 	if (p) {
 | |
| 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
 | |
| 		tn = p;
 | |
| 		--iter->depth;
 | |
| 		goto rescan;
 | |
| 	}
 | |
| 
 | |
| 	/* got root? */
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
 | |
| 				       struct trie *t)
 | |
| {
 | |
| 	struct rt_trie_node *n;
 | |
| 
 | |
| 	if (!t)
 | |
| 		return NULL;
 | |
| 
 | |
| 	n = rcu_dereference(t->trie);
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (IS_TNODE(n)) {
 | |
| 		iter->tnode = (struct tnode *) n;
 | |
| 		iter->index = 0;
 | |
| 		iter->depth = 1;
 | |
| 	} else {
 | |
| 		iter->tnode = NULL;
 | |
| 		iter->index = 0;
 | |
| 		iter->depth = 0;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void trie_collect_stats(struct trie *t, struct trie_stat *s)
 | |
| {
 | |
| 	struct rt_trie_node *n;
 | |
| 	struct fib_trie_iter iter;
 | |
| 
 | |
| 	memset(s, 0, sizeof(*s));
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
 | |
| 		if (IS_LEAF(n)) {
 | |
| 			struct leaf *l = (struct leaf *)n;
 | |
| 			struct leaf_info *li;
 | |
| 
 | |
| 			s->leaves++;
 | |
| 			s->totdepth += iter.depth;
 | |
| 			if (iter.depth > s->maxdepth)
 | |
| 				s->maxdepth = iter.depth;
 | |
| 
 | |
| 			hlist_for_each_entry_rcu(li, &l->list, hlist)
 | |
| 				++s->prefixes;
 | |
| 		} else {
 | |
| 			const struct tnode *tn = (const struct tnode *) n;
 | |
| 			int i;
 | |
| 
 | |
| 			s->tnodes++;
 | |
| 			if (tn->bits < MAX_STAT_DEPTH)
 | |
| 				s->nodesizes[tn->bits]++;
 | |
| 
 | |
| 			for (i = 0; i < (1<<tn->bits); i++)
 | |
| 				if (!tn->child[i])
 | |
| 					s->nullpointers++;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	This outputs /proc/net/fib_triestats
 | |
|  */
 | |
| static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
 | |
| {
 | |
| 	unsigned int i, max, pointers, bytes, avdepth;
 | |
| 
 | |
| 	if (stat->leaves)
 | |
| 		avdepth = stat->totdepth*100 / stat->leaves;
 | |
| 	else
 | |
| 		avdepth = 0;
 | |
| 
 | |
| 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
 | |
| 		   avdepth / 100, avdepth % 100);
 | |
| 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
 | |
| 
 | |
| 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
 | |
| 	bytes = sizeof(struct leaf) * stat->leaves;
 | |
| 
 | |
| 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
 | |
| 	bytes += sizeof(struct leaf_info) * stat->prefixes;
 | |
| 
 | |
| 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
 | |
| 	bytes += sizeof(struct tnode) * stat->tnodes;
 | |
| 
 | |
| 	max = MAX_STAT_DEPTH;
 | |
| 	while (max > 0 && stat->nodesizes[max-1] == 0)
 | |
| 		max--;
 | |
| 
 | |
| 	pointers = 0;
 | |
| 	for (i = 1; i < max; i++)
 | |
| 		if (stat->nodesizes[i] != 0) {
 | |
| 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
 | |
| 			pointers += (1<<i) * stat->nodesizes[i];
 | |
| 		}
 | |
| 	seq_putc(seq, '\n');
 | |
| 	seq_printf(seq, "\tPointers: %u\n", pointers);
 | |
| 
 | |
| 	bytes += sizeof(struct rt_trie_node *) * pointers;
 | |
| 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
 | |
| 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| static void trie_show_usage(struct seq_file *seq,
 | |
| 			    const struct trie_use_stats *stats)
 | |
| {
 | |
| 	seq_printf(seq, "\nCounters:\n---------\n");
 | |
| 	seq_printf(seq, "gets = %u\n", stats->gets);
 | |
| 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
 | |
| 	seq_printf(seq, "semantic match passed = %u\n",
 | |
| 		   stats->semantic_match_passed);
 | |
| 	seq_printf(seq, "semantic match miss = %u\n",
 | |
| 		   stats->semantic_match_miss);
 | |
| 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
 | |
| 	seq_printf(seq, "skipped node resize = %u\n\n",
 | |
| 		   stats->resize_node_skipped);
 | |
| }
 | |
| #endif /*  CONFIG_IP_FIB_TRIE_STATS */
 | |
| 
 | |
| static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
 | |
| {
 | |
| 	if (tb->tb_id == RT_TABLE_LOCAL)
 | |
| 		seq_puts(seq, "Local:\n");
 | |
| 	else if (tb->tb_id == RT_TABLE_MAIN)
 | |
| 		seq_puts(seq, "Main:\n");
 | |
| 	else
 | |
| 		seq_printf(seq, "Id %d:\n", tb->tb_id);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int fib_triestat_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct net *net = (struct net *)seq->private;
 | |
| 	unsigned int h;
 | |
| 
 | |
| 	seq_printf(seq,
 | |
| 		   "Basic info: size of leaf:"
 | |
| 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
 | |
| 		   sizeof(struct leaf), sizeof(struct tnode));
 | |
| 
 | |
| 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
 | |
| 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
 | |
| 		struct fib_table *tb;
 | |
| 
 | |
| 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
 | |
| 			struct trie *t = (struct trie *) tb->tb_data;
 | |
| 			struct trie_stat stat;
 | |
| 
 | |
| 			if (!t)
 | |
| 				continue;
 | |
| 
 | |
| 			fib_table_print(seq, tb);
 | |
| 
 | |
| 			trie_collect_stats(t, &stat);
 | |
| 			trie_show_stats(seq, &stat);
 | |
| #ifdef CONFIG_IP_FIB_TRIE_STATS
 | |
| 			trie_show_usage(seq, &t->stats);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fib_triestat_seq_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open_net(inode, file, fib_triestat_seq_show);
 | |
| }
 | |
| 
 | |
| static const struct file_operations fib_triestat_fops = {
 | |
| 	.owner	= THIS_MODULE,
 | |
| 	.open	= fib_triestat_seq_open,
 | |
| 	.read	= seq_read,
 | |
| 	.llseek	= seq_lseek,
 | |
| 	.release = single_release_net,
 | |
| };
 | |
| 
 | |
| static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
 | |
| {
 | |
| 	struct fib_trie_iter *iter = seq->private;
 | |
| 	struct net *net = seq_file_net(seq);
 | |
| 	loff_t idx = 0;
 | |
| 	unsigned int h;
 | |
| 
 | |
| 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
 | |
| 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
 | |
| 		struct fib_table *tb;
 | |
| 
 | |
| 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
 | |
| 			struct rt_trie_node *n;
 | |
| 
 | |
| 			for (n = fib_trie_get_first(iter,
 | |
| 						    (struct trie *) tb->tb_data);
 | |
| 			     n; n = fib_trie_get_next(iter))
 | |
| 				if (pos == idx++) {
 | |
| 					iter->tb = tb;
 | |
| 					return n;
 | |
| 				}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
 | |
| 	__acquires(RCU)
 | |
| {
 | |
| 	rcu_read_lock();
 | |
| 	return fib_trie_get_idx(seq, *pos);
 | |
| }
 | |
| 
 | |
| static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct fib_trie_iter *iter = seq->private;
 | |
| 	struct net *net = seq_file_net(seq);
 | |
| 	struct fib_table *tb = iter->tb;
 | |
| 	struct hlist_node *tb_node;
 | |
| 	unsigned int h;
 | |
| 	struct rt_trie_node *n;
 | |
| 
 | |
| 	++*pos;
 | |
| 	/* next node in same table */
 | |
| 	n = fib_trie_get_next(iter);
 | |
| 	if (n)
 | |
| 		return n;
 | |
| 
 | |
| 	/* walk rest of this hash chain */
 | |
| 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
 | |
| 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
 | |
| 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
 | |
| 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
 | |
| 		if (n)
 | |
| 			goto found;
 | |
| 	}
 | |
| 
 | |
| 	/* new hash chain */
 | |
| 	while (++h < FIB_TABLE_HASHSZ) {
 | |
| 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
 | |
| 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
 | |
| 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
 | |
| 			if (n)
 | |
| 				goto found;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| 
 | |
| found:
 | |
| 	iter->tb = tb;
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void fib_trie_seq_stop(struct seq_file *seq, void *v)
 | |
| 	__releases(RCU)
 | |
| {
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void seq_indent(struct seq_file *seq, int n)
 | |
| {
 | |
| 	while (n-- > 0)
 | |
| 		seq_puts(seq, "   ");
 | |
| }
 | |
| 
 | |
| static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
 | |
| {
 | |
| 	switch (s) {
 | |
| 	case RT_SCOPE_UNIVERSE: return "universe";
 | |
| 	case RT_SCOPE_SITE:	return "site";
 | |
| 	case RT_SCOPE_LINK:	return "link";
 | |
| 	case RT_SCOPE_HOST:	return "host";
 | |
| 	case RT_SCOPE_NOWHERE:	return "nowhere";
 | |
| 	default:
 | |
| 		snprintf(buf, len, "scope=%d", s);
 | |
| 		return buf;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const char *const rtn_type_names[__RTN_MAX] = {
 | |
| 	[RTN_UNSPEC] = "UNSPEC",
 | |
| 	[RTN_UNICAST] = "UNICAST",
 | |
| 	[RTN_LOCAL] = "LOCAL",
 | |
| 	[RTN_BROADCAST] = "BROADCAST",
 | |
| 	[RTN_ANYCAST] = "ANYCAST",
 | |
| 	[RTN_MULTICAST] = "MULTICAST",
 | |
| 	[RTN_BLACKHOLE] = "BLACKHOLE",
 | |
| 	[RTN_UNREACHABLE] = "UNREACHABLE",
 | |
| 	[RTN_PROHIBIT] = "PROHIBIT",
 | |
| 	[RTN_THROW] = "THROW",
 | |
| 	[RTN_NAT] = "NAT",
 | |
| 	[RTN_XRESOLVE] = "XRESOLVE",
 | |
| };
 | |
| 
 | |
| static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
 | |
| {
 | |
| 	if (t < __RTN_MAX && rtn_type_names[t])
 | |
| 		return rtn_type_names[t];
 | |
| 	snprintf(buf, len, "type %u", t);
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /* Pretty print the trie */
 | |
| static int fib_trie_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	const struct fib_trie_iter *iter = seq->private;
 | |
| 	struct rt_trie_node *n = v;
 | |
| 
 | |
| 	if (!node_parent_rcu(n))
 | |
| 		fib_table_print(seq, iter->tb);
 | |
| 
 | |
| 	if (IS_TNODE(n)) {
 | |
| 		struct tnode *tn = (struct tnode *) n;
 | |
| 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
 | |
| 
 | |
| 		seq_indent(seq, iter->depth-1);
 | |
| 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
 | |
| 			   &prf, tn->pos, tn->bits, tn->full_children,
 | |
| 			   tn->empty_children);
 | |
| 
 | |
| 	} else {
 | |
| 		struct leaf *l = (struct leaf *) n;
 | |
| 		struct leaf_info *li;
 | |
| 		__be32 val = htonl(l->key);
 | |
| 
 | |
| 		seq_indent(seq, iter->depth);
 | |
| 		seq_printf(seq, "  |-- %pI4\n", &val);
 | |
| 
 | |
| 		hlist_for_each_entry_rcu(li, &l->list, hlist) {
 | |
| 			struct fib_alias *fa;
 | |
| 
 | |
| 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
 | |
| 				char buf1[32], buf2[32];
 | |
| 
 | |
| 				seq_indent(seq, iter->depth+1);
 | |
| 				seq_printf(seq, "  /%d %s %s", li->plen,
 | |
| 					   rtn_scope(buf1, sizeof(buf1),
 | |
| 						     fa->fa_info->fib_scope),
 | |
| 					   rtn_type(buf2, sizeof(buf2),
 | |
| 						    fa->fa_type));
 | |
| 				if (fa->fa_tos)
 | |
| 					seq_printf(seq, " tos=%d", fa->fa_tos);
 | |
| 				seq_putc(seq, '\n');
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations fib_trie_seq_ops = {
 | |
| 	.start  = fib_trie_seq_start,
 | |
| 	.next   = fib_trie_seq_next,
 | |
| 	.stop   = fib_trie_seq_stop,
 | |
| 	.show   = fib_trie_seq_show,
 | |
| };
 | |
| 
 | |
| static int fib_trie_seq_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open_net(inode, file, &fib_trie_seq_ops,
 | |
| 			    sizeof(struct fib_trie_iter));
 | |
| }
 | |
| 
 | |
| static const struct file_operations fib_trie_fops = {
 | |
| 	.owner  = THIS_MODULE,
 | |
| 	.open   = fib_trie_seq_open,
 | |
| 	.read   = seq_read,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.release = seq_release_net,
 | |
| };
 | |
| 
 | |
| struct fib_route_iter {
 | |
| 	struct seq_net_private p;
 | |
| 	struct trie *main_trie;
 | |
| 	loff_t	pos;
 | |
| 	t_key	key;
 | |
| };
 | |
| 
 | |
| static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
 | |
| {
 | |
| 	struct leaf *l = NULL;
 | |
| 	struct trie *t = iter->main_trie;
 | |
| 
 | |
| 	/* use cache location of last found key */
 | |
| 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
 | |
| 		pos -= iter->pos;
 | |
| 	else {
 | |
| 		iter->pos = 0;
 | |
| 		l = trie_firstleaf(t);
 | |
| 	}
 | |
| 
 | |
| 	while (l && pos-- > 0) {
 | |
| 		iter->pos++;
 | |
| 		l = trie_nextleaf(l);
 | |
| 	}
 | |
| 
 | |
| 	if (l)
 | |
| 		iter->key = pos;	/* remember it */
 | |
| 	else
 | |
| 		iter->pos = 0;		/* forget it */
 | |
| 
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
 | |
| 	__acquires(RCU)
 | |
| {
 | |
| 	struct fib_route_iter *iter = seq->private;
 | |
| 	struct fib_table *tb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
 | |
| 	if (!tb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	iter->main_trie = (struct trie *) tb->tb_data;
 | |
| 	if (*pos == 0)
 | |
| 		return SEQ_START_TOKEN;
 | |
| 	else
 | |
| 		return fib_route_get_idx(iter, *pos - 1);
 | |
| }
 | |
| 
 | |
| static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct fib_route_iter *iter = seq->private;
 | |
| 	struct leaf *l = v;
 | |
| 
 | |
| 	++*pos;
 | |
| 	if (v == SEQ_START_TOKEN) {
 | |
| 		iter->pos = 0;
 | |
| 		l = trie_firstleaf(iter->main_trie);
 | |
| 	} else {
 | |
| 		iter->pos++;
 | |
| 		l = trie_nextleaf(l);
 | |
| 	}
 | |
| 
 | |
| 	if (l)
 | |
| 		iter->key = l->key;
 | |
| 	else
 | |
| 		iter->pos = 0;
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| static void fib_route_seq_stop(struct seq_file *seq, void *v)
 | |
| 	__releases(RCU)
 | |
| {
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
 | |
| {
 | |
| 	unsigned int flags = 0;
 | |
| 
 | |
| 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
 | |
| 		flags = RTF_REJECT;
 | |
| 	if (fi && fi->fib_nh->nh_gw)
 | |
| 		flags |= RTF_GATEWAY;
 | |
| 	if (mask == htonl(0xFFFFFFFF))
 | |
| 		flags |= RTF_HOST;
 | |
| 	flags |= RTF_UP;
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	This outputs /proc/net/route.
 | |
|  *	The format of the file is not supposed to be changed
 | |
|  *	and needs to be same as fib_hash output to avoid breaking
 | |
|  *	legacy utilities
 | |
|  */
 | |
| static int fib_route_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct leaf *l = v;
 | |
| 	struct leaf_info *li;
 | |
| 
 | |
| 	if (v == SEQ_START_TOKEN) {
 | |
| 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
 | |
| 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
 | |
| 			   "\tWindow\tIRTT");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(li, &l->list, hlist) {
 | |
| 		struct fib_alias *fa;
 | |
| 		__be32 mask, prefix;
 | |
| 
 | |
| 		mask = inet_make_mask(li->plen);
 | |
| 		prefix = htonl(l->key);
 | |
| 
 | |
| 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
 | |
| 			const struct fib_info *fi = fa->fa_info;
 | |
| 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
 | |
| 
 | |
| 			if (fa->fa_type == RTN_BROADCAST
 | |
| 			    || fa->fa_type == RTN_MULTICAST)
 | |
| 				continue;
 | |
| 
 | |
| 			seq_setwidth(seq, 127);
 | |
| 
 | |
| 			if (fi)
 | |
| 				seq_printf(seq,
 | |
| 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
 | |
| 					 "%d\t%08X\t%d\t%u\t%u",
 | |
| 					 fi->fib_dev ? fi->fib_dev->name : "*",
 | |
| 					 prefix,
 | |
| 					 fi->fib_nh->nh_gw, flags, 0, 0,
 | |
| 					 fi->fib_priority,
 | |
| 					 mask,
 | |
| 					 (fi->fib_advmss ?
 | |
| 					  fi->fib_advmss + 40 : 0),
 | |
| 					 fi->fib_window,
 | |
| 					 fi->fib_rtt >> 3);
 | |
| 			else
 | |
| 				seq_printf(seq,
 | |
| 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
 | |
| 					 "%d\t%08X\t%d\t%u\t%u",
 | |
| 					 prefix, 0, flags, 0, 0, 0,
 | |
| 					 mask, 0, 0, 0);
 | |
| 
 | |
| 			seq_pad(seq, '\n');
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations fib_route_seq_ops = {
 | |
| 	.start  = fib_route_seq_start,
 | |
| 	.next   = fib_route_seq_next,
 | |
| 	.stop   = fib_route_seq_stop,
 | |
| 	.show   = fib_route_seq_show,
 | |
| };
 | |
| 
 | |
| static int fib_route_seq_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open_net(inode, file, &fib_route_seq_ops,
 | |
| 			    sizeof(struct fib_route_iter));
 | |
| }
 | |
| 
 | |
| static const struct file_operations fib_route_fops = {
 | |
| 	.owner  = THIS_MODULE,
 | |
| 	.open   = fib_route_seq_open,
 | |
| 	.read   = seq_read,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.release = seq_release_net,
 | |
| };
 | |
| 
 | |
| int __net_init fib_proc_init(struct net *net)
 | |
| {
 | |
| 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
 | |
| 		goto out1;
 | |
| 
 | |
| 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
 | |
| 			 &fib_triestat_fops))
 | |
| 		goto out2;
 | |
| 
 | |
| 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
 | |
| 		goto out3;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out3:
 | |
| 	remove_proc_entry("fib_triestat", net->proc_net);
 | |
| out2:
 | |
| 	remove_proc_entry("fib_trie", net->proc_net);
 | |
| out1:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void __net_exit fib_proc_exit(struct net *net)
 | |
| {
 | |
| 	remove_proc_entry("fib_trie", net->proc_net);
 | |
| 	remove_proc_entry("fib_triestat", net->proc_net);
 | |
| 	remove_proc_entry("route", net->proc_net);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PROC_FS */
 |