 ae7f6711d6
			
		
	
	
	ae7f6711d6
	
	
	
		
			
			Merge reason: We want to queue up a dependent patch. Also update to
              later -rc's.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
	
			
		
			
				
	
	
		
			1144 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1144 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * builtin-timechart.c - make an svg timechart of system activity
 | |
|  *
 | |
|  * (C) Copyright 2009 Intel Corporation
 | |
|  *
 | |
|  * Authors:
 | |
|  *     Arjan van de Ven <arjan@linux.intel.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; version 2
 | |
|  * of the License.
 | |
|  */
 | |
| 
 | |
| #include "builtin.h"
 | |
| 
 | |
| #include "util/util.h"
 | |
| 
 | |
| #include "util/color.h"
 | |
| #include <linux/list.h>
 | |
| #include "util/cache.h"
 | |
| #include <linux/rbtree.h>
 | |
| #include "util/symbol.h"
 | |
| #include "util/string.h"
 | |
| #include "util/callchain.h"
 | |
| #include "util/strlist.h"
 | |
| 
 | |
| #include "perf.h"
 | |
| #include "util/header.h"
 | |
| #include "util/parse-options.h"
 | |
| #include "util/parse-events.h"
 | |
| #include "util/event.h"
 | |
| #include "util/session.h"
 | |
| #include "util/svghelper.h"
 | |
| 
 | |
| static char		const *input_name = "perf.data";
 | |
| static char		const *output_name = "output.svg";
 | |
| 
 | |
| static unsigned int	numcpus;
 | |
| static u64		min_freq;	/* Lowest CPU frequency seen */
 | |
| static u64		max_freq;	/* Highest CPU frequency seen */
 | |
| static u64		turbo_frequency;
 | |
| 
 | |
| static u64		first_time, last_time;
 | |
| 
 | |
| static int		power_only;
 | |
| 
 | |
| 
 | |
| struct per_pid;
 | |
| struct per_pidcomm;
 | |
| 
 | |
| struct cpu_sample;
 | |
| struct power_event;
 | |
| struct wake_event;
 | |
| 
 | |
| struct sample_wrapper;
 | |
| 
 | |
| /*
 | |
|  * Datastructure layout:
 | |
|  * We keep an list of "pid"s, matching the kernels notion of a task struct.
 | |
|  * Each "pid" entry, has a list of "comm"s.
 | |
|  *	this is because we want to track different programs different, while
 | |
|  *	exec will reuse the original pid (by design).
 | |
|  * Each comm has a list of samples that will be used to draw
 | |
|  * final graph.
 | |
|  */
 | |
| 
 | |
| struct per_pid {
 | |
| 	struct per_pid *next;
 | |
| 
 | |
| 	int		pid;
 | |
| 	int		ppid;
 | |
| 
 | |
| 	u64		start_time;
 | |
| 	u64		end_time;
 | |
| 	u64		total_time;
 | |
| 	int		display;
 | |
| 
 | |
| 	struct per_pidcomm *all;
 | |
| 	struct per_pidcomm *current;
 | |
| 
 | |
| 	int painted;
 | |
| };
 | |
| 
 | |
| 
 | |
| struct per_pidcomm {
 | |
| 	struct per_pidcomm *next;
 | |
| 
 | |
| 	u64		start_time;
 | |
| 	u64		end_time;
 | |
| 	u64		total_time;
 | |
| 
 | |
| 	int		Y;
 | |
| 	int		display;
 | |
| 
 | |
| 	long		state;
 | |
| 	u64		state_since;
 | |
| 
 | |
| 	char		*comm;
 | |
| 
 | |
| 	struct cpu_sample *samples;
 | |
| };
 | |
| 
 | |
| struct sample_wrapper {
 | |
| 	struct sample_wrapper *next;
 | |
| 
 | |
| 	u64		timestamp;
 | |
| 	unsigned char	data[0];
 | |
| };
 | |
| 
 | |
| #define TYPE_NONE	0
 | |
| #define TYPE_RUNNING	1
 | |
| #define TYPE_WAITING	2
 | |
| #define TYPE_BLOCKED	3
 | |
| 
 | |
| struct cpu_sample {
 | |
| 	struct cpu_sample *next;
 | |
| 
 | |
| 	u64 start_time;
 | |
| 	u64 end_time;
 | |
| 	int type;
 | |
| 	int cpu;
 | |
| };
 | |
| 
 | |
| static struct per_pid *all_data;
 | |
| 
 | |
| #define CSTATE 1
 | |
| #define PSTATE 2
 | |
| 
 | |
| struct power_event {
 | |
| 	struct power_event *next;
 | |
| 	int type;
 | |
| 	int state;
 | |
| 	u64 start_time;
 | |
| 	u64 end_time;
 | |
| 	int cpu;
 | |
| };
 | |
| 
 | |
| struct wake_event {
 | |
| 	struct wake_event *next;
 | |
| 	int waker;
 | |
| 	int wakee;
 | |
| 	u64 time;
 | |
| };
 | |
| 
 | |
| static struct power_event    *power_events;
 | |
| static struct wake_event     *wake_events;
 | |
| 
 | |
| struct sample_wrapper *all_samples;
 | |
| 
 | |
| 
 | |
| struct process_filter;
 | |
| struct process_filter {
 | |
| 	char			*name;
 | |
| 	int			pid;
 | |
| 	struct process_filter	*next;
 | |
| };
 | |
| 
 | |
| static struct process_filter *process_filter;
 | |
| 
 | |
| 
 | |
| static struct per_pid *find_create_pid(int pid)
 | |
| {
 | |
| 	struct per_pid *cursor = all_data;
 | |
| 
 | |
| 	while (cursor) {
 | |
| 		if (cursor->pid == pid)
 | |
| 			return cursor;
 | |
| 		cursor = cursor->next;
 | |
| 	}
 | |
| 	cursor = malloc(sizeof(struct per_pid));
 | |
| 	assert(cursor != NULL);
 | |
| 	memset(cursor, 0, sizeof(struct per_pid));
 | |
| 	cursor->pid = pid;
 | |
| 	cursor->next = all_data;
 | |
| 	all_data = cursor;
 | |
| 	return cursor;
 | |
| }
 | |
| 
 | |
| static void pid_set_comm(int pid, char *comm)
 | |
| {
 | |
| 	struct per_pid *p;
 | |
| 	struct per_pidcomm *c;
 | |
| 	p = find_create_pid(pid);
 | |
| 	c = p->all;
 | |
| 	while (c) {
 | |
| 		if (c->comm && strcmp(c->comm, comm) == 0) {
 | |
| 			p->current = c;
 | |
| 			return;
 | |
| 		}
 | |
| 		if (!c->comm) {
 | |
| 			c->comm = strdup(comm);
 | |
| 			p->current = c;
 | |
| 			return;
 | |
| 		}
 | |
| 		c = c->next;
 | |
| 	}
 | |
| 	c = malloc(sizeof(struct per_pidcomm));
 | |
| 	assert(c != NULL);
 | |
| 	memset(c, 0, sizeof(struct per_pidcomm));
 | |
| 	c->comm = strdup(comm);
 | |
| 	p->current = c;
 | |
| 	c->next = p->all;
 | |
| 	p->all = c;
 | |
| }
 | |
| 
 | |
| static void pid_fork(int pid, int ppid, u64 timestamp)
 | |
| {
 | |
| 	struct per_pid *p, *pp;
 | |
| 	p = find_create_pid(pid);
 | |
| 	pp = find_create_pid(ppid);
 | |
| 	p->ppid = ppid;
 | |
| 	if (pp->current && pp->current->comm && !p->current)
 | |
| 		pid_set_comm(pid, pp->current->comm);
 | |
| 
 | |
| 	p->start_time = timestamp;
 | |
| 	if (p->current) {
 | |
| 		p->current->start_time = timestamp;
 | |
| 		p->current->state_since = timestamp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pid_exit(int pid, u64 timestamp)
 | |
| {
 | |
| 	struct per_pid *p;
 | |
| 	p = find_create_pid(pid);
 | |
| 	p->end_time = timestamp;
 | |
| 	if (p->current)
 | |
| 		p->current->end_time = timestamp;
 | |
| }
 | |
| 
 | |
| static void
 | |
| pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 | |
| {
 | |
| 	struct per_pid *p;
 | |
| 	struct per_pidcomm *c;
 | |
| 	struct cpu_sample *sample;
 | |
| 
 | |
| 	p = find_create_pid(pid);
 | |
| 	c = p->current;
 | |
| 	if (!c) {
 | |
| 		c = malloc(sizeof(struct per_pidcomm));
 | |
| 		assert(c != NULL);
 | |
| 		memset(c, 0, sizeof(struct per_pidcomm));
 | |
| 		p->current = c;
 | |
| 		c->next = p->all;
 | |
| 		p->all = c;
 | |
| 	}
 | |
| 
 | |
| 	sample = malloc(sizeof(struct cpu_sample));
 | |
| 	assert(sample != NULL);
 | |
| 	memset(sample, 0, sizeof(struct cpu_sample));
 | |
| 	sample->start_time = start;
 | |
| 	sample->end_time = end;
 | |
| 	sample->type = type;
 | |
| 	sample->next = c->samples;
 | |
| 	sample->cpu = cpu;
 | |
| 	c->samples = sample;
 | |
| 
 | |
| 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 | |
| 		c->total_time += (end-start);
 | |
| 		p->total_time += (end-start);
 | |
| 	}
 | |
| 
 | |
| 	if (c->start_time == 0 || c->start_time > start)
 | |
| 		c->start_time = start;
 | |
| 	if (p->start_time == 0 || p->start_time > start)
 | |
| 		p->start_time = start;
 | |
| 
 | |
| 	if (cpu > numcpus)
 | |
| 		numcpus = cpu;
 | |
| }
 | |
| 
 | |
| #define MAX_CPUS 4096
 | |
| 
 | |
| static u64 cpus_cstate_start_times[MAX_CPUS];
 | |
| static int cpus_cstate_state[MAX_CPUS];
 | |
| static u64 cpus_pstate_start_times[MAX_CPUS];
 | |
| static u64 cpus_pstate_state[MAX_CPUS];
 | |
| 
 | |
| static int process_comm_event(event_t *event, struct perf_session *session __used)
 | |
| {
 | |
| 	pid_set_comm(event->comm.tid, event->comm.comm);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int process_fork_event(event_t *event, struct perf_session *session __used)
 | |
| {
 | |
| 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int process_exit_event(event_t *event, struct perf_session *session __used)
 | |
| {
 | |
| 	pid_exit(event->fork.pid, event->fork.time);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct trace_entry {
 | |
| 	unsigned short		type;
 | |
| 	unsigned char		flags;
 | |
| 	unsigned char		preempt_count;
 | |
| 	int			pid;
 | |
| 	int			lock_depth;
 | |
| };
 | |
| 
 | |
| struct power_entry {
 | |
| 	struct trace_entry te;
 | |
| 	s64	type;
 | |
| 	s64	value;
 | |
| };
 | |
| 
 | |
| #define TASK_COMM_LEN 16
 | |
| struct wakeup_entry {
 | |
| 	struct trace_entry te;
 | |
| 	char comm[TASK_COMM_LEN];
 | |
| 	int   pid;
 | |
| 	int   prio;
 | |
| 	int   success;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * trace_flag_type is an enumeration that holds different
 | |
|  * states when a trace occurs. These are:
 | |
|  *  IRQS_OFF            - interrupts were disabled
 | |
|  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 | |
|  *  NEED_RESCED         - reschedule is requested
 | |
|  *  HARDIRQ             - inside an interrupt handler
 | |
|  *  SOFTIRQ             - inside a softirq handler
 | |
|  */
 | |
| enum trace_flag_type {
 | |
| 	TRACE_FLAG_IRQS_OFF		= 0x01,
 | |
| 	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
 | |
| 	TRACE_FLAG_NEED_RESCHED		= 0x04,
 | |
| 	TRACE_FLAG_HARDIRQ		= 0x08,
 | |
| 	TRACE_FLAG_SOFTIRQ		= 0x10,
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| struct sched_switch {
 | |
| 	struct trace_entry te;
 | |
| 	char prev_comm[TASK_COMM_LEN];
 | |
| 	int  prev_pid;
 | |
| 	int  prev_prio;
 | |
| 	long prev_state; /* Arjan weeps. */
 | |
| 	char next_comm[TASK_COMM_LEN];
 | |
| 	int  next_pid;
 | |
| 	int  next_prio;
 | |
| };
 | |
| 
 | |
| static void c_state_start(int cpu, u64 timestamp, int state)
 | |
| {
 | |
| 	cpus_cstate_start_times[cpu] = timestamp;
 | |
| 	cpus_cstate_state[cpu] = state;
 | |
| }
 | |
| 
 | |
| static void c_state_end(int cpu, u64 timestamp)
 | |
| {
 | |
| 	struct power_event *pwr;
 | |
| 	pwr = malloc(sizeof(struct power_event));
 | |
| 	if (!pwr)
 | |
| 		return;
 | |
| 	memset(pwr, 0, sizeof(struct power_event));
 | |
| 
 | |
| 	pwr->state = cpus_cstate_state[cpu];
 | |
| 	pwr->start_time = cpus_cstate_start_times[cpu];
 | |
| 	pwr->end_time = timestamp;
 | |
| 	pwr->cpu = cpu;
 | |
| 	pwr->type = CSTATE;
 | |
| 	pwr->next = power_events;
 | |
| 
 | |
| 	power_events = pwr;
 | |
| }
 | |
| 
 | |
| static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 | |
| {
 | |
| 	struct power_event *pwr;
 | |
| 	pwr = malloc(sizeof(struct power_event));
 | |
| 
 | |
| 	if (new_freq > 8000000) /* detect invalid data */
 | |
| 		return;
 | |
| 
 | |
| 	if (!pwr)
 | |
| 		return;
 | |
| 	memset(pwr, 0, sizeof(struct power_event));
 | |
| 
 | |
| 	pwr->state = cpus_pstate_state[cpu];
 | |
| 	pwr->start_time = cpus_pstate_start_times[cpu];
 | |
| 	pwr->end_time = timestamp;
 | |
| 	pwr->cpu = cpu;
 | |
| 	pwr->type = PSTATE;
 | |
| 	pwr->next = power_events;
 | |
| 
 | |
| 	if (!pwr->start_time)
 | |
| 		pwr->start_time = first_time;
 | |
| 
 | |
| 	power_events = pwr;
 | |
| 
 | |
| 	cpus_pstate_state[cpu] = new_freq;
 | |
| 	cpus_pstate_start_times[cpu] = timestamp;
 | |
| 
 | |
| 	if ((u64)new_freq > max_freq)
 | |
| 		max_freq = new_freq;
 | |
| 
 | |
| 	if (new_freq < min_freq || min_freq == 0)
 | |
| 		min_freq = new_freq;
 | |
| 
 | |
| 	if (new_freq == max_freq - 1000)
 | |
| 			turbo_frequency = max_freq;
 | |
| }
 | |
| 
 | |
| static void
 | |
| sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 | |
| {
 | |
| 	struct wake_event *we;
 | |
| 	struct per_pid *p;
 | |
| 	struct wakeup_entry *wake = (void *)te;
 | |
| 
 | |
| 	we = malloc(sizeof(struct wake_event));
 | |
| 	if (!we)
 | |
| 		return;
 | |
| 
 | |
| 	memset(we, 0, sizeof(struct wake_event));
 | |
| 	we->time = timestamp;
 | |
| 	we->waker = pid;
 | |
| 
 | |
| 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 | |
| 		we->waker = -1;
 | |
| 
 | |
| 	we->wakee = wake->pid;
 | |
| 	we->next = wake_events;
 | |
| 	wake_events = we;
 | |
| 	p = find_create_pid(we->wakee);
 | |
| 
 | |
| 	if (p && p->current && p->current->state == TYPE_NONE) {
 | |
| 		p->current->state_since = timestamp;
 | |
| 		p->current->state = TYPE_WAITING;
 | |
| 	}
 | |
| 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
 | |
| 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 | |
| 		p->current->state_since = timestamp;
 | |
| 		p->current->state = TYPE_WAITING;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 | |
| {
 | |
| 	struct per_pid *p = NULL, *prev_p;
 | |
| 	struct sched_switch *sw = (void *)te;
 | |
| 
 | |
| 
 | |
| 	prev_p = find_create_pid(sw->prev_pid);
 | |
| 
 | |
| 	p = find_create_pid(sw->next_pid);
 | |
| 
 | |
| 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
 | |
| 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 | |
| 	if (p && p->current) {
 | |
| 		if (p->current->state != TYPE_NONE)
 | |
| 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 | |
| 
 | |
| 			p->current->state_since = timestamp;
 | |
| 			p->current->state = TYPE_RUNNING;
 | |
| 	}
 | |
| 
 | |
| 	if (prev_p->current) {
 | |
| 		prev_p->current->state = TYPE_NONE;
 | |
| 		prev_p->current->state_since = timestamp;
 | |
| 		if (sw->prev_state & 2)
 | |
| 			prev_p->current->state = TYPE_BLOCKED;
 | |
| 		if (sw->prev_state == 0)
 | |
| 			prev_p->current->state = TYPE_WAITING;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int process_sample_event(event_t *event, struct perf_session *session)
 | |
| {
 | |
| 	struct sample_data data;
 | |
| 	struct trace_entry *te;
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 
 | |
| 	event__parse_sample(event, session->sample_type, &data);
 | |
| 
 | |
| 	if (session->sample_type & PERF_SAMPLE_TIME) {
 | |
| 		if (!first_time || first_time > data.time)
 | |
| 			first_time = data.time;
 | |
| 		if (last_time < data.time)
 | |
| 			last_time = data.time;
 | |
| 	}
 | |
| 
 | |
| 	te = (void *)data.raw_data;
 | |
| 	if (session->sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
 | |
| 		char *event_str;
 | |
| 		struct power_entry *pe;
 | |
| 
 | |
| 		pe = (void *)te;
 | |
| 
 | |
| 		event_str = perf_header__find_event(te->type);
 | |
| 
 | |
| 		if (!event_str)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (strcmp(event_str, "power:power_start") == 0)
 | |
| 			c_state_start(data.cpu, data.time, pe->value);
 | |
| 
 | |
| 		if (strcmp(event_str, "power:power_end") == 0)
 | |
| 			c_state_end(data.cpu, data.time);
 | |
| 
 | |
| 		if (strcmp(event_str, "power:power_frequency") == 0)
 | |
| 			p_state_change(data.cpu, data.time, pe->value);
 | |
| 
 | |
| 		if (strcmp(event_str, "sched:sched_wakeup") == 0)
 | |
| 			sched_wakeup(data.cpu, data.time, data.pid, te);
 | |
| 
 | |
| 		if (strcmp(event_str, "sched:sched_switch") == 0)
 | |
| 			sched_switch(data.cpu, data.time, te);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After the last sample we need to wrap up the current C/P state
 | |
|  * and close out each CPU for these.
 | |
|  */
 | |
| static void end_sample_processing(void)
 | |
| {
 | |
| 	u64 cpu;
 | |
| 	struct power_event *pwr;
 | |
| 
 | |
| 	for (cpu = 0; cpu <= numcpus; cpu++) {
 | |
| 		pwr = malloc(sizeof(struct power_event));
 | |
| 		if (!pwr)
 | |
| 			return;
 | |
| 		memset(pwr, 0, sizeof(struct power_event));
 | |
| 
 | |
| 		/* C state */
 | |
| #if 0
 | |
| 		pwr->state = cpus_cstate_state[cpu];
 | |
| 		pwr->start_time = cpus_cstate_start_times[cpu];
 | |
| 		pwr->end_time = last_time;
 | |
| 		pwr->cpu = cpu;
 | |
| 		pwr->type = CSTATE;
 | |
| 		pwr->next = power_events;
 | |
| 
 | |
| 		power_events = pwr;
 | |
| #endif
 | |
| 		/* P state */
 | |
| 
 | |
| 		pwr = malloc(sizeof(struct power_event));
 | |
| 		if (!pwr)
 | |
| 			return;
 | |
| 		memset(pwr, 0, sizeof(struct power_event));
 | |
| 
 | |
| 		pwr->state = cpus_pstate_state[cpu];
 | |
| 		pwr->start_time = cpus_pstate_start_times[cpu];
 | |
| 		pwr->end_time = last_time;
 | |
| 		pwr->cpu = cpu;
 | |
| 		pwr->type = PSTATE;
 | |
| 		pwr->next = power_events;
 | |
| 
 | |
| 		if (!pwr->start_time)
 | |
| 			pwr->start_time = first_time;
 | |
| 		if (!pwr->state)
 | |
| 			pwr->state = min_freq;
 | |
| 		power_events = pwr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u64 sample_time(event_t *event, const struct perf_session *session)
 | |
| {
 | |
| 	int cursor;
 | |
| 
 | |
| 	cursor = 0;
 | |
| 	if (session->sample_type & PERF_SAMPLE_IP)
 | |
| 		cursor++;
 | |
| 	if (session->sample_type & PERF_SAMPLE_TID)
 | |
| 		cursor++;
 | |
| 	if (session->sample_type & PERF_SAMPLE_TIME)
 | |
| 		return event->sample.array[cursor];
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * We first queue all events, sorted backwards by insertion.
 | |
|  * The order will get flipped later.
 | |
|  */
 | |
| static int queue_sample_event(event_t *event, struct perf_session *session)
 | |
| {
 | |
| 	struct sample_wrapper *copy, *prev;
 | |
| 	int size;
 | |
| 
 | |
| 	size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
 | |
| 
 | |
| 	copy = malloc(size);
 | |
| 	if (!copy)
 | |
| 		return 1;
 | |
| 
 | |
| 	memset(copy, 0, size);
 | |
| 
 | |
| 	copy->next = NULL;
 | |
| 	copy->timestamp = sample_time(event, session);
 | |
| 
 | |
| 	memcpy(©->data, event, event->sample.header.size);
 | |
| 
 | |
| 	/* insert in the right place in the list */
 | |
| 
 | |
| 	if (!all_samples) {
 | |
| 		/* first sample ever */
 | |
| 		all_samples = copy;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (all_samples->timestamp < copy->timestamp) {
 | |
| 		/* insert at the head of the list */
 | |
| 		copy->next = all_samples;
 | |
| 		all_samples = copy;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	prev = all_samples;
 | |
| 	while (prev->next) {
 | |
| 		if (prev->next->timestamp < copy->timestamp) {
 | |
| 			copy->next = prev->next;
 | |
| 			prev->next = copy;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		prev = prev->next;
 | |
| 	}
 | |
| 	/* insert at the end of the list */
 | |
| 	prev->next = copy;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sort_queued_samples(void)
 | |
| {
 | |
| 	struct sample_wrapper *cursor, *next;
 | |
| 
 | |
| 	cursor = all_samples;
 | |
| 	all_samples = NULL;
 | |
| 
 | |
| 	while (cursor) {
 | |
| 		next = cursor->next;
 | |
| 		cursor->next = all_samples;
 | |
| 		all_samples = cursor;
 | |
| 		cursor = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sort the pid datastructure
 | |
|  */
 | |
| static void sort_pids(void)
 | |
| {
 | |
| 	struct per_pid *new_list, *p, *cursor, *prev;
 | |
| 	/* sort by ppid first, then by pid, lowest to highest */
 | |
| 
 | |
| 	new_list = NULL;
 | |
| 
 | |
| 	while (all_data) {
 | |
| 		p = all_data;
 | |
| 		all_data = p->next;
 | |
| 		p->next = NULL;
 | |
| 
 | |
| 		if (new_list == NULL) {
 | |
| 			new_list = p;
 | |
| 			p->next = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 		prev = NULL;
 | |
| 		cursor = new_list;
 | |
| 		while (cursor) {
 | |
| 			if (cursor->ppid > p->ppid ||
 | |
| 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 | |
| 				/* must insert before */
 | |
| 				if (prev) {
 | |
| 					p->next = prev->next;
 | |
| 					prev->next = p;
 | |
| 					cursor = NULL;
 | |
| 					continue;
 | |
| 				} else {
 | |
| 					p->next = new_list;
 | |
| 					new_list = p;
 | |
| 					cursor = NULL;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			prev = cursor;
 | |
| 			cursor = cursor->next;
 | |
| 			if (!cursor)
 | |
| 				prev->next = p;
 | |
| 		}
 | |
| 	}
 | |
| 	all_data = new_list;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void draw_c_p_states(void)
 | |
| {
 | |
| 	struct power_event *pwr;
 | |
| 	pwr = power_events;
 | |
| 
 | |
| 	/*
 | |
| 	 * two pass drawing so that the P state bars are on top of the C state blocks
 | |
| 	 */
 | |
| 	while (pwr) {
 | |
| 		if (pwr->type == CSTATE)
 | |
| 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 | |
| 		pwr = pwr->next;
 | |
| 	}
 | |
| 
 | |
| 	pwr = power_events;
 | |
| 	while (pwr) {
 | |
| 		if (pwr->type == PSTATE) {
 | |
| 			if (!pwr->state)
 | |
| 				pwr->state = min_freq;
 | |
| 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 | |
| 		}
 | |
| 		pwr = pwr->next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void draw_wakeups(void)
 | |
| {
 | |
| 	struct wake_event *we;
 | |
| 	struct per_pid *p;
 | |
| 	struct per_pidcomm *c;
 | |
| 
 | |
| 	we = wake_events;
 | |
| 	while (we) {
 | |
| 		int from = 0, to = 0;
 | |
| 		char *task_from = NULL, *task_to = NULL;
 | |
| 
 | |
| 		/* locate the column of the waker and wakee */
 | |
| 		p = all_data;
 | |
| 		while (p) {
 | |
| 			if (p->pid == we->waker || p->pid == we->wakee) {
 | |
| 				c = p->all;
 | |
| 				while (c) {
 | |
| 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 | |
| 						if (p->pid == we->waker && !from) {
 | |
| 							from = c->Y;
 | |
| 							task_from = strdup(c->comm);
 | |
| 						}
 | |
| 						if (p->pid == we->wakee && !to) {
 | |
| 							to = c->Y;
 | |
| 							task_to = strdup(c->comm);
 | |
| 						}
 | |
| 					}
 | |
| 					c = c->next;
 | |
| 				}
 | |
| 				c = p->all;
 | |
| 				while (c) {
 | |
| 					if (p->pid == we->waker && !from) {
 | |
| 						from = c->Y;
 | |
| 						task_from = strdup(c->comm);
 | |
| 					}
 | |
| 					if (p->pid == we->wakee && !to) {
 | |
| 						to = c->Y;
 | |
| 						task_to = strdup(c->comm);
 | |
| 					}
 | |
| 					c = c->next;
 | |
| 				}
 | |
| 			}
 | |
| 			p = p->next;
 | |
| 		}
 | |
| 
 | |
| 		if (!task_from) {
 | |
| 			task_from = malloc(40);
 | |
| 			sprintf(task_from, "[%i]", we->waker);
 | |
| 		}
 | |
| 		if (!task_to) {
 | |
| 			task_to = malloc(40);
 | |
| 			sprintf(task_to, "[%i]", we->wakee);
 | |
| 		}
 | |
| 
 | |
| 		if (we->waker == -1)
 | |
| 			svg_interrupt(we->time, to);
 | |
| 		else if (from && to && abs(from - to) == 1)
 | |
| 			svg_wakeline(we->time, from, to);
 | |
| 		else
 | |
| 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
 | |
| 		we = we->next;
 | |
| 
 | |
| 		free(task_from);
 | |
| 		free(task_to);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void draw_cpu_usage(void)
 | |
| {
 | |
| 	struct per_pid *p;
 | |
| 	struct per_pidcomm *c;
 | |
| 	struct cpu_sample *sample;
 | |
| 	p = all_data;
 | |
| 	while (p) {
 | |
| 		c = p->all;
 | |
| 		while (c) {
 | |
| 			sample = c->samples;
 | |
| 			while (sample) {
 | |
| 				if (sample->type == TYPE_RUNNING)
 | |
| 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 | |
| 
 | |
| 				sample = sample->next;
 | |
| 			}
 | |
| 			c = c->next;
 | |
| 		}
 | |
| 		p = p->next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void draw_process_bars(void)
 | |
| {
 | |
| 	struct per_pid *p;
 | |
| 	struct per_pidcomm *c;
 | |
| 	struct cpu_sample *sample;
 | |
| 	int Y = 0;
 | |
| 
 | |
| 	Y = 2 * numcpus + 2;
 | |
| 
 | |
| 	p = all_data;
 | |
| 	while (p) {
 | |
| 		c = p->all;
 | |
| 		while (c) {
 | |
| 			if (!c->display) {
 | |
| 				c->Y = 0;
 | |
| 				c = c->next;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			svg_box(Y, c->start_time, c->end_time, "process");
 | |
| 			sample = c->samples;
 | |
| 			while (sample) {
 | |
| 				if (sample->type == TYPE_RUNNING)
 | |
| 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 | |
| 				if (sample->type == TYPE_BLOCKED)
 | |
| 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
 | |
| 				if (sample->type == TYPE_WAITING)
 | |
| 					svg_waiting(Y, sample->start_time, sample->end_time);
 | |
| 				sample = sample->next;
 | |
| 			}
 | |
| 
 | |
| 			if (c->comm) {
 | |
| 				char comm[256];
 | |
| 				if (c->total_time > 5000000000) /* 5 seconds */
 | |
| 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 | |
| 				else
 | |
| 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 | |
| 
 | |
| 				svg_text(Y, c->start_time, comm);
 | |
| 			}
 | |
| 			c->Y = Y;
 | |
| 			Y++;
 | |
| 			c = c->next;
 | |
| 		}
 | |
| 		p = p->next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void add_process_filter(const char *string)
 | |
| {
 | |
| 	struct process_filter *filt;
 | |
| 	int pid;
 | |
| 
 | |
| 	pid = strtoull(string, NULL, 10);
 | |
| 	filt = malloc(sizeof(struct process_filter));
 | |
| 	if (!filt)
 | |
| 		return;
 | |
| 
 | |
| 	filt->name = strdup(string);
 | |
| 	filt->pid  = pid;
 | |
| 	filt->next = process_filter;
 | |
| 
 | |
| 	process_filter = filt;
 | |
| }
 | |
| 
 | |
| static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 | |
| {
 | |
| 	struct process_filter *filt;
 | |
| 	if (!process_filter)
 | |
| 		return 1;
 | |
| 
 | |
| 	filt = process_filter;
 | |
| 	while (filt) {
 | |
| 		if (filt->pid && p->pid == filt->pid)
 | |
| 			return 1;
 | |
| 		if (strcmp(filt->name, c->comm) == 0)
 | |
| 			return 1;
 | |
| 		filt = filt->next;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int determine_display_tasks_filtered(void)
 | |
| {
 | |
| 	struct per_pid *p;
 | |
| 	struct per_pidcomm *c;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	p = all_data;
 | |
| 	while (p) {
 | |
| 		p->display = 0;
 | |
| 		if (p->start_time == 1)
 | |
| 			p->start_time = first_time;
 | |
| 
 | |
| 		/* no exit marker, task kept running to the end */
 | |
| 		if (p->end_time == 0)
 | |
| 			p->end_time = last_time;
 | |
| 
 | |
| 		c = p->all;
 | |
| 
 | |
| 		while (c) {
 | |
| 			c->display = 0;
 | |
| 
 | |
| 			if (c->start_time == 1)
 | |
| 				c->start_time = first_time;
 | |
| 
 | |
| 			if (passes_filter(p, c)) {
 | |
| 				c->display = 1;
 | |
| 				p->display = 1;
 | |
| 				count++;
 | |
| 			}
 | |
| 
 | |
| 			if (c->end_time == 0)
 | |
| 				c->end_time = last_time;
 | |
| 
 | |
| 			c = c->next;
 | |
| 		}
 | |
| 		p = p->next;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int determine_display_tasks(u64 threshold)
 | |
| {
 | |
| 	struct per_pid *p;
 | |
| 	struct per_pidcomm *c;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (process_filter)
 | |
| 		return determine_display_tasks_filtered();
 | |
| 
 | |
| 	p = all_data;
 | |
| 	while (p) {
 | |
| 		p->display = 0;
 | |
| 		if (p->start_time == 1)
 | |
| 			p->start_time = first_time;
 | |
| 
 | |
| 		/* no exit marker, task kept running to the end */
 | |
| 		if (p->end_time == 0)
 | |
| 			p->end_time = last_time;
 | |
| 		if (p->total_time >= threshold && !power_only)
 | |
| 			p->display = 1;
 | |
| 
 | |
| 		c = p->all;
 | |
| 
 | |
| 		while (c) {
 | |
| 			c->display = 0;
 | |
| 
 | |
| 			if (c->start_time == 1)
 | |
| 				c->start_time = first_time;
 | |
| 
 | |
| 			if (c->total_time >= threshold && !power_only) {
 | |
| 				c->display = 1;
 | |
| 				count++;
 | |
| 			}
 | |
| 
 | |
| 			if (c->end_time == 0)
 | |
| 				c->end_time = last_time;
 | |
| 
 | |
| 			c = c->next;
 | |
| 		}
 | |
| 		p = p->next;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #define TIME_THRESH 10000000
 | |
| 
 | |
| static void write_svg_file(const char *filename)
 | |
| {
 | |
| 	u64 i;
 | |
| 	int count;
 | |
| 
 | |
| 	numcpus++;
 | |
| 
 | |
| 
 | |
| 	count = determine_display_tasks(TIME_THRESH);
 | |
| 
 | |
| 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
 | |
| 	if (count < 15)
 | |
| 		count = determine_display_tasks(TIME_THRESH / 10);
 | |
| 
 | |
| 	open_svg(filename, numcpus, count, first_time, last_time);
 | |
| 
 | |
| 	svg_time_grid();
 | |
| 	svg_legenda();
 | |
| 
 | |
| 	for (i = 0; i < numcpus; i++)
 | |
| 		svg_cpu_box(i, max_freq, turbo_frequency);
 | |
| 
 | |
| 	draw_cpu_usage();
 | |
| 	draw_process_bars();
 | |
| 	draw_c_p_states();
 | |
| 	draw_wakeups();
 | |
| 
 | |
| 	svg_close();
 | |
| }
 | |
| 
 | |
| static void process_samples(struct perf_session *session)
 | |
| {
 | |
| 	struct sample_wrapper *cursor;
 | |
| 	event_t *event;
 | |
| 
 | |
| 	sort_queued_samples();
 | |
| 
 | |
| 	cursor = all_samples;
 | |
| 	while (cursor) {
 | |
| 		event = (void *)&cursor->data;
 | |
| 		cursor = cursor->next;
 | |
| 		process_sample_event(event, session);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct perf_event_ops event_ops = {
 | |
| 	.comm	= process_comm_event,
 | |
| 	.fork	= process_fork_event,
 | |
| 	.exit	= process_exit_event,
 | |
| 	.sample	= queue_sample_event,
 | |
| };
 | |
| 
 | |
| static int __cmd_timechart(void)
 | |
| {
 | |
| 	struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0);
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (session == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!perf_session__has_traces(session, "timechart record"))
 | |
| 		goto out_delete;
 | |
| 
 | |
| 	ret = perf_session__process_events(session, &event_ops);
 | |
| 	if (ret)
 | |
| 		goto out_delete;
 | |
| 
 | |
| 	process_samples(session);
 | |
| 
 | |
| 	end_sample_processing();
 | |
| 
 | |
| 	sort_pids();
 | |
| 
 | |
| 	write_svg_file(output_name);
 | |
| 
 | |
| 	pr_info("Written %2.1f seconds of trace to %s.\n",
 | |
| 		(last_time - first_time) / 1000000000.0, output_name);
 | |
| out_delete:
 | |
| 	perf_session__delete(session);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const char * const timechart_usage[] = {
 | |
| 	"perf timechart [<options>] {record}",
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const char *record_args[] = {
 | |
| 	"record",
 | |
| 	"-a",
 | |
| 	"-R",
 | |
| 	"-M",
 | |
| 	"-f",
 | |
| 	"-c", "1",
 | |
| 	"-e", "power:power_start",
 | |
| 	"-e", "power:power_end",
 | |
| 	"-e", "power:power_frequency",
 | |
| 	"-e", "sched:sched_wakeup",
 | |
| 	"-e", "sched:sched_switch",
 | |
| };
 | |
| 
 | |
| static int __cmd_record(int argc, const char **argv)
 | |
| {
 | |
| 	unsigned int rec_argc, i, j;
 | |
| 	const char **rec_argv;
 | |
| 
 | |
| 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
 | |
| 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
 | |
| 		rec_argv[i] = strdup(record_args[i]);
 | |
| 
 | |
| 	for (j = 1; j < (unsigned int)argc; j++, i++)
 | |
| 		rec_argv[i] = argv[j];
 | |
| 
 | |
| 	return cmd_record(i, rec_argv, NULL);
 | |
| }
 | |
| 
 | |
| static int
 | |
| parse_process(const struct option *opt __used, const char *arg, int __used unset)
 | |
| {
 | |
| 	if (arg)
 | |
| 		add_process_filter(arg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct option options[] = {
 | |
| 	OPT_STRING('i', "input", &input_name, "file",
 | |
| 		    "input file name"),
 | |
| 	OPT_STRING('o', "output", &output_name, "file",
 | |
| 		    "output file name"),
 | |
| 	OPT_INTEGER('w', "width", &svg_page_width,
 | |
| 		    "page width"),
 | |
| 	OPT_BOOLEAN('P', "power-only", &power_only,
 | |
| 		    "output power data only"),
 | |
| 	OPT_CALLBACK('p', "process", NULL, "process",
 | |
| 		      "process selector. Pass a pid or process name.",
 | |
| 		       parse_process),
 | |
| 	OPT_END()
 | |
| };
 | |
| 
 | |
| 
 | |
| int cmd_timechart(int argc, const char **argv, const char *prefix __used)
 | |
| {
 | |
| 	argc = parse_options(argc, argv, options, timechart_usage,
 | |
| 			PARSE_OPT_STOP_AT_NON_OPTION);
 | |
| 
 | |
| 	symbol__init();
 | |
| 
 | |
| 	if (argc && !strncmp(argv[0], "rec", 3))
 | |
| 		return __cmd_record(argc, argv);
 | |
| 	else if (argc)
 | |
| 		usage_with_options(timechart_usage, options);
 | |
| 
 | |
| 	setup_pager();
 | |
| 
 | |
| 	return __cmd_timechart();
 | |
| }
 |