 90851c4076
			
		
	
	
	90851c4076
	
	
	
		
			
			select_idle_routine() and register_sh_pmu() both needed their annotations fixed up to silence section mismatch warnings. Signed-off-by: Paul Mundt <lethal@linux-sh.org>
		
			
				
	
	
		
			330 lines
		
	
	
	
		
			7.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			330 lines
		
	
	
	
		
			7.3 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Performance event support framework for SuperH hardware counters.
 | |
|  *
 | |
|  *  Copyright (C) 2009  Paul Mundt
 | |
|  *
 | |
|  * Heavily based on the x86 and PowerPC implementations.
 | |
|  *
 | |
|  * x86:
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2009 Jaswinder Singh Rajput
 | |
|  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 | |
|  *
 | |
|  * ppc:
 | |
|  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 | |
|  *
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <asm/processor.h>
 | |
| 
 | |
| struct cpu_hw_events {
 | |
| 	struct perf_event	*events[MAX_HWEVENTS];
 | |
| 	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 | |
| 	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 | |
| };
 | |
| 
 | |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 | |
| 
 | |
| static struct sh_pmu *sh_pmu __read_mostly;
 | |
| 
 | |
| /* Number of perf_events counting hardware events */
 | |
| static atomic_t num_events;
 | |
| /* Used to avoid races in calling reserve/release_pmc_hardware */
 | |
| static DEFINE_MUTEX(pmc_reserve_mutex);
 | |
| 
 | |
| /*
 | |
|  * Stub these out for now, do something more profound later.
 | |
|  */
 | |
| int reserve_pmc_hardware(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void release_pmc_hardware(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int sh_pmu_initialized(void)
 | |
| {
 | |
| 	return !!sh_pmu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the PMU if this is the last perf_event.
 | |
|  */
 | |
| static void hw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	if (!atomic_add_unless(&num_events, -1, 1)) {
 | |
| 		mutex_lock(&pmc_reserve_mutex);
 | |
| 		if (atomic_dec_return(&num_events) == 0)
 | |
| 			release_pmc_hardware();
 | |
| 		mutex_unlock(&pmc_reserve_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hw_perf_cache_event(int config, int *evp)
 | |
| {
 | |
| 	unsigned long type, op, result;
 | |
| 	int ev;
 | |
| 
 | |
| 	if (!sh_pmu->cache_events)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* unpack config */
 | |
| 	type = config & 0xff;
 | |
| 	op = (config >> 8) & 0xff;
 | |
| 	result = (config >> 16) & 0xff;
 | |
| 
 | |
| 	if (type >= PERF_COUNT_HW_CACHE_MAX ||
 | |
| 	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
 | |
| 	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ev = (*sh_pmu->cache_events)[type][op][result];
 | |
| 	if (ev == 0)
 | |
| 		return -EOPNOTSUPP;
 | |
| 	if (ev == -1)
 | |
| 		return -EINVAL;
 | |
| 	*evp = ev;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __hw_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_attr *attr = &event->attr;
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int config = -1;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!sh_pmu_initialized())
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * All of the on-chip counters are "limited", in that they have
 | |
| 	 * no interrupts, and are therefore unable to do sampling without
 | |
| 	 * further work and timer assistance.
 | |
| 	 */
 | |
| 	if (hwc->sample_period)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * See if we need to reserve the counter.
 | |
| 	 *
 | |
| 	 * If no events are currently in use, then we have to take a
 | |
| 	 * mutex to ensure that we don't race with another task doing
 | |
| 	 * reserve_pmc_hardware or release_pmc_hardware.
 | |
| 	 */
 | |
| 	err = 0;
 | |
| 	if (!atomic_inc_not_zero(&num_events)) {
 | |
| 		mutex_lock(&pmc_reserve_mutex);
 | |
| 		if (atomic_read(&num_events) == 0 &&
 | |
| 		    reserve_pmc_hardware())
 | |
| 			err = -EBUSY;
 | |
| 		else
 | |
| 			atomic_inc(&num_events);
 | |
| 		mutex_unlock(&pmc_reserve_mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	event->destroy = hw_perf_event_destroy;
 | |
| 
 | |
| 	switch (attr->type) {
 | |
| 	case PERF_TYPE_RAW:
 | |
| 		config = attr->config & sh_pmu->raw_event_mask;
 | |
| 		break;
 | |
| 	case PERF_TYPE_HW_CACHE:
 | |
| 		err = hw_perf_cache_event(attr->config, &config);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		break;
 | |
| 	case PERF_TYPE_HARDWARE:
 | |
| 		if (attr->config >= sh_pmu->max_events)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		config = sh_pmu->event_map(attr->config);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (config == -1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hwc->config |= config;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sh_perf_event_update(struct perf_event *event,
 | |
| 				   struct hw_perf_event *hwc, int idx)
 | |
| {
 | |
| 	u64 prev_raw_count, new_raw_count;
 | |
| 	s64 delta;
 | |
| 	int shift = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Depending on the counter configuration, they may or may not
 | |
| 	 * be chained, in which case the previous counter value can be
 | |
| 	 * updated underneath us if the lower-half overflows.
 | |
| 	 *
 | |
| 	 * Our tactic to handle this is to first atomically read and
 | |
| 	 * exchange a new raw count - then add that new-prev delta
 | |
| 	 * count to the generic counter atomically.
 | |
| 	 *
 | |
| 	 * As there is no interrupt associated with the overflow events,
 | |
| 	 * this is the simplest approach for maintaining consistency.
 | |
| 	 */
 | |
| again:
 | |
| 	prev_raw_count = atomic64_read(&hwc->prev_count);
 | |
| 	new_raw_count = sh_pmu->read(idx);
 | |
| 
 | |
| 	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
 | |
| 			     new_raw_count) != prev_raw_count)
 | |
| 		goto again;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we have the new raw value and have updated the prev
 | |
| 	 * timestamp already. We can now calculate the elapsed delta
 | |
| 	 * (counter-)time and add that to the generic counter.
 | |
| 	 *
 | |
| 	 * Careful, not all hw sign-extends above the physical width
 | |
| 	 * of the count.
 | |
| 	 */
 | |
| 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 | |
| 	delta >>= shift;
 | |
| 
 | |
| 	atomic64_add(delta, &event->count);
 | |
| }
 | |
| 
 | |
| static void sh_pmu_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int idx = hwc->idx;
 | |
| 
 | |
| 	clear_bit(idx, cpuc->active_mask);
 | |
| 	sh_pmu->disable(hwc, idx);
 | |
| 
 | |
| 	barrier();
 | |
| 
 | |
| 	sh_perf_event_update(event, &event->hw, idx);
 | |
| 
 | |
| 	cpuc->events[idx] = NULL;
 | |
| 	clear_bit(idx, cpuc->used_mask);
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| }
 | |
| 
 | |
| static int sh_pmu_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int idx = hwc->idx;
 | |
| 
 | |
| 	if (test_and_set_bit(idx, cpuc->used_mask)) {
 | |
| 		idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
 | |
| 		if (idx == sh_pmu->num_events)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		set_bit(idx, cpuc->used_mask);
 | |
| 		hwc->idx = idx;
 | |
| 	}
 | |
| 
 | |
| 	sh_pmu->disable(hwc, idx);
 | |
| 
 | |
| 	cpuc->events[idx] = event;
 | |
| 	set_bit(idx, cpuc->active_mask);
 | |
| 
 | |
| 	sh_pmu->enable(hwc, idx);
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sh_pmu_read(struct perf_event *event)
 | |
| {
 | |
| 	sh_perf_event_update(event, &event->hw, event->hw.idx);
 | |
| }
 | |
| 
 | |
| static const struct pmu pmu = {
 | |
| 	.enable		= sh_pmu_enable,
 | |
| 	.disable	= sh_pmu_disable,
 | |
| 	.read		= sh_pmu_read,
 | |
| };
 | |
| 
 | |
| const struct pmu *hw_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err = __hw_perf_event_init(event);
 | |
| 	if (unlikely(err)) {
 | |
| 		if (event->destroy)
 | |
| 			event->destroy(event);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	return &pmu;
 | |
| }
 | |
| 
 | |
| static void sh_pmu_setup(int cpu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
 | |
| 
 | |
| 	memset(cpuhw, 0, sizeof(struct cpu_hw_events));
 | |
| }
 | |
| 
 | |
| static int __cpuinit
 | |
| sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		sh_pmu_setup(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| void hw_perf_enable(void)
 | |
| {
 | |
| 	if (!sh_pmu_initialized())
 | |
| 		return;
 | |
| 
 | |
| 	sh_pmu->enable_all();
 | |
| }
 | |
| 
 | |
| void hw_perf_disable(void)
 | |
| {
 | |
| 	if (!sh_pmu_initialized())
 | |
| 		return;
 | |
| 
 | |
| 	sh_pmu->disable_all();
 | |
| }
 | |
| 
 | |
| int __cpuinit register_sh_pmu(struct sh_pmu *pmu)
 | |
| {
 | |
| 	if (sh_pmu)
 | |
| 		return -EBUSY;
 | |
| 	sh_pmu = pmu;
 | |
| 
 | |
| 	pr_info("Performance Events: %s support registered\n", pmu->name);
 | |
| 
 | |
| 	WARN_ON(pmu->num_events > MAX_HWEVENTS);
 | |
| 
 | |
| 	perf_cpu_notifier(sh_pmu_notifier);
 | |
| 	return 0;
 | |
| }
 |