 f6be75d03c
			
		
	
	
	f6be75d03c
	
	
	
		
			
			The ebase is relative to CKSEG0 not CAC_BASE. On a 32-bit kernel they are the same thing, for a 64-bit kernel they are not. It happens to kind of work on a 64-bit kernel as they both reference the same physical memory. However since the CPU uses the CKSEG0 base, determining if a J instruction will reach always gives the wrong result unless we use the same number the CPU uses. Signed-off-by: David Daney <ddaney@caviumnetworks.com> To: linux-mips@linux-mips.org Patchwork: http://patchwork.linux-mips.org/patch/1093/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			1725 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1725 lines
		
	
	
	
		
			42 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
 | |
|  * Copyright (C) 1995, 1996 Paul M. Antoine
 | |
|  * Copyright (C) 1998 Ulf Carlsson
 | |
|  * Copyright (C) 1999 Silicon Graphics, Inc.
 | |
|  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 | |
|  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
 | |
|  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
 | |
|  */
 | |
| #include <linux/bug.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/kgdb.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/notifier.h>
 | |
| 
 | |
| #include <asm/bootinfo.h>
 | |
| #include <asm/branch.h>
 | |
| #include <asm/break.h>
 | |
| #include <asm/cop2.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/dsp.h>
 | |
| #include <asm/fpu.h>
 | |
| #include <asm/fpu_emulator.h>
 | |
| #include <asm/mipsregs.h>
 | |
| #include <asm/mipsmtregs.h>
 | |
| #include <asm/module.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/tlbdebug.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/watch.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/types.h>
 | |
| #include <asm/stacktrace.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/uasm.h>
 | |
| 
 | |
| extern void check_wait(void);
 | |
| extern asmlinkage void r4k_wait(void);
 | |
| extern asmlinkage void rollback_handle_int(void);
 | |
| extern asmlinkage void handle_int(void);
 | |
| extern asmlinkage void handle_tlbm(void);
 | |
| extern asmlinkage void handle_tlbl(void);
 | |
| extern asmlinkage void handle_tlbs(void);
 | |
| extern asmlinkage void handle_adel(void);
 | |
| extern asmlinkage void handle_ades(void);
 | |
| extern asmlinkage void handle_ibe(void);
 | |
| extern asmlinkage void handle_dbe(void);
 | |
| extern asmlinkage void handle_sys(void);
 | |
| extern asmlinkage void handle_bp(void);
 | |
| extern asmlinkage void handle_ri(void);
 | |
| extern asmlinkage void handle_ri_rdhwr_vivt(void);
 | |
| extern asmlinkage void handle_ri_rdhwr(void);
 | |
| extern asmlinkage void handle_cpu(void);
 | |
| extern asmlinkage void handle_ov(void);
 | |
| extern asmlinkage void handle_tr(void);
 | |
| extern asmlinkage void handle_fpe(void);
 | |
| extern asmlinkage void handle_mdmx(void);
 | |
| extern asmlinkage void handle_watch(void);
 | |
| extern asmlinkage void handle_mt(void);
 | |
| extern asmlinkage void handle_dsp(void);
 | |
| extern asmlinkage void handle_mcheck(void);
 | |
| extern asmlinkage void handle_reserved(void);
 | |
| 
 | |
| extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
 | |
| 	struct mips_fpu_struct *ctx, int has_fpu);
 | |
| 
 | |
| void (*board_be_init)(void);
 | |
| int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 | |
| void (*board_nmi_handler_setup)(void);
 | |
| void (*board_ejtag_handler_setup)(void);
 | |
| void (*board_bind_eic_interrupt)(int irq, int regset);
 | |
| 
 | |
| 
 | |
| static void show_raw_backtrace(unsigned long reg29)
 | |
| {
 | |
| 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	printk("Call Trace:");
 | |
| #ifdef CONFIG_KALLSYMS
 | |
| 	printk("\n");
 | |
| #endif
 | |
| 	while (!kstack_end(sp)) {
 | |
| 		unsigned long __user *p =
 | |
| 			(unsigned long __user *)(unsigned long)sp++;
 | |
| 		if (__get_user(addr, p)) {
 | |
| 			printk(" (Bad stack address)");
 | |
| 			break;
 | |
| 		}
 | |
| 		if (__kernel_text_address(addr))
 | |
| 			print_ip_sym(addr);
 | |
| 	}
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KALLSYMS
 | |
| int raw_show_trace;
 | |
| static int __init set_raw_show_trace(char *str)
 | |
| {
 | |
| 	raw_show_trace = 1;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("raw_show_trace", set_raw_show_trace);
 | |
| #endif
 | |
| 
 | |
| static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long sp = regs->regs[29];
 | |
| 	unsigned long ra = regs->regs[31];
 | |
| 	unsigned long pc = regs->cp0_epc;
 | |
| 
 | |
| 	if (raw_show_trace || !__kernel_text_address(pc)) {
 | |
| 		show_raw_backtrace(sp);
 | |
| 		return;
 | |
| 	}
 | |
| 	printk("Call Trace:\n");
 | |
| 	do {
 | |
| 		print_ip_sym(pc);
 | |
| 		pc = unwind_stack(task, &sp, pc, &ra);
 | |
| 	} while (pc);
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine abuses get_user()/put_user() to reference pointers
 | |
|  * with at least a bit of error checking ...
 | |
|  */
 | |
| static void show_stacktrace(struct task_struct *task,
 | |
| 	const struct pt_regs *regs)
 | |
| {
 | |
| 	const int field = 2 * sizeof(unsigned long);
 | |
| 	long stackdata;
 | |
| 	int i;
 | |
| 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 | |
| 
 | |
| 	printk("Stack :");
 | |
| 	i = 0;
 | |
| 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 | |
| 		if (i && ((i % (64 / field)) == 0))
 | |
| 			printk("\n       ");
 | |
| 		if (i > 39) {
 | |
| 			printk(" ...");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (__get_user(stackdata, sp++)) {
 | |
| 			printk(" (Bad stack address)");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		printk(" %0*lx", field, stackdata);
 | |
| 		i++;
 | |
| 	}
 | |
| 	printk("\n");
 | |
| 	show_backtrace(task, regs);
 | |
| }
 | |
| 
 | |
| void show_stack(struct task_struct *task, unsigned long *sp)
 | |
| {
 | |
| 	struct pt_regs regs;
 | |
| 	if (sp) {
 | |
| 		regs.regs[29] = (unsigned long)sp;
 | |
| 		regs.regs[31] = 0;
 | |
| 		regs.cp0_epc = 0;
 | |
| 	} else {
 | |
| 		if (task && task != current) {
 | |
| 			regs.regs[29] = task->thread.reg29;
 | |
| 			regs.regs[31] = 0;
 | |
| 			regs.cp0_epc = task->thread.reg31;
 | |
| 		} else {
 | |
| 			prepare_frametrace(®s);
 | |
| 		}
 | |
| 	}
 | |
| 	show_stacktrace(task, ®s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The architecture-independent dump_stack generator
 | |
|  */
 | |
| void dump_stack(void)
 | |
| {
 | |
| 	struct pt_regs regs;
 | |
| 
 | |
| 	prepare_frametrace(®s);
 | |
| 	show_backtrace(current, ®s);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(dump_stack);
 | |
| 
 | |
| static void show_code(unsigned int __user *pc)
 | |
| {
 | |
| 	long i;
 | |
| 	unsigned short __user *pc16 = NULL;
 | |
| 
 | |
| 	printk("\nCode:");
 | |
| 
 | |
| 	if ((unsigned long)pc & 1)
 | |
| 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 | |
| 	for(i = -3 ; i < 6 ; i++) {
 | |
| 		unsigned int insn;
 | |
| 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 | |
| 			printk(" (Bad address in epc)\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __show_regs(const struct pt_regs *regs)
 | |
| {
 | |
| 	const int field = 2 * sizeof(unsigned long);
 | |
| 	unsigned int cause = regs->cp0_cause;
 | |
| 	int i;
 | |
| 
 | |
| 	printk("Cpu %d\n", smp_processor_id());
 | |
| 
 | |
| 	/*
 | |
| 	 * Saved main processor registers
 | |
| 	 */
 | |
| 	for (i = 0; i < 32; ) {
 | |
| 		if ((i % 4) == 0)
 | |
| 			printk("$%2d   :", i);
 | |
| 		if (i == 0)
 | |
| 			printk(" %0*lx", field, 0UL);
 | |
| 		else if (i == 26 || i == 27)
 | |
| 			printk(" %*s", field, "");
 | |
| 		else
 | |
| 			printk(" %0*lx", field, regs->regs[i]);
 | |
| 
 | |
| 		i++;
 | |
| 		if ((i % 4) == 0)
 | |
| 			printk("\n");
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_CPU_HAS_SMARTMIPS
 | |
| 	printk("Acx    : %0*lx\n", field, regs->acx);
 | |
| #endif
 | |
| 	printk("Hi    : %0*lx\n", field, regs->hi);
 | |
| 	printk("Lo    : %0*lx\n", field, regs->lo);
 | |
| 
 | |
| 	/*
 | |
| 	 * Saved cp0 registers
 | |
| 	 */
 | |
| 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 | |
| 	       (void *) regs->cp0_epc);
 | |
| 	printk("    %s\n", print_tainted());
 | |
| 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 | |
| 	       (void *) regs->regs[31]);
 | |
| 
 | |
| 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 | |
| 
 | |
| 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 | |
| 		if (regs->cp0_status & ST0_KUO)
 | |
| 			printk("KUo ");
 | |
| 		if (regs->cp0_status & ST0_IEO)
 | |
| 			printk("IEo ");
 | |
| 		if (regs->cp0_status & ST0_KUP)
 | |
| 			printk("KUp ");
 | |
| 		if (regs->cp0_status & ST0_IEP)
 | |
| 			printk("IEp ");
 | |
| 		if (regs->cp0_status & ST0_KUC)
 | |
| 			printk("KUc ");
 | |
| 		if (regs->cp0_status & ST0_IEC)
 | |
| 			printk("IEc ");
 | |
| 	} else {
 | |
| 		if (regs->cp0_status & ST0_KX)
 | |
| 			printk("KX ");
 | |
| 		if (regs->cp0_status & ST0_SX)
 | |
| 			printk("SX ");
 | |
| 		if (regs->cp0_status & ST0_UX)
 | |
| 			printk("UX ");
 | |
| 		switch (regs->cp0_status & ST0_KSU) {
 | |
| 		case KSU_USER:
 | |
| 			printk("USER ");
 | |
| 			break;
 | |
| 		case KSU_SUPERVISOR:
 | |
| 			printk("SUPERVISOR ");
 | |
| 			break;
 | |
| 		case KSU_KERNEL:
 | |
| 			printk("KERNEL ");
 | |
| 			break;
 | |
| 		default:
 | |
| 			printk("BAD_MODE ");
 | |
| 			break;
 | |
| 		}
 | |
| 		if (regs->cp0_status & ST0_ERL)
 | |
| 			printk("ERL ");
 | |
| 		if (regs->cp0_status & ST0_EXL)
 | |
| 			printk("EXL ");
 | |
| 		if (regs->cp0_status & ST0_IE)
 | |
| 			printk("IE ");
 | |
| 	}
 | |
| 	printk("\n");
 | |
| 
 | |
| 	printk("Cause : %08x\n", cause);
 | |
| 
 | |
| 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 | |
| 	if (1 <= cause && cause <= 5)
 | |
| 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 | |
| 
 | |
| 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 | |
| 	       cpu_name_string());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FIXME: really the generic show_regs should take a const pointer argument.
 | |
|  */
 | |
| void show_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	__show_regs((struct pt_regs *)regs);
 | |
| }
 | |
| 
 | |
| void show_registers(const struct pt_regs *regs)
 | |
| {
 | |
| 	const int field = 2 * sizeof(unsigned long);
 | |
| 
 | |
| 	__show_regs(regs);
 | |
| 	print_modules();
 | |
| 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 | |
| 	       current->comm, current->pid, current_thread_info(), current,
 | |
| 	      field, current_thread_info()->tp_value);
 | |
| 	if (cpu_has_userlocal) {
 | |
| 		unsigned long tls;
 | |
| 
 | |
| 		tls = read_c0_userlocal();
 | |
| 		if (tls != current_thread_info()->tp_value)
 | |
| 			printk("*HwTLS: %0*lx\n", field, tls);
 | |
| 	}
 | |
| 
 | |
| 	show_stacktrace(current, regs);
 | |
| 	show_code((unsigned int __user *) regs->cp0_epc);
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| static DEFINE_SPINLOCK(die_lock);
 | |
| 
 | |
| void __noreturn die(const char * str, const struct pt_regs * regs)
 | |
| {
 | |
| 	static int die_counter;
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 	unsigned long dvpret = dvpe();
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 
 | |
| 	console_verbose();
 | |
| 	spin_lock_irq(&die_lock);
 | |
| 	bust_spinlocks(1);
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 	mips_mt_regdump(dvpret);
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 	printk("%s[#%d]:\n", str, ++die_counter);
 | |
| 	show_registers(regs);
 | |
| 	add_taint(TAINT_DIE);
 | |
| 	spin_unlock_irq(&die_lock);
 | |
| 
 | |
| 	if (in_interrupt())
 | |
| 		panic("Fatal exception in interrupt");
 | |
| 
 | |
| 	if (panic_on_oops) {
 | |
| 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
 | |
| 		ssleep(5);
 | |
| 		panic("Fatal exception");
 | |
| 	}
 | |
| 
 | |
| 	do_exit(SIGSEGV);
 | |
| }
 | |
| 
 | |
| extern struct exception_table_entry __start___dbe_table[];
 | |
| extern struct exception_table_entry __stop___dbe_table[];
 | |
| 
 | |
| __asm__(
 | |
| "	.section	__dbe_table, \"a\"\n"
 | |
| "	.previous			\n");
 | |
| 
 | |
| /* Given an address, look for it in the exception tables. */
 | |
| static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 | |
| {
 | |
| 	const struct exception_table_entry *e;
 | |
| 
 | |
| 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 | |
| 	if (!e)
 | |
| 		e = search_module_dbetables(addr);
 | |
| 	return e;
 | |
| }
 | |
| 
 | |
| asmlinkage void do_be(struct pt_regs *regs)
 | |
| {
 | |
| 	const int field = 2 * sizeof(unsigned long);
 | |
| 	const struct exception_table_entry *fixup = NULL;
 | |
| 	int data = regs->cp0_cause & 4;
 | |
| 	int action = MIPS_BE_FATAL;
 | |
| 
 | |
| 	/* XXX For now.  Fixme, this searches the wrong table ...  */
 | |
| 	if (data && !user_mode(regs))
 | |
| 		fixup = search_dbe_tables(exception_epc(regs));
 | |
| 
 | |
| 	if (fixup)
 | |
| 		action = MIPS_BE_FIXUP;
 | |
| 
 | |
| 	if (board_be_handler)
 | |
| 		action = board_be_handler(regs, fixup != NULL);
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MIPS_BE_DISCARD:
 | |
| 		return;
 | |
| 	case MIPS_BE_FIXUP:
 | |
| 		if (fixup) {
 | |
| 			regs->cp0_epc = fixup->nextinsn;
 | |
| 			return;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume it would be too dangerous to continue ...
 | |
| 	 */
 | |
| 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 | |
| 	       data ? "Data" : "Instruction",
 | |
| 	       field, regs->cp0_epc, field, regs->regs[31]);
 | |
| 	if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
 | |
| 	    == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	die_if_kernel("Oops", regs);
 | |
| 	force_sig(SIGBUS, current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ll/sc, rdhwr, sync emulation
 | |
|  */
 | |
| 
 | |
| #define OPCODE 0xfc000000
 | |
| #define BASE   0x03e00000
 | |
| #define RT     0x001f0000
 | |
| #define OFFSET 0x0000ffff
 | |
| #define LL     0xc0000000
 | |
| #define SC     0xe0000000
 | |
| #define SPEC0  0x00000000
 | |
| #define SPEC3  0x7c000000
 | |
| #define RD     0x0000f800
 | |
| #define FUNC   0x0000003f
 | |
| #define SYNC   0x0000000f
 | |
| #define RDHWR  0x0000003b
 | |
| 
 | |
| /*
 | |
|  * The ll_bit is cleared by r*_switch.S
 | |
|  */
 | |
| 
 | |
| unsigned int ll_bit;
 | |
| struct task_struct *ll_task;
 | |
| 
 | |
| static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 | |
| {
 | |
| 	unsigned long value, __user *vaddr;
 | |
| 	long offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * analyse the ll instruction that just caused a ri exception
 | |
| 	 * and put the referenced address to addr.
 | |
| 	 */
 | |
| 
 | |
| 	/* sign extend offset */
 | |
| 	offset = opcode & OFFSET;
 | |
| 	offset <<= 16;
 | |
| 	offset >>= 16;
 | |
| 
 | |
| 	vaddr = (unsigned long __user *)
 | |
| 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 | |
| 
 | |
| 	if ((unsigned long)vaddr & 3)
 | |
| 		return SIGBUS;
 | |
| 	if (get_user(value, vaddr))
 | |
| 		return SIGSEGV;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	if (ll_task == NULL || ll_task == current) {
 | |
| 		ll_bit = 1;
 | |
| 	} else {
 | |
| 		ll_bit = 0;
 | |
| 	}
 | |
| 	ll_task = current;
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	regs->regs[(opcode & RT) >> 16] = value;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 | |
| {
 | |
| 	unsigned long __user *vaddr;
 | |
| 	unsigned long reg;
 | |
| 	long offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * analyse the sc instruction that just caused a ri exception
 | |
| 	 * and put the referenced address to addr.
 | |
| 	 */
 | |
| 
 | |
| 	/* sign extend offset */
 | |
| 	offset = opcode & OFFSET;
 | |
| 	offset <<= 16;
 | |
| 	offset >>= 16;
 | |
| 
 | |
| 	vaddr = (unsigned long __user *)
 | |
| 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 | |
| 	reg = (opcode & RT) >> 16;
 | |
| 
 | |
| 	if ((unsigned long)vaddr & 3)
 | |
| 		return SIGBUS;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	if (ll_bit == 0 || ll_task != current) {
 | |
| 		regs->regs[reg] = 0;
 | |
| 		preempt_enable();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	if (put_user(regs->regs[reg], vaddr))
 | |
| 		return SIGSEGV;
 | |
| 
 | |
| 	regs->regs[reg] = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 | |
|  * opcodes are supposed to result in coprocessor unusable exceptions if
 | |
|  * executed on ll/sc-less processors.  That's the theory.  In practice a
 | |
|  * few processors such as NEC's VR4100 throw reserved instruction exceptions
 | |
|  * instead, so we're doing the emulation thing in both exception handlers.
 | |
|  */
 | |
| static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 | |
| {
 | |
| 	if ((opcode & OPCODE) == LL)
 | |
| 		return simulate_ll(regs, opcode);
 | |
| 	if ((opcode & OPCODE) == SC)
 | |
| 		return simulate_sc(regs, opcode);
 | |
| 
 | |
| 	return -1;			/* Must be something else ... */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simulate trapping 'rdhwr' instructions to provide user accessible
 | |
|  * registers not implemented in hardware.
 | |
|  */
 | |
| static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 | |
| {
 | |
| 	struct thread_info *ti = task_thread_info(current);
 | |
| 
 | |
| 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 | |
| 		int rd = (opcode & RD) >> 11;
 | |
| 		int rt = (opcode & RT) >> 16;
 | |
| 		switch (rd) {
 | |
| 		case 0:		/* CPU number */
 | |
| 			regs->regs[rt] = smp_processor_id();
 | |
| 			return 0;
 | |
| 		case 1:		/* SYNCI length */
 | |
| 			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 | |
| 					     current_cpu_data.icache.linesz);
 | |
| 			return 0;
 | |
| 		case 2:		/* Read count register */
 | |
| 			regs->regs[rt] = read_c0_count();
 | |
| 			return 0;
 | |
| 		case 3:		/* Count register resolution */
 | |
| 			switch (current_cpu_data.cputype) {
 | |
| 			case CPU_20KC:
 | |
| 			case CPU_25KF:
 | |
| 				regs->regs[rt] = 1;
 | |
| 				break;
 | |
| 			default:
 | |
| 				regs->regs[rt] = 2;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		case 29:
 | |
| 			regs->regs[rt] = ti->tp_value;
 | |
| 			return 0;
 | |
| 		default:
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Not ours.  */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 | |
| {
 | |
| 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
 | |
| 		return 0;
 | |
| 
 | |
| 	return -1;			/* Must be something else ... */
 | |
| }
 | |
| 
 | |
| asmlinkage void do_ov(struct pt_regs *regs)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	die_if_kernel("Integer overflow", regs);
 | |
| 
 | |
| 	info.si_code = FPE_INTOVF;
 | |
| 	info.si_signo = SIGFPE;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_addr = (void __user *) regs->cp0_epc;
 | |
| 	force_sig_info(SIGFPE, &info, current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 | |
|  */
 | |
| asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
 | |
| 	    == NOTIFY_STOP)
 | |
| 		return;
 | |
| 	die_if_kernel("FP exception in kernel code", regs);
 | |
| 
 | |
| 	if (fcr31 & FPU_CSR_UNI_X) {
 | |
| 		int sig;
 | |
| 
 | |
| 		/*
 | |
| 		 * Unimplemented operation exception.  If we've got the full
 | |
| 		 * software emulator on-board, let's use it...
 | |
| 		 *
 | |
| 		 * Force FPU to dump state into task/thread context.  We're
 | |
| 		 * moving a lot of data here for what is probably a single
 | |
| 		 * instruction, but the alternative is to pre-decode the FP
 | |
| 		 * register operands before invoking the emulator, which seems
 | |
| 		 * a bit extreme for what should be an infrequent event.
 | |
| 		 */
 | |
| 		/* Ensure 'resume' not overwrite saved fp context again. */
 | |
| 		lose_fpu(1);
 | |
| 
 | |
| 		/* Run the emulator */
 | |
| 		sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't allow the emulated instruction to leave any of
 | |
| 		 * the cause bit set in $fcr31.
 | |
| 		 */
 | |
| 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 | |
| 
 | |
| 		/* Restore the hardware register state */
 | |
| 		own_fpu(1);	/* Using the FPU again.  */
 | |
| 
 | |
| 		/* If something went wrong, signal */
 | |
| 		if (sig)
 | |
| 			force_sig(sig, current);
 | |
| 
 | |
| 		return;
 | |
| 	} else if (fcr31 & FPU_CSR_INV_X)
 | |
| 		info.si_code = FPE_FLTINV;
 | |
| 	else if (fcr31 & FPU_CSR_DIV_X)
 | |
| 		info.si_code = FPE_FLTDIV;
 | |
| 	else if (fcr31 & FPU_CSR_OVF_X)
 | |
| 		info.si_code = FPE_FLTOVF;
 | |
| 	else if (fcr31 & FPU_CSR_UDF_X)
 | |
| 		info.si_code = FPE_FLTUND;
 | |
| 	else if (fcr31 & FPU_CSR_INE_X)
 | |
| 		info.si_code = FPE_FLTRES;
 | |
| 	else
 | |
| 		info.si_code = __SI_FAULT;
 | |
| 	info.si_signo = SIGFPE;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_addr = (void __user *) regs->cp0_epc;
 | |
| 	force_sig_info(SIGFPE, &info, current);
 | |
| }
 | |
| 
 | |
| static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 | |
| 	const char *str)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 	char b[40];
 | |
| 
 | |
| 	if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 | |
| 	 * insns, even for trap and break codes that indicate arithmetic
 | |
| 	 * failures.  Weird ...
 | |
| 	 * But should we continue the brokenness???  --macro
 | |
| 	 */
 | |
| 	switch (code) {
 | |
| 	case BRK_OVERFLOW:
 | |
| 	case BRK_DIVZERO:
 | |
| 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 | |
| 		die_if_kernel(b, regs);
 | |
| 		if (code == BRK_DIVZERO)
 | |
| 			info.si_code = FPE_INTDIV;
 | |
| 		else
 | |
| 			info.si_code = FPE_INTOVF;
 | |
| 		info.si_signo = SIGFPE;
 | |
| 		info.si_errno = 0;
 | |
| 		info.si_addr = (void __user *) regs->cp0_epc;
 | |
| 		force_sig_info(SIGFPE, &info, current);
 | |
| 		break;
 | |
| 	case BRK_BUG:
 | |
| 		die_if_kernel("Kernel bug detected", regs);
 | |
| 		force_sig(SIGTRAP, current);
 | |
| 		break;
 | |
| 	case BRK_MEMU:
 | |
| 		/*
 | |
| 		 * Address errors may be deliberately induced by the FPU
 | |
| 		 * emulator to retake control of the CPU after executing the
 | |
| 		 * instruction in the delay slot of an emulated branch.
 | |
| 		 *
 | |
| 		 * Terminate if exception was recognized as a delay slot return
 | |
| 		 * otherwise handle as normal.
 | |
| 		 */
 | |
| 		if (do_dsemulret(regs))
 | |
| 			return;
 | |
| 
 | |
| 		die_if_kernel("Math emu break/trap", regs);
 | |
| 		force_sig(SIGTRAP, current);
 | |
| 		break;
 | |
| 	default:
 | |
| 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 | |
| 		die_if_kernel(b, regs);
 | |
| 		force_sig(SIGTRAP, current);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| asmlinkage void do_bp(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int opcode, bcode;
 | |
| 
 | |
| 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 | |
| 		goto out_sigsegv;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is the ancient bug in the MIPS assemblers that the break
 | |
| 	 * code starts left to bit 16 instead to bit 6 in the opcode.
 | |
| 	 * Gas is bug-compatible, but not always, grrr...
 | |
| 	 * We handle both cases with a simple heuristics.  --macro
 | |
| 	 */
 | |
| 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
 | |
| 	if (bcode >= (1 << 10))
 | |
| 		bcode >>= 10;
 | |
| 
 | |
| 	do_trap_or_bp(regs, bcode, "Break");
 | |
| 	return;
 | |
| 
 | |
| out_sigsegv:
 | |
| 	force_sig(SIGSEGV, current);
 | |
| }
 | |
| 
 | |
| asmlinkage void do_tr(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int opcode, tcode = 0;
 | |
| 
 | |
| 	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 | |
| 		goto out_sigsegv;
 | |
| 
 | |
| 	/* Immediate versions don't provide a code.  */
 | |
| 	if (!(opcode & OPCODE))
 | |
| 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
 | |
| 
 | |
| 	do_trap_or_bp(regs, tcode, "Trap");
 | |
| 	return;
 | |
| 
 | |
| out_sigsegv:
 | |
| 	force_sig(SIGSEGV, current);
 | |
| }
 | |
| 
 | |
| asmlinkage void do_ri(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 | |
| 	unsigned long old_epc = regs->cp0_epc;
 | |
| 	unsigned int opcode = 0;
 | |
| 	int status = -1;
 | |
| 
 | |
| 	if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
 | |
| 	    == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	die_if_kernel("Reserved instruction in kernel code", regs);
 | |
| 
 | |
| 	if (unlikely(compute_return_epc(regs) < 0))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(get_user(opcode, epc) < 0))
 | |
| 		status = SIGSEGV;
 | |
| 
 | |
| 	if (!cpu_has_llsc && status < 0)
 | |
| 		status = simulate_llsc(regs, opcode);
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		status = simulate_rdhwr(regs, opcode);
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		status = simulate_sync(regs, opcode);
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		status = SIGILL;
 | |
| 
 | |
| 	if (unlikely(status > 0)) {
 | |
| 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
 | |
| 		force_sig(status, current);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 | |
|  * emulated more than some threshold number of instructions, force migration to
 | |
|  * a "CPU" that has FP support.
 | |
|  */
 | |
| static void mt_ase_fp_affinity(void)
 | |
| {
 | |
| #ifdef CONFIG_MIPS_MT_FPAFF
 | |
| 	if (mt_fpemul_threshold > 0 &&
 | |
| 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 | |
| 		/*
 | |
| 		 * If there's no FPU present, or if the application has already
 | |
| 		 * restricted the allowed set to exclude any CPUs with FPUs,
 | |
| 		 * we'll skip the procedure.
 | |
| 		 */
 | |
| 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 | |
| 			cpumask_t tmask;
 | |
| 
 | |
| 			current->thread.user_cpus_allowed
 | |
| 				= current->cpus_allowed;
 | |
| 			cpus_and(tmask, current->cpus_allowed,
 | |
| 				mt_fpu_cpumask);
 | |
| 			set_cpus_allowed(current, tmask);
 | |
| 			set_thread_flag(TIF_FPUBOUND);
 | |
| 		}
 | |
| 	}
 | |
| #endif /* CONFIG_MIPS_MT_FPAFF */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No lock; only written during early bootup by CPU 0.
 | |
|  */
 | |
| static RAW_NOTIFIER_HEAD(cu2_chain);
 | |
| 
 | |
| int __ref register_cu2_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return raw_notifier_chain_register(&cu2_chain, nb);
 | |
| }
 | |
| 
 | |
| int cu2_notifier_call_chain(unsigned long val, void *v)
 | |
| {
 | |
| 	return raw_notifier_call_chain(&cu2_chain, val, v);
 | |
| }
 | |
| 
 | |
| static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
 | |
|         void *data)
 | |
| {
 | |
| 	struct pt_regs *regs = data;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	default:
 | |
| 		die_if_kernel("Unhandled kernel unaligned access or invalid "
 | |
| 			      "instruction", regs);
 | |
| 		/* Fall through  */
 | |
| 
 | |
| 	case CU2_EXCEPTION:
 | |
| 		force_sig(SIGILL, current);
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block default_cu2_notifier = {
 | |
| 	.notifier_call	= default_cu2_call,
 | |
| 	.priority	= 0x80000000,		/* Run last  */
 | |
| };
 | |
| 
 | |
| asmlinkage void do_cpu(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int __user *epc;
 | |
| 	unsigned long old_epc;
 | |
| 	unsigned int opcode;
 | |
| 	unsigned int cpid;
 | |
| 	int status;
 | |
| 	unsigned long __maybe_unused flags;
 | |
| 
 | |
| 	die_if_kernel("do_cpu invoked from kernel context!", regs);
 | |
| 
 | |
| 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 | |
| 
 | |
| 	switch (cpid) {
 | |
| 	case 0:
 | |
| 		epc = (unsigned int __user *)exception_epc(regs);
 | |
| 		old_epc = regs->cp0_epc;
 | |
| 		opcode = 0;
 | |
| 		status = -1;
 | |
| 
 | |
| 		if (unlikely(compute_return_epc(regs) < 0))
 | |
| 			return;
 | |
| 
 | |
| 		if (unlikely(get_user(opcode, epc) < 0))
 | |
| 			status = SIGSEGV;
 | |
| 
 | |
| 		if (!cpu_has_llsc && status < 0)
 | |
| 			status = simulate_llsc(regs, opcode);
 | |
| 
 | |
| 		if (status < 0)
 | |
| 			status = simulate_rdhwr(regs, opcode);
 | |
| 
 | |
| 		if (status < 0)
 | |
| 			status = SIGILL;
 | |
| 
 | |
| 		if (unlikely(status > 0)) {
 | |
| 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
 | |
| 			force_sig(status, current);
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 
 | |
| 	case 1:
 | |
| 		if (used_math())	/* Using the FPU again.  */
 | |
| 			own_fpu(1);
 | |
| 		else {			/* First time FPU user.  */
 | |
| 			init_fpu();
 | |
| 			set_used_math();
 | |
| 		}
 | |
| 
 | |
| 		if (!raw_cpu_has_fpu) {
 | |
| 			int sig;
 | |
| 			sig = fpu_emulator_cop1Handler(regs,
 | |
| 						¤t->thread.fpu, 0);
 | |
| 			if (sig)
 | |
| 				force_sig(sig, current);
 | |
| 			else
 | |
| 				mt_ase_fp_affinity();
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 
 | |
| 	case 2:
 | |
| 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
 | |
| 		break;
 | |
| 
 | |
| 	case 3:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	force_sig(SIGILL, current);
 | |
| }
 | |
| 
 | |
| asmlinkage void do_mdmx(struct pt_regs *regs)
 | |
| {
 | |
| 	force_sig(SIGILL, current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with interrupts disabled.
 | |
|  */
 | |
| asmlinkage void do_watch(struct pt_regs *regs)
 | |
| {
 | |
| 	u32 cause;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear WP (bit 22) bit of cause register so we don't loop
 | |
| 	 * forever.
 | |
| 	 */
 | |
| 	cause = read_c0_cause();
 | |
| 	cause &= ~(1 << 22);
 | |
| 	write_c0_cause(cause);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the current thread has the watch registers loaded, save
 | |
| 	 * their values and send SIGTRAP.  Otherwise another thread
 | |
| 	 * left the registers set, clear them and continue.
 | |
| 	 */
 | |
| 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
 | |
| 		mips_read_watch_registers();
 | |
| 		local_irq_enable();
 | |
| 		force_sig(SIGTRAP, current);
 | |
| 	} else {
 | |
| 		mips_clear_watch_registers();
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| asmlinkage void do_mcheck(struct pt_regs *regs)
 | |
| {
 | |
| 	const int field = 2 * sizeof(unsigned long);
 | |
| 	int multi_match = regs->cp0_status & ST0_TS;
 | |
| 
 | |
| 	show_regs(regs);
 | |
| 
 | |
| 	if (multi_match) {
 | |
| 		printk("Index   : %0x\n", read_c0_index());
 | |
| 		printk("Pagemask: %0x\n", read_c0_pagemask());
 | |
| 		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
 | |
| 		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
 | |
| 		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
 | |
| 		printk("\n");
 | |
| 		dump_tlb_all();
 | |
| 	}
 | |
| 
 | |
| 	show_code((unsigned int __user *) regs->cp0_epc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some chips may have other causes of machine check (e.g. SB1
 | |
| 	 * graduation timer)
 | |
| 	 */
 | |
| 	panic("Caught Machine Check exception - %scaused by multiple "
 | |
| 	      "matching entries in the TLB.",
 | |
| 	      (multi_match) ? "" : "not ");
 | |
| }
 | |
| 
 | |
| asmlinkage void do_mt(struct pt_regs *regs)
 | |
| {
 | |
| 	int subcode;
 | |
| 
 | |
| 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
 | |
| 			>> VPECONTROL_EXCPT_SHIFT;
 | |
| 	switch (subcode) {
 | |
| 	case 0:
 | |
| 		printk(KERN_DEBUG "Thread Underflow\n");
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		printk(KERN_DEBUG "Thread Overflow\n");
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		printk(KERN_DEBUG "Gating Storage Exception\n");
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
 | |
| 			subcode);
 | |
| 		break;
 | |
| 	}
 | |
| 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
 | |
| 
 | |
| 	force_sig(SIGILL, current);
 | |
| }
 | |
| 
 | |
| 
 | |
| asmlinkage void do_dsp(struct pt_regs *regs)
 | |
| {
 | |
| 	if (cpu_has_dsp)
 | |
| 		panic("Unexpected DSP exception\n");
 | |
| 
 | |
| 	force_sig(SIGILL, current);
 | |
| }
 | |
| 
 | |
| asmlinkage void do_reserved(struct pt_regs *regs)
 | |
| {
 | |
| 	/*
 | |
| 	 * Game over - no way to handle this if it ever occurs.  Most probably
 | |
| 	 * caused by a new unknown cpu type or after another deadly
 | |
| 	 * hard/software error.
 | |
| 	 */
 | |
| 	show_regs(regs);
 | |
| 	panic("Caught reserved exception %ld - should not happen.",
 | |
| 	      (regs->cp0_cause & 0x7f) >> 2);
 | |
| }
 | |
| 
 | |
| static int __initdata l1parity = 1;
 | |
| static int __init nol1parity(char *s)
 | |
| {
 | |
| 	l1parity = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("nol1par", nol1parity);
 | |
| static int __initdata l2parity = 1;
 | |
| static int __init nol2parity(char *s)
 | |
| {
 | |
| 	l2parity = 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("nol2par", nol2parity);
 | |
| 
 | |
| /*
 | |
|  * Some MIPS CPUs can enable/disable for cache parity detection, but do
 | |
|  * it different ways.
 | |
|  */
 | |
| static inline void parity_protection_init(void)
 | |
| {
 | |
| 	switch (current_cpu_type()) {
 | |
| 	case CPU_24K:
 | |
| 	case CPU_34K:
 | |
| 	case CPU_74K:
 | |
| 	case CPU_1004K:
 | |
| 		{
 | |
| #define ERRCTL_PE	0x80000000
 | |
| #define ERRCTL_L2P	0x00800000
 | |
| 			unsigned long errctl;
 | |
| 			unsigned int l1parity_present, l2parity_present;
 | |
| 
 | |
| 			errctl = read_c0_ecc();
 | |
| 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
 | |
| 
 | |
| 			/* probe L1 parity support */
 | |
| 			write_c0_ecc(errctl | ERRCTL_PE);
 | |
| 			back_to_back_c0_hazard();
 | |
| 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
 | |
| 
 | |
| 			/* probe L2 parity support */
 | |
| 			write_c0_ecc(errctl|ERRCTL_L2P);
 | |
| 			back_to_back_c0_hazard();
 | |
| 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
 | |
| 
 | |
| 			if (l1parity_present && l2parity_present) {
 | |
| 				if (l1parity)
 | |
| 					errctl |= ERRCTL_PE;
 | |
| 				if (l1parity ^ l2parity)
 | |
| 					errctl |= ERRCTL_L2P;
 | |
| 			} else if (l1parity_present) {
 | |
| 				if (l1parity)
 | |
| 					errctl |= ERRCTL_PE;
 | |
| 			} else if (l2parity_present) {
 | |
| 				if (l2parity)
 | |
| 					errctl |= ERRCTL_L2P;
 | |
| 			} else {
 | |
| 				/* No parity available */
 | |
| 			}
 | |
| 
 | |
| 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
 | |
| 
 | |
| 			write_c0_ecc(errctl);
 | |
| 			back_to_back_c0_hazard();
 | |
| 			errctl = read_c0_ecc();
 | |
| 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
 | |
| 
 | |
| 			if (l1parity_present)
 | |
| 				printk(KERN_INFO "Cache parity protection %sabled\n",
 | |
| 				       (errctl & ERRCTL_PE) ? "en" : "dis");
 | |
| 
 | |
| 			if (l2parity_present) {
 | |
| 				if (l1parity_present && l1parity)
 | |
| 					errctl ^= ERRCTL_L2P;
 | |
| 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
 | |
| 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_5KC:
 | |
| 		write_c0_ecc(0x80000000);
 | |
| 		back_to_back_c0_hazard();
 | |
| 		/* Set the PE bit (bit 31) in the c0_errctl register. */
 | |
| 		printk(KERN_INFO "Cache parity protection %sabled\n",
 | |
| 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
 | |
| 		break;
 | |
| 	case CPU_20KC:
 | |
| 	case CPU_25KF:
 | |
| 		/* Clear the DE bit (bit 16) in the c0_status register. */
 | |
| 		printk(KERN_INFO "Enable cache parity protection for "
 | |
| 		       "MIPS 20KC/25KF CPUs.\n");
 | |
| 		clear_c0_status(ST0_DE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| asmlinkage void cache_parity_error(void)
 | |
| {
 | |
| 	const int field = 2 * sizeof(unsigned long);
 | |
| 	unsigned int reg_val;
 | |
| 
 | |
| 	/* For the moment, report the problem and hang. */
 | |
| 	printk("Cache error exception:\n");
 | |
| 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
 | |
| 	reg_val = read_c0_cacheerr();
 | |
| 	printk("c0_cacheerr == %08x\n", reg_val);
 | |
| 
 | |
| 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
 | |
| 	       reg_val & (1<<30) ? "secondary" : "primary",
 | |
| 	       reg_val & (1<<31) ? "data" : "insn");
 | |
| 	printk("Error bits: %s%s%s%s%s%s%s\n",
 | |
| 	       reg_val & (1<<29) ? "ED " : "",
 | |
| 	       reg_val & (1<<28) ? "ET " : "",
 | |
| 	       reg_val & (1<<26) ? "EE " : "",
 | |
| 	       reg_val & (1<<25) ? "EB " : "",
 | |
| 	       reg_val & (1<<24) ? "EI " : "",
 | |
| 	       reg_val & (1<<23) ? "E1 " : "",
 | |
| 	       reg_val & (1<<22) ? "E0 " : "");
 | |
| 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
 | |
| 
 | |
| #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
 | |
| 	if (reg_val & (1<<22))
 | |
| 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
 | |
| 
 | |
| 	if (reg_val & (1<<23))
 | |
| 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
 | |
| #endif
 | |
| 
 | |
| 	panic("Can't handle the cache error!");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SDBBP EJTAG debug exception handler.
 | |
|  * We skip the instruction and return to the next instruction.
 | |
|  */
 | |
| void ejtag_exception_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	const int field = 2 * sizeof(unsigned long);
 | |
| 	unsigned long depc, old_epc;
 | |
| 	unsigned int debug;
 | |
| 
 | |
| 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
 | |
| 	depc = read_c0_depc();
 | |
| 	debug = read_c0_debug();
 | |
| 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
 | |
| 	if (debug & 0x80000000) {
 | |
| 		/*
 | |
| 		 * In branch delay slot.
 | |
| 		 * We cheat a little bit here and use EPC to calculate the
 | |
| 		 * debug return address (DEPC). EPC is restored after the
 | |
| 		 * calculation.
 | |
| 		 */
 | |
| 		old_epc = regs->cp0_epc;
 | |
| 		regs->cp0_epc = depc;
 | |
| 		__compute_return_epc(regs);
 | |
| 		depc = regs->cp0_epc;
 | |
| 		regs->cp0_epc = old_epc;
 | |
| 	} else
 | |
| 		depc += 4;
 | |
| 	write_c0_depc(depc);
 | |
| 
 | |
| #if 0
 | |
| 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
 | |
| 	write_c0_debug(debug | 0x100);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NMI exception handler.
 | |
|  */
 | |
| NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	bust_spinlocks(1);
 | |
| 	printk("NMI taken!!!!\n");
 | |
| 	die("NMI", regs);
 | |
| }
 | |
| 
 | |
| #define VECTORSPACING 0x100	/* for EI/VI mode */
 | |
| 
 | |
| unsigned long ebase;
 | |
| unsigned long exception_handlers[32];
 | |
| unsigned long vi_handlers[64];
 | |
| 
 | |
| void __init *set_except_vector(int n, void *addr)
 | |
| {
 | |
| 	unsigned long handler = (unsigned long) addr;
 | |
| 	unsigned long old_handler = exception_handlers[n];
 | |
| 
 | |
| 	exception_handlers[n] = handler;
 | |
| 	if (n == 0 && cpu_has_divec) {
 | |
| 		unsigned long jump_mask = ~((1 << 28) - 1);
 | |
| 		u32 *buf = (u32 *)(ebase + 0x200);
 | |
| 		unsigned int k0 = 26;
 | |
| 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
 | |
| 			uasm_i_j(&buf, handler & ~jump_mask);
 | |
| 			uasm_i_nop(&buf);
 | |
| 		} else {
 | |
| 			UASM_i_LA(&buf, k0, handler);
 | |
| 			uasm_i_jr(&buf, k0);
 | |
| 			uasm_i_nop(&buf);
 | |
| 		}
 | |
| 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
 | |
| 	}
 | |
| 	return (void *)old_handler;
 | |
| }
 | |
| 
 | |
| static asmlinkage void do_default_vi(void)
 | |
| {
 | |
| 	show_regs(get_irq_regs());
 | |
| 	panic("Caught unexpected vectored interrupt.");
 | |
| }
 | |
| 
 | |
| static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
 | |
| {
 | |
| 	unsigned long handler;
 | |
| 	unsigned long old_handler = vi_handlers[n];
 | |
| 	int srssets = current_cpu_data.srsets;
 | |
| 	u32 *w;
 | |
| 	unsigned char *b;
 | |
| 
 | |
| 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
 | |
| 
 | |
| 	if (addr == NULL) {
 | |
| 		handler = (unsigned long) do_default_vi;
 | |
| 		srs = 0;
 | |
| 	} else
 | |
| 		handler = (unsigned long) addr;
 | |
| 	vi_handlers[n] = (unsigned long) addr;
 | |
| 
 | |
| 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
 | |
| 
 | |
| 	if (srs >= srssets)
 | |
| 		panic("Shadow register set %d not supported", srs);
 | |
| 
 | |
| 	if (cpu_has_veic) {
 | |
| 		if (board_bind_eic_interrupt)
 | |
| 			board_bind_eic_interrupt(n, srs);
 | |
| 	} else if (cpu_has_vint) {
 | |
| 		/* SRSMap is only defined if shadow sets are implemented */
 | |
| 		if (srssets > 1)
 | |
| 			change_c0_srsmap(0xf << n*4, srs << n*4);
 | |
| 	}
 | |
| 
 | |
| 	if (srs == 0) {
 | |
| 		/*
 | |
| 		 * If no shadow set is selected then use the default handler
 | |
| 		 * that does normal register saving and a standard interrupt exit
 | |
| 		 */
 | |
| 
 | |
| 		extern char except_vec_vi, except_vec_vi_lui;
 | |
| 		extern char except_vec_vi_ori, except_vec_vi_end;
 | |
| 		extern char rollback_except_vec_vi;
 | |
| 		char *vec_start = (cpu_wait == r4k_wait) ?
 | |
| 			&rollback_except_vec_vi : &except_vec_vi;
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 		/*
 | |
| 		 * We need to provide the SMTC vectored interrupt handler
 | |
| 		 * not only with the address of the handler, but with the
 | |
| 		 * Status.IM bit to be masked before going there.
 | |
| 		 */
 | |
| 		extern char except_vec_vi_mori;
 | |
| 		const int mori_offset = &except_vec_vi_mori - vec_start;
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 		const int handler_len = &except_vec_vi_end - vec_start;
 | |
| 		const int lui_offset = &except_vec_vi_lui - vec_start;
 | |
| 		const int ori_offset = &except_vec_vi_ori - vec_start;
 | |
| 
 | |
| 		if (handler_len > VECTORSPACING) {
 | |
| 			/*
 | |
| 			 * Sigh... panicing won't help as the console
 | |
| 			 * is probably not configured :(
 | |
| 			 */
 | |
| 			panic("VECTORSPACING too small");
 | |
| 		}
 | |
| 
 | |
| 		memcpy(b, vec_start, handler_len);
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
 | |
| 
 | |
| 		w = (u32 *)(b + mori_offset);
 | |
| 		*w = (*w & 0xffff0000) | (0x100 << n);
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 		w = (u32 *)(b + lui_offset);
 | |
| 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
 | |
| 		w = (u32 *)(b + ori_offset);
 | |
| 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
 | |
| 		local_flush_icache_range((unsigned long)b,
 | |
| 					 (unsigned long)(b+handler_len));
 | |
| 	}
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * In other cases jump directly to the interrupt handler
 | |
| 		 *
 | |
| 		 * It is the handlers responsibility to save registers if required
 | |
| 		 * (eg hi/lo) and return from the exception using "eret"
 | |
| 		 */
 | |
| 		w = (u32 *)b;
 | |
| 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
 | |
| 		*w = 0;
 | |
| 		local_flush_icache_range((unsigned long)b,
 | |
| 					 (unsigned long)(b+8));
 | |
| 	}
 | |
| 
 | |
| 	return (void *)old_handler;
 | |
| }
 | |
| 
 | |
| void *set_vi_handler(int n, vi_handler_t addr)
 | |
| {
 | |
| 	return set_vi_srs_handler(n, addr, 0);
 | |
| }
 | |
| 
 | |
| extern void cpu_cache_init(void);
 | |
| extern void tlb_init(void);
 | |
| extern void flush_tlb_handlers(void);
 | |
| 
 | |
| /*
 | |
|  * Timer interrupt
 | |
|  */
 | |
| int cp0_compare_irq;
 | |
| int cp0_compare_irq_shift;
 | |
| 
 | |
| /*
 | |
|  * Performance counter IRQ or -1 if shared with timer
 | |
|  */
 | |
| int cp0_perfcount_irq;
 | |
| EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
 | |
| 
 | |
| static int __cpuinitdata noulri;
 | |
| 
 | |
| static int __init ulri_disable(char *s)
 | |
| {
 | |
| 	pr_info("Disabling ulri\n");
 | |
| 	noulri = 1;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noulri", ulri_disable);
 | |
| 
 | |
| void __cpuinit per_cpu_trap_init(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	unsigned int status_set = ST0_CU0;
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 	int secondaryTC = 0;
 | |
| 	int bootTC = (cpu == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only do per_cpu_trap_init() for first TC of Each VPE.
 | |
| 	 * Note that this hack assumes that the SMTC init code
 | |
| 	 * assigns TCs consecutively and in ascending order.
 | |
| 	 */
 | |
| 
 | |
| 	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
 | |
| 	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
 | |
| 		secondaryTC = 1;
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable coprocessors and select 32-bit or 64-bit addressing
 | |
| 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
 | |
| 	 * flag that some firmware may have left set and the TS bit (for
 | |
| 	 * IP27).  Set XX for ISA IV code to work.
 | |
| 	 */
 | |
| #ifdef CONFIG_64BIT
 | |
| 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
 | |
| #endif
 | |
| 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
 | |
| 		status_set |= ST0_XX;
 | |
| 	if (cpu_has_dsp)
 | |
| 		status_set |= ST0_MX;
 | |
| 
 | |
| 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
 | |
| 			 status_set);
 | |
| 
 | |
| 	if (cpu_has_mips_r2) {
 | |
| 		unsigned int enable = 0x0000000f | cpu_hwrena_impl_bits;
 | |
| 
 | |
| 		if (!noulri && cpu_has_userlocal)
 | |
| 			enable |= (1 << 29);
 | |
| 
 | |
| 		write_c0_hwrena(enable);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 	if (!secondaryTC) {
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 
 | |
| 	if (cpu_has_veic || cpu_has_vint) {
 | |
| 		unsigned long sr = set_c0_status(ST0_BEV);
 | |
| 		write_c0_ebase(ebase);
 | |
| 		write_c0_status(sr);
 | |
| 		/* Setting vector spacing enables EI/VI mode  */
 | |
| 		change_c0_intctl(0x3e0, VECTORSPACING);
 | |
| 	}
 | |
| 	if (cpu_has_divec) {
 | |
| 		if (cpu_has_mipsmt) {
 | |
| 			unsigned int vpflags = dvpe();
 | |
| 			set_c0_cause(CAUSEF_IV);
 | |
| 			evpe(vpflags);
 | |
| 		} else
 | |
| 			set_c0_cause(CAUSEF_IV);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
 | |
| 	 *
 | |
| 	 *  o read IntCtl.IPTI to determine the timer interrupt
 | |
| 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
 | |
| 	 */
 | |
| 	if (cpu_has_mips_r2) {
 | |
| 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
 | |
| 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
 | |
| 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
 | |
| 		if (cp0_perfcount_irq == cp0_compare_irq)
 | |
| 			cp0_perfcount_irq = -1;
 | |
| 	} else {
 | |
| 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
 | |
| 		cp0_compare_irq_shift = cp0_compare_irq;
 | |
| 		cp0_perfcount_irq = -1;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 	}
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 
 | |
| 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
 | |
| 	TLBMISS_HANDLER_SETUP();
 | |
| 
 | |
| 	atomic_inc(&init_mm.mm_count);
 | |
| 	current->active_mm = &init_mm;
 | |
| 	BUG_ON(current->mm);
 | |
| 	enter_lazy_tlb(&init_mm, current);
 | |
| 
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 	if (bootTC) {
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| 		cpu_cache_init();
 | |
| 		tlb_init();
 | |
| #ifdef CONFIG_MIPS_MT_SMTC
 | |
| 	} else if (!secondaryTC) {
 | |
| 		/*
 | |
| 		 * First TC in non-boot VPE must do subset of tlb_init()
 | |
| 		 * for MMU countrol registers.
 | |
| 		 */
 | |
| 		write_c0_pagemask(PM_DEFAULT_MASK);
 | |
| 		write_c0_wired(0);
 | |
| 	}
 | |
| #endif /* CONFIG_MIPS_MT_SMTC */
 | |
| }
 | |
| 
 | |
| /* Install CPU exception handler */
 | |
| void __init set_handler(unsigned long offset, void *addr, unsigned long size)
 | |
| {
 | |
| 	memcpy((void *)(ebase + offset), addr, size);
 | |
| 	local_flush_icache_range(ebase + offset, ebase + offset + size);
 | |
| }
 | |
| 
 | |
| static char panic_null_cerr[] __cpuinitdata =
 | |
| 	"Trying to set NULL cache error exception handler";
 | |
| 
 | |
| /*
 | |
|  * Install uncached CPU exception handler.
 | |
|  * This is suitable only for the cache error exception which is the only
 | |
|  * exception handler that is being run uncached.
 | |
|  */
 | |
| void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
 | |
| 	unsigned long size)
 | |
| {
 | |
| #ifdef CONFIG_32BIT
 | |
| 	unsigned long uncached_ebase = KSEG1ADDR(ebase);
 | |
| #endif
 | |
| #ifdef CONFIG_64BIT
 | |
| 	unsigned long uncached_ebase = TO_UNCAC(ebase);
 | |
| #endif
 | |
| 
 | |
| 	if (!addr)
 | |
| 		panic(panic_null_cerr);
 | |
| 
 | |
| 	memcpy((void *)(uncached_ebase + offset), addr, size);
 | |
| }
 | |
| 
 | |
| static int __initdata rdhwr_noopt;
 | |
| static int __init set_rdhwr_noopt(char *str)
 | |
| {
 | |
| 	rdhwr_noopt = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("rdhwr_noopt", set_rdhwr_noopt);
 | |
| 
 | |
| void __init trap_init(void)
 | |
| {
 | |
| 	extern char except_vec3_generic, except_vec3_r4000;
 | |
| 	extern char except_vec4;
 | |
| 	unsigned long i;
 | |
| 	int rollback;
 | |
| 
 | |
| 	check_wait();
 | |
| 	rollback = (cpu_wait == r4k_wait);
 | |
| 
 | |
| #if defined(CONFIG_KGDB)
 | |
| 	if (kgdb_early_setup)
 | |
| 		return;	/* Already done */
 | |
| #endif
 | |
| 
 | |
| 	if (cpu_has_veic || cpu_has_vint) {
 | |
| 		unsigned long size = 0x200 + VECTORSPACING*64;
 | |
| 		ebase = (unsigned long)
 | |
| 			__alloc_bootmem(size, 1 << fls(size), 0);
 | |
| 	} else {
 | |
| 		ebase = CKSEG0;
 | |
| 		if (cpu_has_mips_r2)
 | |
| 			ebase += (read_c0_ebase() & 0x3ffff000);
 | |
| 	}
 | |
| 
 | |
| 	per_cpu_trap_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the generic exception handlers to their final destination.
 | |
| 	 * This will be overriden later as suitable for a particular
 | |
| 	 * configuration.
 | |
| 	 */
 | |
| 	set_handler(0x180, &except_vec3_generic, 0x80);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup default vectors
 | |
| 	 */
 | |
| 	for (i = 0; i <= 31; i++)
 | |
| 		set_except_vector(i, handle_reserved);
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the EJTAG debug exception vector handler code to it's final
 | |
| 	 * destination.
 | |
| 	 */
 | |
| 	if (cpu_has_ejtag && board_ejtag_handler_setup)
 | |
| 		board_ejtag_handler_setup();
 | |
| 
 | |
| 	/*
 | |
| 	 * Only some CPUs have the watch exceptions.
 | |
| 	 */
 | |
| 	if (cpu_has_watch)
 | |
| 		set_except_vector(23, handle_watch);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise interrupt handlers
 | |
| 	 */
 | |
| 	if (cpu_has_veic || cpu_has_vint) {
 | |
| 		int nvec = cpu_has_veic ? 64 : 8;
 | |
| 		for (i = 0; i < nvec; i++)
 | |
| 			set_vi_handler(i, NULL);
 | |
| 	}
 | |
| 	else if (cpu_has_divec)
 | |
| 		set_handler(0x200, &except_vec4, 0x8);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some CPUs can enable/disable for cache parity detection, but does
 | |
| 	 * it different ways.
 | |
| 	 */
 | |
| 	parity_protection_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * The Data Bus Errors / Instruction Bus Errors are signaled
 | |
| 	 * by external hardware.  Therefore these two exceptions
 | |
| 	 * may have board specific handlers.
 | |
| 	 */
 | |
| 	if (board_be_init)
 | |
| 		board_be_init();
 | |
| 
 | |
| 	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
 | |
| 	set_except_vector(1, handle_tlbm);
 | |
| 	set_except_vector(2, handle_tlbl);
 | |
| 	set_except_vector(3, handle_tlbs);
 | |
| 
 | |
| 	set_except_vector(4, handle_adel);
 | |
| 	set_except_vector(5, handle_ades);
 | |
| 
 | |
| 	set_except_vector(6, handle_ibe);
 | |
| 	set_except_vector(7, handle_dbe);
 | |
| 
 | |
| 	set_except_vector(8, handle_sys);
 | |
| 	set_except_vector(9, handle_bp);
 | |
| 	set_except_vector(10, rdhwr_noopt ? handle_ri :
 | |
| 			  (cpu_has_vtag_icache ?
 | |
| 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
 | |
| 	set_except_vector(11, handle_cpu);
 | |
| 	set_except_vector(12, handle_ov);
 | |
| 	set_except_vector(13, handle_tr);
 | |
| 
 | |
| 	if (current_cpu_type() == CPU_R6000 ||
 | |
| 	    current_cpu_type() == CPU_R6000A) {
 | |
| 		/*
 | |
| 		 * The R6000 is the only R-series CPU that features a machine
 | |
| 		 * check exception (similar to the R4000 cache error) and
 | |
| 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
 | |
| 		 * written yet.  Well, anyway there is no R6000 machine on the
 | |
| 		 * current list of targets for Linux/MIPS.
 | |
| 		 * (Duh, crap, there is someone with a triple R6k machine)
 | |
| 		 */
 | |
| 		//set_except_vector(14, handle_mc);
 | |
| 		//set_except_vector(15, handle_ndc);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (board_nmi_handler_setup)
 | |
| 		board_nmi_handler_setup();
 | |
| 
 | |
| 	if (cpu_has_fpu && !cpu_has_nofpuex)
 | |
| 		set_except_vector(15, handle_fpe);
 | |
| 
 | |
| 	set_except_vector(22, handle_mdmx);
 | |
| 
 | |
| 	if (cpu_has_mcheck)
 | |
| 		set_except_vector(24, handle_mcheck);
 | |
| 
 | |
| 	if (cpu_has_mipsmt)
 | |
| 		set_except_vector(25, handle_mt);
 | |
| 
 | |
| 	set_except_vector(26, handle_dsp);
 | |
| 
 | |
| 	if (cpu_has_vce)
 | |
| 		/* Special exception: R4[04]00 uses also the divec space. */
 | |
| 		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
 | |
| 	else if (cpu_has_4kex)
 | |
| 		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
 | |
| 	else
 | |
| 		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
 | |
| 
 | |
| 	local_flush_icache_range(ebase, ebase + 0x400);
 | |
| 	flush_tlb_handlers();
 | |
| 
 | |
| 	sort_extable(__start___dbe_table, __stop___dbe_table);
 | |
| 
 | |
| 	register_cu2_notifier(&default_cu2_notifier);
 | |
| }
 |