 5255366403
			
		
	
	
	5255366403
	
	
	
		
			
			Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca> To: linux-mips@linux-mips.org Patchwork: http://patchwork.linux-mips.org/patch/1008/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			1470 lines
		
	
	
	
		
			37 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1470 lines
		
	
	
	
		
			37 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * Copyright (C) 2004 Mips Technologies, Inc
 | |
|  * Copyright (C) 2008 Kevin D. Kissell
 | |
|  */
 | |
| 
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/hardirq.h>
 | |
| #include <asm/hazards.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/mipsregs.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/addrspace.h>
 | |
| #include <asm/smtc.h>
 | |
| #include <asm/smtc_proc.h>
 | |
| 
 | |
| /*
 | |
|  * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 | |
|  * in do_IRQ. These are passed in setup_irq_smtc() and stored
 | |
|  * in this table.
 | |
|  */
 | |
| unsigned long irq_hwmask[NR_IRQS];
 | |
| 
 | |
| #define LOCK_MT_PRA() \
 | |
| 	local_irq_save(flags); \
 | |
| 	mtflags = dmt()
 | |
| 
 | |
| #define UNLOCK_MT_PRA() \
 | |
| 	emt(mtflags); \
 | |
| 	local_irq_restore(flags)
 | |
| 
 | |
| #define LOCK_CORE_PRA() \
 | |
| 	local_irq_save(flags); \
 | |
| 	mtflags = dvpe()
 | |
| 
 | |
| #define UNLOCK_CORE_PRA() \
 | |
| 	evpe(mtflags); \
 | |
| 	local_irq_restore(flags)
 | |
| 
 | |
| /*
 | |
|  * Data structures purely associated with SMTC parallelism
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Table for tracking ASIDs whose lifetime is prolonged.
 | |
|  */
 | |
| 
 | |
| asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
 | |
| 
 | |
| /*
 | |
|  * Number of InterProcessor Interrupt (IPI) message buffers to allocate
 | |
|  */
 | |
| 
 | |
| #define IPIBUF_PER_CPU 4
 | |
| 
 | |
| struct smtc_ipi_q IPIQ[NR_CPUS];
 | |
| static struct smtc_ipi_q freeIPIq;
 | |
| 
 | |
| 
 | |
| /* Forward declarations */
 | |
| 
 | |
| void ipi_decode(struct smtc_ipi *);
 | |
| static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
 | |
| static void setup_cross_vpe_interrupts(unsigned int nvpe);
 | |
| void init_smtc_stats(void);
 | |
| 
 | |
| /* Global SMTC Status */
 | |
| 
 | |
| unsigned int smtc_status;
 | |
| 
 | |
| /* Boot command line configuration overrides */
 | |
| 
 | |
| static int vpe0limit;
 | |
| static int ipibuffers;
 | |
| static int nostlb;
 | |
| static int asidmask;
 | |
| unsigned long smtc_asid_mask = 0xff;
 | |
| 
 | |
| static int __init vpe0tcs(char *str)
 | |
| {
 | |
| 	get_option(&str, &vpe0limit);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init ipibufs(char *str)
 | |
| {
 | |
| 	get_option(&str, &ipibuffers);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init stlb_disable(char *s)
 | |
| {
 | |
| 	nostlb = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init asidmask_set(char *str)
 | |
| {
 | |
| 	get_option(&str, &asidmask);
 | |
| 	switch (asidmask) {
 | |
| 	case 0x1:
 | |
| 	case 0x3:
 | |
| 	case 0x7:
 | |
| 	case 0xf:
 | |
| 	case 0x1f:
 | |
| 	case 0x3f:
 | |
| 	case 0x7f:
 | |
| 	case 0xff:
 | |
| 		smtc_asid_mask = (unsigned long)asidmask;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("vpe0tcs=", vpe0tcs);
 | |
| __setup("ipibufs=", ipibufs);
 | |
| __setup("nostlb", stlb_disable);
 | |
| __setup("asidmask=", asidmask_set);
 | |
| 
 | |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 | |
| 
 | |
| static int hang_trig;
 | |
| 
 | |
| static int __init hangtrig_enable(char *s)
 | |
| {
 | |
| 	hang_trig = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| __setup("hangtrig", hangtrig_enable);
 | |
| 
 | |
| #define DEFAULT_BLOCKED_IPI_LIMIT 32
 | |
| 
 | |
| static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
 | |
| 
 | |
| static int __init tintq(char *str)
 | |
| {
 | |
| 	get_option(&str, &timerq_limit);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("tintq=", tintq);
 | |
| 
 | |
| static int imstuckcount[2][8];
 | |
| /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
 | |
| static int vpemask[2][8] = {
 | |
| 	{0, 0, 1, 0, 0, 0, 0, 1},
 | |
| 	{0, 0, 0, 0, 0, 0, 0, 1}
 | |
| };
 | |
| int tcnoprog[NR_CPUS];
 | |
| static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
 | |
| static int clock_hang_reported[NR_CPUS];
 | |
| 
 | |
| #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 | |
| 
 | |
| /*
 | |
|  * Configure shared TLB - VPC configuration bit must be set by caller
 | |
|  */
 | |
| 
 | |
| static void smtc_configure_tlb(void)
 | |
| {
 | |
| 	int i, tlbsiz, vpes;
 | |
| 	unsigned long mvpconf0;
 | |
| 	unsigned long config1val;
 | |
| 
 | |
| 	/* Set up ASID preservation table */
 | |
| 	for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
 | |
| 	    for(i = 0; i < MAX_SMTC_ASIDS; i++) {
 | |
| 		smtc_live_asid[vpes][i] = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	mvpconf0 = read_c0_mvpconf0();
 | |
| 
 | |
| 	if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
 | |
| 			>> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
 | |
| 	    /* If we have multiple VPEs, try to share the TLB */
 | |
| 	    if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
 | |
| 		/*
 | |
| 		 * If TLB sizing is programmable, shared TLB
 | |
| 		 * size is the total available complement.
 | |
| 		 * Otherwise, we have to take the sum of all
 | |
| 		 * static VPE TLB entries.
 | |
| 		 */
 | |
| 		if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
 | |
| 				>> MVPCONF0_PTLBE_SHIFT)) == 0) {
 | |
| 		    /*
 | |
| 		     * If there's more than one VPE, there had better
 | |
| 		     * be more than one TC, because we need one to bind
 | |
| 		     * to each VPE in turn to be able to read
 | |
| 		     * its configuration state!
 | |
| 		     */
 | |
| 		    settc(1);
 | |
| 		    /* Stop the TC from doing anything foolish */
 | |
| 		    write_tc_c0_tchalt(TCHALT_H);
 | |
| 		    mips_ihb();
 | |
| 		    /* No need to un-Halt - that happens later anyway */
 | |
| 		    for (i=0; i < vpes; i++) {
 | |
| 		    	write_tc_c0_tcbind(i);
 | |
| 			/*
 | |
| 			 * To be 100% sure we're really getting the right
 | |
| 			 * information, we exit the configuration state
 | |
| 			 * and do an IHB after each rebinding.
 | |
| 			 */
 | |
| 			write_c0_mvpcontrol(
 | |
| 				read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 | |
| 			mips_ihb();
 | |
| 			/*
 | |
| 			 * Only count if the MMU Type indicated is TLB
 | |
| 			 */
 | |
| 			if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
 | |
| 				config1val = read_vpe_c0_config1();
 | |
| 				tlbsiz += ((config1val >> 25) & 0x3f) + 1;
 | |
| 			}
 | |
| 
 | |
| 			/* Put core back in configuration state */
 | |
| 			write_c0_mvpcontrol(
 | |
| 				read_c0_mvpcontrol() | MVPCONTROL_VPC );
 | |
| 			mips_ihb();
 | |
| 		    }
 | |
| 		}
 | |
| 		write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
 | |
| 		ehb();
 | |
| 
 | |
| 		/*
 | |
| 		 * Setup kernel data structures to use software total,
 | |
| 		 * rather than read the per-VPE Config1 value. The values
 | |
| 		 * for "CPU 0" gets copied to all the other CPUs as part
 | |
| 		 * of their initialization in smtc_cpu_setup().
 | |
| 		 */
 | |
| 
 | |
| 		/* MIPS32 limits TLB indices to 64 */
 | |
| 		if (tlbsiz > 64)
 | |
| 			tlbsiz = 64;
 | |
| 		cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
 | |
| 		smtc_status |= SMTC_TLB_SHARED;
 | |
| 		local_flush_tlb_all();
 | |
| 
 | |
| 		printk("TLB of %d entry pairs shared by %d VPEs\n",
 | |
| 			tlbsiz, vpes);
 | |
| 	    } else {
 | |
| 		printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
 | |
| 	    }
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Incrementally build the CPU map out of constituent MIPS MT cores,
 | |
|  * using the specified available VPEs and TCs.  Plaform code needs
 | |
|  * to ensure that each MIPS MT core invokes this routine on reset,
 | |
|  * one at a time(!).
 | |
|  *
 | |
|  * This version of the build_cpu_map and prepare_cpus routines assumes
 | |
|  * that *all* TCs of a MIPS MT core will be used for Linux, and that
 | |
|  * they will be spread across *all* available VPEs (to minimise the
 | |
|  * loss of efficiency due to exception service serialization).
 | |
|  * An improved version would pick up configuration information and
 | |
|  * possibly leave some TCs/VPEs as "slave" processors.
 | |
|  *
 | |
|  * Use c0_MVPConf0 to find out how many TCs are available, setting up
 | |
|  * cpu_possible_map and the logical/physical mappings.
 | |
|  */
 | |
| 
 | |
| int __init smtc_build_cpu_map(int start_cpu_slot)
 | |
| {
 | |
| 	int i, ntcs;
 | |
| 
 | |
| 	/*
 | |
| 	 * The CPU map isn't actually used for anything at this point,
 | |
| 	 * so it's not clear what else we should do apart from set
 | |
| 	 * everything up so that "logical" = "physical".
 | |
| 	 */
 | |
| 	ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 | |
| 	for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
 | |
| 		set_cpu_possible(i, true);
 | |
| 		__cpu_number_map[i] = i;
 | |
| 		__cpu_logical_map[i] = i;
 | |
| 	}
 | |
| #ifdef CONFIG_MIPS_MT_FPAFF
 | |
| 	/* Initialize map of CPUs with FPUs */
 | |
| 	cpus_clear(mt_fpu_cpumask);
 | |
| #endif
 | |
| 
 | |
| 	/* One of those TC's is the one booting, and not a secondary... */
 | |
| 	printk("%i available secondary CPU TC(s)\n", i - 1);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common setup before any secondaries are started
 | |
|  * Make sure all CPU's are in a sensible state before we boot any of the
 | |
|  * secondaries.
 | |
|  *
 | |
|  * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
 | |
|  * as possible across the available VPEs.
 | |
|  */
 | |
| 
 | |
| static void smtc_tc_setup(int vpe, int tc, int cpu)
 | |
| {
 | |
| 	settc(tc);
 | |
| 	write_tc_c0_tchalt(TCHALT_H);
 | |
| 	mips_ihb();
 | |
| 	write_tc_c0_tcstatus((read_tc_c0_tcstatus()
 | |
| 			& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
 | |
| 			| TCSTATUS_A);
 | |
| 	/*
 | |
| 	 * TCContext gets an offset from the base of the IPIQ array
 | |
| 	 * to be used in low-level code to detect the presence of
 | |
| 	 * an active IPI queue
 | |
| 	 */
 | |
| 	write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
 | |
| 	/* Bind tc to vpe */
 | |
| 	write_tc_c0_tcbind(vpe);
 | |
| 	/* In general, all TCs should have the same cpu_data indications */
 | |
| 	memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
 | |
| 	/* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
 | |
| 	if (cpu_data[0].cputype == CPU_34K ||
 | |
| 	    cpu_data[0].cputype == CPU_1004K)
 | |
| 		cpu_data[cpu].options &= ~MIPS_CPU_FPU;
 | |
| 	cpu_data[cpu].vpe_id = vpe;
 | |
| 	cpu_data[cpu].tc_id = tc;
 | |
| 	/* Multi-core SMTC hasn't been tested, but be prepared */
 | |
| 	cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tweak to get Count registes in as close a sync as possible.
 | |
|  * Value seems good for 34K-class cores.
 | |
|  */
 | |
| 
 | |
| #define CP0_SKEW 8
 | |
| 
 | |
| void smtc_prepare_cpus(int cpus)
 | |
| {
 | |
| 	int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long val;
 | |
| 	int nipi;
 | |
| 	struct smtc_ipi *pipi;
 | |
| 
 | |
| 	/* disable interrupts so we can disable MT */
 | |
| 	local_irq_save(flags);
 | |
| 	/* disable MT so we can configure */
 | |
| 	dvpe();
 | |
| 	dmt();
 | |
| 
 | |
| 	spin_lock_init(&freeIPIq.lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We probably don't have as many VPEs as we do SMP "CPUs",
 | |
| 	 * but it's possible - and in any case we'll never use more!
 | |
| 	 */
 | |
| 	for (i=0; i<NR_CPUS; i++) {
 | |
| 		IPIQ[i].head = IPIQ[i].tail = NULL;
 | |
| 		spin_lock_init(&IPIQ[i].lock);
 | |
| 		IPIQ[i].depth = 0;
 | |
| 		IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
 | |
| 	}
 | |
| 
 | |
| 	/* cpu_data index starts at zero */
 | |
| 	cpu = 0;
 | |
| 	cpu_data[cpu].vpe_id = 0;
 | |
| 	cpu_data[cpu].tc_id = 0;
 | |
| 	cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
 | |
| 	cpu++;
 | |
| 
 | |
| 	/* Report on boot-time options */
 | |
| 	mips_mt_set_cpuoptions();
 | |
| 	if (vpelimit > 0)
 | |
| 		printk("Limit of %d VPEs set\n", vpelimit);
 | |
| 	if (tclimit > 0)
 | |
| 		printk("Limit of %d TCs set\n", tclimit);
 | |
| 	if (nostlb) {
 | |
| 		printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
 | |
| 	}
 | |
| 	if (asidmask)
 | |
| 		printk("ASID mask value override to 0x%x\n", asidmask);
 | |
| 
 | |
| 	/* Temporary */
 | |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 | |
| 	if (hang_trig)
 | |
| 		printk("Logic Analyser Trigger on suspected TC hang\n");
 | |
| #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 | |
| 
 | |
| 	/* Put MVPE's into 'configuration state' */
 | |
| 	write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
 | |
| 
 | |
| 	val = read_c0_mvpconf0();
 | |
| 	nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
 | |
| 	if (vpelimit > 0 && nvpe > vpelimit)
 | |
| 		nvpe = vpelimit;
 | |
| 	ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 | |
| 	if (ntc > NR_CPUS)
 | |
| 		ntc = NR_CPUS;
 | |
| 	if (tclimit > 0 && ntc > tclimit)
 | |
| 		ntc = tclimit;
 | |
| 	slop = ntc % nvpe;
 | |
| 	for (i = 0; i < nvpe; i++) {
 | |
| 		tcpervpe[i] = ntc / nvpe;
 | |
| 		if (slop) {
 | |
| 			if((slop - i) > 0) tcpervpe[i]++;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Handle command line override for VPE0 */
 | |
| 	if (vpe0limit > ntc) vpe0limit = ntc;
 | |
| 	if (vpe0limit > 0) {
 | |
| 		int slopslop;
 | |
| 		if (vpe0limit < tcpervpe[0]) {
 | |
| 		    /* Reducing TC count - distribute to others */
 | |
| 		    slop = tcpervpe[0] - vpe0limit;
 | |
| 		    slopslop = slop % (nvpe - 1);
 | |
| 		    tcpervpe[0] = vpe0limit;
 | |
| 		    for (i = 1; i < nvpe; i++) {
 | |
| 			tcpervpe[i] += slop / (nvpe - 1);
 | |
| 			if(slopslop && ((slopslop - (i - 1) > 0)))
 | |
| 				tcpervpe[i]++;
 | |
| 		    }
 | |
| 		} else if (vpe0limit > tcpervpe[0]) {
 | |
| 		    /* Increasing TC count - steal from others */
 | |
| 		    slop = vpe0limit - tcpervpe[0];
 | |
| 		    slopslop = slop % (nvpe - 1);
 | |
| 		    tcpervpe[0] = vpe0limit;
 | |
| 		    for (i = 1; i < nvpe; i++) {
 | |
| 			tcpervpe[i] -= slop / (nvpe - 1);
 | |
| 			if(slopslop && ((slopslop - (i - 1) > 0)))
 | |
| 				tcpervpe[i]--;
 | |
| 		    }
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set up shared TLB */
 | |
| 	smtc_configure_tlb();
 | |
| 
 | |
| 	for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
 | |
| 		if (tcpervpe[vpe] == 0)
 | |
| 			continue;
 | |
| 		if (vpe != 0)
 | |
| 			printk(", ");
 | |
| 		printk("VPE %d: TC", vpe);
 | |
| 		for (i = 0; i < tcpervpe[vpe]; i++) {
 | |
| 			/*
 | |
| 			 * TC 0 is bound to VPE 0 at reset,
 | |
| 			 * and is presumably executing this
 | |
| 			 * code.  Leave it alone!
 | |
| 			 */
 | |
| 			if (tc != 0) {
 | |
| 				smtc_tc_setup(vpe, tc, cpu);
 | |
| 				cpu++;
 | |
| 			}
 | |
| 			printk(" %d", tc);
 | |
| 			tc++;
 | |
| 		}
 | |
| 		if (vpe != 0) {
 | |
| 			/*
 | |
| 			 * Allow this VPE to control others.
 | |
| 			 */
 | |
| 			write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
 | |
| 					      VPECONF0_MVP);
 | |
| 
 | |
| 			/*
 | |
| 			 * Clear any stale software interrupts from VPE's Cause
 | |
| 			 */
 | |
| 			write_vpe_c0_cause(0);
 | |
| 
 | |
| 			/*
 | |
| 			 * Clear ERL/EXL of VPEs other than 0
 | |
| 			 * and set restricted interrupt enable/mask.
 | |
| 			 */
 | |
| 			write_vpe_c0_status((read_vpe_c0_status()
 | |
| 				& ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
 | |
| 				| (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
 | |
| 				| ST0_IE));
 | |
| 			/*
 | |
| 			 * set config to be the same as vpe0,
 | |
| 			 *  particularly kseg0 coherency alg
 | |
| 			 */
 | |
| 			write_vpe_c0_config(read_c0_config());
 | |
| 			/* Clear any pending timer interrupt */
 | |
| 			write_vpe_c0_compare(0);
 | |
| 			/* Propagate Config7 */
 | |
| 			write_vpe_c0_config7(read_c0_config7());
 | |
| 			write_vpe_c0_count(read_c0_count() + CP0_SKEW);
 | |
| 			ehb();
 | |
| 		}
 | |
| 		/* enable multi-threading within VPE */
 | |
| 		write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
 | |
| 		/* enable the VPE */
 | |
| 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Pull any physically present but unused TCs out of circulation.
 | |
| 	 */
 | |
| 	while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
 | |
| 		set_cpu_possible(tc, false);
 | |
| 		set_cpu_present(tc, false);
 | |
| 		tc++;
 | |
| 	}
 | |
| 
 | |
| 	/* release config state */
 | |
| 	write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 | |
| 
 | |
| 	printk("\n");
 | |
| 
 | |
| 	/* Set up coprocessor affinity CPU mask(s) */
 | |
| 
 | |
| #ifdef CONFIG_MIPS_MT_FPAFF
 | |
| 	for (tc = 0; tc < ntc; tc++) {
 | |
| 		if (cpu_data[tc].options & MIPS_CPU_FPU)
 | |
| 			cpu_set(tc, mt_fpu_cpumask);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* set up ipi interrupts... */
 | |
| 
 | |
| 	/* If we have multiple VPEs running, set up the cross-VPE interrupt */
 | |
| 
 | |
| 	setup_cross_vpe_interrupts(nvpe);
 | |
| 
 | |
| 	/* Set up queue of free IPI "messages". */
 | |
| 	nipi = NR_CPUS * IPIBUF_PER_CPU;
 | |
| 	if (ipibuffers > 0)
 | |
| 		nipi = ipibuffers;
 | |
| 
 | |
| 	pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
 | |
| 	if (pipi == NULL)
 | |
| 		panic("kmalloc of IPI message buffers failed\n");
 | |
| 	else
 | |
| 		printk("IPI buffer pool of %d buffers\n", nipi);
 | |
| 	for (i = 0; i < nipi; i++) {
 | |
| 		smtc_ipi_nq(&freeIPIq, pipi);
 | |
| 		pipi++;
 | |
| 	}
 | |
| 
 | |
| 	/* Arm multithreading and enable other VPEs - but all TCs are Halted */
 | |
| 	emt(EMT_ENABLE);
 | |
| 	evpe(EVPE_ENABLE);
 | |
| 	local_irq_restore(flags);
 | |
| 	/* Initialize SMTC /proc statistics/diagnostics */
 | |
| 	init_smtc_stats();
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Setup the PC, SP, and GP of a secondary processor and start it
 | |
|  * running!
 | |
|  * smp_bootstrap is the place to resume from
 | |
|  * __KSTK_TOS(idle) is apparently the stack pointer
 | |
|  * (unsigned long)idle->thread_info the gp
 | |
|  *
 | |
|  */
 | |
| void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
 | |
| {
 | |
| 	extern u32 kernelsp[NR_CPUS];
 | |
| 	unsigned long flags;
 | |
| 	int mtflags;
 | |
| 
 | |
| 	LOCK_MT_PRA();
 | |
| 	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 | |
| 		dvpe();
 | |
| 	}
 | |
| 	settc(cpu_data[cpu].tc_id);
 | |
| 
 | |
| 	/* pc */
 | |
| 	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
 | |
| 
 | |
| 	/* stack pointer */
 | |
| 	kernelsp[cpu] = __KSTK_TOS(idle);
 | |
| 	write_tc_gpr_sp(__KSTK_TOS(idle));
 | |
| 
 | |
| 	/* global pointer */
 | |
| 	write_tc_gpr_gp((unsigned long)task_thread_info(idle));
 | |
| 
 | |
| 	smtc_status |= SMTC_MTC_ACTIVE;
 | |
| 	write_tc_c0_tchalt(0);
 | |
| 	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 | |
| 		evpe(EVPE_ENABLE);
 | |
| 	}
 | |
| 	UNLOCK_MT_PRA();
 | |
| }
 | |
| 
 | |
| void smtc_init_secondary(void)
 | |
| {
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| void smtc_smp_finish(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * Lowest-numbered CPU per VPE starts a clock tick.
 | |
| 	 * Like per_cpu_trap_init() hack, this assumes that
 | |
| 	 * SMTC init code assigns TCs consdecutively and
 | |
| 	 * in ascending order across available VPEs.
 | |
| 	 */
 | |
| 	if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
 | |
| 		write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
 | |
| 
 | |
| 	printk("TC %d going on-line as CPU %d\n",
 | |
| 		cpu_data[smp_processor_id()].tc_id, smp_processor_id());
 | |
| }
 | |
| 
 | |
| void smtc_cpus_done(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Support for SMTC-optimized driver IRQ registration
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 | |
|  * in do_IRQ. These are passed in setup_irq_smtc() and stored
 | |
|  * in this table.
 | |
|  */
 | |
| 
 | |
| int setup_irq_smtc(unsigned int irq, struct irqaction * new,
 | |
| 			unsigned long hwmask)
 | |
| {
 | |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 | |
| 	unsigned int vpe = current_cpu_data.vpe_id;
 | |
| 
 | |
| 	vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
 | |
| #endif
 | |
| 	irq_hwmask[irq] = hwmask;
 | |
| 
 | |
| 	return setup_irq(irq, new);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
 | |
| /*
 | |
|  * Support for IRQ affinity to TCs
 | |
|  */
 | |
| 
 | |
| void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
 | |
| {
 | |
| 	/*
 | |
| 	 * If a "fast path" cache of quickly decodable affinity state
 | |
| 	 * is maintained, this is where it gets done, on a call up
 | |
| 	 * from the platform affinity code.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| void smtc_forward_irq(unsigned int irq)
 | |
| {
 | |
| 	int target;
 | |
| 
 | |
| 	/*
 | |
| 	 * OK wise guy, now figure out how to get the IRQ
 | |
| 	 * to be serviced on an authorized "CPU".
 | |
| 	 *
 | |
| 	 * Ideally, to handle the situation where an IRQ has multiple
 | |
| 	 * eligible CPUS, we would maintain state per IRQ that would
 | |
| 	 * allow a fair distribution of service requests.  Since the
 | |
| 	 * expected use model is any-or-only-one, for simplicity
 | |
| 	 * and efficiency, we just pick the easiest one to find.
 | |
| 	 */
 | |
| 
 | |
| 	target = cpumask_first(irq_desc[irq].affinity);
 | |
| 
 | |
| 	/*
 | |
| 	 * We depend on the platform code to have correctly processed
 | |
| 	 * IRQ affinity change requests to ensure that the IRQ affinity
 | |
| 	 * mask has been purged of bits corresponding to nonexistent and
 | |
| 	 * offline "CPUs", and to TCs bound to VPEs other than the VPE
 | |
| 	 * connected to the physical interrupt input for the interrupt
 | |
| 	 * in question.  Otherwise we have a nasty problem with interrupt
 | |
| 	 * mask management.  This is best handled in non-performance-critical
 | |
| 	 * platform IRQ affinity setting code,  to minimize interrupt-time
 | |
| 	 * checks.
 | |
| 	 */
 | |
| 
 | |
| 	/* If no one is eligible, service locally */
 | |
| 	if (target >= NR_CPUS) {
 | |
| 		do_IRQ_no_affinity(irq);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
 | |
| 
 | |
| /*
 | |
|  * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
 | |
|  * Within a VPE one TC can interrupt another by different approaches.
 | |
|  * The easiest to get right would probably be to make all TCs except
 | |
|  * the target IXMT and set a software interrupt, but an IXMT-based
 | |
|  * scheme requires that a handler must run before a new IPI could
 | |
|  * be sent, which would break the "broadcast" loops in MIPS MT.
 | |
|  * A more gonzo approach within a VPE is to halt the TC, extract
 | |
|  * its Restart, Status, and a couple of GPRs, and program the Restart
 | |
|  * address to emulate an interrupt.
 | |
|  *
 | |
|  * Within a VPE, one can be confident that the target TC isn't in
 | |
|  * a critical EXL state when halted, since the write to the Halt
 | |
|  * register could not have issued on the writing thread if the
 | |
|  * halting thread had EXL set. So k0 and k1 of the target TC
 | |
|  * can be used by the injection code.  Across VPEs, one can't
 | |
|  * be certain that the target TC isn't in a critical exception
 | |
|  * state. So we try a two-step process of sending a software
 | |
|  * interrupt to the target VPE, which either handles the event
 | |
|  * itself (if it was the target) or injects the event within
 | |
|  * the VPE.
 | |
|  */
 | |
| 
 | |
| static void smtc_ipi_qdump(void)
 | |
| {
 | |
| 	int i;
 | |
| 	struct smtc_ipi *temp;
 | |
| 
 | |
| 	for (i = 0; i < NR_CPUS ;i++) {
 | |
| 		pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
 | |
| 			i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
 | |
| 			IPIQ[i].depth);
 | |
| 		temp = IPIQ[i].head;
 | |
| 
 | |
| 		while (temp != IPIQ[i].tail) {
 | |
| 			pr_debug("%d %d %d: ", temp->type, temp->dest,
 | |
| 			       (int)temp->arg);
 | |
| #ifdef	SMTC_IPI_DEBUG
 | |
| 		    pr_debug("%u %lu\n", temp->sender, temp->stamp);
 | |
| #else
 | |
| 		    pr_debug("\n");
 | |
| #endif
 | |
| 		    temp = temp->flink;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The standard atomic.h primitives don't quite do what we want
 | |
|  * here: We need an atomic add-and-return-previous-value (which
 | |
|  * could be done with atomic_add_return and a decrement) and an
 | |
|  * atomic set/zero-and-return-previous-value (which can't really
 | |
|  * be done with the atomic.h primitives). And since this is
 | |
|  * MIPS MT, we can assume that we have LL/SC.
 | |
|  */
 | |
| static inline int atomic_postincrement(atomic_t *v)
 | |
| {
 | |
| 	unsigned long result;
 | |
| 
 | |
| 	unsigned long temp;
 | |
| 
 | |
| 	__asm__ __volatile__(
 | |
| 	"1:	ll	%0, %2					\n"
 | |
| 	"	addu	%1, %0, 1				\n"
 | |
| 	"	sc	%1, %2					\n"
 | |
| 	"	beqz	%1, 1b					\n"
 | |
| 	__WEAK_LLSC_MB
 | |
| 	: "=&r" (result), "=&r" (temp), "=m" (v->counter)
 | |
| 	: "m" (v->counter)
 | |
| 	: "memory");
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| void smtc_send_ipi(int cpu, int type, unsigned int action)
 | |
| {
 | |
| 	int tcstatus;
 | |
| 	struct smtc_ipi *pipi;
 | |
| 	unsigned long flags;
 | |
| 	int mtflags;
 | |
| 	unsigned long tcrestart;
 | |
| 	extern void r4k_wait_irqoff(void), __pastwait(void);
 | |
| 	int set_resched_flag = (type == LINUX_SMP_IPI &&
 | |
| 				action == SMP_RESCHEDULE_YOURSELF);
 | |
| 
 | |
| 	if (cpu == smp_processor_id()) {
 | |
| 		printk("Cannot Send IPI to self!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
 | |
| 		return; /* There is a reschedule queued already */
 | |
| 
 | |
| 	/* Set up a descriptor, to be delivered either promptly or queued */
 | |
| 	pipi = smtc_ipi_dq(&freeIPIq);
 | |
| 	if (pipi == NULL) {
 | |
| 		bust_spinlocks(1);
 | |
| 		mips_mt_regdump(dvpe());
 | |
| 		panic("IPI Msg. Buffers Depleted\n");
 | |
| 	}
 | |
| 	pipi->type = type;
 | |
| 	pipi->arg = (void *)action;
 | |
| 	pipi->dest = cpu;
 | |
| 	if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 | |
| 		/* If not on same VPE, enqueue and send cross-VPE interrupt */
 | |
| 		IPIQ[cpu].resched_flag |= set_resched_flag;
 | |
| 		smtc_ipi_nq(&IPIQ[cpu], pipi);
 | |
| 		LOCK_CORE_PRA();
 | |
| 		settc(cpu_data[cpu].tc_id);
 | |
| 		write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
 | |
| 		UNLOCK_CORE_PRA();
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
 | |
| 		 * since ASID shootdown on the other VPE may
 | |
| 		 * collide with this operation.
 | |
| 		 */
 | |
| 		LOCK_CORE_PRA();
 | |
| 		settc(cpu_data[cpu].tc_id);
 | |
| 		/* Halt the targeted TC */
 | |
| 		write_tc_c0_tchalt(TCHALT_H);
 | |
| 		mips_ihb();
 | |
| 
 | |
| 		/*
 | |
| 	 	 * Inspect TCStatus - if IXMT is set, we have to queue
 | |
| 		 * a message. Otherwise, we set up the "interrupt"
 | |
| 		 * of the other TC
 | |
| 	 	 */
 | |
| 		tcstatus = read_tc_c0_tcstatus();
 | |
| 
 | |
| 		if ((tcstatus & TCSTATUS_IXMT) != 0) {
 | |
| 			/*
 | |
| 			 * If we're in the the irq-off version of the wait
 | |
| 			 * loop, we need to force exit from the wait and
 | |
| 			 * do a direct post of the IPI.
 | |
| 			 */
 | |
| 			if (cpu_wait == r4k_wait_irqoff) {
 | |
| 				tcrestart = read_tc_c0_tcrestart();
 | |
| 				if (tcrestart >= (unsigned long)r4k_wait_irqoff
 | |
| 				    && tcrestart < (unsigned long)__pastwait) {
 | |
| 					write_tc_c0_tcrestart(__pastwait);
 | |
| 					tcstatus &= ~TCSTATUS_IXMT;
 | |
| 					write_tc_c0_tcstatus(tcstatus);
 | |
| 					goto postdirect;
 | |
| 				}
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Otherwise we queue the message for the target TC
 | |
| 			 * to pick up when he does a local_irq_restore()
 | |
| 			 */
 | |
| 			write_tc_c0_tchalt(0);
 | |
| 			UNLOCK_CORE_PRA();
 | |
| 			IPIQ[cpu].resched_flag |= set_resched_flag;
 | |
| 			smtc_ipi_nq(&IPIQ[cpu], pipi);
 | |
| 		} else {
 | |
| postdirect:
 | |
| 			post_direct_ipi(cpu, pipi);
 | |
| 			write_tc_c0_tchalt(0);
 | |
| 			UNLOCK_CORE_PRA();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send IPI message to Halted TC, TargTC/TargVPE already having been set
 | |
|  */
 | |
| static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
 | |
| {
 | |
| 	struct pt_regs *kstack;
 | |
| 	unsigned long tcstatus;
 | |
| 	unsigned long tcrestart;
 | |
| 	extern u32 kernelsp[NR_CPUS];
 | |
| 	extern void __smtc_ipi_vector(void);
 | |
| //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
 | |
| 
 | |
| 	/* Extract Status, EPC from halted TC */
 | |
| 	tcstatus = read_tc_c0_tcstatus();
 | |
| 	tcrestart = read_tc_c0_tcrestart();
 | |
| 	/* If TCRestart indicates a WAIT instruction, advance the PC */
 | |
| 	if ((tcrestart & 0x80000000)
 | |
| 	    && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
 | |
| 		tcrestart += 4;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Save on TC's future kernel stack
 | |
| 	 *
 | |
| 	 * CU bit of Status is indicator that TC was
 | |
| 	 * already running on a kernel stack...
 | |
| 	 */
 | |
| 	if (tcstatus & ST0_CU0)  {
 | |
| 		/* Note that this "- 1" is pointer arithmetic */
 | |
| 		kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
 | |
| 	} else {
 | |
| 		kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
 | |
| 	}
 | |
| 
 | |
| 	kstack->cp0_epc = (long)tcrestart;
 | |
| 	/* Save TCStatus */
 | |
| 	kstack->cp0_tcstatus = tcstatus;
 | |
| 	/* Pass token of operation to be performed kernel stack pad area */
 | |
| 	kstack->pad0[4] = (unsigned long)pipi;
 | |
| 	/* Pass address of function to be called likewise */
 | |
| 	kstack->pad0[5] = (unsigned long)&ipi_decode;
 | |
| 	/* Set interrupt exempt and kernel mode */
 | |
| 	tcstatus |= TCSTATUS_IXMT;
 | |
| 	tcstatus &= ~TCSTATUS_TKSU;
 | |
| 	write_tc_c0_tcstatus(tcstatus);
 | |
| 	ehb();
 | |
| 	/* Set TC Restart address to be SMTC IPI vector */
 | |
| 	write_tc_c0_tcrestart(__smtc_ipi_vector);
 | |
| }
 | |
| 
 | |
| static void ipi_resched_interrupt(void)
 | |
| {
 | |
| 	/* Return from interrupt should be enough to cause scheduler check */
 | |
| }
 | |
| 
 | |
| static void ipi_call_interrupt(void)
 | |
| {
 | |
| 	/* Invoke generic function invocation code in smp.c */
 | |
| 	smp_call_function_interrupt();
 | |
| }
 | |
| 
 | |
| DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
 | |
| 
 | |
| static void __irq_entry smtc_clock_tick_interrupt(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct clock_event_device *cd;
 | |
| 	int irq = MIPS_CPU_IRQ_BASE + 1;
 | |
| 
 | |
| 	irq_enter();
 | |
| 	kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
 | |
| 	cd = &per_cpu(mips_clockevent_device, cpu);
 | |
| 	cd->event_handler(cd);
 | |
| 	irq_exit();
 | |
| }
 | |
| 
 | |
| void ipi_decode(struct smtc_ipi *pipi)
 | |
| {
 | |
| 	void *arg_copy = pipi->arg;
 | |
| 	int type_copy = pipi->type;
 | |
| 
 | |
| 	smtc_ipi_nq(&freeIPIq, pipi);
 | |
| 
 | |
| 	switch (type_copy) {
 | |
| 	case SMTC_CLOCK_TICK:
 | |
| 		smtc_clock_tick_interrupt();
 | |
| 		break;
 | |
| 
 | |
| 	case LINUX_SMP_IPI:
 | |
| 		switch ((int)arg_copy) {
 | |
| 		case SMP_RESCHEDULE_YOURSELF:
 | |
| 			ipi_resched_interrupt();
 | |
| 			break;
 | |
| 		case SMP_CALL_FUNCTION:
 | |
| 			ipi_call_interrupt();
 | |
| 			break;
 | |
| 		default:
 | |
| 			printk("Impossible SMTC IPI Argument 0x%x\n",
 | |
| 				(int)arg_copy);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
 | |
| 	case IRQ_AFFINITY_IPI:
 | |
| 		/*
 | |
| 		 * Accept a "forwarded" interrupt that was initially
 | |
| 		 * taken by a TC who doesn't have affinity for the IRQ.
 | |
| 		 */
 | |
| 		do_IRQ_no_affinity((int)arg_copy);
 | |
| 		break;
 | |
| #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
 | |
| 	default:
 | |
| 		printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to smtc_ipi_replay(), but invoked from context restore,
 | |
|  * so it reuses the current exception frame rather than set up a
 | |
|  * new one with self_ipi.
 | |
|  */
 | |
| 
 | |
| void deferred_smtc_ipi(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * Test is not atomic, but much faster than a dequeue,
 | |
| 	 * and the vast majority of invocations will have a null queue.
 | |
| 	 * If irq_disabled when this was called, then any IPIs queued
 | |
| 	 * after we test last will be taken on the next irq_enable/restore.
 | |
| 	 * If interrupts were enabled, then any IPIs added after the
 | |
| 	 * last test will be taken directly.
 | |
| 	 */
 | |
| 
 | |
| 	while (IPIQ[cpu].head != NULL) {
 | |
| 		struct smtc_ipi_q *q = &IPIQ[cpu];
 | |
| 		struct smtc_ipi *pipi;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/*
 | |
| 		 * It may be possible we'll come in with interrupts
 | |
| 		 * already enabled.
 | |
| 		 */
 | |
| 		local_irq_save(flags);
 | |
| 		spin_lock(&q->lock);
 | |
| 		pipi = __smtc_ipi_dq(q);
 | |
| 		spin_unlock(&q->lock);
 | |
| 		if (pipi != NULL) {
 | |
| 			if (pipi->type == LINUX_SMP_IPI &&
 | |
| 			    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
 | |
| 				IPIQ[cpu].resched_flag = 0;
 | |
| 			ipi_decode(pipi);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * The use of the __raw_local restore isn't
 | |
| 		 * as obviously necessary here as in smtc_ipi_replay(),
 | |
| 		 * but it's more efficient, given that we're already
 | |
| 		 * running down the IPI queue.
 | |
| 		 */
 | |
| 		__raw_local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
 | |
|  * set via cross-VPE MTTR manipulation of the Cause register. It would be
 | |
|  * in some regards preferable to have external logic for "doorbell" hardware
 | |
|  * interrupts.
 | |
|  */
 | |
| 
 | |
| static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
 | |
| 
 | |
| static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
 | |
| {
 | |
| 	int my_vpe = cpu_data[smp_processor_id()].vpe_id;
 | |
| 	int my_tc = cpu_data[smp_processor_id()].tc_id;
 | |
| 	int cpu;
 | |
| 	struct smtc_ipi *pipi;
 | |
| 	unsigned long tcstatus;
 | |
| 	int sent;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int mtflags;
 | |
| 	unsigned int vpflags;
 | |
| 
 | |
| 	/*
 | |
| 	 * So long as cross-VPE interrupts are done via
 | |
| 	 * MFTR/MTTR read-modify-writes of Cause, we need
 | |
| 	 * to stop other VPEs whenever the local VPE does
 | |
| 	 * anything similar.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	vpflags = dvpe();
 | |
| 	clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
 | |
| 	set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
 | |
| 	irq_enable_hazard();
 | |
| 	evpe(vpflags);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
 | |
| 	 * queued for TCs on this VPE other than the current one.
 | |
| 	 * Return-from-interrupt should cause us to drain the queue
 | |
| 	 * for the current TC, so we ought not to have to do it explicitly here.
 | |
| 	 */
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cpu_data[cpu].vpe_id != my_vpe)
 | |
| 			continue;
 | |
| 
 | |
| 		pipi = smtc_ipi_dq(&IPIQ[cpu]);
 | |
| 		if (pipi != NULL) {
 | |
| 			if (cpu_data[cpu].tc_id != my_tc) {
 | |
| 				sent = 0;
 | |
| 				LOCK_MT_PRA();
 | |
| 				settc(cpu_data[cpu].tc_id);
 | |
| 				write_tc_c0_tchalt(TCHALT_H);
 | |
| 				mips_ihb();
 | |
| 				tcstatus = read_tc_c0_tcstatus();
 | |
| 				if ((tcstatus & TCSTATUS_IXMT) == 0) {
 | |
| 					post_direct_ipi(cpu, pipi);
 | |
| 					sent = 1;
 | |
| 				}
 | |
| 				write_tc_c0_tchalt(0);
 | |
| 				UNLOCK_MT_PRA();
 | |
| 				if (!sent) {
 | |
| 					smtc_ipi_req(&IPIQ[cpu], pipi);
 | |
| 				}
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * ipi_decode() should be called
 | |
| 				 * with interrupts off
 | |
| 				 */
 | |
| 				local_irq_save(flags);
 | |
| 				if (pipi->type == LINUX_SMP_IPI &&
 | |
| 				    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
 | |
| 					IPIQ[cpu].resched_flag = 0;
 | |
| 				ipi_decode(pipi);
 | |
| 				local_irq_restore(flags);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void ipi_irq_dispatch(void)
 | |
| {
 | |
| 	do_IRQ(cpu_ipi_irq);
 | |
| }
 | |
| 
 | |
| static struct irqaction irq_ipi = {
 | |
| 	.handler	= ipi_interrupt,
 | |
| 	.flags		= IRQF_DISABLED | IRQF_PERCPU,
 | |
| 	.name		= "SMTC_IPI"
 | |
| };
 | |
| 
 | |
| static void setup_cross_vpe_interrupts(unsigned int nvpe)
 | |
| {
 | |
| 	if (nvpe < 1)
 | |
| 		return;
 | |
| 
 | |
| 	if (!cpu_has_vint)
 | |
| 		panic("SMTC Kernel requires Vectored Interrupt support");
 | |
| 
 | |
| 	set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
 | |
| 
 | |
| 	setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
 | |
| 
 | |
| 	set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SMTC-specific hacks invoked from elsewhere in the kernel.
 | |
|  */
 | |
| 
 | |
|  /*
 | |
|   * smtc_ipi_replay is called from raw_local_irq_restore
 | |
|   */
 | |
| 
 | |
| void smtc_ipi_replay(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * To the extent that we've ever turned interrupts off,
 | |
| 	 * we may have accumulated deferred IPIs.  This is subtle.
 | |
| 	 * we should be OK:  If we pick up something and dispatch
 | |
| 	 * it here, that's great. If we see nothing, but concurrent
 | |
| 	 * with this operation, another TC sends us an IPI, IXMT
 | |
| 	 * is clear, and we'll handle it as a real pseudo-interrupt
 | |
| 	 * and not a pseudo-pseudo interrupt.  The important thing
 | |
| 	 * is to do the last check for queued message *after* the
 | |
| 	 * re-enabling of interrupts.
 | |
| 	 */
 | |
| 	while (IPIQ[cpu].head != NULL) {
 | |
| 		struct smtc_ipi_q *q = &IPIQ[cpu];
 | |
| 		struct smtc_ipi *pipi;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/*
 | |
| 		 * It's just possible we'll come in with interrupts
 | |
| 		 * already enabled.
 | |
| 		 */
 | |
| 		local_irq_save(flags);
 | |
| 
 | |
| 		spin_lock(&q->lock);
 | |
| 		pipi = __smtc_ipi_dq(q);
 | |
| 		spin_unlock(&q->lock);
 | |
| 		/*
 | |
| 		 ** But use a raw restore here to avoid recursion.
 | |
| 		 */
 | |
| 		__raw_local_irq_restore(flags);
 | |
| 
 | |
| 		if (pipi) {
 | |
| 			self_ipi(pipi);
 | |
| 			smtc_cpu_stats[cpu].selfipis++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(smtc_ipi_replay);
 | |
| 
 | |
| void smtc_idle_loop_hook(void)
 | |
| {
 | |
| #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 | |
| 	int im;
 | |
| 	int flags;
 | |
| 	int mtflags;
 | |
| 	int bit;
 | |
| 	int vpe;
 | |
| 	int tc;
 | |
| 	int hook_ntcs;
 | |
| 	/*
 | |
| 	 * printk within DMT-protected regions can deadlock,
 | |
| 	 * so buffer diagnostic messages for later output.
 | |
| 	 */
 | |
| 	char *pdb_msg;
 | |
| 	char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
 | |
| 
 | |
| 	if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
 | |
| 		if (atomic_add_return(1, &idle_hook_initialized) == 1) {
 | |
| 			int mvpconf0;
 | |
| 			/* Tedious stuff to just do once */
 | |
| 			mvpconf0 = read_c0_mvpconf0();
 | |
| 			hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 | |
| 			if (hook_ntcs > NR_CPUS)
 | |
| 				hook_ntcs = NR_CPUS;
 | |
| 			for (tc = 0; tc < hook_ntcs; tc++) {
 | |
| 				tcnoprog[tc] = 0;
 | |
| 				clock_hang_reported[tc] = 0;
 | |
| 	    		}
 | |
| 			for (vpe = 0; vpe < 2; vpe++)
 | |
| 				for (im = 0; im < 8; im++)
 | |
| 					imstuckcount[vpe][im] = 0;
 | |
| 			printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
 | |
| 			atomic_set(&idle_hook_initialized, 1000);
 | |
| 		} else {
 | |
| 			/* Someone else is initializing in parallel - let 'em finish */
 | |
| 			while (atomic_read(&idle_hook_initialized) < 1000)
 | |
| 				;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Have we stupidly left IXMT set somewhere? */
 | |
| 	if (read_c0_tcstatus() & 0x400) {
 | |
| 		write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
 | |
| 		ehb();
 | |
| 		printk("Dangling IXMT in cpu_idle()\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Have we stupidly left an IM bit turned off? */
 | |
| #define IM_LIMIT 2000
 | |
| 	local_irq_save(flags);
 | |
| 	mtflags = dmt();
 | |
| 	pdb_msg = &id_ho_db_msg[0];
 | |
| 	im = read_c0_status();
 | |
| 	vpe = current_cpu_data.vpe_id;
 | |
| 	for (bit = 0; bit < 8; bit++) {
 | |
| 		/*
 | |
| 		 * In current prototype, I/O interrupts
 | |
| 		 * are masked for VPE > 0
 | |
| 		 */
 | |
| 		if (vpemask[vpe][bit]) {
 | |
| 			if (!(im & (0x100 << bit)))
 | |
| 				imstuckcount[vpe][bit]++;
 | |
| 			else
 | |
| 				imstuckcount[vpe][bit] = 0;
 | |
| 			if (imstuckcount[vpe][bit] > IM_LIMIT) {
 | |
| 				set_c0_status(0x100 << bit);
 | |
| 				ehb();
 | |
| 				imstuckcount[vpe][bit] = 0;
 | |
| 				pdb_msg += sprintf(pdb_msg,
 | |
| 					"Dangling IM %d fixed for VPE %d\n", bit,
 | |
| 					vpe);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	emt(mtflags);
 | |
| 	local_irq_restore(flags);
 | |
| 	if (pdb_msg != &id_ho_db_msg[0])
 | |
| 		printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
 | |
| #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 | |
| 
 | |
| 	smtc_ipi_replay();
 | |
| }
 | |
| 
 | |
| void smtc_soft_dump(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	printk("Counter Interrupts taken per CPU (TC)\n");
 | |
| 	for (i=0; i < NR_CPUS; i++) {
 | |
| 		printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
 | |
| 	}
 | |
| 	printk("Self-IPI invocations:\n");
 | |
| 	for (i=0; i < NR_CPUS; i++) {
 | |
| 		printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
 | |
| 	}
 | |
| 	smtc_ipi_qdump();
 | |
| 	printk("%d Recoveries of \"stolen\" FPU\n",
 | |
| 	       atomic_read(&smtc_fpu_recoveries));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * TLB management routines special to SMTC
 | |
|  */
 | |
| 
 | |
| void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
 | |
| {
 | |
| 	unsigned long flags, mtflags, tcstat, prevhalt, asid;
 | |
| 	int tlb, i;
 | |
| 
 | |
| 	/*
 | |
| 	 * It would be nice to be able to use a spinlock here,
 | |
| 	 * but this is invoked from within TLB flush routines
 | |
| 	 * that protect themselves with DVPE, so if a lock is
 | |
| 	 * held by another TC, it'll never be freed.
 | |
| 	 *
 | |
| 	 * DVPE/DMT must not be done with interrupts enabled,
 | |
| 	 * so even so most callers will already have disabled
 | |
| 	 * them, let's be really careful...
 | |
| 	 */
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (smtc_status & SMTC_TLB_SHARED) {
 | |
| 		mtflags = dvpe();
 | |
| 		tlb = 0;
 | |
| 	} else {
 | |
| 		mtflags = dmt();
 | |
| 		tlb = cpu_data[cpu].vpe_id;
 | |
| 	}
 | |
| 	asid = asid_cache(cpu);
 | |
| 
 | |
| 	do {
 | |
| 		if (!((asid += ASID_INC) & ASID_MASK) ) {
 | |
| 			if (cpu_has_vtag_icache)
 | |
| 				flush_icache_all();
 | |
| 			/* Traverse all online CPUs (hack requires contiguous range) */
 | |
| 			for_each_online_cpu(i) {
 | |
| 				/*
 | |
| 				 * We don't need to worry about our own CPU, nor those of
 | |
| 				 * CPUs who don't share our TLB.
 | |
| 				 */
 | |
| 				if ((i != smp_processor_id()) &&
 | |
| 				    ((smtc_status & SMTC_TLB_SHARED) ||
 | |
| 				     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
 | |
| 					settc(cpu_data[i].tc_id);
 | |
| 					prevhalt = read_tc_c0_tchalt() & TCHALT_H;
 | |
| 					if (!prevhalt) {
 | |
| 						write_tc_c0_tchalt(TCHALT_H);
 | |
| 						mips_ihb();
 | |
| 					}
 | |
| 					tcstat = read_tc_c0_tcstatus();
 | |
| 					smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
 | |
| 					if (!prevhalt)
 | |
| 						write_tc_c0_tchalt(0);
 | |
| 				}
 | |
| 			}
 | |
| 			if (!asid)		/* fix version if needed */
 | |
| 				asid = ASID_FIRST_VERSION;
 | |
| 			local_flush_tlb_all();	/* start new asid cycle */
 | |
| 		}
 | |
| 	} while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
 | |
| 
 | |
| 	/*
 | |
| 	 * SMTC shares the TLB within VPEs and possibly across all VPEs.
 | |
| 	 */
 | |
| 	for_each_online_cpu(i) {
 | |
| 		if ((smtc_status & SMTC_TLB_SHARED) ||
 | |
| 		    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
 | |
| 			cpu_context(i, mm) = asid_cache(i) = asid;
 | |
| 	}
 | |
| 
 | |
| 	if (smtc_status & SMTC_TLB_SHARED)
 | |
| 		evpe(mtflags);
 | |
| 	else
 | |
| 		emt(mtflags);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoked from macros defined in mmu_context.h
 | |
|  * which must already have disabled interrupts
 | |
|  * and done a DVPE or DMT as appropriate.
 | |
|  */
 | |
| 
 | |
| void smtc_flush_tlb_asid(unsigned long asid)
 | |
| {
 | |
| 	int entry;
 | |
| 	unsigned long ehi;
 | |
| 
 | |
| 	entry = read_c0_wired();
 | |
| 
 | |
| 	/* Traverse all non-wired entries */
 | |
| 	while (entry < current_cpu_data.tlbsize) {
 | |
| 		write_c0_index(entry);
 | |
| 		ehb();
 | |
| 		tlb_read();
 | |
| 		ehb();
 | |
| 		ehi = read_c0_entryhi();
 | |
| 		if ((ehi & ASID_MASK) == asid) {
 | |
| 		    /*
 | |
| 		     * Invalidate only entries with specified ASID,
 | |
| 		     * makiing sure all entries differ.
 | |
| 		     */
 | |
| 		    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
 | |
| 		    write_c0_entrylo0(0);
 | |
| 		    write_c0_entrylo1(0);
 | |
| 		    mtc0_tlbw_hazard();
 | |
| 		    tlb_write_indexed();
 | |
| 		}
 | |
| 		entry++;
 | |
| 	}
 | |
| 	write_c0_index(PARKED_INDEX);
 | |
| 	tlbw_use_hazard();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Support for single-threading cache flush operations.
 | |
|  */
 | |
| 
 | |
| static int halt_state_save[NR_CPUS];
 | |
| 
 | |
| /*
 | |
|  * To really, really be sure that nothing is being done
 | |
|  * by other TCs, halt them all.  This code assumes that
 | |
|  * a DVPE has already been done, so while their Halted
 | |
|  * state is theoretically architecturally unstable, in
 | |
|  * practice, it's not going to change while we're looking
 | |
|  * at it.
 | |
|  */
 | |
| 
 | |
| void smtc_cflush_lockdown(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cpu != smp_processor_id()) {
 | |
| 			settc(cpu_data[cpu].tc_id);
 | |
| 			halt_state_save[cpu] = read_tc_c0_tchalt();
 | |
| 			write_tc_c0_tchalt(TCHALT_H);
 | |
| 		}
 | |
| 	}
 | |
| 	mips_ihb();
 | |
| }
 | |
| 
 | |
| /* It would be cheating to change the cpu_online states during a flush! */
 | |
| 
 | |
| void smtc_cflush_release(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start with a hazard barrier to ensure
 | |
| 	 * that all CACHE ops have played through.
 | |
| 	 */
 | |
| 	mips_ihb();
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cpu != smp_processor_id()) {
 | |
| 			settc(cpu_data[cpu].tc_id);
 | |
| 			write_tc_c0_tchalt(halt_state_save[cpu]);
 | |
| 		}
 | |
| 	}
 | |
| 	mips_ihb();
 | |
| }
 |