VMAC implementation, as it is, does not work with blocks that are not multiples of 128-bytes. Furthermore, this is a problem when using the implementation on scatterlists, even when the complete plain text is 128-byte multiple, as the pieces that get passed to vmac_update can be pretty much any size. I also added test cases for unaligned blocks. Signed-off-by: Salman Qazi <sqazi@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			715 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			715 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Modified to interface to the Linux kernel
 | 
						|
 * Copyright (c) 2009, Intel Corporation.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify it
 | 
						|
 * under the terms and conditions of the GNU General Public License,
 | 
						|
 * version 2, as published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope it will be useful, but WITHOUT
 | 
						|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
						|
 * more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License along with
 | 
						|
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 | 
						|
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 | 
						|
 */
 | 
						|
 | 
						|
/* --------------------------------------------------------------------------
 | 
						|
 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
 | 
						|
 * This implementation is herby placed in the public domain.
 | 
						|
 * The authors offers no warranty. Use at your own risk.
 | 
						|
 * Please send bug reports to the authors.
 | 
						|
 * Last modified: 17 APR 08, 1700 PDT
 | 
						|
 * ----------------------------------------------------------------------- */
 | 
						|
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/crypto.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <asm/byteorder.h>
 | 
						|
#include <crypto/scatterwalk.h>
 | 
						|
#include <crypto/vmac.h>
 | 
						|
#include <crypto/internal/hash.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Constants and masks
 | 
						|
 */
 | 
						|
#define UINT64_C(x) x##ULL
 | 
						|
static const u64 p64   = UINT64_C(0xfffffffffffffeff);	/* 2^64 - 257 prime  */
 | 
						|
static const u64 m62   = UINT64_C(0x3fffffffffffffff);	/* 62-bit mask       */
 | 
						|
static const u64 m63   = UINT64_C(0x7fffffffffffffff);	/* 63-bit mask       */
 | 
						|
static const u64 m64   = UINT64_C(0xffffffffffffffff);	/* 64-bit mask       */
 | 
						|
static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);	/* Poly key mask     */
 | 
						|
 | 
						|
#define pe64_to_cpup le64_to_cpup		/* Prefer little endian */
 | 
						|
 | 
						|
#ifdef __LITTLE_ENDIAN
 | 
						|
#define INDEX_HIGH 1
 | 
						|
#define INDEX_LOW 0
 | 
						|
#else
 | 
						|
#define INDEX_HIGH 0
 | 
						|
#define INDEX_LOW 1
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * The following routines are used in this implementation. They are
 | 
						|
 * written via macros to simulate zero-overhead call-by-reference.
 | 
						|
 *
 | 
						|
 * MUL64: 64x64->128-bit multiplication
 | 
						|
 * PMUL64: assumes top bits cleared on inputs
 | 
						|
 * ADD128: 128x128->128-bit addition
 | 
						|
 */
 | 
						|
 | 
						|
#define ADD128(rh, rl, ih, il)						\
 | 
						|
	do {								\
 | 
						|
		u64 _il = (il);						\
 | 
						|
		(rl) += (_il);						\
 | 
						|
		if ((rl) < (_il))					\
 | 
						|
			(rh)++;						\
 | 
						|
		(rh) += (ih);						\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2))
 | 
						|
 | 
						|
#define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\
 | 
						|
	do {								\
 | 
						|
		u64 _i1 = (i1), _i2 = (i2);				\
 | 
						|
		u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);	\
 | 
						|
		rh = MUL32(_i1>>32, _i2>>32);				\
 | 
						|
		rl = MUL32(_i1, _i2);					\
 | 
						|
		ADD128(rh, rl, (m >> 32), (m << 32));			\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#define MUL64(rh, rl, i1, i2)						\
 | 
						|
	do {								\
 | 
						|
		u64 _i1 = (i1), _i2 = (i2);				\
 | 
						|
		u64 m1 = MUL32(_i1, _i2>>32);				\
 | 
						|
		u64 m2 = MUL32(_i1>>32, _i2);				\
 | 
						|
		rh = MUL32(_i1>>32, _i2>>32);				\
 | 
						|
		rl = MUL32(_i1, _i2);					\
 | 
						|
		ADD128(rh, rl, (m1 >> 32), (m1 << 32));			\
 | 
						|
		ADD128(rh, rl, (m2 >> 32), (m2 << 32));			\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
/*
 | 
						|
 * For highest performance the L1 NH and L2 polynomial hashes should be
 | 
						|
 * carefully implemented to take advantage of one's target architecture.
 | 
						|
 * Here these two hash functions are defined multiple time; once for
 | 
						|
 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
 | 
						|
 * for the rest (32-bit) architectures.
 | 
						|
 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
 | 
						|
 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
 | 
						|
 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
 | 
						|
 * NH computations at once).
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_64BIT
 | 
						|
 | 
						|
#define nh_16(mp, kp, nw, rh, rl)					\
 | 
						|
	do {								\
 | 
						|
		int i; u64 th, tl;					\
 | 
						|
		rh = rl = 0;						\
 | 
						|
		for (i = 0; i < nw; i += 2) {				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
 | 
						|
				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
		}							\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\
 | 
						|
	do {								\
 | 
						|
		int i; u64 th, tl;					\
 | 
						|
		rh1 = rl1 = rh = rl = 0;				\
 | 
						|
		for (i = 0; i < nw; i += 2) {				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
 | 
						|
				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
 | 
						|
				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
 | 
						|
			ADD128(rh1, rl1, th, tl);			\
 | 
						|
		}							\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
 | 
						|
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
 | 
						|
	do {								\
 | 
						|
		int i; u64 th, tl;					\
 | 
						|
		rh = rl = 0;						\
 | 
						|
		for (i = 0; i < nw; i += 8) {				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
 | 
						|
				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
 | 
						|
				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
 | 
						|
				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
 | 
						|
				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
		}							\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\
 | 
						|
	do {								\
 | 
						|
		int i; u64 th, tl;					\
 | 
						|
		rh1 = rl1 = rh = rl = 0;				\
 | 
						|
		for (i = 0; i < nw; i += 8) {				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],	\
 | 
						|
				pe64_to_cpup((mp)+i+1)+(kp)[i+1]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],	\
 | 
						|
				pe64_to_cpup((mp)+i+1)+(kp)[i+3]);	\
 | 
						|
			ADD128(rh1, rl1, th, tl);			\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2],	\
 | 
						|
				pe64_to_cpup((mp)+i+3)+(kp)[i+3]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4],	\
 | 
						|
				pe64_to_cpup((mp)+i+3)+(kp)[i+5]);	\
 | 
						|
			ADD128(rh1, rl1, th, tl);			\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4],	\
 | 
						|
				pe64_to_cpup((mp)+i+5)+(kp)[i+5]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6],	\
 | 
						|
				pe64_to_cpup((mp)+i+5)+(kp)[i+7]);	\
 | 
						|
			ADD128(rh1, rl1, th, tl);			\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6],	\
 | 
						|
				pe64_to_cpup((mp)+i+7)+(kp)[i+7]);	\
 | 
						|
			ADD128(rh, rl, th, tl);				\
 | 
						|
			MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8],	\
 | 
						|
				pe64_to_cpup((mp)+i+7)+(kp)[i+9]);	\
 | 
						|
			ADD128(rh1, rl1, th, tl);			\
 | 
						|
		}							\
 | 
						|
	} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define poly_step(ah, al, kh, kl, mh, ml)				\
 | 
						|
	do {								\
 | 
						|
		u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;		\
 | 
						|
		/* compute ab*cd, put bd into result registers */	\
 | 
						|
		PMUL64(t3h, t3l, al, kh);				\
 | 
						|
		PMUL64(t2h, t2l, ah, kl);				\
 | 
						|
		PMUL64(t1h, t1l, ah, 2*kh);				\
 | 
						|
		PMUL64(ah, al, al, kl);					\
 | 
						|
		/* add 2 * ac to result */				\
 | 
						|
		ADD128(ah, al, t1h, t1l);				\
 | 
						|
		/* add together ad + bc */				\
 | 
						|
		ADD128(t2h, t2l, t3h, t3l);				\
 | 
						|
		/* now (ah,al), (t2l,2*t2h) need summing */		\
 | 
						|
		/* first add the high registers, carrying into t2h */	\
 | 
						|
		ADD128(t2h, ah, z, t2l);				\
 | 
						|
		/* double t2h and add top bit of ah */			\
 | 
						|
		t2h = 2 * t2h + (ah >> 63);				\
 | 
						|
		ah &= m63;						\
 | 
						|
		/* now add the low registers */				\
 | 
						|
		ADD128(ah, al, mh, ml);					\
 | 
						|
		ADD128(ah, al, z, t2h);					\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#else /* ! CONFIG_64BIT */
 | 
						|
 | 
						|
#ifndef nh_16
 | 
						|
#define nh_16(mp, kp, nw, rh, rl)					\
 | 
						|
	do {								\
 | 
						|
		u64 t1, t2, m1, m2, t;					\
 | 
						|
		int i;							\
 | 
						|
		rh = rl = t = 0;					\
 | 
						|
		for (i = 0; i < nw; i += 2)  {				\
 | 
						|
			t1 = pe64_to_cpup(mp+i) + kp[i];		\
 | 
						|
			t2 = pe64_to_cpup(mp+i+1) + kp[i+1];		\
 | 
						|
			m2 = MUL32(t1 >> 32, t2);			\
 | 
						|
			m1 = MUL32(t1, t2 >> 32);			\
 | 
						|
			ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),	\
 | 
						|
				MUL32(t1, t2));				\
 | 
						|
			rh += (u64)(u32)(m1 >> 32)			\
 | 
						|
				+ (u32)(m2 >> 32);			\
 | 
						|
			t += (u64)(u32)m1 + (u32)m2;			\
 | 
						|
		}							\
 | 
						|
		ADD128(rh, rl, (t >> 32), (t << 32));			\
 | 
						|
	} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
static void poly_step_func(u64 *ahi, u64 *alo,
 | 
						|
			const u64 *kh, const u64 *kl,
 | 
						|
			const u64 *mh, const u64 *ml)
 | 
						|
{
 | 
						|
#define a0 (*(((u32 *)alo)+INDEX_LOW))
 | 
						|
#define a1 (*(((u32 *)alo)+INDEX_HIGH))
 | 
						|
#define a2 (*(((u32 *)ahi)+INDEX_LOW))
 | 
						|
#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
 | 
						|
#define k0 (*(((u32 *)kl)+INDEX_LOW))
 | 
						|
#define k1 (*(((u32 *)kl)+INDEX_HIGH))
 | 
						|
#define k2 (*(((u32 *)kh)+INDEX_LOW))
 | 
						|
#define k3 (*(((u32 *)kh)+INDEX_HIGH))
 | 
						|
 | 
						|
	u64 p, q, t;
 | 
						|
	u32 t2;
 | 
						|
 | 
						|
	p = MUL32(a3, k3);
 | 
						|
	p += p;
 | 
						|
	p += *(u64 *)mh;
 | 
						|
	p += MUL32(a0, k2);
 | 
						|
	p += MUL32(a1, k1);
 | 
						|
	p += MUL32(a2, k0);
 | 
						|
	t = (u32)(p);
 | 
						|
	p >>= 32;
 | 
						|
	p += MUL32(a0, k3);
 | 
						|
	p += MUL32(a1, k2);
 | 
						|
	p += MUL32(a2, k1);
 | 
						|
	p += MUL32(a3, k0);
 | 
						|
	t |= ((u64)((u32)p & 0x7fffffff)) << 32;
 | 
						|
	p >>= 31;
 | 
						|
	p += (u64)(((u32 *)ml)[INDEX_LOW]);
 | 
						|
	p += MUL32(a0, k0);
 | 
						|
	q =  MUL32(a1, k3);
 | 
						|
	q += MUL32(a2, k2);
 | 
						|
	q += MUL32(a3, k1);
 | 
						|
	q += q;
 | 
						|
	p += q;
 | 
						|
	t2 = (u32)(p);
 | 
						|
	p >>= 32;
 | 
						|
	p += (u64)(((u32 *)ml)[INDEX_HIGH]);
 | 
						|
	p += MUL32(a0, k1);
 | 
						|
	p += MUL32(a1, k0);
 | 
						|
	q =  MUL32(a2, k3);
 | 
						|
	q += MUL32(a3, k2);
 | 
						|
	q += q;
 | 
						|
	p += q;
 | 
						|
	*(u64 *)(alo) = (p << 32) | t2;
 | 
						|
	p >>= 32;
 | 
						|
	*(u64 *)(ahi) = p + t;
 | 
						|
 | 
						|
#undef a0
 | 
						|
#undef a1
 | 
						|
#undef a2
 | 
						|
#undef a3
 | 
						|
#undef k0
 | 
						|
#undef k1
 | 
						|
#undef k2
 | 
						|
#undef k3
 | 
						|
}
 | 
						|
 | 
						|
#define poly_step(ah, al, kh, kl, mh, ml)				\
 | 
						|
	poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
 | 
						|
 | 
						|
#endif  /* end of specialized NH and poly definitions */
 | 
						|
 | 
						|
/* At least nh_16 is defined. Defined others as needed here */
 | 
						|
#ifndef nh_16_2
 | 
						|
#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)				\
 | 
						|
	do { 								\
 | 
						|
		nh_16(mp, kp, nw, rh, rl);				\
 | 
						|
		nh_16(mp, ((kp)+2), nw, rh2, rl2);			\
 | 
						|
	} while (0)
 | 
						|
#endif
 | 
						|
#ifndef nh_vmac_nhbytes
 | 
						|
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
 | 
						|
	nh_16(mp, kp, nw, rh, rl)
 | 
						|
#endif
 | 
						|
#ifndef nh_vmac_nhbytes_2
 | 
						|
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)			\
 | 
						|
	do {								\
 | 
						|
		nh_vmac_nhbytes(mp, kp, nw, rh, rl);			\
 | 
						|
		nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);		\
 | 
						|
	} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
static void vhash_abort(struct vmac_ctx *ctx)
 | 
						|
{
 | 
						|
	ctx->polytmp[0] = ctx->polykey[0] ;
 | 
						|
	ctx->polytmp[1] = ctx->polykey[1] ;
 | 
						|
	ctx->first_block_processed = 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
 | 
						|
{
 | 
						|
	u64 rh, rl, t, z = 0;
 | 
						|
 | 
						|
	/* fully reduce (p1,p2)+(len,0) mod p127 */
 | 
						|
	t = p1 >> 63;
 | 
						|
	p1 &= m63;
 | 
						|
	ADD128(p1, p2, len, t);
 | 
						|
	/* At this point, (p1,p2) is at most 2^127+(len<<64) */
 | 
						|
	t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
 | 
						|
	ADD128(p1, p2, z, t);
 | 
						|
	p1 &= m63;
 | 
						|
 | 
						|
	/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
 | 
						|
	t = p1 + (p2 >> 32);
 | 
						|
	t += (t >> 32);
 | 
						|
	t += (u32)t > 0xfffffffeu;
 | 
						|
	p1 += (t >> 32);
 | 
						|
	p2 += (p1 << 32);
 | 
						|
 | 
						|
	/* compute (p1+k1)%p64 and (p2+k2)%p64 */
 | 
						|
	p1 += k1;
 | 
						|
	p1 += (0 - (p1 < k1)) & 257;
 | 
						|
	p2 += k2;
 | 
						|
	p2 += (0 - (p2 < k2)) & 257;
 | 
						|
 | 
						|
	/* compute (p1+k1)*(p2+k2)%p64 */
 | 
						|
	MUL64(rh, rl, p1, p2);
 | 
						|
	t = rh >> 56;
 | 
						|
	ADD128(t, rl, z, rh);
 | 
						|
	rh <<= 8;
 | 
						|
	ADD128(t, rl, z, rh);
 | 
						|
	t += t << 8;
 | 
						|
	rl += t;
 | 
						|
	rl += (0 - (rl < t)) & 257;
 | 
						|
	rl += (0 - (rl > p64-1)) & 257;
 | 
						|
	return rl;
 | 
						|
}
 | 
						|
 | 
						|
static void vhash_update(const unsigned char *m,
 | 
						|
			unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
 | 
						|
			struct vmac_ctx *ctx)
 | 
						|
{
 | 
						|
	u64 rh, rl, *mptr;
 | 
						|
	const u64 *kptr = (u64 *)ctx->nhkey;
 | 
						|
	int i;
 | 
						|
	u64 ch, cl;
 | 
						|
	u64 pkh = ctx->polykey[0];
 | 
						|
	u64 pkl = ctx->polykey[1];
 | 
						|
 | 
						|
	if (!mbytes)
 | 
						|
		return;
 | 
						|
 | 
						|
	BUG_ON(mbytes % VMAC_NHBYTES);
 | 
						|
 | 
						|
	mptr = (u64 *)m;
 | 
						|
	i = mbytes / VMAC_NHBYTES;  /* Must be non-zero */
 | 
						|
 | 
						|
	ch = ctx->polytmp[0];
 | 
						|
	cl = ctx->polytmp[1];
 | 
						|
 | 
						|
	if (!ctx->first_block_processed) {
 | 
						|
		ctx->first_block_processed = 1;
 | 
						|
		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 | 
						|
		rh &= m62;
 | 
						|
		ADD128(ch, cl, rh, rl);
 | 
						|
		mptr += (VMAC_NHBYTES/sizeof(u64));
 | 
						|
		i--;
 | 
						|
	}
 | 
						|
 | 
						|
	while (i--) {
 | 
						|
		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 | 
						|
		rh &= m62;
 | 
						|
		poly_step(ch, cl, pkh, pkl, rh, rl);
 | 
						|
		mptr += (VMAC_NHBYTES/sizeof(u64));
 | 
						|
	}
 | 
						|
 | 
						|
	ctx->polytmp[0] = ch;
 | 
						|
	ctx->polytmp[1] = cl;
 | 
						|
}
 | 
						|
 | 
						|
static u64 vhash(unsigned char m[], unsigned int mbytes,
 | 
						|
			u64 *tagl, struct vmac_ctx *ctx)
 | 
						|
{
 | 
						|
	u64 rh, rl, *mptr;
 | 
						|
	const u64 *kptr = (u64 *)ctx->nhkey;
 | 
						|
	int i, remaining;
 | 
						|
	u64 ch, cl;
 | 
						|
	u64 pkh = ctx->polykey[0];
 | 
						|
	u64 pkl = ctx->polykey[1];
 | 
						|
 | 
						|
	mptr = (u64 *)m;
 | 
						|
	i = mbytes / VMAC_NHBYTES;
 | 
						|
	remaining = mbytes % VMAC_NHBYTES;
 | 
						|
 | 
						|
	if (ctx->first_block_processed) {
 | 
						|
		ch = ctx->polytmp[0];
 | 
						|
		cl = ctx->polytmp[1];
 | 
						|
	} else if (i) {
 | 
						|
		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
 | 
						|
		ch &= m62;
 | 
						|
		ADD128(ch, cl, pkh, pkl);
 | 
						|
		mptr += (VMAC_NHBYTES/sizeof(u64));
 | 
						|
		i--;
 | 
						|
	} else if (remaining) {
 | 
						|
		nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
 | 
						|
		ch &= m62;
 | 
						|
		ADD128(ch, cl, pkh, pkl);
 | 
						|
		mptr += (VMAC_NHBYTES/sizeof(u64));
 | 
						|
		goto do_l3;
 | 
						|
	} else {/* Empty String */
 | 
						|
		ch = pkh; cl = pkl;
 | 
						|
		goto do_l3;
 | 
						|
	}
 | 
						|
 | 
						|
	while (i--) {
 | 
						|
		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
 | 
						|
		rh &= m62;
 | 
						|
		poly_step(ch, cl, pkh, pkl, rh, rl);
 | 
						|
		mptr += (VMAC_NHBYTES/sizeof(u64));
 | 
						|
	}
 | 
						|
	if (remaining) {
 | 
						|
		nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
 | 
						|
		rh &= m62;
 | 
						|
		poly_step(ch, cl, pkh, pkl, rh, rl);
 | 
						|
	}
 | 
						|
 | 
						|
do_l3:
 | 
						|
	vhash_abort(ctx);
 | 
						|
	remaining *= 8;
 | 
						|
	return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
 | 
						|
}
 | 
						|
 | 
						|
static u64 vmac(unsigned char m[], unsigned int mbytes,
 | 
						|
			const unsigned char n[16], u64 *tagl,
 | 
						|
			struct vmac_ctx_t *ctx)
 | 
						|
{
 | 
						|
	u64 *in_n, *out_p;
 | 
						|
	u64 p, h;
 | 
						|
	int i;
 | 
						|
 | 
						|
	in_n = ctx->__vmac_ctx.cached_nonce;
 | 
						|
	out_p = ctx->__vmac_ctx.cached_aes;
 | 
						|
 | 
						|
	i = n[15] & 1;
 | 
						|
	if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
 | 
						|
		in_n[0] = *(u64 *)(n);
 | 
						|
		in_n[1] = *(u64 *)(n+8);
 | 
						|
		((unsigned char *)in_n)[15] &= 0xFE;
 | 
						|
		crypto_cipher_encrypt_one(ctx->child,
 | 
						|
			(unsigned char *)out_p, (unsigned char *)in_n);
 | 
						|
 | 
						|
		((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
 | 
						|
	}
 | 
						|
	p = be64_to_cpup(out_p + i);
 | 
						|
	h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
 | 
						|
	return le64_to_cpu(p + h);
 | 
						|
}
 | 
						|
 | 
						|
static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
 | 
						|
{
 | 
						|
	u64 in[2] = {0}, out[2];
 | 
						|
	unsigned i;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	/* Fill nh key */
 | 
						|
	((unsigned char *)in)[0] = 0x80;
 | 
						|
	for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
 | 
						|
		crypto_cipher_encrypt_one(ctx->child,
 | 
						|
			(unsigned char *)out, (unsigned char *)in);
 | 
						|
		ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
 | 
						|
		ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
 | 
						|
		((unsigned char *)in)[15] += 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill poly key */
 | 
						|
	((unsigned char *)in)[0] = 0xC0;
 | 
						|
	in[1] = 0;
 | 
						|
	for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
 | 
						|
		crypto_cipher_encrypt_one(ctx->child,
 | 
						|
			(unsigned char *)out, (unsigned char *)in);
 | 
						|
		ctx->__vmac_ctx.polytmp[i] =
 | 
						|
			ctx->__vmac_ctx.polykey[i] =
 | 
						|
				be64_to_cpup(out) & mpoly;
 | 
						|
		ctx->__vmac_ctx.polytmp[i+1] =
 | 
						|
			ctx->__vmac_ctx.polykey[i+1] =
 | 
						|
				be64_to_cpup(out+1) & mpoly;
 | 
						|
		((unsigned char *)in)[15] += 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fill ip key */
 | 
						|
	((unsigned char *)in)[0] = 0xE0;
 | 
						|
	in[1] = 0;
 | 
						|
	for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
 | 
						|
		do {
 | 
						|
			crypto_cipher_encrypt_one(ctx->child,
 | 
						|
				(unsigned char *)out, (unsigned char *)in);
 | 
						|
			ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
 | 
						|
			ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
 | 
						|
			((unsigned char *)in)[15] += 1;
 | 
						|
		} while (ctx->__vmac_ctx.l3key[i] >= p64
 | 
						|
			|| ctx->__vmac_ctx.l3key[i+1] >= p64);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Invalidate nonce/aes cache and reset other elements */
 | 
						|
	ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
 | 
						|
	ctx->__vmac_ctx.cached_nonce[1] = (u64)0;  /* Ensure illegal nonce */
 | 
						|
	ctx->__vmac_ctx.first_block_processed = 0;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int vmac_setkey(struct crypto_shash *parent,
 | 
						|
		const u8 *key, unsigned int keylen)
 | 
						|
{
 | 
						|
	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
 | 
						|
 | 
						|
	if (keylen != VMAC_KEY_LEN) {
 | 
						|
		crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return vmac_set_key((u8 *)key, ctx);
 | 
						|
}
 | 
						|
 | 
						|
static int vmac_init(struct shash_desc *pdesc)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vmac_update(struct shash_desc *pdesc, const u8 *p,
 | 
						|
		unsigned int len)
 | 
						|
{
 | 
						|
	struct crypto_shash *parent = pdesc->tfm;
 | 
						|
	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
 | 
						|
	int expand;
 | 
						|
	int min;
 | 
						|
 | 
						|
	expand = VMAC_NHBYTES - ctx->partial_size > 0 ?
 | 
						|
			VMAC_NHBYTES - ctx->partial_size : 0;
 | 
						|
 | 
						|
	min = len < expand ? len : expand;
 | 
						|
 | 
						|
	memcpy(ctx->partial + ctx->partial_size, p, min);
 | 
						|
	ctx->partial_size += min;
 | 
						|
 | 
						|
	if (len < expand)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx);
 | 
						|
	ctx->partial_size = 0;
 | 
						|
 | 
						|
	len -= expand;
 | 
						|
	p += expand;
 | 
						|
 | 
						|
	if (len % VMAC_NHBYTES) {
 | 
						|
		memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES),
 | 
						|
			len % VMAC_NHBYTES);
 | 
						|
		ctx->partial_size = len % VMAC_NHBYTES;
 | 
						|
	}
 | 
						|
 | 
						|
	vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vmac_final(struct shash_desc *pdesc, u8 *out)
 | 
						|
{
 | 
						|
	struct crypto_shash *parent = pdesc->tfm;
 | 
						|
	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
 | 
						|
	vmac_t mac;
 | 
						|
	u8 nonce[16] = {};
 | 
						|
 | 
						|
	/* vmac() ends up accessing outside the array bounds that
 | 
						|
	 * we specify.  In appears to access up to the next 2-word
 | 
						|
	 * boundary.  We'll just be uber cautious and zero the
 | 
						|
	 * unwritten bytes in the buffer.
 | 
						|
	 */
 | 
						|
	if (ctx->partial_size) {
 | 
						|
		memset(ctx->partial + ctx->partial_size, 0,
 | 
						|
			VMAC_NHBYTES - ctx->partial_size);
 | 
						|
	}
 | 
						|
	mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx);
 | 
						|
	memcpy(out, &mac, sizeof(vmac_t));
 | 
						|
	memset(&mac, 0, sizeof(vmac_t));
 | 
						|
	memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
 | 
						|
	ctx->partial_size = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vmac_init_tfm(struct crypto_tfm *tfm)
 | 
						|
{
 | 
						|
	struct crypto_cipher *cipher;
 | 
						|
	struct crypto_instance *inst = (void *)tfm->__crt_alg;
 | 
						|
	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
 | 
						|
	struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
 | 
						|
 | 
						|
	cipher = crypto_spawn_cipher(spawn);
 | 
						|
	if (IS_ERR(cipher))
 | 
						|
		return PTR_ERR(cipher);
 | 
						|
 | 
						|
	ctx->child = cipher;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void vmac_exit_tfm(struct crypto_tfm *tfm)
 | 
						|
{
 | 
						|
	struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	crypto_free_cipher(ctx->child);
 | 
						|
}
 | 
						|
 | 
						|
static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
 | 
						|
{
 | 
						|
	struct shash_instance *inst;
 | 
						|
	struct crypto_alg *alg;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
 | 
						|
			CRYPTO_ALG_TYPE_MASK);
 | 
						|
	if (IS_ERR(alg))
 | 
						|
		return PTR_ERR(alg);
 | 
						|
 | 
						|
	inst = shash_alloc_instance("vmac", alg);
 | 
						|
	err = PTR_ERR(inst);
 | 
						|
	if (IS_ERR(inst))
 | 
						|
		goto out_put_alg;
 | 
						|
 | 
						|
	err = crypto_init_spawn(shash_instance_ctx(inst), alg,
 | 
						|
			shash_crypto_instance(inst),
 | 
						|
			CRYPTO_ALG_TYPE_MASK);
 | 
						|
	if (err)
 | 
						|
		goto out_free_inst;
 | 
						|
 | 
						|
	inst->alg.base.cra_priority = alg->cra_priority;
 | 
						|
	inst->alg.base.cra_blocksize = alg->cra_blocksize;
 | 
						|
	inst->alg.base.cra_alignmask = alg->cra_alignmask;
 | 
						|
 | 
						|
	inst->alg.digestsize = sizeof(vmac_t);
 | 
						|
	inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
 | 
						|
	inst->alg.base.cra_init = vmac_init_tfm;
 | 
						|
	inst->alg.base.cra_exit = vmac_exit_tfm;
 | 
						|
 | 
						|
	inst->alg.init = vmac_init;
 | 
						|
	inst->alg.update = vmac_update;
 | 
						|
	inst->alg.final = vmac_final;
 | 
						|
	inst->alg.setkey = vmac_setkey;
 | 
						|
 | 
						|
	err = shash_register_instance(tmpl, inst);
 | 
						|
	if (err) {
 | 
						|
out_free_inst:
 | 
						|
		shash_free_instance(shash_crypto_instance(inst));
 | 
						|
	}
 | 
						|
 | 
						|
out_put_alg:
 | 
						|
	crypto_mod_put(alg);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static struct crypto_template vmac_tmpl = {
 | 
						|
	.name = "vmac",
 | 
						|
	.create = vmac_create,
 | 
						|
	.free = shash_free_instance,
 | 
						|
	.module = THIS_MODULE,
 | 
						|
};
 | 
						|
 | 
						|
static int __init vmac_module_init(void)
 | 
						|
{
 | 
						|
	return crypto_register_template(&vmac_tmpl);
 | 
						|
}
 | 
						|
 | 
						|
static void __exit vmac_module_exit(void)
 | 
						|
{
 | 
						|
	crypto_unregister_template(&vmac_tmpl);
 | 
						|
}
 | 
						|
 | 
						|
module_init(vmac_module_init);
 | 
						|
module_exit(vmac_module_exit);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_DESCRIPTION("VMAC hash algorithm");
 |