 db59760582
			
		
	
	
	db59760582
	
	
	
		
			
			This patch migrates swsusp_show_speed and its callers to using ktime_t instead
of 'struct timeval' which suffers from the y2038 problem.
Changes to swsusp_show_speed:
        - use ktime_t for start and stop times
        - pass start and stop times by value
Calling functions affected:
        - load_image
        - load_image_lzo
        - save_image
        - save_image_lzo
        - hibernate_preallocate_memory
Design decisions:
        - use ktime_t to preserve same granularity of reporting as before
        - use centisecs logic as before to avoid 'div by zero' issues caused by
          using seconds and nanoseconds directly
        - use monotonic time (ktime_get()) since we only care about elapsed time.
Signed-off-by: Tina Ruchandani <ruchandani.tina@gmail.com>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
		
	
			
		
			
				
	
	
		
			2625 lines
		
	
	
	
		
			68 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2625 lines
		
	
	
	
		
			68 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/kernel/power/snapshot.c
 | |
|  *
 | |
|  * This file provides system snapshot/restore functionality for swsusp.
 | |
|  *
 | |
|  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
 | |
|  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 | |
|  *
 | |
|  * This file is released under the GPLv2.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/version.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/ktime.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include "power.h"
 | |
| 
 | |
| static int swsusp_page_is_free(struct page *);
 | |
| static void swsusp_set_page_forbidden(struct page *);
 | |
| static void swsusp_unset_page_forbidden(struct page *);
 | |
| 
 | |
| /*
 | |
|  * Number of bytes to reserve for memory allocations made by device drivers
 | |
|  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 | |
|  * cause image creation to fail (tunable via /sys/power/reserved_size).
 | |
|  */
 | |
| unsigned long reserved_size;
 | |
| 
 | |
| void __init hibernate_reserved_size_init(void)
 | |
| {
 | |
| 	reserved_size = SPARE_PAGES * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preferred image size in bytes (tunable via /sys/power/image_size).
 | |
|  * When it is set to N, swsusp will do its best to ensure the image
 | |
|  * size will not exceed N bytes, but if that is impossible, it will
 | |
|  * try to create the smallest image possible.
 | |
|  */
 | |
| unsigned long image_size;
 | |
| 
 | |
| void __init hibernate_image_size_init(void)
 | |
| {
 | |
| 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| /* List of PBEs needed for restoring the pages that were allocated before
 | |
|  * the suspend and included in the suspend image, but have also been
 | |
|  * allocated by the "resume" kernel, so their contents cannot be written
 | |
|  * directly to their "original" page frames.
 | |
|  */
 | |
| struct pbe *restore_pblist;
 | |
| 
 | |
| /* Pointer to an auxiliary buffer (1 page) */
 | |
| static void *buffer;
 | |
| 
 | |
| /**
 | |
|  *	@safe_needed - on resume, for storing the PBE list and the image,
 | |
|  *	we can only use memory pages that do not conflict with the pages
 | |
|  *	used before suspend.  The unsafe pages have PageNosaveFree set
 | |
|  *	and we count them using unsafe_pages.
 | |
|  *
 | |
|  *	Each allocated image page is marked as PageNosave and PageNosaveFree
 | |
|  *	so that swsusp_free() can release it.
 | |
|  */
 | |
| 
 | |
| #define PG_ANY		0
 | |
| #define PG_SAFE		1
 | |
| #define PG_UNSAFE_CLEAR	1
 | |
| #define PG_UNSAFE_KEEP	0
 | |
| 
 | |
| static unsigned int allocated_unsafe_pages;
 | |
| 
 | |
| static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 | |
| {
 | |
| 	void *res;
 | |
| 
 | |
| 	res = (void *)get_zeroed_page(gfp_mask);
 | |
| 	if (safe_needed)
 | |
| 		while (res && swsusp_page_is_free(virt_to_page(res))) {
 | |
| 			/* The page is unsafe, mark it for swsusp_free() */
 | |
| 			swsusp_set_page_forbidden(virt_to_page(res));
 | |
| 			allocated_unsafe_pages++;
 | |
| 			res = (void *)get_zeroed_page(gfp_mask);
 | |
| 		}
 | |
| 	if (res) {
 | |
| 		swsusp_set_page_forbidden(virt_to_page(res));
 | |
| 		swsusp_set_page_free(virt_to_page(res));
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| unsigned long get_safe_page(gfp_t gfp_mask)
 | |
| {
 | |
| 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 | |
| }
 | |
| 
 | |
| static struct page *alloc_image_page(gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = alloc_page(gfp_mask);
 | |
| 	if (page) {
 | |
| 		swsusp_set_page_forbidden(page);
 | |
| 		swsusp_set_page_free(page);
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	free_image_page - free page represented by @addr, allocated with
 | |
|  *	get_image_page (page flags set by it must be cleared)
 | |
|  */
 | |
| 
 | |
| static inline void free_image_page(void *addr, int clear_nosave_free)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	BUG_ON(!virt_addr_valid(addr));
 | |
| 
 | |
| 	page = virt_to_page(addr);
 | |
| 
 | |
| 	swsusp_unset_page_forbidden(page);
 | |
| 	if (clear_nosave_free)
 | |
| 		swsusp_unset_page_free(page);
 | |
| 
 | |
| 	__free_page(page);
 | |
| }
 | |
| 
 | |
| /* struct linked_page is used to build chains of pages */
 | |
| 
 | |
| #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 | |
| 
 | |
| struct linked_page {
 | |
| 	struct linked_page *next;
 | |
| 	char data[LINKED_PAGE_DATA_SIZE];
 | |
| } __packed;
 | |
| 
 | |
| static inline void
 | |
| free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 | |
| {
 | |
| 	while (list) {
 | |
| 		struct linked_page *lp = list->next;
 | |
| 
 | |
| 		free_image_page(list, clear_page_nosave);
 | |
| 		list = lp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|   *	struct chain_allocator is used for allocating small objects out of
 | |
|   *	a linked list of pages called 'the chain'.
 | |
|   *
 | |
|   *	The chain grows each time when there is no room for a new object in
 | |
|   *	the current page.  The allocated objects cannot be freed individually.
 | |
|   *	It is only possible to free them all at once, by freeing the entire
 | |
|   *	chain.
 | |
|   *
 | |
|   *	NOTE: The chain allocator may be inefficient if the allocated objects
 | |
|   *	are not much smaller than PAGE_SIZE.
 | |
|   */
 | |
| 
 | |
| struct chain_allocator {
 | |
| 	struct linked_page *chain;	/* the chain */
 | |
| 	unsigned int used_space;	/* total size of objects allocated out
 | |
| 					 * of the current page
 | |
| 					 */
 | |
| 	gfp_t gfp_mask;		/* mask for allocating pages */
 | |
| 	int safe_needed;	/* if set, only "safe" pages are allocated */
 | |
| };
 | |
| 
 | |
| static void
 | |
| chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 | |
| {
 | |
| 	ca->chain = NULL;
 | |
| 	ca->used_space = LINKED_PAGE_DATA_SIZE;
 | |
| 	ca->gfp_mask = gfp_mask;
 | |
| 	ca->safe_needed = safe_needed;
 | |
| }
 | |
| 
 | |
| static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 | |
| 		struct linked_page *lp;
 | |
| 
 | |
| 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 | |
| 		if (!lp)
 | |
| 			return NULL;
 | |
| 
 | |
| 		lp->next = ca->chain;
 | |
| 		ca->chain = lp;
 | |
| 		ca->used_space = 0;
 | |
| 	}
 | |
| 	ret = ca->chain->data + ca->used_space;
 | |
| 	ca->used_space += size;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	Data types related to memory bitmaps.
 | |
|  *
 | |
|  *	Memory bitmap is a structure consiting of many linked lists of
 | |
|  *	objects.  The main list's elements are of type struct zone_bitmap
 | |
|  *	and each of them corresonds to one zone.  For each zone bitmap
 | |
|  *	object there is a list of objects of type struct bm_block that
 | |
|  *	represent each blocks of bitmap in which information is stored.
 | |
|  *
 | |
|  *	struct memory_bitmap contains a pointer to the main list of zone
 | |
|  *	bitmap objects, a struct bm_position used for browsing the bitmap,
 | |
|  *	and a pointer to the list of pages used for allocating all of the
 | |
|  *	zone bitmap objects and bitmap block objects.
 | |
|  *
 | |
|  *	NOTE: It has to be possible to lay out the bitmap in memory
 | |
|  *	using only allocations of order 0.  Additionally, the bitmap is
 | |
|  *	designed to work with arbitrary number of zones (this is over the
 | |
|  *	top for now, but let's avoid making unnecessary assumptions ;-).
 | |
|  *
 | |
|  *	struct zone_bitmap contains a pointer to a list of bitmap block
 | |
|  *	objects and a pointer to the bitmap block object that has been
 | |
|  *	most recently used for setting bits.  Additionally, it contains the
 | |
|  *	pfns that correspond to the start and end of the represented zone.
 | |
|  *
 | |
|  *	struct bm_block contains a pointer to the memory page in which
 | |
|  *	information is stored (in the form of a block of bitmap)
 | |
|  *	It also contains the pfns that correspond to the start and end of
 | |
|  *	the represented memory area.
 | |
|  *
 | |
|  *	The memory bitmap is organized as a radix tree to guarantee fast random
 | |
|  *	access to the bits. There is one radix tree for each zone (as returned
 | |
|  *	from create_mem_extents).
 | |
|  *
 | |
|  *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 | |
|  *	two linked lists for the nodes of the tree, one for the inner nodes and
 | |
|  *	one for the leave nodes. The linked leave nodes are used for fast linear
 | |
|  *	access of the memory bitmap.
 | |
|  *
 | |
|  *	The struct rtree_node represents one node of the radix tree.
 | |
|  */
 | |
| 
 | |
| #define BM_END_OF_MAP	(~0UL)
 | |
| 
 | |
| #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 | |
| #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 | |
| #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 | |
| 
 | |
| /*
 | |
|  * struct rtree_node is a wrapper struct to link the nodes
 | |
|  * of the rtree together for easy linear iteration over
 | |
|  * bits and easy freeing
 | |
|  */
 | |
| struct rtree_node {
 | |
| 	struct list_head list;
 | |
| 	unsigned long *data;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * struct mem_zone_bm_rtree represents a bitmap used for one
 | |
|  * populated memory zone.
 | |
|  */
 | |
| struct mem_zone_bm_rtree {
 | |
| 	struct list_head list;		/* Link Zones together         */
 | |
| 	struct list_head nodes;		/* Radix Tree inner nodes      */
 | |
| 	struct list_head leaves;	/* Radix Tree leaves           */
 | |
| 	unsigned long start_pfn;	/* Zone start page frame       */
 | |
| 	unsigned long end_pfn;		/* Zone end page frame + 1     */
 | |
| 	struct rtree_node *rtree;	/* Radix Tree Root             */
 | |
| 	int levels;			/* Number of Radix Tree Levels */
 | |
| 	unsigned int blocks;		/* Number of Bitmap Blocks     */
 | |
| };
 | |
| 
 | |
| /* strcut bm_position is used for browsing memory bitmaps */
 | |
| 
 | |
| struct bm_position {
 | |
| 	struct mem_zone_bm_rtree *zone;
 | |
| 	struct rtree_node *node;
 | |
| 	unsigned long node_pfn;
 | |
| 	int node_bit;
 | |
| };
 | |
| 
 | |
| struct memory_bitmap {
 | |
| 	struct list_head zones;
 | |
| 	struct linked_page *p_list;	/* list of pages used to store zone
 | |
| 					 * bitmap objects and bitmap block
 | |
| 					 * objects
 | |
| 					 */
 | |
| 	struct bm_position cur;	/* most recently used bit position */
 | |
| };
 | |
| 
 | |
| /* Functions that operate on memory bitmaps */
 | |
| 
 | |
| #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 | |
| #if BITS_PER_LONG == 32
 | |
| #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 | |
| #else
 | |
| #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 | |
| #endif
 | |
| #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 | |
| 
 | |
| /*
 | |
|  *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 | |
|  *
 | |
|  *	This function is used to allocate inner nodes as well as the
 | |
|  *	leave nodes of the radix tree. It also adds the node to the
 | |
|  *	corresponding linked list passed in by the *list parameter.
 | |
|  */
 | |
| static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 | |
| 					   struct chain_allocator *ca,
 | |
| 					   struct list_head *list)
 | |
| {
 | |
| 	struct rtree_node *node;
 | |
| 
 | |
| 	node = chain_alloc(ca, sizeof(struct rtree_node));
 | |
| 	if (!node)
 | |
| 		return NULL;
 | |
| 
 | |
| 	node->data = get_image_page(gfp_mask, safe_needed);
 | |
| 	if (!node->data)
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_add_tail(&node->list, list);
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	add_rtree_block - Add a new leave node to the radix tree
 | |
|  *
 | |
|  *	The leave nodes need to be allocated in order to keep the leaves
 | |
|  *	linked list in order. This is guaranteed by the zone->blocks
 | |
|  *	counter.
 | |
|  */
 | |
| static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 | |
| 			   int safe_needed, struct chain_allocator *ca)
 | |
| {
 | |
| 	struct rtree_node *node, *block, **dst;
 | |
| 	unsigned int levels_needed, block_nr;
 | |
| 	int i;
 | |
| 
 | |
| 	block_nr = zone->blocks;
 | |
| 	levels_needed = 0;
 | |
| 
 | |
| 	/* How many levels do we need for this block nr? */
 | |
| 	while (block_nr) {
 | |
| 		levels_needed += 1;
 | |
| 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the rtree has enough levels */
 | |
| 	for (i = zone->levels; i < levels_needed; i++) {
 | |
| 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 | |
| 					&zone->nodes);
 | |
| 		if (!node)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		node->data[0] = (unsigned long)zone->rtree;
 | |
| 		zone->rtree = node;
 | |
| 		zone->levels += 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate new block */
 | |
| 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 | |
| 	if (!block)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Now walk the rtree to insert the block */
 | |
| 	node = zone->rtree;
 | |
| 	dst = &zone->rtree;
 | |
| 	block_nr = zone->blocks;
 | |
| 	for (i = zone->levels; i > 0; i--) {
 | |
| 		int index;
 | |
| 
 | |
| 		if (!node) {
 | |
| 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 | |
| 						&zone->nodes);
 | |
| 			if (!node)
 | |
| 				return -ENOMEM;
 | |
| 			*dst = node;
 | |
| 		}
 | |
| 
 | |
| 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 | |
| 		index &= BM_RTREE_LEVEL_MASK;
 | |
| 		dst = (struct rtree_node **)&((*dst)->data[index]);
 | |
| 		node = *dst;
 | |
| 	}
 | |
| 
 | |
| 	zone->blocks += 1;
 | |
| 	*dst = block;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 | |
| 			       int clear_nosave_free);
 | |
| 
 | |
| /*
 | |
|  *	create_zone_bm_rtree - create a radix tree for one zone
 | |
|  *
 | |
|  *	Allocated the mem_zone_bm_rtree structure and initializes it.
 | |
|  *	This function also allocated and builds the radix tree for the
 | |
|  *	zone.
 | |
|  */
 | |
| static struct mem_zone_bm_rtree *
 | |
| create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
 | |
| 		     struct chain_allocator *ca,
 | |
| 		     unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct mem_zone_bm_rtree *zone;
 | |
| 	unsigned int i, nr_blocks;
 | |
| 	unsigned long pages;
 | |
| 
 | |
| 	pages = end - start;
 | |
| 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 | |
| 	if (!zone)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&zone->nodes);
 | |
| 	INIT_LIST_HEAD(&zone->leaves);
 | |
| 	zone->start_pfn = start;
 | |
| 	zone->end_pfn = end;
 | |
| 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 | |
| 
 | |
| 	for (i = 0; i < nr_blocks; i++) {
 | |
| 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 | |
| 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return zone;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	free_zone_bm_rtree - Free the memory of the radix tree
 | |
|  *
 | |
|  *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 | |
|  *	structure itself is not freed here nor are the rtree_node
 | |
|  *	structs.
 | |
|  */
 | |
| static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 | |
| 			       int clear_nosave_free)
 | |
| {
 | |
| 	struct rtree_node *node;
 | |
| 
 | |
| 	list_for_each_entry(node, &zone->nodes, list)
 | |
| 		free_image_page(node->data, clear_nosave_free);
 | |
| 
 | |
| 	list_for_each_entry(node, &zone->leaves, list)
 | |
| 		free_image_page(node->data, clear_nosave_free);
 | |
| }
 | |
| 
 | |
| static void memory_bm_position_reset(struct memory_bitmap *bm)
 | |
| {
 | |
| 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 | |
| 				  list);
 | |
| 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 | |
| 				  struct rtree_node, list);
 | |
| 	bm->cur.node_pfn = 0;
 | |
| 	bm->cur.node_bit = 0;
 | |
| }
 | |
| 
 | |
| static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 | |
| 
 | |
| struct mem_extent {
 | |
| 	struct list_head hook;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	free_mem_extents - free a list of memory extents
 | |
|  *	@list - list of extents to empty
 | |
|  */
 | |
| static void free_mem_extents(struct list_head *list)
 | |
| {
 | |
| 	struct mem_extent *ext, *aux;
 | |
| 
 | |
| 	list_for_each_entry_safe(ext, aux, list, hook) {
 | |
| 		list_del(&ext->hook);
 | |
| 		kfree(ext);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	create_mem_extents - create a list of memory extents representing
 | |
|  *	                     contiguous ranges of PFNs
 | |
|  *	@list - list to put the extents into
 | |
|  *	@gfp_mask - mask to use for memory allocations
 | |
|  */
 | |
| static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 
 | |
| 	INIT_LIST_HEAD(list);
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned long zone_start, zone_end;
 | |
| 		struct mem_extent *ext, *cur, *aux;
 | |
| 
 | |
| 		zone_start = zone->zone_start_pfn;
 | |
| 		zone_end = zone_end_pfn(zone);
 | |
| 
 | |
| 		list_for_each_entry(ext, list, hook)
 | |
| 			if (zone_start <= ext->end)
 | |
| 				break;
 | |
| 
 | |
| 		if (&ext->hook == list || zone_end < ext->start) {
 | |
| 			/* New extent is necessary */
 | |
| 			struct mem_extent *new_ext;
 | |
| 
 | |
| 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 | |
| 			if (!new_ext) {
 | |
| 				free_mem_extents(list);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			new_ext->start = zone_start;
 | |
| 			new_ext->end = zone_end;
 | |
| 			list_add_tail(&new_ext->hook, &ext->hook);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Merge this zone's range of PFNs with the existing one */
 | |
| 		if (zone_start < ext->start)
 | |
| 			ext->start = zone_start;
 | |
| 		if (zone_end > ext->end)
 | |
| 			ext->end = zone_end;
 | |
| 
 | |
| 		/* More merging may be possible */
 | |
| 		cur = ext;
 | |
| 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 | |
| 			if (zone_end < cur->start)
 | |
| 				break;
 | |
| 			if (zone_end < cur->end)
 | |
| 				ext->end = cur->end;
 | |
| 			list_del(&cur->hook);
 | |
| 			kfree(cur);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   *	memory_bm_create - allocate memory for a memory bitmap
 | |
|   */
 | |
| static int
 | |
| memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 | |
| {
 | |
| 	struct chain_allocator ca;
 | |
| 	struct list_head mem_extents;
 | |
| 	struct mem_extent *ext;
 | |
| 	int error;
 | |
| 
 | |
| 	chain_init(&ca, gfp_mask, safe_needed);
 | |
| 	INIT_LIST_HEAD(&bm->zones);
 | |
| 
 | |
| 	error = create_mem_extents(&mem_extents, gfp_mask);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	list_for_each_entry(ext, &mem_extents, hook) {
 | |
| 		struct mem_zone_bm_rtree *zone;
 | |
| 
 | |
| 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 | |
| 					    ext->start, ext->end);
 | |
| 		if (!zone) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto Error;
 | |
| 		}
 | |
| 		list_add_tail(&zone->list, &bm->zones);
 | |
| 	}
 | |
| 
 | |
| 	bm->p_list = ca.chain;
 | |
| 	memory_bm_position_reset(bm);
 | |
|  Exit:
 | |
| 	free_mem_extents(&mem_extents);
 | |
| 	return error;
 | |
| 
 | |
|  Error:
 | |
| 	bm->p_list = ca.chain;
 | |
| 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 | |
| 	goto Exit;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   *	memory_bm_free - free memory occupied by the memory bitmap @bm
 | |
|   */
 | |
| static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 | |
| {
 | |
| 	struct mem_zone_bm_rtree *zone;
 | |
| 
 | |
| 	list_for_each_entry(zone, &bm->zones, list)
 | |
| 		free_zone_bm_rtree(zone, clear_nosave_free);
 | |
| 
 | |
| 	free_list_of_pages(bm->p_list, clear_nosave_free);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&bm->zones);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	memory_bm_find_bit - Find the bit for pfn in the memory
 | |
|  *			     bitmap
 | |
|  *
 | |
|  *	Find the bit in the bitmap @bm that corresponds to given pfn.
 | |
|  *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 | |
|  *	updated.
 | |
|  *	It walks the radix tree to find the page which contains the bit for
 | |
|  *	pfn and returns the bit position in **addr and *bit_nr.
 | |
|  */
 | |
| static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 | |
| 			      void **addr, unsigned int *bit_nr)
 | |
| {
 | |
| 	struct mem_zone_bm_rtree *curr, *zone;
 | |
| 	struct rtree_node *node;
 | |
| 	int i, block_nr;
 | |
| 
 | |
| 	zone = bm->cur.zone;
 | |
| 
 | |
| 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 | |
| 		goto zone_found;
 | |
| 
 | |
| 	zone = NULL;
 | |
| 
 | |
| 	/* Find the right zone */
 | |
| 	list_for_each_entry(curr, &bm->zones, list) {
 | |
| 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 | |
| 			zone = curr;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!zone)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| zone_found:
 | |
| 	/*
 | |
| 	 * We have a zone. Now walk the radix tree to find the leave
 | |
| 	 * node for our pfn.
 | |
| 	 */
 | |
| 
 | |
| 	node = bm->cur.node;
 | |
| 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 | |
| 		goto node_found;
 | |
| 
 | |
| 	node      = zone->rtree;
 | |
| 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 | |
| 
 | |
| 	for (i = zone->levels; i > 0; i--) {
 | |
| 		int index;
 | |
| 
 | |
| 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 | |
| 		index &= BM_RTREE_LEVEL_MASK;
 | |
| 		BUG_ON(node->data[index] == 0);
 | |
| 		node = (struct rtree_node *)node->data[index];
 | |
| 	}
 | |
| 
 | |
| node_found:
 | |
| 	/* Update last position */
 | |
| 	bm->cur.zone = zone;
 | |
| 	bm->cur.node = node;
 | |
| 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 | |
| 
 | |
| 	/* Set return values */
 | |
| 	*addr = node->data;
 | |
| 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 | |
| {
 | |
| 	void *addr;
 | |
| 	unsigned int bit;
 | |
| 	int error;
 | |
| 
 | |
| 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 | |
| 	BUG_ON(error);
 | |
| 	set_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 | |
| {
 | |
| 	void *addr;
 | |
| 	unsigned int bit;
 | |
| 	int error;
 | |
| 
 | |
| 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 | |
| 	if (!error)
 | |
| 		set_bit(bit, addr);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 | |
| {
 | |
| 	void *addr;
 | |
| 	unsigned int bit;
 | |
| 	int error;
 | |
| 
 | |
| 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 | |
| 	BUG_ON(error);
 | |
| 	clear_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static void memory_bm_clear_current(struct memory_bitmap *bm)
 | |
| {
 | |
| 	int bit;
 | |
| 
 | |
| 	bit = max(bm->cur.node_bit - 1, 0);
 | |
| 	clear_bit(bit, bm->cur.node->data);
 | |
| }
 | |
| 
 | |
| static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 | |
| {
 | |
| 	void *addr;
 | |
| 	unsigned int bit;
 | |
| 	int error;
 | |
| 
 | |
| 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 | |
| 	BUG_ON(error);
 | |
| 	return test_bit(bit, addr);
 | |
| }
 | |
| 
 | |
| static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 | |
| {
 | |
| 	void *addr;
 | |
| 	unsigned int bit;
 | |
| 
 | |
| 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	rtree_next_node - Jumps to the next leave node
 | |
|  *
 | |
|  *	Sets the position to the beginning of the next node in the
 | |
|  *	memory bitmap. This is either the next node in the current
 | |
|  *	zone's radix tree or the first node in the radix tree of the
 | |
|  *	next zone.
 | |
|  *
 | |
|  *	Returns true if there is a next node, false otherwise.
 | |
|  */
 | |
| static bool rtree_next_node(struct memory_bitmap *bm)
 | |
| {
 | |
| 	bm->cur.node = list_entry(bm->cur.node->list.next,
 | |
| 				  struct rtree_node, list);
 | |
| 	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
 | |
| 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 | |
| 		bm->cur.node_bit  = 0;
 | |
| 		touch_softlockup_watchdog();
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* No more nodes, goto next zone */
 | |
| 	bm->cur.zone = list_entry(bm->cur.zone->list.next,
 | |
| 				  struct mem_zone_bm_rtree, list);
 | |
| 	if (&bm->cur.zone->list != &bm->zones) {
 | |
| 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 | |
| 					  struct rtree_node, list);
 | |
| 		bm->cur.node_pfn = 0;
 | |
| 		bm->cur.node_bit = 0;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* No more zones */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
 | |
|  *
 | |
|  *	Starting from the last returned position this function searches
 | |
|  *	for the next set bit in the memory bitmap and returns its
 | |
|  *	number. If no more bit is set BM_END_OF_MAP is returned.
 | |
|  *
 | |
|  *	It is required to run memory_bm_position_reset() before the
 | |
|  *	first call to this function.
 | |
|  */
 | |
| static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 | |
| {
 | |
| 	unsigned long bits, pfn, pages;
 | |
| 	int bit;
 | |
| 
 | |
| 	do {
 | |
| 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 | |
| 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 | |
| 		bit	  = find_next_bit(bm->cur.node->data, bits,
 | |
| 					  bm->cur.node_bit);
 | |
| 		if (bit < bits) {
 | |
| 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 | |
| 			bm->cur.node_bit = bit + 1;
 | |
| 			return pfn;
 | |
| 		}
 | |
| 	} while (rtree_next_node(bm));
 | |
| 
 | |
| 	return BM_END_OF_MAP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	This structure represents a range of page frames the contents of which
 | |
|  *	should not be saved during the suspend.
 | |
|  */
 | |
| 
 | |
| struct nosave_region {
 | |
| 	struct list_head list;
 | |
| 	unsigned long start_pfn;
 | |
| 	unsigned long end_pfn;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(nosave_regions);
 | |
| 
 | |
| /**
 | |
|  *	register_nosave_region - register a range of page frames the contents
 | |
|  *	of which should not be saved during the suspend (to be used in the early
 | |
|  *	initialization code)
 | |
|  */
 | |
| 
 | |
| void __init
 | |
| __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 | |
| 			 int use_kmalloc)
 | |
| {
 | |
| 	struct nosave_region *region;
 | |
| 
 | |
| 	if (start_pfn >= end_pfn)
 | |
| 		return;
 | |
| 
 | |
| 	if (!list_empty(&nosave_regions)) {
 | |
| 		/* Try to extend the previous region (they should be sorted) */
 | |
| 		region = list_entry(nosave_regions.prev,
 | |
| 					struct nosave_region, list);
 | |
| 		if (region->end_pfn == start_pfn) {
 | |
| 			region->end_pfn = end_pfn;
 | |
| 			goto Report;
 | |
| 		}
 | |
| 	}
 | |
| 	if (use_kmalloc) {
 | |
| 		/* during init, this shouldn't fail */
 | |
| 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 | |
| 		BUG_ON(!region);
 | |
| 	} else
 | |
| 		/* This allocation cannot fail */
 | |
| 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 | |
| 	region->start_pfn = start_pfn;
 | |
| 	region->end_pfn = end_pfn;
 | |
| 	list_add_tail(®ion->list, &nosave_regions);
 | |
|  Report:
 | |
| 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 | |
| 		(unsigned long long) start_pfn << PAGE_SHIFT,
 | |
| 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set bits in this map correspond to the page frames the contents of which
 | |
|  * should not be saved during the suspend.
 | |
|  */
 | |
| static struct memory_bitmap *forbidden_pages_map;
 | |
| 
 | |
| /* Set bits in this map correspond to free page frames. */
 | |
| static struct memory_bitmap *free_pages_map;
 | |
| 
 | |
| /*
 | |
|  * Each page frame allocated for creating the image is marked by setting the
 | |
|  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 | |
|  */
 | |
| 
 | |
| void swsusp_set_page_free(struct page *page)
 | |
| {
 | |
| 	if (free_pages_map)
 | |
| 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 | |
| }
 | |
| 
 | |
| static int swsusp_page_is_free(struct page *page)
 | |
| {
 | |
| 	return free_pages_map ?
 | |
| 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 | |
| }
 | |
| 
 | |
| void swsusp_unset_page_free(struct page *page)
 | |
| {
 | |
| 	if (free_pages_map)
 | |
| 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 | |
| }
 | |
| 
 | |
| static void swsusp_set_page_forbidden(struct page *page)
 | |
| {
 | |
| 	if (forbidden_pages_map)
 | |
| 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 | |
| }
 | |
| 
 | |
| int swsusp_page_is_forbidden(struct page *page)
 | |
| {
 | |
| 	return forbidden_pages_map ?
 | |
| 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 | |
| }
 | |
| 
 | |
| static void swsusp_unset_page_forbidden(struct page *page)
 | |
| {
 | |
| 	if (forbidden_pages_map)
 | |
| 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mark_nosave_pages - set bits corresponding to the page frames the
 | |
|  *	contents of which should not be saved in a given bitmap.
 | |
|  */
 | |
| 
 | |
| static void mark_nosave_pages(struct memory_bitmap *bm)
 | |
| {
 | |
| 	struct nosave_region *region;
 | |
| 
 | |
| 	if (list_empty(&nosave_regions))
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry(region, &nosave_regions, list) {
 | |
| 		unsigned long pfn;
 | |
| 
 | |
| 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 | |
| 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
 | |
| 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 | |
| 				- 1);
 | |
| 
 | |
| 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 | |
| 			if (pfn_valid(pfn)) {
 | |
| 				/*
 | |
| 				 * It is safe to ignore the result of
 | |
| 				 * mem_bm_set_bit_check() here, since we won't
 | |
| 				 * touch the PFNs for which the error is
 | |
| 				 * returned anyway.
 | |
| 				 */
 | |
| 				mem_bm_set_bit_check(bm, pfn);
 | |
| 			}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool is_nosave_page(unsigned long pfn)
 | |
| {
 | |
| 	struct nosave_region *region;
 | |
| 
 | |
| 	list_for_each_entry(region, &nosave_regions, list) {
 | |
| 		if (pfn >= region->start_pfn && pfn < region->end_pfn) {
 | |
| 			pr_err("PM: %#010llx in e820 nosave region: "
 | |
| 			       "[mem %#010llx-%#010llx]\n",
 | |
| 			       (unsigned long long) pfn << PAGE_SHIFT,
 | |
| 			       (unsigned long long) region->start_pfn << PAGE_SHIFT,
 | |
| 			       ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 | |
| 					- 1);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 | |
|  *	frames that should not be saved and free page frames.  The pointers
 | |
|  *	forbidden_pages_map and free_pages_map are only modified if everything
 | |
|  *	goes well, because we don't want the bits to be used before both bitmaps
 | |
|  *	are set up.
 | |
|  */
 | |
| 
 | |
| int create_basic_memory_bitmaps(void)
 | |
| {
 | |
| 	struct memory_bitmap *bm1, *bm2;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (forbidden_pages_map && free_pages_map)
 | |
| 		return 0;
 | |
| 	else
 | |
| 		BUG_ON(forbidden_pages_map || free_pages_map);
 | |
| 
 | |
| 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 | |
| 	if (!bm1)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 | |
| 	if (error)
 | |
| 		goto Free_first_object;
 | |
| 
 | |
| 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 | |
| 	if (!bm2)
 | |
| 		goto Free_first_bitmap;
 | |
| 
 | |
| 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 | |
| 	if (error)
 | |
| 		goto Free_second_object;
 | |
| 
 | |
| 	forbidden_pages_map = bm1;
 | |
| 	free_pages_map = bm2;
 | |
| 	mark_nosave_pages(forbidden_pages_map);
 | |
| 
 | |
| 	pr_debug("PM: Basic memory bitmaps created\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  Free_second_object:
 | |
| 	kfree(bm2);
 | |
|  Free_first_bitmap:
 | |
|  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 | |
|  Free_first_object:
 | |
| 	kfree(bm1);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 | |
|  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 | |
|  *	so that the bitmaps themselves are not referred to while they are being
 | |
|  *	freed.
 | |
|  */
 | |
| 
 | |
| void free_basic_memory_bitmaps(void)
 | |
| {
 | |
| 	struct memory_bitmap *bm1, *bm2;
 | |
| 
 | |
| 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
 | |
| 		return;
 | |
| 
 | |
| 	bm1 = forbidden_pages_map;
 | |
| 	bm2 = free_pages_map;
 | |
| 	forbidden_pages_map = NULL;
 | |
| 	free_pages_map = NULL;
 | |
| 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 | |
| 	kfree(bm1);
 | |
| 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
 | |
| 	kfree(bm2);
 | |
| 
 | |
| 	pr_debug("PM: Basic memory bitmaps freed\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	snapshot_additional_pages - estimate the number of additional pages
 | |
|  *	be needed for setting up the suspend image data structures for given
 | |
|  *	zone (usually the returned value is greater than the exact number)
 | |
|  */
 | |
| 
 | |
| unsigned int snapshot_additional_pages(struct zone *zone)
 | |
| {
 | |
| 	unsigned int rtree, nodes;
 | |
| 
 | |
| 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
 | |
| 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
 | |
| 			      LINKED_PAGE_DATA_SIZE);
 | |
| 	while (nodes > 1) {
 | |
| 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
 | |
| 		rtree += nodes;
 | |
| 	}
 | |
| 
 | |
| 	return 2 * rtree;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /**
 | |
|  *	count_free_highmem_pages - compute the total number of free highmem
 | |
|  *	pages, system-wide.
 | |
|  */
 | |
| 
 | |
| static unsigned int count_free_highmem_pages(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned int cnt = 0;
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		if (is_highmem(zone))
 | |
| 			cnt += zone_page_state(zone, NR_FREE_PAGES);
 | |
| 
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	saveable_highmem_page - Determine whether a highmem page should be
 | |
|  *	included in the suspend image.
 | |
|  *
 | |
|  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 | |
|  *	and it isn't a part of a free chunk of pages.
 | |
|  */
 | |
| static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!pfn_valid(pfn))
 | |
| 		return NULL;
 | |
| 
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	if (page_zone(page) != zone)
 | |
| 		return NULL;
 | |
| 
 | |
| 	BUG_ON(!PageHighMem(page));
 | |
| 
 | |
| 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
 | |
| 	    PageReserved(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (page_is_guard(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	count_highmem_pages - compute the total number of saveable highmem
 | |
|  *	pages.
 | |
|  */
 | |
| 
 | |
| static unsigned int count_highmem_pages(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned int n = 0;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned long pfn, max_zone_pfn;
 | |
| 
 | |
| 		if (!is_highmem(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		mark_free_pages(zone);
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | |
| 			if (saveable_highmem_page(zone, pfn))
 | |
| 				n++;
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| #else
 | |
| static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| /**
 | |
|  *	saveable_page - Determine whether a non-highmem page should be included
 | |
|  *	in the suspend image.
 | |
|  *
 | |
|  *	We should save the page if it isn't Nosave, and is not in the range
 | |
|  *	of pages statically defined as 'unsaveable', and it isn't a part of
 | |
|  *	a free chunk of pages.
 | |
|  */
 | |
| static struct page *saveable_page(struct zone *zone, unsigned long pfn)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!pfn_valid(pfn))
 | |
| 		return NULL;
 | |
| 
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	if (page_zone(page) != zone)
 | |
| 		return NULL;
 | |
| 
 | |
| 	BUG_ON(PageHighMem(page));
 | |
| 
 | |
| 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (PageReserved(page)
 | |
| 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (page_is_guard(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	count_data_pages - compute the total number of saveable non-highmem
 | |
|  *	pages.
 | |
|  */
 | |
| 
 | |
| static unsigned int count_data_pages(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	unsigned int n = 0;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		if (is_highmem(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		mark_free_pages(zone);
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | |
| 			if (saveable_page(zone, pfn))
 | |
| 				n++;
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /* This is needed, because copy_page and memcpy are not usable for copying
 | |
|  * task structs.
 | |
|  */
 | |
| static inline void do_copy_page(long *dst, long *src)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	for (n = PAGE_SIZE / sizeof(long); n; n--)
 | |
| 		*dst++ = *src++;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	safe_copy_page - check if the page we are going to copy is marked as
 | |
|  *		present in the kernel page tables (this always is the case if
 | |
|  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 | |
|  *		kernel_page_present() always returns 'true').
 | |
|  */
 | |
| static void safe_copy_page(void *dst, struct page *s_page)
 | |
| {
 | |
| 	if (kernel_page_present(s_page)) {
 | |
| 		do_copy_page(dst, page_address(s_page));
 | |
| 	} else {
 | |
| 		kernel_map_pages(s_page, 1, 1);
 | |
| 		do_copy_page(dst, page_address(s_page));
 | |
| 		kernel_map_pages(s_page, 1, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| static inline struct page *
 | |
| page_is_saveable(struct zone *zone, unsigned long pfn)
 | |
| {
 | |
| 	return is_highmem(zone) ?
 | |
| 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
 | |
| }
 | |
| 
 | |
| static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
 | |
| {
 | |
| 	struct page *s_page, *d_page;
 | |
| 	void *src, *dst;
 | |
| 
 | |
| 	s_page = pfn_to_page(src_pfn);
 | |
| 	d_page = pfn_to_page(dst_pfn);
 | |
| 	if (PageHighMem(s_page)) {
 | |
| 		src = kmap_atomic(s_page);
 | |
| 		dst = kmap_atomic(d_page);
 | |
| 		do_copy_page(dst, src);
 | |
| 		kunmap_atomic(dst);
 | |
| 		kunmap_atomic(src);
 | |
| 	} else {
 | |
| 		if (PageHighMem(d_page)) {
 | |
| 			/* Page pointed to by src may contain some kernel
 | |
| 			 * data modified by kmap_atomic()
 | |
| 			 */
 | |
| 			safe_copy_page(buffer, s_page);
 | |
| 			dst = kmap_atomic(d_page);
 | |
| 			copy_page(dst, buffer);
 | |
| 			kunmap_atomic(dst);
 | |
| 		} else {
 | |
| 			safe_copy_page(page_address(d_page), s_page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
 | |
| 
 | |
| static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
 | |
| {
 | |
| 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
 | |
| 				pfn_to_page(src_pfn));
 | |
| }
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| static void
 | |
| copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		unsigned long max_zone_pfn;
 | |
| 
 | |
| 		mark_free_pages(zone);
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | |
| 			if (page_is_saveable(zone, pfn))
 | |
| 				memory_bm_set_bit(orig_bm, pfn);
 | |
| 	}
 | |
| 	memory_bm_position_reset(orig_bm);
 | |
| 	memory_bm_position_reset(copy_bm);
 | |
| 	for(;;) {
 | |
| 		pfn = memory_bm_next_pfn(orig_bm);
 | |
| 		if (unlikely(pfn == BM_END_OF_MAP))
 | |
| 			break;
 | |
| 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Total number of image pages */
 | |
| static unsigned int nr_copy_pages;
 | |
| /* Number of pages needed for saving the original pfns of the image pages */
 | |
| static unsigned int nr_meta_pages;
 | |
| /*
 | |
|  * Numbers of normal and highmem page frames allocated for hibernation image
 | |
|  * before suspending devices.
 | |
|  */
 | |
| unsigned int alloc_normal, alloc_highmem;
 | |
| /*
 | |
|  * Memory bitmap used for marking saveable pages (during hibernation) or
 | |
|  * hibernation image pages (during restore)
 | |
|  */
 | |
| static struct memory_bitmap orig_bm;
 | |
| /*
 | |
|  * Memory bitmap used during hibernation for marking allocated page frames that
 | |
|  * will contain copies of saveable pages.  During restore it is initially used
 | |
|  * for marking hibernation image pages, but then the set bits from it are
 | |
|  * duplicated in @orig_bm and it is released.  On highmem systems it is next
 | |
|  * used for marking "safe" highmem pages, but it has to be reinitialized for
 | |
|  * this purpose.
 | |
|  */
 | |
| static struct memory_bitmap copy_bm;
 | |
| 
 | |
| /**
 | |
|  *	swsusp_free - free pages allocated for the suspend.
 | |
|  *
 | |
|  *	Suspend pages are alocated before the atomic copy is made, so we
 | |
|  *	need to release them after the resume.
 | |
|  */
 | |
| 
 | |
| void swsusp_free(void)
 | |
| {
 | |
| 	unsigned long fb_pfn, fr_pfn;
 | |
| 
 | |
| 	if (!forbidden_pages_map || !free_pages_map)
 | |
| 		goto out;
 | |
| 
 | |
| 	memory_bm_position_reset(forbidden_pages_map);
 | |
| 	memory_bm_position_reset(free_pages_map);
 | |
| 
 | |
| loop:
 | |
| 	fr_pfn = memory_bm_next_pfn(free_pages_map);
 | |
| 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the next bit set in both bitmaps. This is guaranteed to
 | |
| 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
 | |
| 	 */
 | |
| 	do {
 | |
| 		if (fb_pfn < fr_pfn)
 | |
| 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
 | |
| 		if (fr_pfn < fb_pfn)
 | |
| 			fr_pfn = memory_bm_next_pfn(free_pages_map);
 | |
| 	} while (fb_pfn != fr_pfn);
 | |
| 
 | |
| 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
 | |
| 		struct page *page = pfn_to_page(fr_pfn);
 | |
| 
 | |
| 		memory_bm_clear_current(forbidden_pages_map);
 | |
| 		memory_bm_clear_current(free_pages_map);
 | |
| 		__free_page(page);
 | |
| 		goto loop;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	nr_copy_pages = 0;
 | |
| 	nr_meta_pages = 0;
 | |
| 	restore_pblist = NULL;
 | |
| 	buffer = NULL;
 | |
| 	alloc_normal = 0;
 | |
| 	alloc_highmem = 0;
 | |
| }
 | |
| 
 | |
| /* Helper functions used for the shrinking of memory. */
 | |
| 
 | |
| #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
 | |
| 
 | |
| /**
 | |
|  * preallocate_image_pages - Allocate a number of pages for hibernation image
 | |
|  * @nr_pages: Number of page frames to allocate.
 | |
|  * @mask: GFP flags to use for the allocation.
 | |
|  *
 | |
|  * Return value: Number of page frames actually allocated
 | |
|  */
 | |
| static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
 | |
| {
 | |
| 	unsigned long nr_alloc = 0;
 | |
| 
 | |
| 	while (nr_pages > 0) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = alloc_image_page(mask);
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 		memory_bm_set_bit(©_bm, page_to_pfn(page));
 | |
| 		if (PageHighMem(page))
 | |
| 			alloc_highmem++;
 | |
| 		else
 | |
| 			alloc_normal++;
 | |
| 		nr_pages--;
 | |
| 		nr_alloc++;
 | |
| 	}
 | |
| 
 | |
| 	return nr_alloc;
 | |
| }
 | |
| 
 | |
| static unsigned long preallocate_image_memory(unsigned long nr_pages,
 | |
| 					      unsigned long avail_normal)
 | |
| {
 | |
| 	unsigned long alloc;
 | |
| 
 | |
| 	if (avail_normal <= alloc_normal)
 | |
| 		return 0;
 | |
| 
 | |
| 	alloc = avail_normal - alloc_normal;
 | |
| 	if (nr_pages < alloc)
 | |
| 		alloc = nr_pages;
 | |
| 
 | |
| 	return preallocate_image_pages(alloc, GFP_IMAGE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| static unsigned long preallocate_image_highmem(unsigned long nr_pages)
 | |
| {
 | |
| 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  __fraction - Compute (an approximation of) x * (multiplier / base)
 | |
|  */
 | |
| static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
 | |
| {
 | |
| 	x *= multiplier;
 | |
| 	do_div(x, base);
 | |
| 	return (unsigned long)x;
 | |
| }
 | |
| 
 | |
| static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
 | |
| 						unsigned long highmem,
 | |
| 						unsigned long total)
 | |
| {
 | |
| 	unsigned long alloc = __fraction(nr_pages, highmem, total);
 | |
| 
 | |
| 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
 | |
| }
 | |
| #else /* CONFIG_HIGHMEM */
 | |
| static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
 | |
| 						unsigned long highmem,
 | |
| 						unsigned long total)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| /**
 | |
|  * free_unnecessary_pages - Release preallocated pages not needed for the image
 | |
|  */
 | |
| static void free_unnecessary_pages(void)
 | |
| {
 | |
| 	unsigned long save, to_free_normal, to_free_highmem;
 | |
| 
 | |
| 	save = count_data_pages();
 | |
| 	if (alloc_normal >= save) {
 | |
| 		to_free_normal = alloc_normal - save;
 | |
| 		save = 0;
 | |
| 	} else {
 | |
| 		to_free_normal = 0;
 | |
| 		save -= alloc_normal;
 | |
| 	}
 | |
| 	save += count_highmem_pages();
 | |
| 	if (alloc_highmem >= save) {
 | |
| 		to_free_highmem = alloc_highmem - save;
 | |
| 	} else {
 | |
| 		to_free_highmem = 0;
 | |
| 		save -= alloc_highmem;
 | |
| 		if (to_free_normal > save)
 | |
| 			to_free_normal -= save;
 | |
| 		else
 | |
| 			to_free_normal = 0;
 | |
| 	}
 | |
| 
 | |
| 	memory_bm_position_reset(©_bm);
 | |
| 
 | |
| 	while (to_free_normal > 0 || to_free_highmem > 0) {
 | |
| 		unsigned long pfn = memory_bm_next_pfn(©_bm);
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		if (PageHighMem(page)) {
 | |
| 			if (!to_free_highmem)
 | |
| 				continue;
 | |
| 			to_free_highmem--;
 | |
| 			alloc_highmem--;
 | |
| 		} else {
 | |
| 			if (!to_free_normal)
 | |
| 				continue;
 | |
| 			to_free_normal--;
 | |
| 			alloc_normal--;
 | |
| 		}
 | |
| 		memory_bm_clear_bit(©_bm, pfn);
 | |
| 		swsusp_unset_page_forbidden(page);
 | |
| 		swsusp_unset_page_free(page);
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * minimum_image_size - Estimate the minimum acceptable size of an image
 | |
|  * @saveable: Number of saveable pages in the system.
 | |
|  *
 | |
|  * We want to avoid attempting to free too much memory too hard, so estimate the
 | |
|  * minimum acceptable size of a hibernation image to use as the lower limit for
 | |
|  * preallocating memory.
 | |
|  *
 | |
|  * We assume that the minimum image size should be proportional to
 | |
|  *
 | |
|  * [number of saveable pages] - [number of pages that can be freed in theory]
 | |
|  *
 | |
|  * where the second term is the sum of (1) reclaimable slab pages, (2) active
 | |
|  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
 | |
|  * minus mapped file pages.
 | |
|  */
 | |
| static unsigned long minimum_image_size(unsigned long saveable)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	size = global_page_state(NR_SLAB_RECLAIMABLE)
 | |
| 		+ global_page_state(NR_ACTIVE_ANON)
 | |
| 		+ global_page_state(NR_INACTIVE_ANON)
 | |
| 		+ global_page_state(NR_ACTIVE_FILE)
 | |
| 		+ global_page_state(NR_INACTIVE_FILE)
 | |
| 		- global_page_state(NR_FILE_MAPPED);
 | |
| 
 | |
| 	return saveable <= size ? 0 : saveable - size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hibernate_preallocate_memory - Preallocate memory for hibernation image
 | |
|  *
 | |
|  * To create a hibernation image it is necessary to make a copy of every page
 | |
|  * frame in use.  We also need a number of page frames to be free during
 | |
|  * hibernation for allocations made while saving the image and for device
 | |
|  * drivers, in case they need to allocate memory from their hibernation
 | |
|  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 | |
|  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 | |
|  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 | |
|  * total number of available page frames and allocate at least
 | |
|  *
 | |
|  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 | |
|  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
 | |
|  *
 | |
|  * of them, which corresponds to the maximum size of a hibernation image.
 | |
|  *
 | |
|  * If image_size is set below the number following from the above formula,
 | |
|  * the preallocation of memory is continued until the total number of saveable
 | |
|  * pages in the system is below the requested image size or the minimum
 | |
|  * acceptable image size returned by minimum_image_size(), whichever is greater.
 | |
|  */
 | |
| int hibernate_preallocate_memory(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
 | |
| 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
 | |
| 	ktime_t start, stop;
 | |
| 	int error;
 | |
| 
 | |
| 	printk(KERN_INFO "PM: Preallocating image memory... ");
 | |
| 	start = ktime_get();
 | |
| 
 | |
| 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
 | |
| 	if (error)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
 | |
| 	if (error)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	alloc_normal = 0;
 | |
| 	alloc_highmem = 0;
 | |
| 
 | |
| 	/* Count the number of saveable data pages. */
 | |
| 	save_highmem = count_highmem_pages();
 | |
| 	saveable = count_data_pages();
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the total number of page frames we can use (count) and the
 | |
| 	 * number of pages needed for image metadata (size).
 | |
| 	 */
 | |
| 	count = saveable;
 | |
| 	saveable += save_highmem;
 | |
| 	highmem = save_highmem;
 | |
| 	size = 0;
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		size += snapshot_additional_pages(zone);
 | |
| 		if (is_highmem(zone))
 | |
| 			highmem += zone_page_state(zone, NR_FREE_PAGES);
 | |
| 		else
 | |
| 			count += zone_page_state(zone, NR_FREE_PAGES);
 | |
| 	}
 | |
| 	avail_normal = count;
 | |
| 	count += highmem;
 | |
| 	count -= totalreserve_pages;
 | |
| 
 | |
| 	/* Add number of pages required for page keys (s390 only). */
 | |
| 	size += page_key_additional_pages(saveable);
 | |
| 
 | |
| 	/* Compute the maximum number of saveable pages to leave in memory. */
 | |
| 	max_size = (count - (size + PAGES_FOR_IO)) / 2
 | |
| 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
 | |
| 	/* Compute the desired number of image pages specified by image_size. */
 | |
| 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
 | |
| 	if (size > max_size)
 | |
| 		size = max_size;
 | |
| 	/*
 | |
| 	 * If the desired number of image pages is at least as large as the
 | |
| 	 * current number of saveable pages in memory, allocate page frames for
 | |
| 	 * the image and we're done.
 | |
| 	 */
 | |
| 	if (size >= saveable) {
 | |
| 		pages = preallocate_image_highmem(save_highmem);
 | |
| 		pages += preallocate_image_memory(saveable - pages, avail_normal);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Estimate the minimum size of the image. */
 | |
| 	pages = minimum_image_size(saveable);
 | |
| 	/*
 | |
| 	 * To avoid excessive pressure on the normal zone, leave room in it to
 | |
| 	 * accommodate an image of the minimum size (unless it's already too
 | |
| 	 * small, in which case don't preallocate pages from it at all).
 | |
| 	 */
 | |
| 	if (avail_normal > pages)
 | |
| 		avail_normal -= pages;
 | |
| 	else
 | |
| 		avail_normal = 0;
 | |
| 	if (size < pages)
 | |
| 		size = min_t(unsigned long, pages, max_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the memory management subsystem know that we're going to need a
 | |
| 	 * large number of page frames to allocate and make it free some memory.
 | |
| 	 * NOTE: If this is not done, performance will be hurt badly in some
 | |
| 	 * test cases.
 | |
| 	 */
 | |
| 	shrink_all_memory(saveable - size);
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of saveable pages in memory was too high, so apply some
 | |
| 	 * pressure to decrease it.  First, make room for the largest possible
 | |
| 	 * image and fail if that doesn't work.  Next, try to decrease the size
 | |
| 	 * of the image as much as indicated by 'size' using allocations from
 | |
| 	 * highmem and non-highmem zones separately.
 | |
| 	 */
 | |
| 	pages_highmem = preallocate_image_highmem(highmem / 2);
 | |
| 	alloc = count - max_size;
 | |
| 	if (alloc > pages_highmem)
 | |
| 		alloc -= pages_highmem;
 | |
| 	else
 | |
| 		alloc = 0;
 | |
| 	pages = preallocate_image_memory(alloc, avail_normal);
 | |
| 	if (pages < alloc) {
 | |
| 		/* We have exhausted non-highmem pages, try highmem. */
 | |
| 		alloc -= pages;
 | |
| 		pages += pages_highmem;
 | |
| 		pages_highmem = preallocate_image_highmem(alloc);
 | |
| 		if (pages_highmem < alloc)
 | |
| 			goto err_out;
 | |
| 		pages += pages_highmem;
 | |
| 		/*
 | |
| 		 * size is the desired number of saveable pages to leave in
 | |
| 		 * memory, so try to preallocate (all memory - size) pages.
 | |
| 		 */
 | |
| 		alloc = (count - pages) - size;
 | |
| 		pages += preallocate_image_highmem(alloc);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * There are approximately max_size saveable pages at this point
 | |
| 		 * and we want to reduce this number down to size.
 | |
| 		 */
 | |
| 		alloc = max_size - size;
 | |
| 		size = preallocate_highmem_fraction(alloc, highmem, count);
 | |
| 		pages_highmem += size;
 | |
| 		alloc -= size;
 | |
| 		size = preallocate_image_memory(alloc, avail_normal);
 | |
| 		pages_highmem += preallocate_image_highmem(alloc - size);
 | |
| 		pages += pages_highmem + size;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need as many page frames for the image as there are saveable
 | |
| 	 * pages in memory, but we have allocated more.  Release the excessive
 | |
| 	 * ones now.
 | |
| 	 */
 | |
| 	free_unnecessary_pages();
 | |
| 
 | |
|  out:
 | |
| 	stop = ktime_get();
 | |
| 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
 | |
| 	swsusp_show_speed(start, stop, pages, "Allocated");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err_out:
 | |
| 	printk(KERN_CONT "\n");
 | |
| 	swsusp_free();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /**
 | |
|   *	count_pages_for_highmem - compute the number of non-highmem pages
 | |
|   *	that will be necessary for creating copies of highmem pages.
 | |
|   */
 | |
| 
 | |
| static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
 | |
| {
 | |
| 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
 | |
| 
 | |
| 	if (free_highmem >= nr_highmem)
 | |
| 		nr_highmem = 0;
 | |
| 	else
 | |
| 		nr_highmem -= free_highmem;
 | |
| 
 | |
| 	return nr_highmem;
 | |
| }
 | |
| #else
 | |
| static unsigned int
 | |
| count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| /**
 | |
|  *	enough_free_mem - Make sure we have enough free memory for the
 | |
|  *	snapshot image.
 | |
|  */
 | |
| 
 | |
| static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned int free = alloc_normal;
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		if (!is_highmem(zone))
 | |
| 			free += zone_page_state(zone, NR_FREE_PAGES);
 | |
| 
 | |
| 	nr_pages += count_pages_for_highmem(nr_highmem);
 | |
| 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
 | |
| 		nr_pages, PAGES_FOR_IO, free);
 | |
| 
 | |
| 	return free > nr_pages + PAGES_FOR_IO;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /**
 | |
|  *	get_highmem_buffer - if there are some highmem pages in the suspend
 | |
|  *	image, we may need the buffer to copy them and/or load their data.
 | |
|  */
 | |
| 
 | |
| static inline int get_highmem_buffer(int safe_needed)
 | |
| {
 | |
| 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
 | |
| 	return buffer ? 0 : -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 | |
|  *	Try to allocate as many pages as needed, but if the number of free
 | |
|  *	highmem pages is lesser than that, allocate them all.
 | |
|  */
 | |
| 
 | |
| static inline unsigned int
 | |
| alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
 | |
| {
 | |
| 	unsigned int to_alloc = count_free_highmem_pages();
 | |
| 
 | |
| 	if (to_alloc > nr_highmem)
 | |
| 		to_alloc = nr_highmem;
 | |
| 
 | |
| 	nr_highmem -= to_alloc;
 | |
| 	while (to_alloc-- > 0) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = alloc_image_page(__GFP_HIGHMEM);
 | |
| 		memory_bm_set_bit(bm, page_to_pfn(page));
 | |
| 	}
 | |
| 	return nr_highmem;
 | |
| }
 | |
| #else
 | |
| static inline int get_highmem_buffer(int safe_needed) { return 0; }
 | |
| 
 | |
| static inline unsigned int
 | |
| alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| /**
 | |
|  *	swsusp_alloc - allocate memory for the suspend image
 | |
|  *
 | |
|  *	We first try to allocate as many highmem pages as there are
 | |
|  *	saveable highmem pages in the system.  If that fails, we allocate
 | |
|  *	non-highmem pages for the copies of the remaining highmem ones.
 | |
|  *
 | |
|  *	In this approach it is likely that the copies of highmem pages will
 | |
|  *	also be located in the high memory, because of the way in which
 | |
|  *	copy_data_pages() works.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
 | |
| 		unsigned int nr_pages, unsigned int nr_highmem)
 | |
| {
 | |
| 	if (nr_highmem > 0) {
 | |
| 		if (get_highmem_buffer(PG_ANY))
 | |
| 			goto err_out;
 | |
| 		if (nr_highmem > alloc_highmem) {
 | |
| 			nr_highmem -= alloc_highmem;
 | |
| 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
 | |
| 		}
 | |
| 	}
 | |
| 	if (nr_pages > alloc_normal) {
 | |
| 		nr_pages -= alloc_normal;
 | |
| 		while (nr_pages-- > 0) {
 | |
| 			struct page *page;
 | |
| 
 | |
| 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
 | |
| 			if (!page)
 | |
| 				goto err_out;
 | |
| 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  err_out:
 | |
| 	swsusp_free();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| asmlinkage __visible int swsusp_save(void)
 | |
| {
 | |
| 	unsigned int nr_pages, nr_highmem;
 | |
| 
 | |
| 	printk(KERN_INFO "PM: Creating hibernation image:\n");
 | |
| 
 | |
| 	drain_local_pages(NULL);
 | |
| 	nr_pages = count_data_pages();
 | |
| 	nr_highmem = count_highmem_pages();
 | |
| 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
 | |
| 
 | |
| 	if (!enough_free_mem(nr_pages, nr_highmem)) {
 | |
| 		printk(KERN_ERR "PM: Not enough free memory\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) {
 | |
| 		printk(KERN_ERR "PM: Memory allocation failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* During allocating of suspend pagedir, new cold pages may appear.
 | |
| 	 * Kill them.
 | |
| 	 */
 | |
| 	drain_local_pages(NULL);
 | |
| 	copy_data_pages(©_bm, &orig_bm);
 | |
| 
 | |
| 	/*
 | |
| 	 * End of critical section. From now on, we can write to memory,
 | |
| 	 * but we should not touch disk. This specially means we must _not_
 | |
| 	 * touch swap space! Except we must write out our image of course.
 | |
| 	 */
 | |
| 
 | |
| 	nr_pages += nr_highmem;
 | |
| 	nr_copy_pages = nr_pages;
 | |
| 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
 | |
| 
 | |
| 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
 | |
| 		nr_pages);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_ARCH_HIBERNATION_HEADER
 | |
| static int init_header_complete(struct swsusp_info *info)
 | |
| {
 | |
| 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
 | |
| 	info->version_code = LINUX_VERSION_CODE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static char *check_image_kernel(struct swsusp_info *info)
 | |
| {
 | |
| 	if (info->version_code != LINUX_VERSION_CODE)
 | |
| 		return "kernel version";
 | |
| 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
 | |
| 		return "system type";
 | |
| 	if (strcmp(info->uts.release,init_utsname()->release))
 | |
| 		return "kernel release";
 | |
| 	if (strcmp(info->uts.version,init_utsname()->version))
 | |
| 		return "version";
 | |
| 	if (strcmp(info->uts.machine,init_utsname()->machine))
 | |
| 		return "machine";
 | |
| 	return NULL;
 | |
| }
 | |
| #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
 | |
| 
 | |
| unsigned long snapshot_get_image_size(void)
 | |
| {
 | |
| 	return nr_copy_pages + nr_meta_pages + 1;
 | |
| }
 | |
| 
 | |
| static int init_header(struct swsusp_info *info)
 | |
| {
 | |
| 	memset(info, 0, sizeof(struct swsusp_info));
 | |
| 	info->num_physpages = get_num_physpages();
 | |
| 	info->image_pages = nr_copy_pages;
 | |
| 	info->pages = snapshot_get_image_size();
 | |
| 	info->size = info->pages;
 | |
| 	info->size <<= PAGE_SHIFT;
 | |
| 	return init_header_complete(info);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 | |
|  *	are stored in the array @buf[] (1 page at a time)
 | |
|  */
 | |
| 
 | |
| static inline void
 | |
| pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
 | |
| 		buf[j] = memory_bm_next_pfn(bm);
 | |
| 		if (unlikely(buf[j] == BM_END_OF_MAP))
 | |
| 			break;
 | |
| 		/* Save page key for data page (s390 only). */
 | |
| 		page_key_read(buf + j);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	snapshot_read_next - used for reading the system memory snapshot.
 | |
|  *
 | |
|  *	On the first call to it @handle should point to a zeroed
 | |
|  *	snapshot_handle structure.  The structure gets updated and a pointer
 | |
|  *	to it should be passed to this function every next time.
 | |
|  *
 | |
|  *	On success the function returns a positive number.  Then, the caller
 | |
|  *	is allowed to read up to the returned number of bytes from the memory
 | |
|  *	location computed by the data_of() macro.
 | |
|  *
 | |
|  *	The function returns 0 to indicate the end of data stream condition,
 | |
|  *	and a negative number is returned on error.  In such cases the
 | |
|  *	structure pointed to by @handle is not updated and should not be used
 | |
|  *	any more.
 | |
|  */
 | |
| 
 | |
| int snapshot_read_next(struct snapshot_handle *handle)
 | |
| {
 | |
| 	if (handle->cur > nr_meta_pages + nr_copy_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!buffer) {
 | |
| 		/* This makes the buffer be freed by swsusp_free() */
 | |
| 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
 | |
| 		if (!buffer)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	if (!handle->cur) {
 | |
| 		int error;
 | |
| 
 | |
| 		error = init_header((struct swsusp_info *)buffer);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		handle->buffer = buffer;
 | |
| 		memory_bm_position_reset(&orig_bm);
 | |
| 		memory_bm_position_reset(©_bm);
 | |
| 	} else if (handle->cur <= nr_meta_pages) {
 | |
| 		clear_page(buffer);
 | |
| 		pack_pfns(buffer, &orig_bm);
 | |
| 	} else {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = pfn_to_page(memory_bm_next_pfn(©_bm));
 | |
| 		if (PageHighMem(page)) {
 | |
| 			/* Highmem pages are copied to the buffer,
 | |
| 			 * because we can't return with a kmapped
 | |
| 			 * highmem page (we may not be called again).
 | |
| 			 */
 | |
| 			void *kaddr;
 | |
| 
 | |
| 			kaddr = kmap_atomic(page);
 | |
| 			copy_page(buffer, kaddr);
 | |
| 			kunmap_atomic(kaddr);
 | |
| 			handle->buffer = buffer;
 | |
| 		} else {
 | |
| 			handle->buffer = page_address(page);
 | |
| 		}
 | |
| 	}
 | |
| 	handle->cur++;
 | |
| 	return PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mark_unsafe_pages - mark the pages that cannot be used for storing
 | |
|  *	the image during resume, because they conflict with the pages that
 | |
|  *	had been used before suspend
 | |
|  */
 | |
| 
 | |
| static int mark_unsafe_pages(struct memory_bitmap *bm)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 
 | |
| 	/* Clear page flags */
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 | |
| 			if (pfn_valid(pfn))
 | |
| 				swsusp_unset_page_free(pfn_to_page(pfn));
 | |
| 	}
 | |
| 
 | |
| 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
 | |
| 	memory_bm_position_reset(bm);
 | |
| 	do {
 | |
| 		pfn = memory_bm_next_pfn(bm);
 | |
| 		if (likely(pfn != BM_END_OF_MAP)) {
 | |
| 			if (likely(pfn_valid(pfn)) && !is_nosave_page(pfn))
 | |
| 				swsusp_set_page_free(pfn_to_page(pfn));
 | |
| 			else
 | |
| 				return -EFAULT;
 | |
| 		}
 | |
| 	} while (pfn != BM_END_OF_MAP);
 | |
| 
 | |
| 	allocated_unsafe_pages = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	memory_bm_position_reset(src);
 | |
| 	pfn = memory_bm_next_pfn(src);
 | |
| 	while (pfn != BM_END_OF_MAP) {
 | |
| 		memory_bm_set_bit(dst, pfn);
 | |
| 		pfn = memory_bm_next_pfn(src);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int check_header(struct swsusp_info *info)
 | |
| {
 | |
| 	char *reason;
 | |
| 
 | |
| 	reason = check_image_kernel(info);
 | |
| 	if (!reason && info->num_physpages != get_num_physpages())
 | |
| 		reason = "memory size";
 | |
| 	if (reason) {
 | |
| 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	load header - check the image header and copy data from it
 | |
|  */
 | |
| 
 | |
| static int
 | |
| load_header(struct swsusp_info *info)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	restore_pblist = NULL;
 | |
| 	error = check_header(info);
 | |
| 	if (!error) {
 | |
| 		nr_copy_pages = info->image_pages;
 | |
| 		nr_meta_pages = info->pages - info->image_pages - 1;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 | |
|  *	the corresponding bit in the memory bitmap @bm
 | |
|  */
 | |
| static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
 | |
| 		if (unlikely(buf[j] == BM_END_OF_MAP))
 | |
| 			break;
 | |
| 
 | |
| 		/* Extract and buffer page key for data page (s390 only). */
 | |
| 		page_key_memorize(buf + j);
 | |
| 
 | |
| 		if (memory_bm_pfn_present(bm, buf[j]))
 | |
| 			memory_bm_set_bit(bm, buf[j]);
 | |
| 		else
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* List of "safe" pages that may be used to store data loaded from the suspend
 | |
|  * image
 | |
|  */
 | |
| static struct linked_page *safe_pages_list;
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /* struct highmem_pbe is used for creating the list of highmem pages that
 | |
|  * should be restored atomically during the resume from disk, because the page
 | |
|  * frames they have occupied before the suspend are in use.
 | |
|  */
 | |
| struct highmem_pbe {
 | |
| 	struct page *copy_page;	/* data is here now */
 | |
| 	struct page *orig_page;	/* data was here before the suspend */
 | |
| 	struct highmem_pbe *next;
 | |
| };
 | |
| 
 | |
| /* List of highmem PBEs needed for restoring the highmem pages that were
 | |
|  * allocated before the suspend and included in the suspend image, but have
 | |
|  * also been allocated by the "resume" kernel, so their contents cannot be
 | |
|  * written directly to their "original" page frames.
 | |
|  */
 | |
| static struct highmem_pbe *highmem_pblist;
 | |
| 
 | |
| /**
 | |
|  *	count_highmem_image_pages - compute the number of highmem pages in the
 | |
|  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 | |
|  *	image pages are assumed to be set.
 | |
|  */
 | |
| 
 | |
| static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	unsigned int cnt = 0;
 | |
| 
 | |
| 	memory_bm_position_reset(bm);
 | |
| 	pfn = memory_bm_next_pfn(bm);
 | |
| 	while (pfn != BM_END_OF_MAP) {
 | |
| 		if (PageHighMem(pfn_to_page(pfn)))
 | |
| 			cnt++;
 | |
| 
 | |
| 		pfn = memory_bm_next_pfn(bm);
 | |
| 	}
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	prepare_highmem_image - try to allocate as many highmem pages as
 | |
|  *	there are highmem image pages (@nr_highmem_p points to the variable
 | |
|  *	containing the number of highmem image pages).  The pages that are
 | |
|  *	"safe" (ie. will not be overwritten when the suspend image is
 | |
|  *	restored) have the corresponding bits set in @bm (it must be
 | |
|  *	unitialized).
 | |
|  *
 | |
|  *	NOTE: This function should not be called if there are no highmem
 | |
|  *	image pages.
 | |
|  */
 | |
| 
 | |
| static unsigned int safe_highmem_pages;
 | |
| 
 | |
| static struct memory_bitmap *safe_highmem_bm;
 | |
| 
 | |
| static int
 | |
| prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
 | |
| {
 | |
| 	unsigned int to_alloc;
 | |
| 
 | |
| 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (get_highmem_buffer(PG_SAFE))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	to_alloc = count_free_highmem_pages();
 | |
| 	if (to_alloc > *nr_highmem_p)
 | |
| 		to_alloc = *nr_highmem_p;
 | |
| 	else
 | |
| 		*nr_highmem_p = to_alloc;
 | |
| 
 | |
| 	safe_highmem_pages = 0;
 | |
| 	while (to_alloc-- > 0) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = alloc_page(__GFP_HIGHMEM);
 | |
| 		if (!swsusp_page_is_free(page)) {
 | |
| 			/* The page is "safe", set its bit the bitmap */
 | |
| 			memory_bm_set_bit(bm, page_to_pfn(page));
 | |
| 			safe_highmem_pages++;
 | |
| 		}
 | |
| 		/* Mark the page as allocated */
 | |
| 		swsusp_set_page_forbidden(page);
 | |
| 		swsusp_set_page_free(page);
 | |
| 	}
 | |
| 	memory_bm_position_reset(bm);
 | |
| 	safe_highmem_bm = bm;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	get_highmem_page_buffer - for given highmem image page find the buffer
 | |
|  *	that suspend_write_next() should set for its caller to write to.
 | |
|  *
 | |
|  *	If the page is to be saved to its "original" page frame or a copy of
 | |
|  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 | |
|  *	the copy of the page is to be made in normal memory, so the address of
 | |
|  *	the copy is returned.
 | |
|  *
 | |
|  *	If @buffer is returned, the caller of suspend_write_next() will write
 | |
|  *	the page's contents to @buffer, so they will have to be copied to the
 | |
|  *	right location on the next call to suspend_write_next() and it is done
 | |
|  *	with the help of copy_last_highmem_page().  For this purpose, if
 | |
|  *	@buffer is returned, @last_highmem page is set to the page to which
 | |
|  *	the data will have to be copied from @buffer.
 | |
|  */
 | |
| 
 | |
| static struct page *last_highmem_page;
 | |
| 
 | |
| static void *
 | |
| get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
 | |
| {
 | |
| 	struct highmem_pbe *pbe;
 | |
| 	void *kaddr;
 | |
| 
 | |
| 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
 | |
| 		/* We have allocated the "original" page frame and we can
 | |
| 		 * use it directly to store the loaded page.
 | |
| 		 */
 | |
| 		last_highmem_page = page;
 | |
| 		return buffer;
 | |
| 	}
 | |
| 	/* The "original" page frame has not been allocated and we have to
 | |
| 	 * use a "safe" page frame to store the loaded page.
 | |
| 	 */
 | |
| 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
 | |
| 	if (!pbe) {
 | |
| 		swsusp_free();
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	pbe->orig_page = page;
 | |
| 	if (safe_highmem_pages > 0) {
 | |
| 		struct page *tmp;
 | |
| 
 | |
| 		/* Copy of the page will be stored in high memory */
 | |
| 		kaddr = buffer;
 | |
| 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
 | |
| 		safe_highmem_pages--;
 | |
| 		last_highmem_page = tmp;
 | |
| 		pbe->copy_page = tmp;
 | |
| 	} else {
 | |
| 		/* Copy of the page will be stored in normal memory */
 | |
| 		kaddr = safe_pages_list;
 | |
| 		safe_pages_list = safe_pages_list->next;
 | |
| 		pbe->copy_page = virt_to_page(kaddr);
 | |
| 	}
 | |
| 	pbe->next = highmem_pblist;
 | |
| 	highmem_pblist = pbe;
 | |
| 	return kaddr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	copy_last_highmem_page - copy the contents of a highmem image from
 | |
|  *	@buffer, where the caller of snapshot_write_next() has place them,
 | |
|  *	to the right location represented by @last_highmem_page .
 | |
|  */
 | |
| 
 | |
| static void copy_last_highmem_page(void)
 | |
| {
 | |
| 	if (last_highmem_page) {
 | |
| 		void *dst;
 | |
| 
 | |
| 		dst = kmap_atomic(last_highmem_page);
 | |
| 		copy_page(dst, buffer);
 | |
| 		kunmap_atomic(dst);
 | |
| 		last_highmem_page = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int last_highmem_page_copied(void)
 | |
| {
 | |
| 	return !last_highmem_page;
 | |
| }
 | |
| 
 | |
| static inline void free_highmem_data(void)
 | |
| {
 | |
| 	if (safe_highmem_bm)
 | |
| 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
 | |
| 
 | |
| 	if (buffer)
 | |
| 		free_image_page(buffer, PG_UNSAFE_CLEAR);
 | |
| }
 | |
| #else
 | |
| static inline int get_safe_write_buffer(void) { return 0; }
 | |
| 
 | |
| static unsigned int
 | |
| count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
 | |
| 
 | |
| static inline int
 | |
| prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void *
 | |
| get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
 | |
| {
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| 
 | |
| static inline void copy_last_highmem_page(void) {}
 | |
| static inline int last_highmem_page_copied(void) { return 1; }
 | |
| static inline void free_highmem_data(void) {}
 | |
| #endif /* CONFIG_HIGHMEM */
 | |
| 
 | |
| /**
 | |
|  *	prepare_image - use the memory bitmap @bm to mark the pages that will
 | |
|  *	be overwritten in the process of restoring the system memory state
 | |
|  *	from the suspend image ("unsafe" pages) and allocate memory for the
 | |
|  *	image.
 | |
|  *
 | |
|  *	The idea is to allocate a new memory bitmap first and then allocate
 | |
|  *	as many pages as needed for the image data, but not to assign these
 | |
|  *	pages to specific tasks initially.  Instead, we just mark them as
 | |
|  *	allocated and create a lists of "safe" pages that will be used
 | |
|  *	later.  On systems with high memory a list of "safe" highmem pages is
 | |
|  *	also created.
 | |
|  */
 | |
| 
 | |
| #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
 | |
| 
 | |
| static int
 | |
| prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
 | |
| {
 | |
| 	unsigned int nr_pages, nr_highmem;
 | |
| 	struct linked_page *sp_list, *lp;
 | |
| 	int error;
 | |
| 
 | |
| 	/* If there is no highmem, the buffer will not be necessary */
 | |
| 	free_image_page(buffer, PG_UNSAFE_CLEAR);
 | |
| 	buffer = NULL;
 | |
| 
 | |
| 	nr_highmem = count_highmem_image_pages(bm);
 | |
| 	error = mark_unsafe_pages(bm);
 | |
| 	if (error)
 | |
| 		goto Free;
 | |
| 
 | |
| 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
 | |
| 	if (error)
 | |
| 		goto Free;
 | |
| 
 | |
| 	duplicate_memory_bitmap(new_bm, bm);
 | |
| 	memory_bm_free(bm, PG_UNSAFE_KEEP);
 | |
| 	if (nr_highmem > 0) {
 | |
| 		error = prepare_highmem_image(bm, &nr_highmem);
 | |
| 		if (error)
 | |
| 			goto Free;
 | |
| 	}
 | |
| 	/* Reserve some safe pages for potential later use.
 | |
| 	 *
 | |
| 	 * NOTE: This way we make sure there will be enough safe pages for the
 | |
| 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
 | |
| 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
 | |
| 	 */
 | |
| 	sp_list = NULL;
 | |
| 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
 | |
| 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
 | |
| 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
 | |
| 	while (nr_pages > 0) {
 | |
| 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
 | |
| 		if (!lp) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto Free;
 | |
| 		}
 | |
| 		lp->next = sp_list;
 | |
| 		sp_list = lp;
 | |
| 		nr_pages--;
 | |
| 	}
 | |
| 	/* Preallocate memory for the image */
 | |
| 	safe_pages_list = NULL;
 | |
| 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
 | |
| 	while (nr_pages > 0) {
 | |
| 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
 | |
| 		if (!lp) {
 | |
| 			error = -ENOMEM;
 | |
| 			goto Free;
 | |
| 		}
 | |
| 		if (!swsusp_page_is_free(virt_to_page(lp))) {
 | |
| 			/* The page is "safe", add it to the list */
 | |
| 			lp->next = safe_pages_list;
 | |
| 			safe_pages_list = lp;
 | |
| 		}
 | |
| 		/* Mark the page as allocated */
 | |
| 		swsusp_set_page_forbidden(virt_to_page(lp));
 | |
| 		swsusp_set_page_free(virt_to_page(lp));
 | |
| 		nr_pages--;
 | |
| 	}
 | |
| 	/* Free the reserved safe pages so that chain_alloc() can use them */
 | |
| 	while (sp_list) {
 | |
| 		lp = sp_list->next;
 | |
| 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
 | |
| 		sp_list = lp;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
|  Free:
 | |
| 	swsusp_free();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	get_buffer - compute the address that snapshot_write_next() should
 | |
|  *	set for its caller to write to.
 | |
|  */
 | |
| 
 | |
| static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
 | |
| {
 | |
| 	struct pbe *pbe;
 | |
| 	struct page *page;
 | |
| 	unsigned long pfn = memory_bm_next_pfn(bm);
 | |
| 
 | |
| 	if (pfn == BM_END_OF_MAP)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	if (PageHighMem(page))
 | |
| 		return get_highmem_page_buffer(page, ca);
 | |
| 
 | |
| 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
 | |
| 		/* We have allocated the "original" page frame and we can
 | |
| 		 * use it directly to store the loaded page.
 | |
| 		 */
 | |
| 		return page_address(page);
 | |
| 
 | |
| 	/* The "original" page frame has not been allocated and we have to
 | |
| 	 * use a "safe" page frame to store the loaded page.
 | |
| 	 */
 | |
| 	pbe = chain_alloc(ca, sizeof(struct pbe));
 | |
| 	if (!pbe) {
 | |
| 		swsusp_free();
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	pbe->orig_address = page_address(page);
 | |
| 	pbe->address = safe_pages_list;
 | |
| 	safe_pages_list = safe_pages_list->next;
 | |
| 	pbe->next = restore_pblist;
 | |
| 	restore_pblist = pbe;
 | |
| 	return pbe->address;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	snapshot_write_next - used for writing the system memory snapshot.
 | |
|  *
 | |
|  *	On the first call to it @handle should point to a zeroed
 | |
|  *	snapshot_handle structure.  The structure gets updated and a pointer
 | |
|  *	to it should be passed to this function every next time.
 | |
|  *
 | |
|  *	On success the function returns a positive number.  Then, the caller
 | |
|  *	is allowed to write up to the returned number of bytes to the memory
 | |
|  *	location computed by the data_of() macro.
 | |
|  *
 | |
|  *	The function returns 0 to indicate the "end of file" condition,
 | |
|  *	and a negative number is returned on error.  In such cases the
 | |
|  *	structure pointed to by @handle is not updated and should not be used
 | |
|  *	any more.
 | |
|  */
 | |
| 
 | |
| int snapshot_write_next(struct snapshot_handle *handle)
 | |
| {
 | |
| 	static struct chain_allocator ca;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	/* Check if we have already loaded the entire image */
 | |
| 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	handle->sync_read = 1;
 | |
| 
 | |
| 	if (!handle->cur) {
 | |
| 		if (!buffer)
 | |
| 			/* This makes the buffer be freed by swsusp_free() */
 | |
| 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
 | |
| 
 | |
| 		if (!buffer)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		handle->buffer = buffer;
 | |
| 	} else if (handle->cur == 1) {
 | |
| 		error = load_header(buffer);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		/* Allocate buffer for page keys. */
 | |
| 		error = page_key_alloc(nr_copy_pages);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 	} else if (handle->cur <= nr_meta_pages + 1) {
 | |
| 		error = unpack_orig_pfns(buffer, ©_bm);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		if (handle->cur == nr_meta_pages + 1) {
 | |
| 			error = prepare_image(&orig_bm, ©_bm);
 | |
| 			if (error)
 | |
| 				return error;
 | |
| 
 | |
| 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
 | |
| 			memory_bm_position_reset(&orig_bm);
 | |
| 			restore_pblist = NULL;
 | |
| 			handle->buffer = get_buffer(&orig_bm, &ca);
 | |
| 			handle->sync_read = 0;
 | |
| 			if (IS_ERR(handle->buffer))
 | |
| 				return PTR_ERR(handle->buffer);
 | |
| 		}
 | |
| 	} else {
 | |
| 		copy_last_highmem_page();
 | |
| 		/* Restore page key for data page (s390 only). */
 | |
| 		page_key_write(handle->buffer);
 | |
| 		handle->buffer = get_buffer(&orig_bm, &ca);
 | |
| 		if (IS_ERR(handle->buffer))
 | |
| 			return PTR_ERR(handle->buffer);
 | |
| 		if (handle->buffer != buffer)
 | |
| 			handle->sync_read = 0;
 | |
| 	}
 | |
| 	handle->cur++;
 | |
| 	return PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	snapshot_write_finalize - must be called after the last call to
 | |
|  *	snapshot_write_next() in case the last page in the image happens
 | |
|  *	to be a highmem page and its contents should be stored in the
 | |
|  *	highmem.  Additionally, it releases the memory that will not be
 | |
|  *	used any more.
 | |
|  */
 | |
| 
 | |
| void snapshot_write_finalize(struct snapshot_handle *handle)
 | |
| {
 | |
| 	copy_last_highmem_page();
 | |
| 	/* Restore page key for data page (s390 only). */
 | |
| 	page_key_write(handle->buffer);
 | |
| 	page_key_free();
 | |
| 	/* Free only if we have loaded the image entirely */
 | |
| 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
 | |
| 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
 | |
| 		free_highmem_data();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int snapshot_image_loaded(struct snapshot_handle *handle)
 | |
| {
 | |
| 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
 | |
| 			handle->cur <= nr_meta_pages + nr_copy_pages);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| /* Assumes that @buf is ready and points to a "safe" page */
 | |
| static inline void
 | |
| swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
 | |
| {
 | |
| 	void *kaddr1, *kaddr2;
 | |
| 
 | |
| 	kaddr1 = kmap_atomic(p1);
 | |
| 	kaddr2 = kmap_atomic(p2);
 | |
| 	copy_page(buf, kaddr1);
 | |
| 	copy_page(kaddr1, kaddr2);
 | |
| 	copy_page(kaddr2, buf);
 | |
| 	kunmap_atomic(kaddr2);
 | |
| 	kunmap_atomic(kaddr1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	restore_highmem - for each highmem page that was allocated before
 | |
|  *	the suspend and included in the suspend image, and also has been
 | |
|  *	allocated by the "resume" kernel swap its current (ie. "before
 | |
|  *	resume") contents with the previous (ie. "before suspend") one.
 | |
|  *
 | |
|  *	If the resume eventually fails, we can call this function once
 | |
|  *	again and restore the "before resume" highmem state.
 | |
|  */
 | |
| 
 | |
| int restore_highmem(void)
 | |
| {
 | |
| 	struct highmem_pbe *pbe = highmem_pblist;
 | |
| 	void *buf;
 | |
| 
 | |
| 	if (!pbe)
 | |
| 		return 0;
 | |
| 
 | |
| 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while (pbe) {
 | |
| 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
 | |
| 		pbe = pbe->next;
 | |
| 	}
 | |
| 	free_image_page(buf, PG_UNSAFE_CLEAR);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_HIGHMEM */
 |