 88a57667f2
			
		
	
	
	88a57667f2
	
	
	
		
			
			Pull perf fixes and cleanups from Ingo Molnar: "A kernel fix plus mostly tooling fixes, but also some tooling restructuring and cleanups" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits) perf: Fix building warning on ARM 32 perf symbols: Fix use after free in filename__read_build_id perf evlist: Use roundup_pow_of_two tools: Adopt roundup_pow_of_two perf tools: Make the mmap length autotuning more robust tools: Adopt rounddown_pow_of_two and deps tools: Adopt fls_long and deps tools: Move bitops.h from tools/perf/util to tools/ tools: Introduce asm-generic/bitops.h tools lib: Move asm-generic/bitops/find.h code to tools/include and tools/lib tools: Whitespace prep patches for moving bitops.h tools: Move code originally from asm-generic/atomic.h into tools/include/asm-generic/ tools: Move code originally from linux/log2.h to tools/include/linux/ tools: Move __ffs implementation to tools/include/asm-generic/bitops/__ffs.h perf evlist: Do not use hard coded value for a mmap_pages default perf trace: Let the perf_evlist__mmap autosize the number of pages to use perf evlist: Improve the strerror_mmap method perf evlist: Clarify sterror_mmap variable names perf evlist: Fixup brown paper bag on "hint" for --mmap-pages cmdline arg perf trace: Provide a better explanation when mmap fails ...
		
			
				
	
	
		
			8371 lines
		
	
	
	
		
			194 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8371 lines
		
	
	
	
		
			194 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Performance events core code:
 | |
|  *
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | |
|  *
 | |
|  * For licensing details see kernel-base/COPYING
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/dcache.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/ftrace_event.h>
 | |
| #include <linux/hw_breakpoint.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/compat.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| static struct workqueue_struct *perf_wq;
 | |
| 
 | |
| struct remote_function_call {
 | |
| 	struct task_struct	*p;
 | |
| 	int			(*func)(void *info);
 | |
| 	void			*info;
 | |
| 	int			ret;
 | |
| };
 | |
| 
 | |
| static void remote_function(void *data)
 | |
| {
 | |
| 	struct remote_function_call *tfc = data;
 | |
| 	struct task_struct *p = tfc->p;
 | |
| 
 | |
| 	if (p) {
 | |
| 		tfc->ret = -EAGAIN;
 | |
| 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	tfc->ret = tfc->func(tfc->info);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_function_call - call a function on the cpu on which a task runs
 | |
|  * @p:		the task to evaluate
 | |
|  * @func:	the function to be called
 | |
|  * @info:	the function call argument
 | |
|  *
 | |
|  * Calls the function @func when the task is currently running. This might
 | |
|  * be on the current CPU, which just calls the function directly
 | |
|  *
 | |
|  * returns: @func return value, or
 | |
|  *	    -ESRCH  - when the process isn't running
 | |
|  *	    -EAGAIN - when the process moved away
 | |
|  */
 | |
| static int
 | |
| task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
 | |
| {
 | |
| 	struct remote_function_call data = {
 | |
| 		.p	= p,
 | |
| 		.func	= func,
 | |
| 		.info	= info,
 | |
| 		.ret	= -ESRCH, /* No such (running) process */
 | |
| 	};
 | |
| 
 | |
| 	if (task_curr(p))
 | |
| 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 | |
| 
 | |
| 	return data.ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpu_function_call - call a function on the cpu
 | |
|  * @func:	the function to be called
 | |
|  * @info:	the function call argument
 | |
|  *
 | |
|  * Calls the function @func on the remote cpu.
 | |
|  *
 | |
|  * returns: @func return value or -ENXIO when the cpu is offline
 | |
|  */
 | |
| static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 | |
| {
 | |
| 	struct remote_function_call data = {
 | |
| 		.p	= NULL,
 | |
| 		.func	= func,
 | |
| 		.info	= info,
 | |
| 		.ret	= -ENXIO, /* No such CPU */
 | |
| 	};
 | |
| 
 | |
| 	smp_call_function_single(cpu, remote_function, &data, 1);
 | |
| 
 | |
| 	return data.ret;
 | |
| }
 | |
| 
 | |
| #define EVENT_OWNER_KERNEL ((void *) -1)
 | |
| 
 | |
| static bool is_kernel_event(struct perf_event *event)
 | |
| {
 | |
| 	return event->owner == EVENT_OWNER_KERNEL;
 | |
| }
 | |
| 
 | |
| #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 | |
| 		       PERF_FLAG_FD_OUTPUT  |\
 | |
| 		       PERF_FLAG_PID_CGROUP |\
 | |
| 		       PERF_FLAG_FD_CLOEXEC)
 | |
| 
 | |
| /*
 | |
|  * branch priv levels that need permission checks
 | |
|  */
 | |
| #define PERF_SAMPLE_BRANCH_PERM_PLM \
 | |
| 	(PERF_SAMPLE_BRANCH_KERNEL |\
 | |
| 	 PERF_SAMPLE_BRANCH_HV)
 | |
| 
 | |
| enum event_type_t {
 | |
| 	EVENT_FLEXIBLE = 0x1,
 | |
| 	EVENT_PINNED = 0x2,
 | |
| 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * perf_sched_events : >0 events exist
 | |
|  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 | |
|  */
 | |
| struct static_key_deferred perf_sched_events __read_mostly;
 | |
| static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 | |
| static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
 | |
| 
 | |
| static atomic_t nr_mmap_events __read_mostly;
 | |
| static atomic_t nr_comm_events __read_mostly;
 | |
| static atomic_t nr_task_events __read_mostly;
 | |
| static atomic_t nr_freq_events __read_mostly;
 | |
| 
 | |
| static LIST_HEAD(pmus);
 | |
| static DEFINE_MUTEX(pmus_lock);
 | |
| static struct srcu_struct pmus_srcu;
 | |
| 
 | |
| /*
 | |
|  * perf event paranoia level:
 | |
|  *  -1 - not paranoid at all
 | |
|  *   0 - disallow raw tracepoint access for unpriv
 | |
|  *   1 - disallow cpu events for unpriv
 | |
|  *   2 - disallow kernel profiling for unpriv
 | |
|  */
 | |
| int sysctl_perf_event_paranoid __read_mostly = 1;
 | |
| 
 | |
| /* Minimum for 512 kiB + 1 user control page */
 | |
| int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 | |
| 
 | |
| /*
 | |
|  * max perf event sample rate
 | |
|  */
 | |
| #define DEFAULT_MAX_SAMPLE_RATE		100000
 | |
| #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 | |
| #define DEFAULT_CPU_TIME_MAX_PERCENT	25
 | |
| 
 | |
| int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
 | |
| 
 | |
| static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 | |
| static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
 | |
| 
 | |
| static int perf_sample_allowed_ns __read_mostly =
 | |
| 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 | |
| 
 | |
| void update_perf_cpu_limits(void)
 | |
| {
 | |
| 	u64 tmp = perf_sample_period_ns;
 | |
| 
 | |
| 	tmp *= sysctl_perf_cpu_time_max_percent;
 | |
| 	do_div(tmp, 100);
 | |
| 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
 | |
| }
 | |
| 
 | |
| static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 | |
| 
 | |
| int perf_proc_update_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 | |
| 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 | |
| 	update_perf_cpu_limits();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 | |
| 
 | |
| int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 | |
| 				void __user *buffer, size_t *lenp,
 | |
| 				loff_t *ppos)
 | |
| {
 | |
| 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 | |
| 
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	update_perf_cpu_limits();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perf samples are done in some very critical code paths (NMIs).
 | |
|  * If they take too much CPU time, the system can lock up and not
 | |
|  * get any real work done.  This will drop the sample rate when
 | |
|  * we detect that events are taking too long.
 | |
|  */
 | |
| #define NR_ACCUMULATED_SAMPLES 128
 | |
| static DEFINE_PER_CPU(u64, running_sample_length);
 | |
| 
 | |
| static void perf_duration_warn(struct irq_work *w)
 | |
| {
 | |
| 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
 | |
| 	u64 avg_local_sample_len;
 | |
| 	u64 local_samples_len;
 | |
| 
 | |
| 	local_samples_len = __this_cpu_read(running_sample_length);
 | |
| 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 | |
| 
 | |
| 	printk_ratelimited(KERN_WARNING
 | |
| 			"perf interrupt took too long (%lld > %lld), lowering "
 | |
| 			"kernel.perf_event_max_sample_rate to %d\n",
 | |
| 			avg_local_sample_len, allowed_ns >> 1,
 | |
| 			sysctl_perf_event_sample_rate);
 | |
| }
 | |
| 
 | |
| static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 | |
| 
 | |
| void perf_sample_event_took(u64 sample_len_ns)
 | |
| {
 | |
| 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
 | |
| 	u64 avg_local_sample_len;
 | |
| 	u64 local_samples_len;
 | |
| 
 | |
| 	if (allowed_ns == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* decay the counter by 1 average sample */
 | |
| 	local_samples_len = __this_cpu_read(running_sample_length);
 | |
| 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
 | |
| 	local_samples_len += sample_len_ns;
 | |
| 	__this_cpu_write(running_sample_length, local_samples_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * note: this will be biased artifically low until we have
 | |
| 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
 | |
| 	 * from having to maintain a count.
 | |
| 	 */
 | |
| 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 | |
| 
 | |
| 	if (avg_local_sample_len <= allowed_ns)
 | |
| 		return;
 | |
| 
 | |
| 	if (max_samples_per_tick <= 1)
 | |
| 		return;
 | |
| 
 | |
| 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
 | |
| 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
 | |
| 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 | |
| 
 | |
| 	update_perf_cpu_limits();
 | |
| 
 | |
| 	if (!irq_work_queue(&perf_duration_work)) {
 | |
| 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
 | |
| 			     "kernel.perf_event_max_sample_rate to %d\n",
 | |
| 			     avg_local_sample_len, allowed_ns >> 1,
 | |
| 			     sysctl_perf_event_sample_rate);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static atomic64_t perf_event_id;
 | |
| 
 | |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 | |
| 			      enum event_type_t event_type);
 | |
| 
 | |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 | |
| 			     enum event_type_t event_type,
 | |
| 			     struct task_struct *task);
 | |
| 
 | |
| static void update_context_time(struct perf_event_context *ctx);
 | |
| static u64 perf_event_time(struct perf_event *event);
 | |
| 
 | |
| void __weak perf_event_print_debug(void)	{ }
 | |
| 
 | |
| extern __weak const char *perf_pmu_name(void)
 | |
| {
 | |
| 	return "pmu";
 | |
| }
 | |
| 
 | |
| static inline u64 perf_clock(void)
 | |
| {
 | |
| 	return local_clock();
 | |
| }
 | |
| 
 | |
| static inline struct perf_cpu_context *
 | |
| __get_cpu_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 | |
| }
 | |
| 
 | |
| static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 | |
| 			  struct perf_event_context *ctx)
 | |
| {
 | |
| 	raw_spin_lock(&cpuctx->ctx.lock);
 | |
| 	if (ctx)
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 | |
| 			    struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (ctx)
 | |
| 		raw_spin_unlock(&ctx->lock);
 | |
| 	raw_spin_unlock(&cpuctx->ctx.lock);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| 
 | |
| /*
 | |
|  * perf_cgroup_info keeps track of time_enabled for a cgroup.
 | |
|  * This is a per-cpu dynamically allocated data structure.
 | |
|  */
 | |
| struct perf_cgroup_info {
 | |
| 	u64				time;
 | |
| 	u64				timestamp;
 | |
| };
 | |
| 
 | |
| struct perf_cgroup {
 | |
| 	struct cgroup_subsys_state	css;
 | |
| 	struct perf_cgroup_info	__percpu *info;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Must ensure cgroup is pinned (css_get) before calling
 | |
|  * this function. In other words, we cannot call this function
 | |
|  * if there is no cgroup event for the current CPU context.
 | |
|  */
 | |
| static inline struct perf_cgroup *
 | |
| perf_cgroup_from_task(struct task_struct *task)
 | |
| {
 | |
| 	return container_of(task_css(task, perf_event_cgrp_id),
 | |
| 			    struct perf_cgroup, css);
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| perf_cgroup_match(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	/* @event doesn't care about cgroup */
 | |
| 	if (!event->cgrp)
 | |
| 		return true;
 | |
| 
 | |
| 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
 | |
| 	if (!cpuctx->cgrp)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
 | |
| 	 * also enabled for all its descendant cgroups.  If @cpuctx's
 | |
| 	 * cgroup is a descendant of @event's (the test covers identity
 | |
| 	 * case), it's a match.
 | |
| 	 */
 | |
| 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 | |
| 				    event->cgrp->css.cgroup);
 | |
| }
 | |
| 
 | |
| static inline void perf_detach_cgroup(struct perf_event *event)
 | |
| {
 | |
| 	css_put(&event->cgrp->css);
 | |
| 	event->cgrp = NULL;
 | |
| }
 | |
| 
 | |
| static inline int is_cgroup_event(struct perf_event *event)
 | |
| {
 | |
| 	return event->cgrp != NULL;
 | |
| }
 | |
| 
 | |
| static inline u64 perf_cgroup_event_time(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_cgroup_info *t;
 | |
| 
 | |
| 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 | |
| 	return t->time;
 | |
| }
 | |
| 
 | |
| static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 | |
| {
 | |
| 	struct perf_cgroup_info *info;
 | |
| 	u64 now;
 | |
| 
 | |
| 	now = perf_clock();
 | |
| 
 | |
| 	info = this_cpu_ptr(cgrp->info);
 | |
| 
 | |
| 	info->time += now - info->timestamp;
 | |
| 	info->timestamp = now;
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 | |
| 	if (cgrp_out)
 | |
| 		__update_cgrp_time(cgrp_out);
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_event(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp;
 | |
| 
 | |
| 	/*
 | |
| 	 * ensure we access cgroup data only when needed and
 | |
| 	 * when we know the cgroup is pinned (css_get)
 | |
| 	 */
 | |
| 	if (!is_cgroup_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	cgrp = perf_cgroup_from_task(current);
 | |
| 	/*
 | |
| 	 * Do not update time when cgroup is not active
 | |
| 	 */
 | |
| 	if (cgrp == event->cgrp)
 | |
| 		__update_cgrp_time(event->cgrp);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_timestamp(struct task_struct *task,
 | |
| 			  struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp;
 | |
| 	struct perf_cgroup_info *info;
 | |
| 
 | |
| 	/*
 | |
| 	 * ctx->lock held by caller
 | |
| 	 * ensure we do not access cgroup data
 | |
| 	 * unless we have the cgroup pinned (css_get)
 | |
| 	 */
 | |
| 	if (!task || !ctx->nr_cgroups)
 | |
| 		return;
 | |
| 
 | |
| 	cgrp = perf_cgroup_from_task(task);
 | |
| 	info = this_cpu_ptr(cgrp->info);
 | |
| 	info->timestamp = ctx->timestamp;
 | |
| }
 | |
| 
 | |
| #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
 | |
| #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
 | |
| 
 | |
| /*
 | |
|  * reschedule events based on the cgroup constraint of task.
 | |
|  *
 | |
|  * mode SWOUT : schedule out everything
 | |
|  * mode SWIN : schedule in based on cgroup for next
 | |
|  */
 | |
| void perf_cgroup_switch(struct task_struct *task, int mode)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct pmu *pmu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * disable interrupts to avoid geting nr_cgroup
 | |
| 	 * changes via __perf_event_disable(). Also
 | |
| 	 * avoids preemption.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * we reschedule only in the presence of cgroup
 | |
| 	 * constrained events.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 		if (cpuctx->unique_pmu != pmu)
 | |
| 			continue; /* ensure we process each cpuctx once */
 | |
| 
 | |
| 		/*
 | |
| 		 * perf_cgroup_events says at least one
 | |
| 		 * context on this CPU has cgroup events.
 | |
| 		 *
 | |
| 		 * ctx->nr_cgroups reports the number of cgroup
 | |
| 		 * events for a context.
 | |
| 		 */
 | |
| 		if (cpuctx->ctx.nr_cgroups > 0) {
 | |
| 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 | |
| 			perf_pmu_disable(cpuctx->ctx.pmu);
 | |
| 
 | |
| 			if (mode & PERF_CGROUP_SWOUT) {
 | |
| 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 | |
| 				/*
 | |
| 				 * must not be done before ctxswout due
 | |
| 				 * to event_filter_match() in event_sched_out()
 | |
| 				 */
 | |
| 				cpuctx->cgrp = NULL;
 | |
| 			}
 | |
| 
 | |
| 			if (mode & PERF_CGROUP_SWIN) {
 | |
| 				WARN_ON_ONCE(cpuctx->cgrp);
 | |
| 				/*
 | |
| 				 * set cgrp before ctxsw in to allow
 | |
| 				 * event_filter_match() to not have to pass
 | |
| 				 * task around
 | |
| 				 */
 | |
| 				cpuctx->cgrp = perf_cgroup_from_task(task);
 | |
| 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 | |
| 			}
 | |
| 			perf_pmu_enable(cpuctx->ctx.pmu);
 | |
| 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_out(struct task_struct *task,
 | |
| 					 struct task_struct *next)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp1;
 | |
| 	struct perf_cgroup *cgrp2 = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * we come here when we know perf_cgroup_events > 0
 | |
| 	 */
 | |
| 	cgrp1 = perf_cgroup_from_task(task);
 | |
| 
 | |
| 	/*
 | |
| 	 * next is NULL when called from perf_event_enable_on_exec()
 | |
| 	 * that will systematically cause a cgroup_switch()
 | |
| 	 */
 | |
| 	if (next)
 | |
| 		cgrp2 = perf_cgroup_from_task(next);
 | |
| 
 | |
| 	/*
 | |
| 	 * only schedule out current cgroup events if we know
 | |
| 	 * that we are switching to a different cgroup. Otherwise,
 | |
| 	 * do no touch the cgroup events.
 | |
| 	 */
 | |
| 	if (cgrp1 != cgrp2)
 | |
| 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_in(struct task_struct *prev,
 | |
| 					struct task_struct *task)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp1;
 | |
| 	struct perf_cgroup *cgrp2 = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * we come here when we know perf_cgroup_events > 0
 | |
| 	 */
 | |
| 	cgrp1 = perf_cgroup_from_task(task);
 | |
| 
 | |
| 	/* prev can never be NULL */
 | |
| 	cgrp2 = perf_cgroup_from_task(prev);
 | |
| 
 | |
| 	/*
 | |
| 	 * only need to schedule in cgroup events if we are changing
 | |
| 	 * cgroup during ctxsw. Cgroup events were not scheduled
 | |
| 	 * out of ctxsw out if that was not the case.
 | |
| 	 */
 | |
| 	if (cgrp1 != cgrp2)
 | |
| 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 | |
| }
 | |
| 
 | |
| static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 | |
| 				      struct perf_event_attr *attr,
 | |
| 				      struct perf_event *group_leader)
 | |
| {
 | |
| 	struct perf_cgroup *cgrp;
 | |
| 	struct cgroup_subsys_state *css;
 | |
| 	struct fd f = fdget(fd);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
 | |
| 					 &perf_event_cgrp_subsys);
 | |
| 	if (IS_ERR(css)) {
 | |
| 		ret = PTR_ERR(css);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	cgrp = container_of(css, struct perf_cgroup, css);
 | |
| 	event->cgrp = cgrp;
 | |
| 
 | |
| 	/*
 | |
| 	 * all events in a group must monitor
 | |
| 	 * the same cgroup because a task belongs
 | |
| 	 * to only one perf cgroup at a time
 | |
| 	 */
 | |
| 	if (group_leader && group_leader->cgrp != cgrp) {
 | |
| 		perf_detach_cgroup(event);
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	fdput(f);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 | |
| {
 | |
| 	struct perf_cgroup_info *t;
 | |
| 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
 | |
| 	event->shadow_ctx_time = now - t->timestamp;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_defer_enabled(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * when the current task's perf cgroup does not match
 | |
| 	 * the event's, we need to remember to call the
 | |
| 	 * perf_mark_enable() function the first time a task with
 | |
| 	 * a matching perf cgroup is scheduled in.
 | |
| 	 */
 | |
| 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
 | |
| 		event->cgrp_defer_enabled = 1;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_mark_enabled(struct perf_event *event,
 | |
| 			 struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *sub;
 | |
| 	u64 tstamp = perf_event_time(event);
 | |
| 
 | |
| 	if (!event->cgrp_defer_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	event->cgrp_defer_enabled = 0;
 | |
| 
 | |
| 	event->tstamp_enabled = tstamp - event->total_time_enabled;
 | |
| 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
 | |
| 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 | |
| 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 | |
| 			sub->cgrp_defer_enabled = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else /* !CONFIG_CGROUP_PERF */
 | |
| 
 | |
| static inline bool
 | |
| perf_cgroup_match(struct perf_event *event)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void perf_detach_cgroup(struct perf_event *event)
 | |
| {}
 | |
| 
 | |
| static inline int is_cgroup_event(struct perf_event *event)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_event(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_out(struct task_struct *task,
 | |
| 					 struct task_struct *next)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void perf_cgroup_sched_in(struct task_struct *prev,
 | |
| 					struct task_struct *task)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 | |
| 				      struct perf_event_attr *attr,
 | |
| 				      struct perf_event *group_leader)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_timestamp(struct task_struct *task,
 | |
| 			  struct perf_event_context *ctx)
 | |
| {
 | |
| }
 | |
| 
 | |
| void
 | |
| perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline u64 perf_cgroup_event_time(struct perf_event *event)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_defer_enabled(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| perf_cgroup_mark_enabled(struct perf_event *event,
 | |
| 			 struct perf_event_context *ctx)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * set default to be dependent on timer tick just
 | |
|  * like original code
 | |
|  */
 | |
| #define PERF_CPU_HRTIMER (1000 / HZ)
 | |
| /*
 | |
|  * function must be called with interrupts disbled
 | |
|  */
 | |
| static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	enum hrtimer_restart ret = HRTIMER_NORESTART;
 | |
| 	int rotations = 0;
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 | |
| 
 | |
| 	rotations = perf_rotate_context(cpuctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * arm timer if needed
 | |
| 	 */
 | |
| 	if (rotations) {
 | |
| 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 | |
| 		ret = HRTIMER_RESTART;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* CPU is going down */
 | |
| void perf_cpu_hrtimer_cancel(int cpu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct pmu *pmu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (WARN_ON(cpu != smp_processor_id()))
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 
 | |
| 		if (pmu->task_ctx_nr == perf_sw_context)
 | |
| 			continue;
 | |
| 
 | |
| 		hrtimer_cancel(&cpuctx->hrtimer);
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 | |
| {
 | |
| 	struct hrtimer *hr = &cpuctx->hrtimer;
 | |
| 	struct pmu *pmu = cpuctx->ctx.pmu;
 | |
| 	int timer;
 | |
| 
 | |
| 	/* no multiplexing needed for SW PMU */
 | |
| 	if (pmu->task_ctx_nr == perf_sw_context)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * check default is sane, if not set then force to
 | |
| 	 * default interval (1/tick)
 | |
| 	 */
 | |
| 	timer = pmu->hrtimer_interval_ms;
 | |
| 	if (timer < 1)
 | |
| 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 | |
| 
 | |
| 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 | |
| 
 | |
| 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 | |
| 	hr->function = perf_cpu_hrtimer_handler;
 | |
| }
 | |
| 
 | |
| static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct hrtimer *hr = &cpuctx->hrtimer;
 | |
| 	struct pmu *pmu = cpuctx->ctx.pmu;
 | |
| 
 | |
| 	/* not for SW PMU */
 | |
| 	if (pmu->task_ctx_nr == perf_sw_context)
 | |
| 		return;
 | |
| 
 | |
| 	if (hrtimer_active(hr))
 | |
| 		return;
 | |
| 
 | |
| 	if (!hrtimer_callback_running(hr))
 | |
| 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
 | |
| 					 0, HRTIMER_MODE_REL_PINNED, 0);
 | |
| }
 | |
| 
 | |
| void perf_pmu_disable(struct pmu *pmu)
 | |
| {
 | |
| 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 | |
| 	if (!(*count)++)
 | |
| 		pmu->pmu_disable(pmu);
 | |
| }
 | |
| 
 | |
| void perf_pmu_enable(struct pmu *pmu)
 | |
| {
 | |
| 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 | |
| 	if (!--(*count))
 | |
| 		pmu->pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct list_head, rotation_list);
 | |
| 
 | |
| /*
 | |
|  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 | |
|  * because they're strictly cpu affine and rotate_start is called with IRQs
 | |
|  * disabled, while rotate_context is called from IRQ context.
 | |
|  */
 | |
| static void perf_pmu_rotate_start(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	struct list_head *head = this_cpu_ptr(&rotation_list);
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	if (list_empty(&cpuctx->rotation_list))
 | |
| 		list_add(&cpuctx->rotation_list, head);
 | |
| }
 | |
| 
 | |
| static void get_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 | |
| }
 | |
| 
 | |
| static void put_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ctx->refcount)) {
 | |
| 		if (ctx->parent_ctx)
 | |
| 			put_ctx(ctx->parent_ctx);
 | |
| 		if (ctx->task)
 | |
| 			put_task_struct(ctx->task);
 | |
| 		kfree_rcu(ctx, rcu_head);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be done under the ctx->lock, such as to serialize against
 | |
|  * context_equiv(), therefore we cannot call put_ctx() since that might end up
 | |
|  * calling scheduler related locks and ctx->lock nests inside those.
 | |
|  */
 | |
| static __must_check struct perf_event_context *
 | |
| unclone_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	if (parent_ctx)
 | |
| 		ctx->parent_ctx = NULL;
 | |
| 	ctx->generation++;
 | |
| 
 | |
| 	return parent_ctx;
 | |
| }
 | |
| 
 | |
| static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * only top level events have the pid namespace they were created in
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	return task_tgid_nr_ns(p, event->ns);
 | |
| }
 | |
| 
 | |
| static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * only top level events have the pid namespace they were created in
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	return task_pid_nr_ns(p, event->ns);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we inherit events we want to return the parent event id
 | |
|  * to userspace.
 | |
|  */
 | |
| static u64 primary_event_id(struct perf_event *event)
 | |
| {
 | |
| 	u64 id = event->id;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		id = event->parent->id;
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the perf_event_context for a task and lock it.
 | |
|  * This has to cope with with the fact that until it is locked,
 | |
|  * the context could get moved to another task.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * One of the few rules of preemptible RCU is that one cannot do
 | |
| 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
 | |
| 	 * part of the read side critical section was preemptible -- see
 | |
| 	 * rcu_read_unlock_special().
 | |
| 	 *
 | |
| 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
 | |
| 	 * side critical section is non-preemptible.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	rcu_read_lock();
 | |
| 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 | |
| 	if (ctx) {
 | |
| 		/*
 | |
| 		 * If this context is a clone of another, it might
 | |
| 		 * get swapped for another underneath us by
 | |
| 		 * perf_event_task_sched_out, though the
 | |
| 		 * rcu_read_lock() protects us from any context
 | |
| 		 * getting freed.  Lock the context and check if it
 | |
| 		 * got swapped before we could get the lock, and retry
 | |
| 		 * if so.  If we locked the right context, then it
 | |
| 		 * can't get swapped on us any more.
 | |
| 		 */
 | |
| 		raw_spin_lock_irqsave(&ctx->lock, *flags);
 | |
| 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 | |
| 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 | |
| 			rcu_read_unlock();
 | |
| 			preempt_enable();
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		if (!atomic_inc_not_zero(&ctx->refcount)) {
 | |
| 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 | |
| 			ctx = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	preempt_enable();
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the context for a task and increment its pin_count so it
 | |
|  * can't get swapped to another task.  This also increments its
 | |
|  * reference count so that the context can't get freed.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_pin_task_context(struct task_struct *task, int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ctx = perf_lock_task_context(task, ctxn, &flags);
 | |
| 	if (ctx) {
 | |
| 		++ctx->pin_count;
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static void perf_unpin_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ctx->lock, flags);
 | |
| 	--ctx->pin_count;
 | |
| 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the record of the current time in a context.
 | |
|  */
 | |
| static void update_context_time(struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 now = perf_clock();
 | |
| 
 | |
| 	ctx->time += now - ctx->timestamp;
 | |
| 	ctx->timestamp = now;
 | |
| }
 | |
| 
 | |
| static u64 perf_event_time(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	if (is_cgroup_event(event))
 | |
| 		return perf_cgroup_event_time(event);
 | |
| 
 | |
| 	return ctx ? ctx->time : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the total_time_enabled and total_time_running fields for a event.
 | |
|  * The caller of this function needs to hold the ctx->lock.
 | |
|  */
 | |
| static void update_event_times(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	u64 run_end;
 | |
| 
 | |
| 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
 | |
| 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * in cgroup mode, time_enabled represents
 | |
| 	 * the time the event was enabled AND active
 | |
| 	 * tasks were in the monitored cgroup. This is
 | |
| 	 * independent of the activity of the context as
 | |
| 	 * there may be a mix of cgroup and non-cgroup events.
 | |
| 	 *
 | |
| 	 * That is why we treat cgroup events differently
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	if (is_cgroup_event(event))
 | |
| 		run_end = perf_cgroup_event_time(event);
 | |
| 	else if (ctx->is_active)
 | |
| 		run_end = ctx->time;
 | |
| 	else
 | |
| 		run_end = event->tstamp_stopped;
 | |
| 
 | |
| 	event->total_time_enabled = run_end - event->tstamp_enabled;
 | |
| 
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE)
 | |
| 		run_end = event->tstamp_stopped;
 | |
| 	else
 | |
| 		run_end = perf_event_time(event);
 | |
| 
 | |
| 	event->total_time_running = run_end - event->tstamp_running;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update total_time_enabled and total_time_running for all events in a group.
 | |
|  */
 | |
| static void update_group_times(struct perf_event *leader)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	update_event_times(leader);
 | |
| 	list_for_each_entry(event, &leader->sibling_list, group_entry)
 | |
| 		update_event_times(event);
 | |
| }
 | |
| 
 | |
| static struct list_head *
 | |
| ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (event->attr.pinned)
 | |
| 		return &ctx->pinned_groups;
 | |
| 	else
 | |
| 		return &ctx->flexible_groups;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 | |
| 	event->attach_state |= PERF_ATTACH_CONTEXT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're a stand alone event or group leader, we go to the context
 | |
| 	 * list, group events are kept attached to the group so that
 | |
| 	 * perf_group_detach can, at all times, locate all siblings.
 | |
| 	 */
 | |
| 	if (event->group_leader == event) {
 | |
| 		struct list_head *list;
 | |
| 
 | |
| 		if (is_software_event(event))
 | |
| 			event->group_flags |= PERF_GROUP_SOFTWARE;
 | |
| 
 | |
| 		list = ctx_group_list(event, ctx);
 | |
| 		list_add_tail(&event->group_entry, list);
 | |
| 	}
 | |
| 
 | |
| 	if (is_cgroup_event(event))
 | |
| 		ctx->nr_cgroups++;
 | |
| 
 | |
| 	if (has_branch_stack(event))
 | |
| 		ctx->nr_branch_stack++;
 | |
| 
 | |
| 	list_add_rcu(&event->event_entry, &ctx->event_list);
 | |
| 	if (!ctx->nr_events)
 | |
| 		perf_pmu_rotate_start(ctx->pmu);
 | |
| 	ctx->nr_events++;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat++;
 | |
| 
 | |
| 	ctx->generation++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize event state based on the perf_event_attr::disabled.
 | |
|  */
 | |
| static inline void perf_event__state_init(struct perf_event *event)
 | |
| {
 | |
| 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
 | |
| 					      PERF_EVENT_STATE_INACTIVE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called at perf_event creation and when events are attached/detached from a
 | |
|  * group.
 | |
|  */
 | |
| static void perf_event__read_size(struct perf_event *event)
 | |
| {
 | |
| 	int entry = sizeof(u64); /* value */
 | |
| 	int size = 0;
 | |
| 	int nr = 1;
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_ID)
 | |
| 		entry += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
 | |
| 		nr += event->group_leader->nr_siblings;
 | |
| 		size += sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	size += entry * nr;
 | |
| 	event->read_size = size;
 | |
| }
 | |
| 
 | |
| static void perf_event__header_size(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_sample_data *data;
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 	u16 size = 0;
 | |
| 
 | |
| 	perf_event__read_size(event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		size += sizeof(data->ip);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		size += sizeof(data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		size += sizeof(data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_WEIGHT)
 | |
| 		size += sizeof(data->weight);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		size += event->read_size;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_DATA_SRC)
 | |
| 		size += sizeof(data->data_src.val);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TRANSACTION)
 | |
| 		size += sizeof(data->txn);
 | |
| 
 | |
| 	event->header_size = size;
 | |
| }
 | |
| 
 | |
| static void perf_event__id_header_size(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_sample_data *data;
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 	u16 size = 0;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		size += sizeof(data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		size += sizeof(data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 | |
| 		size += sizeof(data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		size += sizeof(data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		size += sizeof(data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		size += sizeof(data->cpu_entry);
 | |
| 
 | |
| 	event->id_header_size = size;
 | |
| }
 | |
| 
 | |
| static void perf_group_attach(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *group_leader = event->group_leader, *pos;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can have double attach due to group movement in perf_event_open.
 | |
| 	 */
 | |
| 	if (event->attach_state & PERF_ATTACH_GROUP)
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state |= PERF_ATTACH_GROUP;
 | |
| 
 | |
| 	if (group_leader == event)
 | |
| 		return;
 | |
| 
 | |
| 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
 | |
| 			!is_software_event(event))
 | |
| 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
 | |
| 
 | |
| 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
 | |
| 	group_leader->nr_siblings++;
 | |
| 
 | |
| 	perf_event__header_size(group_leader);
 | |
| 
 | |
| 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
 | |
| 		perf_event__header_size(pos);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	/*
 | |
| 	 * We can have double detach due to exit/hot-unplug + close.
 | |
| 	 */
 | |
| 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
 | |
| 
 | |
| 	if (is_cgroup_event(event)) {
 | |
| 		ctx->nr_cgroups--;
 | |
| 		cpuctx = __get_cpu_context(ctx);
 | |
| 		/*
 | |
| 		 * if there are no more cgroup events
 | |
| 		 * then cler cgrp to avoid stale pointer
 | |
| 		 * in update_cgrp_time_from_cpuctx()
 | |
| 		 */
 | |
| 		if (!ctx->nr_cgroups)
 | |
| 			cpuctx->cgrp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (has_branch_stack(event))
 | |
| 		ctx->nr_branch_stack--;
 | |
| 
 | |
| 	ctx->nr_events--;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat--;
 | |
| 
 | |
| 	list_del_rcu(&event->event_entry);
 | |
| 
 | |
| 	if (event->group_leader == event)
 | |
| 		list_del_init(&event->group_entry);
 | |
| 
 | |
| 	update_group_times(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * If event was in error state, then keep it
 | |
| 	 * that way, otherwise bogus counts will be
 | |
| 	 * returned on read(). The only way to get out
 | |
| 	 * of error state is by explicit re-enabling
 | |
| 	 * of the event
 | |
| 	 */
 | |
| 	if (event->state > PERF_EVENT_STATE_OFF)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| 	ctx->generation++;
 | |
| }
 | |
| 
 | |
| static void perf_group_detach(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *sibling, *tmp;
 | |
| 	struct list_head *list = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can have double detach due to exit/hot-unplug + close.
 | |
| 	 */
 | |
| 	if (!(event->attach_state & PERF_ATTACH_GROUP))
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state &= ~PERF_ATTACH_GROUP;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a sibling, remove it from its group.
 | |
| 	 */
 | |
| 	if (event->group_leader != event) {
 | |
| 		list_del_init(&event->group_entry);
 | |
| 		event->group_leader->nr_siblings--;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&event->group_entry))
 | |
| 		list = &event->group_entry;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this was a group event with sibling events then
 | |
| 	 * upgrade the siblings to singleton events by adding them
 | |
| 	 * to whatever list we are on.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
 | |
| 		if (list)
 | |
| 			list_move_tail(&sibling->group_entry, list);
 | |
| 		sibling->group_leader = sibling;
 | |
| 
 | |
| 		/* Inherit group flags from the previous leader */
 | |
| 		sibling->group_flags = event->group_flags;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	perf_event__header_size(event->group_leader);
 | |
| 
 | |
| 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
 | |
| 		perf_event__header_size(tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User event without the task.
 | |
|  */
 | |
| static bool is_orphaned_event(struct perf_event *event)
 | |
| {
 | |
| 	return event && !is_kernel_event(event) && !event->owner;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Event has a parent but parent's task finished and it's
 | |
|  * alive only because of children holding refference.
 | |
|  */
 | |
| static bool is_orphaned_child(struct perf_event *event)
 | |
| {
 | |
| 	return is_orphaned_event(event->parent);
 | |
| }
 | |
| 
 | |
| static void orphans_remove_work(struct work_struct *work);
 | |
| 
 | |
| static void schedule_orphans_remove(struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
 | |
| 		return;
 | |
| 
 | |
| 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
 | |
| 		get_ctx(ctx);
 | |
| 		ctx->orphans_remove_sched = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init perf_workqueue_init(void)
 | |
| {
 | |
| 	perf_wq = create_singlethread_workqueue("perf");
 | |
| 	WARN(!perf_wq, "failed to create perf workqueue\n");
 | |
| 	return perf_wq ? 0 : -1;
 | |
| }
 | |
| 
 | |
| core_initcall(perf_workqueue_init);
 | |
| 
 | |
| static inline int
 | |
| event_filter_match(struct perf_event *event)
 | |
| {
 | |
| 	return (event->cpu == -1 || event->cpu == smp_processor_id())
 | |
| 	    && perf_cgroup_match(event);
 | |
| }
 | |
| 
 | |
| static void
 | |
| event_sched_out(struct perf_event *event,
 | |
| 		  struct perf_cpu_context *cpuctx,
 | |
| 		  struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 tstamp = perf_event_time(event);
 | |
| 	u64 delta;
 | |
| 	/*
 | |
| 	 * An event which could not be activated because of
 | |
| 	 * filter mismatch still needs to have its timings
 | |
| 	 * maintained, otherwise bogus information is return
 | |
| 	 * via read() for time_enabled, time_running:
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE
 | |
| 	    && !event_filter_match(event)) {
 | |
| 		delta = tstamp - event->tstamp_stopped;
 | |
| 		event->tstamp_running += delta;
 | |
| 		event->tstamp_stopped = tstamp;
 | |
| 	}
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	if (event->pending_disable) {
 | |
| 		event->pending_disable = 0;
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 	event->tstamp_stopped = tstamp;
 | |
| 	event->pmu->del(event, 0);
 | |
| 	event->oncpu = -1;
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu--;
 | |
| 	ctx->nr_active--;
 | |
| 	if (event->attr.freq && event->attr.sample_freq)
 | |
| 		ctx->nr_freq--;
 | |
| 	if (event->attr.exclusive || !cpuctx->active_oncpu)
 | |
| 		cpuctx->exclusive = 0;
 | |
| 
 | |
| 	if (is_orphaned_child(event))
 | |
| 		schedule_orphans_remove(ctx);
 | |
| 
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| }
 | |
| 
 | |
| static void
 | |
| group_sched_out(struct perf_event *group_event,
 | |
| 		struct perf_cpu_context *cpuctx,
 | |
| 		struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int state = group_event->state;
 | |
| 
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule out siblings (if any):
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
 | |
| 		event_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 0;
 | |
| }
 | |
| 
 | |
| struct remove_event {
 | |
| 	struct perf_event *event;
 | |
| 	bool detach_group;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to remove a performance event
 | |
|  *
 | |
|  * We disable the event on the hardware level first. After that we
 | |
|  * remove it from the context list.
 | |
|  */
 | |
| static int __perf_remove_from_context(void *info)
 | |
| {
 | |
| 	struct remove_event *re = info;
 | |
| 	struct perf_event *event = re->event;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	event_sched_out(event, cpuctx, ctx);
 | |
| 	if (re->detach_group)
 | |
| 		perf_group_detach(event);
 | |
| 	list_del_event(event, ctx);
 | |
| 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
 | |
| 		ctx->is_active = 0;
 | |
| 		cpuctx->task_ctx = NULL;
 | |
| 	}
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Remove the event from a task's (or a CPU's) list of events.
 | |
|  *
 | |
|  * CPU events are removed with a smp call. For task events we only
 | |
|  * call when the task is on a CPU.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This is OK when called from perf_release since
 | |
|  * that only calls us on the top-level context, which can't be a clone.
 | |
|  * When called from perf_event_exit_task, it's OK because the
 | |
|  * context has been detached from its task.
 | |
|  */
 | |
| static void perf_remove_from_context(struct perf_event *event, bool detach_group)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 	struct remove_event re = {
 | |
| 		.event = event,
 | |
| 		.detach_group = detach_group,
 | |
| 	};
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->mutex);
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Per cpu events are removed via an smp call. The removal can
 | |
| 		 * fail if the CPU is currently offline, but in that case we
 | |
| 		 * already called __perf_remove_from_context from
 | |
| 		 * perf_event_exit_cpu.
 | |
| 		 */
 | |
| 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	if (!task_function_call(task, __perf_remove_from_context, &re))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * If we failed to find a running task, but find the context active now
 | |
| 	 * that we've acquired the ctx->lock, retry.
 | |
| 	 */
 | |
| 	if (ctx->is_active) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		/*
 | |
| 		 * Reload the task pointer, it might have been changed by
 | |
| 		 * a concurrent perf_event_context_sched_out().
 | |
| 		 */
 | |
| 		task = ctx->task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the task isn't running, its safe to remove the event, us
 | |
| 	 * holding the ctx->lock ensures the task won't get scheduled in.
 | |
| 	 */
 | |
| 	if (detach_group)
 | |
| 		perf_group_detach(event);
 | |
| 	list_del_event(event, ctx);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to disable a performance event
 | |
|  */
 | |
| int __perf_event_disable(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a per-task event, need to check whether this
 | |
| 	 * event's task is the current task on this cpu.
 | |
| 	 *
 | |
| 	 * Can trigger due to concurrent perf_event_context_sched_out()
 | |
| 	 * flipping contexts around.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is on, turn it off.
 | |
| 	 * If it is in error state, leave it in error state.
 | |
| 	 */
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
 | |
| 		update_context_time(ctx);
 | |
| 		update_cgrp_time_from_event(event);
 | |
| 		update_group_times(event);
 | |
| 		if (event == event->group_leader)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 		else
 | |
| 			event_sched_out(event, cpuctx, ctx);
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable a event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisifed when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each because they
 | |
|  * hold the top-level event's child_mutex, so any descendant that
 | |
|  * goes to exit will block in sync_child_event.
 | |
|  * When called from perf_pending_event it's OK because event->ctx
 | |
|  * is the current context on this CPU and preemption is disabled,
 | |
|  * hence we can't get into perf_event_task_sched_out for this context.
 | |
|  */
 | |
| void perf_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Disable the event on the cpu that it's on
 | |
| 		 */
 | |
| 		cpu_function_call(event->cpu, __perf_event_disable, event);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	if (!task_function_call(task, __perf_event_disable, event))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * If the event is still active, we need to retry the cross-call.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		/*
 | |
| 		 * Reload the task pointer, it might have been changed by
 | |
| 		 * a concurrent perf_event_context_sched_out().
 | |
| 		 */
 | |
| 		task = ctx->task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we have the lock this context can't be scheduled
 | |
| 	 * in, so we can change the state safely.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		update_group_times(event);
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_disable);
 | |
| 
 | |
| static void perf_set_shadow_time(struct perf_event *event,
 | |
| 				 struct perf_event_context *ctx,
 | |
| 				 u64 tstamp)
 | |
| {
 | |
| 	/*
 | |
| 	 * use the correct time source for the time snapshot
 | |
| 	 *
 | |
| 	 * We could get by without this by leveraging the
 | |
| 	 * fact that to get to this function, the caller
 | |
| 	 * has most likely already called update_context_time()
 | |
| 	 * and update_cgrp_time_xx() and thus both timestamp
 | |
| 	 * are identical (or very close). Given that tstamp is,
 | |
| 	 * already adjusted for cgroup, we could say that:
 | |
| 	 *    tstamp - ctx->timestamp
 | |
| 	 * is equivalent to
 | |
| 	 *    tstamp - cgrp->timestamp.
 | |
| 	 *
 | |
| 	 * Then, in perf_output_read(), the calculation would
 | |
| 	 * work with no changes because:
 | |
| 	 * - event is guaranteed scheduled in
 | |
| 	 * - no scheduled out in between
 | |
| 	 * - thus the timestamp would be the same
 | |
| 	 *
 | |
| 	 * But this is a bit hairy.
 | |
| 	 *
 | |
| 	 * So instead, we have an explicit cgroup call to remain
 | |
| 	 * within the time time source all along. We believe it
 | |
| 	 * is cleaner and simpler to understand.
 | |
| 	 */
 | |
| 	if (is_cgroup_event(event))
 | |
| 		perf_cgroup_set_shadow_time(event, tstamp);
 | |
| 	else
 | |
| 		event->shadow_ctx_time = tstamp - ctx->timestamp;
 | |
| }
 | |
| 
 | |
| #define MAX_INTERRUPTS (~0ULL)
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable);
 | |
| 
 | |
| static int
 | |
| event_sched_in(struct perf_event *event,
 | |
| 		 struct perf_cpu_context *cpuctx,
 | |
| 		 struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 tstamp = perf_event_time(event);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->lock);
 | |
| 
 | |
| 	if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_ACTIVE;
 | |
| 	event->oncpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * Unthrottle events, since we scheduled we might have missed several
 | |
| 	 * ticks already, also for a heavily scheduling task there is little
 | |
| 	 * guarantee it'll get a tick in a timely manner.
 | |
| 	 */
 | |
| 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
 | |
| 		perf_log_throttle(event, 1);
 | |
| 		event->hw.interrupts = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The new state must be visible before we turn it on in the hardware:
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 	if (event->pmu->add(event, PERF_EF_START)) {
 | |
| 		event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 		event->oncpu = -1;
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	event->tstamp_running += tstamp - event->tstamp_stopped;
 | |
| 
 | |
| 	perf_set_shadow_time(event, ctx, tstamp);
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu++;
 | |
| 	ctx->nr_active++;
 | |
| 	if (event->attr.freq && event->attr.sample_freq)
 | |
| 		ctx->nr_freq++;
 | |
| 
 | |
| 	if (event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 1;
 | |
| 
 | |
| 	if (is_orphaned_child(event))
 | |
| 		schedule_orphans_remove(ctx);
 | |
| 
 | |
| out:
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| group_sched_in(struct perf_event *group_event,
 | |
| 	       struct perf_cpu_context *cpuctx,
 | |
| 	       struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event, *partial_group = NULL;
 | |
| 	struct pmu *pmu = ctx->pmu;
 | |
| 	u64 now = ctx->time;
 | |
| 	bool simulate = false;
 | |
| 
 | |
| 	if (group_event->state == PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	pmu->start_txn(pmu);
 | |
| 
 | |
| 	if (event_sched_in(group_event, cpuctx, ctx)) {
 | |
| 		pmu->cancel_txn(pmu);
 | |
| 		perf_cpu_hrtimer_restart(cpuctx);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule in siblings as one group (if any):
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 | |
| 		if (event_sched_in(event, cpuctx, ctx)) {
 | |
| 			partial_group = event;
 | |
| 			goto group_error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->commit_txn(pmu))
 | |
| 		return 0;
 | |
| 
 | |
| group_error:
 | |
| 	/*
 | |
| 	 * Groups can be scheduled in as one unit only, so undo any
 | |
| 	 * partial group before returning:
 | |
| 	 * The events up to the failed event are scheduled out normally,
 | |
| 	 * tstamp_stopped will be updated.
 | |
| 	 *
 | |
| 	 * The failed events and the remaining siblings need to have
 | |
| 	 * their timings updated as if they had gone thru event_sched_in()
 | |
| 	 * and event_sched_out(). This is required to get consistent timings
 | |
| 	 * across the group. This also takes care of the case where the group
 | |
| 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
 | |
| 	 * the time the event was actually stopped, such that time delta
 | |
| 	 * calculation in update_event_times() is correct.
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 | |
| 		if (event == partial_group)
 | |
| 			simulate = true;
 | |
| 
 | |
| 		if (simulate) {
 | |
| 			event->tstamp_running += now - event->tstamp_stopped;
 | |
| 			event->tstamp_stopped = now;
 | |
| 		} else {
 | |
| 			event_sched_out(event, cpuctx, ctx);
 | |
| 		}
 | |
| 	}
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	pmu->cancel_txn(pmu);
 | |
| 
 | |
| 	perf_cpu_hrtimer_restart(cpuctx);
 | |
| 
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Work out whether we can put this event group on the CPU now.
 | |
|  */
 | |
| static int group_can_go_on(struct perf_event *event,
 | |
| 			   struct perf_cpu_context *cpuctx,
 | |
| 			   int can_add_hw)
 | |
| {
 | |
| 	/*
 | |
| 	 * Groups consisting entirely of software events can always go on.
 | |
| 	 */
 | |
| 	if (event->group_flags & PERF_GROUP_SOFTWARE)
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * If an exclusive group is already on, no other hardware
 | |
| 	 * events can go on.
 | |
| 	 */
 | |
| 	if (cpuctx->exclusive)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If this group is exclusive and there are already
 | |
| 	 * events on the CPU, it can't go on.
 | |
| 	 */
 | |
| 	if (event->attr.exclusive && cpuctx->active_oncpu)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Otherwise, try to add it if all previous groups were able
 | |
| 	 * to go on.
 | |
| 	 */
 | |
| 	return can_add_hw;
 | |
| }
 | |
| 
 | |
| static void add_event_to_ctx(struct perf_event *event,
 | |
| 			       struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 tstamp = perf_event_time(event);
 | |
| 
 | |
| 	list_add_event(event, ctx);
 | |
| 	perf_group_attach(event);
 | |
| 	event->tstamp_enabled = tstamp;
 | |
| 	event->tstamp_running = tstamp;
 | |
| 	event->tstamp_stopped = tstamp;
 | |
| }
 | |
| 
 | |
| static void task_ctx_sched_out(struct perf_event_context *ctx);
 | |
| static void
 | |
| ctx_sched_in(struct perf_event_context *ctx,
 | |
| 	     struct perf_cpu_context *cpuctx,
 | |
| 	     enum event_type_t event_type,
 | |
| 	     struct task_struct *task);
 | |
| 
 | |
| static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
 | |
| 				struct perf_event_context *ctx,
 | |
| 				struct task_struct *task)
 | |
| {
 | |
| 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
 | |
| 	if (ctx)
 | |
| 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
 | |
| 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
 | |
| 	if (ctx)
 | |
| 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to install and enable a performance event
 | |
|  *
 | |
|  * Must be called with ctx->mutex held
 | |
|  */
 | |
| static int  __perf_install_in_context(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
 | |
| 	struct task_struct *task = current;
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, task_ctx);
 | |
| 	perf_pmu_disable(cpuctx->ctx.pmu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there was an active task_ctx schedule it out.
 | |
| 	 */
 | |
| 	if (task_ctx)
 | |
| 		task_ctx_sched_out(task_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the context we're installing events in is not the
 | |
| 	 * active task_ctx, flip them.
 | |
| 	 */
 | |
| 	if (ctx->task && task_ctx != ctx) {
 | |
| 		if (task_ctx)
 | |
| 			raw_spin_unlock(&task_ctx->lock);
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		task_ctx = ctx;
 | |
| 	}
 | |
| 
 | |
| 	if (task_ctx) {
 | |
| 		cpuctx->task_ctx = task_ctx;
 | |
| 		task = task_ctx->task;
 | |
| 	}
 | |
| 
 | |
| 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 | |
| 
 | |
| 	update_context_time(ctx);
 | |
| 	/*
 | |
| 	 * update cgrp time only if current cgrp
 | |
| 	 * matches event->cgrp. Must be done before
 | |
| 	 * calling add_event_to_ctx()
 | |
| 	 */
 | |
| 	update_cgrp_time_from_event(event);
 | |
| 
 | |
| 	add_event_to_ctx(event, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule everything back in
 | |
| 	 */
 | |
| 	perf_event_sched_in(cpuctx, task_ctx, task);
 | |
| 
 | |
| 	perf_pmu_enable(cpuctx->ctx.pmu);
 | |
| 	perf_ctx_unlock(cpuctx, task_ctx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach a performance event to a context
 | |
|  *
 | |
|  * First we add the event to the list with the hardware enable bit
 | |
|  * in event->hw_config cleared.
 | |
|  *
 | |
|  * If the event is attached to a task which is on a CPU we use a smp
 | |
|  * call to enable it in the task context. The task might have been
 | |
|  * scheduled away, but we check this in the smp call again.
 | |
|  */
 | |
| static void
 | |
| perf_install_in_context(struct perf_event_context *ctx,
 | |
| 			struct perf_event *event,
 | |
| 			int cpu)
 | |
| {
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	lockdep_assert_held(&ctx->mutex);
 | |
| 
 | |
| 	event->ctx = ctx;
 | |
| 	if (event->cpu != -1)
 | |
| 		event->cpu = cpu;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Per cpu events are installed via an smp call and
 | |
| 		 * the install is always successful.
 | |
| 		 */
 | |
| 		cpu_function_call(cpu, __perf_install_in_context, event);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	if (!task_function_call(task, __perf_install_in_context, event))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * If we failed to find a running task, but find the context active now
 | |
| 	 * that we've acquired the ctx->lock, retry.
 | |
| 	 */
 | |
| 	if (ctx->is_active) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		/*
 | |
| 		 * Reload the task pointer, it might have been changed by
 | |
| 		 * a concurrent perf_event_context_sched_out().
 | |
| 		 */
 | |
| 		task = ctx->task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the task isn't running, its safe to add the event, us holding
 | |
| 	 * the ctx->lock ensures the task won't get scheduled in.
 | |
| 	 */
 | |
| 	add_event_to_ctx(event, ctx);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put a event into inactive state and update time fields.
 | |
|  * Enabling the leader of a group effectively enables all
 | |
|  * the group members that aren't explicitly disabled, so we
 | |
|  * have to update their ->tstamp_enabled also.
 | |
|  * Note: this works for group members as well as group leaders
 | |
|  * since the non-leader members' sibling_lists will be empty.
 | |
|  */
 | |
| static void __perf_event_mark_enabled(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *sub;
 | |
| 	u64 tstamp = perf_event_time(event);
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	event->tstamp_enabled = tstamp - event->total_time_enabled;
 | |
| 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
 | |
| 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to enable a performance event
 | |
|  */
 | |
| static int __perf_event_enable(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's a time window between 'ctx->is_active' check
 | |
| 	 * in perf_event_enable function and this place having:
 | |
| 	 *   - IRQs on
 | |
| 	 *   - ctx->lock unlocked
 | |
| 	 *
 | |
| 	 * where the task could be killed and 'ctx' deactivated
 | |
| 	 * by perf_event_exit_task.
 | |
| 	 */
 | |
| 	if (!ctx->is_active)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * set current task's cgroup time reference point
 | |
| 	 */
 | |
| 	perf_cgroup_set_timestamp(current, ctx);
 | |
| 
 | |
| 	__perf_event_mark_enabled(event);
 | |
| 
 | |
| 	if (!event_filter_match(event)) {
 | |
| 		if (is_cgroup_event(event))
 | |
| 			perf_cgroup_defer_enabled(event);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in a group and isn't the group leader,
 | |
| 	 * then don't put it on unless the group is on.
 | |
| 	 */
 | |
| 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (!group_can_go_on(event, cpuctx, 1)) {
 | |
| 		err = -EEXIST;
 | |
| 	} else {
 | |
| 		if (event == leader)
 | |
| 			err = group_sched_in(event, cpuctx, ctx);
 | |
| 		else
 | |
| 			err = event_sched_in(event, cpuctx, ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * If this event can't go on and it's part of a
 | |
| 		 * group, then the whole group has to come off.
 | |
| 		 */
 | |
| 		if (leader != event) {
 | |
| 			group_sched_out(leader, cpuctx, ctx);
 | |
| 			perf_cpu_hrtimer_restart(cpuctx);
 | |
| 		}
 | |
| 		if (leader->attr.pinned) {
 | |
| 			update_group_times(leader);
 | |
| 			leader->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable a event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisfied when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each as described
 | |
|  * for perf_event_disable.
 | |
|  */
 | |
| void perf_event_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Enable the event on the cpu that it's on
 | |
| 		 */
 | |
| 		cpu_function_call(event->cpu, __perf_event_enable, event);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in error state, clear that first.
 | |
| 	 * That way, if we see the event in error state below, we
 | |
| 	 * know that it has gone back into error state, as distinct
 | |
| 	 * from the task having been scheduled away before the
 | |
| 	 * cross-call arrived.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| retry:
 | |
| 	if (!ctx->is_active) {
 | |
| 		__perf_event_mark_enabled(event);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 	if (!task_function_call(task, __perf_event_enable, event))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the context is active and the event is still off,
 | |
| 	 * we need to retry the cross-call.
 | |
| 	 */
 | |
| 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
 | |
| 		/*
 | |
| 		 * task could have been flipped by a concurrent
 | |
| 		 * perf_event_context_sched_out()
 | |
| 		 */
 | |
| 		task = ctx->task;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_enable);
 | |
| 
 | |
| int perf_event_refresh(struct perf_event *event, int refresh)
 | |
| {
 | |
| 	/*
 | |
| 	 * not supported on inherited events
 | |
| 	 */
 | |
| 	if (event->attr.inherit || !is_sampling_event(event))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	atomic_add(refresh, &event->event_limit);
 | |
| 	perf_event_enable(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_refresh);
 | |
| 
 | |
| static void ctx_sched_out(struct perf_event_context *ctx,
 | |
| 			  struct perf_cpu_context *cpuctx,
 | |
| 			  enum event_type_t event_type)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int is_active = ctx->is_active;
 | |
| 
 | |
| 	ctx->is_active &= ~event_type;
 | |
| 	if (likely(!ctx->nr_events))
 | |
| 		return;
 | |
| 
 | |
| 	update_context_time(ctx);
 | |
| 	update_cgrp_time_from_cpuctx(cpuctx);
 | |
| 	if (!ctx->nr_active)
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
 | |
| 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 	}
 | |
| 
 | |
| 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
 | |
| 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 	}
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether two contexts are equivalent, i.e. whether they have both been
 | |
|  * cloned from the same version of the same context.
 | |
|  *
 | |
|  * Equivalence is measured using a generation number in the context that is
 | |
|  * incremented on each modification to it; see unclone_ctx(), list_add_event()
 | |
|  * and list_del_event().
 | |
|  */
 | |
| static int context_equiv(struct perf_event_context *ctx1,
 | |
| 			 struct perf_event_context *ctx2)
 | |
| {
 | |
| 	lockdep_assert_held(&ctx1->lock);
 | |
| 	lockdep_assert_held(&ctx2->lock);
 | |
| 
 | |
| 	/* Pinning disables the swap optimization */
 | |
| 	if (ctx1->pin_count || ctx2->pin_count)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If ctx1 is the parent of ctx2 */
 | |
| 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* If ctx2 is the parent of ctx1 */
 | |
| 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
 | |
| 	 * hierarchy, see perf_event_init_context().
 | |
| 	 */
 | |
| 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
 | |
| 			ctx1->parent_gen == ctx2->parent_gen)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Unmatched */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __perf_event_sync_stat(struct perf_event *event,
 | |
| 				     struct perf_event *next_event)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!event->attr.inherit_stat)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the event value, we cannot use perf_event_read()
 | |
| 	 * because we're in the middle of a context switch and have IRQs
 | |
| 	 * disabled, which upsets smp_call_function_single(), however
 | |
| 	 * we know the event must be on the current CPU, therefore we
 | |
| 	 * don't need to use it.
 | |
| 	 */
 | |
| 	switch (event->state) {
 | |
| 	case PERF_EVENT_STATE_ACTIVE:
 | |
| 		event->pmu->read(event);
 | |
| 		/* fall-through */
 | |
| 
 | |
| 	case PERF_EVENT_STATE_INACTIVE:
 | |
| 		update_event_times(event);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to keep per-task stats reliable we need to flip the event
 | |
| 	 * values when we flip the contexts.
 | |
| 	 */
 | |
| 	value = local64_read(&next_event->count);
 | |
| 	value = local64_xchg(&event->count, value);
 | |
| 	local64_set(&next_event->count, value);
 | |
| 
 | |
| 	swap(event->total_time_enabled, next_event->total_time_enabled);
 | |
| 	swap(event->total_time_running, next_event->total_time_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we swizzled the values, update the user visible data too.
 | |
| 	 */
 | |
| 	perf_event_update_userpage(event);
 | |
| 	perf_event_update_userpage(next_event);
 | |
| }
 | |
| 
 | |
| static void perf_event_sync_stat(struct perf_event_context *ctx,
 | |
| 				   struct perf_event_context *next_ctx)
 | |
| {
 | |
| 	struct perf_event *event, *next_event;
 | |
| 
 | |
| 	if (!ctx->nr_stat)
 | |
| 		return;
 | |
| 
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	event = list_first_entry(&ctx->event_list,
 | |
| 				   struct perf_event, event_entry);
 | |
| 
 | |
| 	next_event = list_first_entry(&next_ctx->event_list,
 | |
| 					struct perf_event, event_entry);
 | |
| 
 | |
| 	while (&event->event_entry != &ctx->event_list &&
 | |
| 	       &next_event->event_entry != &next_ctx->event_list) {
 | |
| 
 | |
| 		__perf_event_sync_stat(event, next_event);
 | |
| 
 | |
| 		event = list_next_entry(event, event_entry);
 | |
| 		next_event = list_next_entry(next_event, event_entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
 | |
| 					 struct task_struct *next)
 | |
| {
 | |
| 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
 | |
| 	struct perf_event_context *next_ctx;
 | |
| 	struct perf_event_context *parent, *next_parent;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	int do_switch = 1;
 | |
| 
 | |
| 	if (likely(!ctx))
 | |
| 		return;
 | |
| 
 | |
| 	cpuctx = __get_cpu_context(ctx);
 | |
| 	if (!cpuctx->task_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	next_ctx = next->perf_event_ctxp[ctxn];
 | |
| 	if (!next_ctx)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	parent = rcu_dereference(ctx->parent_ctx);
 | |
| 	next_parent = rcu_dereference(next_ctx->parent_ctx);
 | |
| 
 | |
| 	/* If neither context have a parent context; they cannot be clones. */
 | |
| 	if (!parent && !next_parent)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
 | |
| 		/*
 | |
| 		 * Looks like the two contexts are clones, so we might be
 | |
| 		 * able to optimize the context switch.  We lock both
 | |
| 		 * contexts and check that they are clones under the
 | |
| 		 * lock (including re-checking that neither has been
 | |
| 		 * uncloned in the meantime).  It doesn't matter which
 | |
| 		 * order we take the locks because no other cpu could
 | |
| 		 * be trying to lock both of these tasks.
 | |
| 		 */
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
 | |
| 		if (context_equiv(ctx, next_ctx)) {
 | |
| 			/*
 | |
| 			 * XXX do we need a memory barrier of sorts
 | |
| 			 * wrt to rcu_dereference() of perf_event_ctxp
 | |
| 			 */
 | |
| 			task->perf_event_ctxp[ctxn] = next_ctx;
 | |
| 			next->perf_event_ctxp[ctxn] = ctx;
 | |
| 			ctx->task = next;
 | |
| 			next_ctx->task = task;
 | |
| 			do_switch = 0;
 | |
| 
 | |
| 			perf_event_sync_stat(ctx, next_ctx);
 | |
| 		}
 | |
| 		raw_spin_unlock(&next_ctx->lock);
 | |
| 		raw_spin_unlock(&ctx->lock);
 | |
| 	}
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (do_switch) {
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
 | |
| 		cpuctx->task_ctx = NULL;
 | |
| 		raw_spin_unlock(&ctx->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define for_each_task_context_nr(ctxn)					\
 | |
| 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to remove the events of the current task,
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We stop each event and update the event value in event->count.
 | |
|  *
 | |
|  * This does not protect us against NMI, but disable()
 | |
|  * sets the disabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * not restart the event.
 | |
|  */
 | |
| void __perf_event_task_sched_out(struct task_struct *task,
 | |
| 				 struct task_struct *next)
 | |
| {
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		perf_event_context_sched_out(task, ctxn, next);
 | |
| 
 | |
| 	/*
 | |
| 	 * if cgroup events exist on this CPU, then we need
 | |
| 	 * to check if we have to switch out PMU state.
 | |
| 	 * cgroup event are system-wide mode only
 | |
| 	 */
 | |
| 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
 | |
| 		perf_cgroup_sched_out(task, next);
 | |
| }
 | |
| 
 | |
| static void task_ctx_sched_out(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	if (!cpuctx->task_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
 | |
| 		return;
 | |
| 
 | |
| 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
 | |
| 	cpuctx->task_ctx = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with IRQs disabled
 | |
|  */
 | |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 | |
| 			      enum event_type_t event_type)
 | |
| {
 | |
| 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_pinned_sched_in(struct perf_event_context *ctx,
 | |
| 		    struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
 | |
| 		if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 			continue;
 | |
| 		if (!event_filter_match(event))
 | |
| 			continue;
 | |
| 
 | |
| 		/* may need to reset tstamp_enabled */
 | |
| 		if (is_cgroup_event(event))
 | |
| 			perf_cgroup_mark_enabled(event, ctx);
 | |
| 
 | |
| 		if (group_can_go_on(event, cpuctx, 1))
 | |
| 			group_sched_in(event, cpuctx, ctx);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this pinned group hasn't been scheduled,
 | |
| 		 * put it in error state.
 | |
| 		 */
 | |
| 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 			update_group_times(event);
 | |
| 			event->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_flexible_sched_in(struct perf_event_context *ctx,
 | |
| 		      struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int can_add_hw = 1;
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
 | |
| 		/* Ignore events in OFF or ERROR state */
 | |
| 		if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Listen to the 'cpu' scheduling filter constraint
 | |
| 		 * of events:
 | |
| 		 */
 | |
| 		if (!event_filter_match(event))
 | |
| 			continue;
 | |
| 
 | |
| 		/* may need to reset tstamp_enabled */
 | |
| 		if (is_cgroup_event(event))
 | |
| 			perf_cgroup_mark_enabled(event, ctx);
 | |
| 
 | |
| 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
 | |
| 			if (group_sched_in(event, cpuctx, ctx))
 | |
| 				can_add_hw = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_sched_in(struct perf_event_context *ctx,
 | |
| 	     struct perf_cpu_context *cpuctx,
 | |
| 	     enum event_type_t event_type,
 | |
| 	     struct task_struct *task)
 | |
| {
 | |
| 	u64 now;
 | |
| 	int is_active = ctx->is_active;
 | |
| 
 | |
| 	ctx->is_active |= event_type;
 | |
| 	if (likely(!ctx->nr_events))
 | |
| 		return;
 | |
| 
 | |
| 	now = perf_clock();
 | |
| 	ctx->timestamp = now;
 | |
| 	perf_cgroup_set_timestamp(task, ctx);
 | |
| 	/*
 | |
| 	 * First go through the list and put on any pinned groups
 | |
| 	 * in order to give them the best chance of going on.
 | |
| 	 */
 | |
| 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
 | |
| 		ctx_pinned_sched_in(ctx, cpuctx);
 | |
| 
 | |
| 	/* Then walk through the lower prio flexible groups */
 | |
| 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
 | |
| 		ctx_flexible_sched_in(ctx, cpuctx);
 | |
| }
 | |
| 
 | |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 | |
| 			     enum event_type_t event_type,
 | |
| 			     struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx = &cpuctx->ctx;
 | |
| 
 | |
| 	ctx_sched_in(ctx, cpuctx, event_type, task);
 | |
| }
 | |
| 
 | |
| static void perf_event_context_sched_in(struct perf_event_context *ctx,
 | |
| 					struct task_struct *task)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 	cpuctx = __get_cpu_context(ctx);
 | |
| 	if (cpuctx->task_ctx == ctx)
 | |
| 		return;
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, ctx);
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 	/*
 | |
| 	 * We want to keep the following priority order:
 | |
| 	 * cpu pinned (that don't need to move), task pinned,
 | |
| 	 * cpu flexible, task flexible.
 | |
| 	 */
 | |
| 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| 	if (ctx->nr_events)
 | |
| 		cpuctx->task_ctx = ctx;
 | |
| 
 | |
| 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
 | |
| 
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| 	perf_ctx_unlock(cpuctx, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since these rotations are per-cpu, we need to ensure the
 | |
| 	 * cpu-context we got scheduled on is actually rotating.
 | |
| 	 */
 | |
| 	perf_pmu_rotate_start(ctx->pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When sampling the branck stack in system-wide, it may be necessary
 | |
|  * to flush the stack on context switch. This happens when the branch
 | |
|  * stack does not tag its entries with the pid of the current task.
 | |
|  * Otherwise it becomes impossible to associate a branch entry with a
 | |
|  * task. This ambiguity is more likely to appear when the branch stack
 | |
|  * supports priv level filtering and the user sets it to monitor only
 | |
|  * at the user level (which could be a useful measurement in system-wide
 | |
|  * mode). In that case, the risk is high of having a branch stack with
 | |
|  * branch from multiple tasks. Flushing may mean dropping the existing
 | |
|  * entries or stashing them somewhere in the PMU specific code layer.
 | |
|  *
 | |
|  * This function provides the context switch callback to the lower code
 | |
|  * layer. It is invoked ONLY when there is at least one system-wide context
 | |
|  * with at least one active event using taken branch sampling.
 | |
|  */
 | |
| static void perf_branch_stack_sched_in(struct task_struct *prev,
 | |
| 				       struct task_struct *task)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct pmu *pmu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* no need to flush branch stack if not changing task */
 | |
| 	if (prev == task)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 
 | |
| 		/*
 | |
| 		 * check if the context has at least one
 | |
| 		 * event using PERF_SAMPLE_BRANCH_STACK
 | |
| 		 */
 | |
| 		if (cpuctx->ctx.nr_branch_stack > 0
 | |
| 		    && pmu->flush_branch_stack) {
 | |
| 
 | |
| 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 | |
| 
 | |
| 			perf_pmu_disable(pmu);
 | |
| 
 | |
| 			pmu->flush_branch_stack();
 | |
| 
 | |
| 			perf_pmu_enable(pmu);
 | |
| 
 | |
| 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to add the events of the current task
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We restore the event value and then enable it.
 | |
|  *
 | |
|  * This does not protect us against NMI, but enable()
 | |
|  * sets the enabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * keep the event running.
 | |
|  */
 | |
| void __perf_event_task_sched_in(struct task_struct *prev,
 | |
| 				struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = task->perf_event_ctxp[ctxn];
 | |
| 		if (likely(!ctx))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_event_context_sched_in(ctx, task);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * if cgroup events exist on this CPU, then we need
 | |
| 	 * to check if we have to switch in PMU state.
 | |
| 	 * cgroup event are system-wide mode only
 | |
| 	 */
 | |
| 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
 | |
| 		perf_cgroup_sched_in(prev, task);
 | |
| 
 | |
| 	/* check for system-wide branch_stack events */
 | |
| 	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
 | |
| 		perf_branch_stack_sched_in(prev, task);
 | |
| }
 | |
| 
 | |
| static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
 | |
| {
 | |
| 	u64 frequency = event->attr.sample_freq;
 | |
| 	u64 sec = NSEC_PER_SEC;
 | |
| 	u64 divisor, dividend;
 | |
| 
 | |
| 	int count_fls, nsec_fls, frequency_fls, sec_fls;
 | |
| 
 | |
| 	count_fls = fls64(count);
 | |
| 	nsec_fls = fls64(nsec);
 | |
| 	frequency_fls = fls64(frequency);
 | |
| 	sec_fls = 30;
 | |
| 
 | |
| 	/*
 | |
| 	 * We got @count in @nsec, with a target of sample_freq HZ
 | |
| 	 * the target period becomes:
 | |
| 	 *
 | |
| 	 *             @count * 10^9
 | |
| 	 * period = -------------------
 | |
| 	 *          @nsec * sample_freq
 | |
| 	 *
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce accuracy by one bit such that @a and @b converge
 | |
| 	 * to a similar magnitude.
 | |
| 	 */
 | |
| #define REDUCE_FLS(a, b)		\
 | |
| do {					\
 | |
| 	if (a##_fls > b##_fls) {	\
 | |
| 		a >>= 1;		\
 | |
| 		a##_fls--;		\
 | |
| 	} else {			\
 | |
| 		b >>= 1;		\
 | |
| 		b##_fls--;		\
 | |
| 	}				\
 | |
| } while (0)
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce accuracy until either term fits in a u64, then proceed with
 | |
| 	 * the other, so that finally we can do a u64/u64 division.
 | |
| 	 */
 | |
| 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
 | |
| 		REDUCE_FLS(nsec, frequency);
 | |
| 		REDUCE_FLS(sec, count);
 | |
| 	}
 | |
| 
 | |
| 	if (count_fls + sec_fls > 64) {
 | |
| 		divisor = nsec * frequency;
 | |
| 
 | |
| 		while (count_fls + sec_fls > 64) {
 | |
| 			REDUCE_FLS(count, sec);
 | |
| 			divisor >>= 1;
 | |
| 		}
 | |
| 
 | |
| 		dividend = count * sec;
 | |
| 	} else {
 | |
| 		dividend = count * sec;
 | |
| 
 | |
| 		while (nsec_fls + frequency_fls > 64) {
 | |
| 			REDUCE_FLS(nsec, frequency);
 | |
| 			dividend >>= 1;
 | |
| 		}
 | |
| 
 | |
| 		divisor = nsec * frequency;
 | |
| 	}
 | |
| 
 | |
| 	if (!divisor)
 | |
| 		return dividend;
 | |
| 
 | |
| 	return div64_u64(dividend, divisor);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(int, perf_throttled_count);
 | |
| static DEFINE_PER_CPU(u64, perf_throttled_seq);
 | |
| 
 | |
| static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 period, sample_period;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	period = perf_calculate_period(event, nsec, count);
 | |
| 
 | |
| 	delta = (s64)(period - hwc->sample_period);
 | |
| 	delta = (delta + 7) / 8; /* low pass filter */
 | |
| 
 | |
| 	sample_period = hwc->sample_period + delta;
 | |
| 
 | |
| 	if (!sample_period)
 | |
| 		sample_period = 1;
 | |
| 
 | |
| 	hwc->sample_period = sample_period;
 | |
| 
 | |
| 	if (local64_read(&hwc->period_left) > 8*sample_period) {
 | |
| 		if (disable)
 | |
| 			event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 
 | |
| 		local64_set(&hwc->period_left, 0);
 | |
| 
 | |
| 		if (disable)
 | |
| 			event->pmu->start(event, PERF_EF_RELOAD);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * combine freq adjustment with unthrottling to avoid two passes over the
 | |
|  * events. At the same time, make sure, having freq events does not change
 | |
|  * the rate of unthrottling as that would introduce bias.
 | |
|  */
 | |
| static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
 | |
| 					   int needs_unthr)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	u64 now, period = TICK_NSEC;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * only need to iterate over all events iff:
 | |
| 	 * - context have events in frequency mode (needs freq adjust)
 | |
| 	 * - there are events to unthrottle on this cpu
 | |
| 	 */
 | |
| 	if (!(ctx->nr_freq || needs_unthr))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!event_filter_match(event))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_pmu_disable(event->pmu);
 | |
| 
 | |
| 		hwc = &event->hw;
 | |
| 
 | |
| 		if (hwc->interrupts == MAX_INTERRUPTS) {
 | |
| 			hwc->interrupts = 0;
 | |
| 			perf_log_throttle(event, 1);
 | |
| 			event->pmu->start(event, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (!event->attr.freq || !event->attr.sample_freq)
 | |
| 			goto next;
 | |
| 
 | |
| 		/*
 | |
| 		 * stop the event and update event->count
 | |
| 		 */
 | |
| 		event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 
 | |
| 		now = local64_read(&event->count);
 | |
| 		delta = now - hwc->freq_count_stamp;
 | |
| 		hwc->freq_count_stamp = now;
 | |
| 
 | |
| 		/*
 | |
| 		 * restart the event
 | |
| 		 * reload only if value has changed
 | |
| 		 * we have stopped the event so tell that
 | |
| 		 * to perf_adjust_period() to avoid stopping it
 | |
| 		 * twice.
 | |
| 		 */
 | |
| 		if (delta > 0)
 | |
| 			perf_adjust_period(event, period, delta, false);
 | |
| 
 | |
| 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
 | |
| 	next:
 | |
| 		perf_pmu_enable(event->pmu);
 | |
| 	}
 | |
| 
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Round-robin a context's events:
 | |
|  */
 | |
| static void rotate_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	/*
 | |
| 	 * Rotate the first entry last of non-pinned groups. Rotation might be
 | |
| 	 * disabled by the inheritance code.
 | |
| 	 */
 | |
| 	if (!ctx->rotate_disable)
 | |
| 		list_rotate_left(&ctx->flexible_groups);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 | |
|  * because they're strictly cpu affine and rotate_start is called with IRQs
 | |
|  * disabled, while rotate_context is called from IRQ context.
 | |
|  */
 | |
| static int perf_rotate_context(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_event_context *ctx = NULL;
 | |
| 	int rotate = 0, remove = 1;
 | |
| 
 | |
| 	if (cpuctx->ctx.nr_events) {
 | |
| 		remove = 0;
 | |
| 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
 | |
| 			rotate = 1;
 | |
| 	}
 | |
| 
 | |
| 	ctx = cpuctx->task_ctx;
 | |
| 	if (ctx && ctx->nr_events) {
 | |
| 		remove = 0;
 | |
| 		if (ctx->nr_events != ctx->nr_active)
 | |
| 			rotate = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!rotate)
 | |
| 		goto done;
 | |
| 
 | |
| 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 | |
| 	perf_pmu_disable(cpuctx->ctx.pmu);
 | |
| 
 | |
| 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 | |
| 	if (ctx)
 | |
| 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| 	rotate_ctx(&cpuctx->ctx);
 | |
| 	if (ctx)
 | |
| 		rotate_ctx(ctx);
 | |
| 
 | |
| 	perf_event_sched_in(cpuctx, ctx, current);
 | |
| 
 | |
| 	perf_pmu_enable(cpuctx->ctx.pmu);
 | |
| 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 | |
| done:
 | |
| 	if (remove)
 | |
| 		list_del_init(&cpuctx->rotation_list);
 | |
| 
 | |
| 	return rotate;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| bool perf_event_can_stop_tick(void)
 | |
| {
 | |
| 	if (atomic_read(&nr_freq_events) ||
 | |
| 	    __this_cpu_read(perf_throttled_count))
 | |
| 		return false;
 | |
| 	else
 | |
| 		return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void perf_event_task_tick(void)
 | |
| {
 | |
| 	struct list_head *head = this_cpu_ptr(&rotation_list);
 | |
| 	struct perf_cpu_context *cpuctx, *tmp;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int throttled;
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	__this_cpu_inc(perf_throttled_seq);
 | |
| 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
 | |
| 
 | |
| 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
 | |
| 		ctx = &cpuctx->ctx;
 | |
| 		perf_adjust_freq_unthr_context(ctx, throttled);
 | |
| 
 | |
| 		ctx = cpuctx->task_ctx;
 | |
| 		if (ctx)
 | |
| 			perf_adjust_freq_unthr_context(ctx, throttled);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int event_enable_on_exec(struct perf_event *event,
 | |
| 				struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (!event->attr.enable_on_exec)
 | |
| 		return 0;
 | |
| 
 | |
| 	event->attr.enable_on_exec = 0;
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	__perf_event_mark_enabled(event);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable all of a task's events that have been marked enable-on-exec.
 | |
|  * This expects task == current.
 | |
|  */
 | |
| static void perf_event_enable_on_exec(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event_context *clone_ctx = NULL;
 | |
| 	struct perf_event *event;
 | |
| 	unsigned long flags;
 | |
| 	int enabled = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (!ctx || !ctx->nr_events)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must ctxsw out cgroup events to avoid conflict
 | |
| 	 * when invoking perf_task_event_sched_in() later on
 | |
| 	 * in this function. Otherwise we end up trying to
 | |
| 	 * ctxswin cgroup events which are already scheduled
 | |
| 	 * in.
 | |
| 	 */
 | |
| 	perf_cgroup_sched_out(current, NULL);
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	task_ctx_sched_out(ctx);
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->event_list, event_entry) {
 | |
| 		ret = event_enable_on_exec(event, ctx);
 | |
| 		if (ret)
 | |
| 			enabled = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unclone this context if we enabled any event.
 | |
| 	 */
 | |
| 	if (enabled)
 | |
| 		clone_ctx = unclone_ctx(ctx);
 | |
| 
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Also calls ctxswin for cgroup events, if any:
 | |
| 	 */
 | |
| 	perf_event_context_sched_in(ctx, ctx->task);
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (clone_ctx)
 | |
| 		put_ctx(clone_ctx);
 | |
| }
 | |
| 
 | |
| void perf_event_exec(void)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = current->perf_event_ctxp[ctxn];
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		perf_event_enable_on_exec(ctx);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to read the hardware event
 | |
|  */
 | |
| static void __perf_event_read(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu.  If not it has been
 | |
| 	 * scheduled out before the smp call arrived.  In that case
 | |
| 	 * event->count would have been updated to a recent sample
 | |
| 	 * when the event was scheduled out.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	if (ctx->is_active) {
 | |
| 		update_context_time(ctx);
 | |
| 		update_cgrp_time_from_event(event);
 | |
| 	}
 | |
| 	update_event_times(event);
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE)
 | |
| 		event->pmu->read(event);
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static inline u64 perf_event_count(struct perf_event *event)
 | |
| {
 | |
| 	return local64_read(&event->count) + atomic64_read(&event->child_count);
 | |
| }
 | |
| 
 | |
| static u64 perf_event_read(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * If event is enabled and currently active on a CPU, update the
 | |
| 	 * value in the event structure:
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 		smp_call_function_single(event->oncpu,
 | |
| 					 __perf_event_read, event, 1);
 | |
| 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		struct perf_event_context *ctx = event->ctx;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&ctx->lock, flags);
 | |
| 		/*
 | |
| 		 * may read while context is not active
 | |
| 		 * (e.g., thread is blocked), in that case
 | |
| 		 * we cannot update context time
 | |
| 		 */
 | |
| 		if (ctx->is_active) {
 | |
| 			update_context_time(ctx);
 | |
| 			update_cgrp_time_from_event(event);
 | |
| 		}
 | |
| 		update_event_times(event);
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	return perf_event_count(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in a task_struct:
 | |
|  */
 | |
| static void __perf_event_init_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	raw_spin_lock_init(&ctx->lock);
 | |
| 	mutex_init(&ctx->mutex);
 | |
| 	INIT_LIST_HEAD(&ctx->pinned_groups);
 | |
| 	INIT_LIST_HEAD(&ctx->flexible_groups);
 | |
| 	INIT_LIST_HEAD(&ctx->event_list);
 | |
| 	atomic_set(&ctx->refcount, 1);
 | |
| 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
 | |
| }
 | |
| 
 | |
| static struct perf_event_context *
 | |
| alloc_perf_context(struct pmu *pmu, struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return NULL;
 | |
| 
 | |
| 	__perf_event_init_context(ctx);
 | |
| 	if (task) {
 | |
| 		ctx->task = task;
 | |
| 		get_task_struct(task);
 | |
| 	}
 | |
| 	ctx->pmu = pmu;
 | |
| 
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static struct task_struct *
 | |
| find_lively_task_by_vpid(pid_t vpid)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	int err;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!vpid)
 | |
| 		task = current;
 | |
| 	else
 | |
| 		task = find_task_by_vpid(vpid);
 | |
| 	if (task)
 | |
| 		get_task_struct(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!task)
 | |
| 		return ERR_PTR(-ESRCH);
 | |
| 
 | |
| 	/* Reuse ptrace permission checks for now. */
 | |
| 	err = -EACCES;
 | |
| 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
 | |
| 		goto errout;
 | |
| 
 | |
| 	return task;
 | |
| errout:
 | |
| 	put_task_struct(task);
 | |
| 	return ERR_PTR(err);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a matching context with refcount and pincount.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
 | |
| {
 | |
| 	struct perf_event_context *ctx, *clone_ctx = NULL;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	unsigned long flags;
 | |
| 	int ctxn, err;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/* Must be root to operate on a CPU event: */
 | |
| 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
 | |
| 			return ERR_PTR(-EACCES);
 | |
| 
 | |
| 		/*
 | |
| 		 * We could be clever and allow to attach a event to an
 | |
| 		 * offline CPU and activate it when the CPU comes up, but
 | |
| 		 * that's for later.
 | |
| 		 */
 | |
| 		if (!cpu_online(cpu))
 | |
| 			return ERR_PTR(-ENODEV);
 | |
| 
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		ctx = &cpuctx->ctx;
 | |
| 		get_ctx(ctx);
 | |
| 		++ctx->pin_count;
 | |
| 
 | |
| 		return ctx;
 | |
| 	}
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	ctxn = pmu->task_ctx_nr;
 | |
| 	if (ctxn < 0)
 | |
| 		goto errout;
 | |
| 
 | |
| retry:
 | |
| 	ctx = perf_lock_task_context(task, ctxn, &flags);
 | |
| 	if (ctx) {
 | |
| 		clone_ctx = unclone_ctx(ctx);
 | |
| 		++ctx->pin_count;
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 
 | |
| 		if (clone_ctx)
 | |
| 			put_ctx(clone_ctx);
 | |
| 	} else {
 | |
| 		ctx = alloc_perf_context(pmu, task);
 | |
| 		err = -ENOMEM;
 | |
| 		if (!ctx)
 | |
| 			goto errout;
 | |
| 
 | |
| 		err = 0;
 | |
| 		mutex_lock(&task->perf_event_mutex);
 | |
| 		/*
 | |
| 		 * If it has already passed perf_event_exit_task().
 | |
| 		 * we must see PF_EXITING, it takes this mutex too.
 | |
| 		 */
 | |
| 		if (task->flags & PF_EXITING)
 | |
| 			err = -ESRCH;
 | |
| 		else if (task->perf_event_ctxp[ctxn])
 | |
| 			err = -EAGAIN;
 | |
| 		else {
 | |
| 			get_ctx(ctx);
 | |
| 			++ctx->pin_count;
 | |
| 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
 | |
| 		}
 | |
| 		mutex_unlock(&task->perf_event_mutex);
 | |
| 
 | |
| 		if (unlikely(err)) {
 | |
| 			put_ctx(ctx);
 | |
| 
 | |
| 			if (err == -EAGAIN)
 | |
| 				goto retry;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ctx;
 | |
| 
 | |
| errout:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event);
 | |
| 
 | |
| static void free_event_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	event = container_of(head, struct perf_event, rcu_head);
 | |
| 	if (event->ns)
 | |
| 		put_pid_ns(event->ns);
 | |
| 	perf_event_free_filter(event);
 | |
| 	kfree(event);
 | |
| }
 | |
| 
 | |
| static void ring_buffer_put(struct ring_buffer *rb);
 | |
| static void ring_buffer_attach(struct perf_event *event,
 | |
| 			       struct ring_buffer *rb);
 | |
| 
 | |
| static void unaccount_event_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (has_branch_stack(event)) {
 | |
| 		if (!(event->attach_state & PERF_ATTACH_TASK))
 | |
| 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
 | |
| 	}
 | |
| 	if (is_cgroup_event(event))
 | |
| 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
 | |
| }
 | |
| 
 | |
| static void unaccount_event(struct perf_event *event)
 | |
| {
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 		static_key_slow_dec_deferred(&perf_sched_events);
 | |
| 	if (event->attr.mmap || event->attr.mmap_data)
 | |
| 		atomic_dec(&nr_mmap_events);
 | |
| 	if (event->attr.comm)
 | |
| 		atomic_dec(&nr_comm_events);
 | |
| 	if (event->attr.task)
 | |
| 		atomic_dec(&nr_task_events);
 | |
| 	if (event->attr.freq)
 | |
| 		atomic_dec(&nr_freq_events);
 | |
| 	if (is_cgroup_event(event))
 | |
| 		static_key_slow_dec_deferred(&perf_sched_events);
 | |
| 	if (has_branch_stack(event))
 | |
| 		static_key_slow_dec_deferred(&perf_sched_events);
 | |
| 
 | |
| 	unaccount_event_cpu(event, event->cpu);
 | |
| }
 | |
| 
 | |
| static void __free_event(struct perf_event *event)
 | |
| {
 | |
| 	if (!event->parent) {
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
 | |
| 			put_callchain_buffers();
 | |
| 	}
 | |
| 
 | |
| 	if (event->destroy)
 | |
| 		event->destroy(event);
 | |
| 
 | |
| 	if (event->ctx)
 | |
| 		put_ctx(event->ctx);
 | |
| 
 | |
| 	if (event->pmu)
 | |
| 		module_put(event->pmu->module);
 | |
| 
 | |
| 	call_rcu(&event->rcu_head, free_event_rcu);
 | |
| }
 | |
| 
 | |
| static void _free_event(struct perf_event *event)
 | |
| {
 | |
| 	irq_work_sync(&event->pending);
 | |
| 
 | |
| 	unaccount_event(event);
 | |
| 
 | |
| 	if (event->rb) {
 | |
| 		/*
 | |
| 		 * Can happen when we close an event with re-directed output.
 | |
| 		 *
 | |
| 		 * Since we have a 0 refcount, perf_mmap_close() will skip
 | |
| 		 * over us; possibly making our ring_buffer_put() the last.
 | |
| 		 */
 | |
| 		mutex_lock(&event->mmap_mutex);
 | |
| 		ring_buffer_attach(event, NULL);
 | |
| 		mutex_unlock(&event->mmap_mutex);
 | |
| 	}
 | |
| 
 | |
| 	if (is_cgroup_event(event))
 | |
| 		perf_detach_cgroup(event);
 | |
| 
 | |
| 	__free_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to free events which have a known refcount of 1, such as in error paths
 | |
|  * where the event isn't exposed yet and inherited events.
 | |
|  */
 | |
| static void free_event(struct perf_event *event)
 | |
| {
 | |
| 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
 | |
| 				"unexpected event refcount: %ld; ptr=%p\n",
 | |
| 				atomic_long_read(&event->refcount), event)) {
 | |
| 		/* leak to avoid use-after-free */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	_free_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove user event from the owner task.
 | |
|  */
 | |
| static void perf_remove_from_owner(struct perf_event *event)
 | |
| {
 | |
| 	struct task_struct *owner;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	owner = ACCESS_ONCE(event->owner);
 | |
| 	/*
 | |
| 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
 | |
| 	 * !owner it means the list deletion is complete and we can indeed
 | |
| 	 * free this event, otherwise we need to serialize on
 | |
| 	 * owner->perf_event_mutex.
 | |
| 	 */
 | |
| 	smp_read_barrier_depends();
 | |
| 	if (owner) {
 | |
| 		/*
 | |
| 		 * Since delayed_put_task_struct() also drops the last
 | |
| 		 * task reference we can safely take a new reference
 | |
| 		 * while holding the rcu_read_lock().
 | |
| 		 */
 | |
| 		get_task_struct(owner);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (owner) {
 | |
| 		mutex_lock(&owner->perf_event_mutex);
 | |
| 		/*
 | |
| 		 * We have to re-check the event->owner field, if it is cleared
 | |
| 		 * we raced with perf_event_exit_task(), acquiring the mutex
 | |
| 		 * ensured they're done, and we can proceed with freeing the
 | |
| 		 * event.
 | |
| 		 */
 | |
| 		if (event->owner)
 | |
| 			list_del_init(&event->owner_entry);
 | |
| 		mutex_unlock(&owner->perf_event_mutex);
 | |
| 		put_task_struct(owner);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the last reference to the file is gone.
 | |
|  */
 | |
| static void put_event(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	if (!atomic_long_dec_and_test(&event->refcount))
 | |
| 		return;
 | |
| 
 | |
| 	if (!is_kernel_event(event))
 | |
| 		perf_remove_from_owner(event);
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	/*
 | |
| 	 * There are two ways this annotation is useful:
 | |
| 	 *
 | |
| 	 *  1) there is a lock recursion from perf_event_exit_task
 | |
| 	 *     see the comment there.
 | |
| 	 *
 | |
| 	 *  2) there is a lock-inversion with mmap_sem through
 | |
| 	 *     perf_event_read_group(), which takes faults while
 | |
| 	 *     holding ctx->mutex, however this is called after
 | |
| 	 *     the last filedesc died, so there is no possibility
 | |
| 	 *     to trigger the AB-BA case.
 | |
| 	 */
 | |
| 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
 | |
| 	perf_remove_from_context(event, true);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	_free_event(event);
 | |
| }
 | |
| 
 | |
| int perf_event_release_kernel(struct perf_event *event)
 | |
| {
 | |
| 	put_event(event);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_release_kernel);
 | |
| 
 | |
| static int perf_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	put_event(file->private_data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove all orphanes events from the context.
 | |
|  */
 | |
| static void orphans_remove_work(struct work_struct *work)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 
 | |
| 	ctx = container_of(work, struct perf_event_context,
 | |
| 			   orphans_remove.work);
 | |
| 
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
 | |
| 		struct perf_event *parent_event = event->parent;
 | |
| 
 | |
| 		if (!is_orphaned_child(event))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_remove_from_context(event, true);
 | |
| 
 | |
| 		mutex_lock(&parent_event->child_mutex);
 | |
| 		list_del_init(&event->child_list);
 | |
| 		mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 		free_event(event);
 | |
| 		put_event(parent_event);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	ctx->orphans_remove_sched = false;
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	put_ctx(ctx);
 | |
| }
 | |
| 
 | |
| u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 	u64 total = 0;
 | |
| 
 | |
| 	*enabled = 0;
 | |
| 	*running = 0;
 | |
| 
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	total += perf_event_read(event);
 | |
| 	*enabled += event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	*running += event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 
 | |
| 	list_for_each_entry(child, &event->child_list, child_list) {
 | |
| 		total += perf_event_read(child);
 | |
| 		*enabled += child->total_time_enabled;
 | |
| 		*running += child->total_time_running;
 | |
| 	}
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_read_value);
 | |
| 
 | |
| static int perf_event_read_group(struct perf_event *event,
 | |
| 				   u64 read_format, char __user *buf)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *sub;
 | |
| 	int n = 0, size = 0, ret = -EFAULT;
 | |
| 	struct perf_event_context *ctx = leader->ctx;
 | |
| 	u64 values[5];
 | |
| 	u64 count, enabled, running;
 | |
| 
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	count = perf_event_read_value(leader, &enabled, &running);
 | |
| 
 | |
| 	values[n++] = 1 + leader->nr_siblings;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = enabled;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = running;
 | |
| 	values[n++] = count;
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(leader);
 | |
| 
 | |
| 	size = n * sizeof(u64);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, size))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	ret = size;
 | |
| 
 | |
| 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
 | |
| 		n = 0;
 | |
| 
 | |
| 		values[n++] = perf_event_read_value(sub, &enabled, &running);
 | |
| 		if (read_format & PERF_FORMAT_ID)
 | |
| 			values[n++] = primary_event_id(sub);
 | |
| 
 | |
| 		size = n * sizeof(u64);
 | |
| 
 | |
| 		if (copy_to_user(buf + ret, values, size)) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		ret += size;
 | |
| 	}
 | |
| unlock:
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_event_read_one(struct perf_event *event,
 | |
| 				 u64 read_format, char __user *buf)
 | |
| {
 | |
| 	u64 enabled, running;
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = perf_event_read_value(event, &enabled, &running);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = enabled;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = running;
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, n * sizeof(u64)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return n * sizeof(u64);
 | |
| }
 | |
| 
 | |
| static bool is_event_hup(struct perf_event *event)
 | |
| {
 | |
| 	bool no_children;
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_EXIT)
 | |
| 		return false;
 | |
| 
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	no_children = list_empty(&event->child_list);
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| 	return no_children;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the performance event - simple non blocking version for now
 | |
|  */
 | |
| static ssize_t
 | |
| perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return end-of-file for a read on a event that is in
 | |
| 	 * error state (i.e. because it was pinned but it couldn't be
 | |
| 	 * scheduled on to the CPU at some point).
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (count < event->read_size)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	if (read_format & PERF_FORMAT_GROUP)
 | |
| 		ret = perf_event_read_group(event, read_format, buf);
 | |
| 	else
 | |
| 		ret = perf_event_read_one(event, read_format, buf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 
 | |
| 	return perf_read_hw(event, buf, count);
 | |
| }
 | |
| 
 | |
| static unsigned int perf_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	struct ring_buffer *rb;
 | |
| 	unsigned int events = POLLHUP;
 | |
| 
 | |
| 	poll_wait(file, &event->waitq, wait);
 | |
| 
 | |
| 	if (is_event_hup(event))
 | |
| 		return events;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
 | |
| 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
 | |
| 	 */
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	rb = event->rb;
 | |
| 	if (rb)
 | |
| 		events = atomic_xchg(&rb->poll, 0);
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 	return events;
 | |
| }
 | |
| 
 | |
| static void perf_event_reset(struct perf_event *event)
 | |
| {
 | |
| 	(void)perf_event_read(event);
 | |
| 	local64_set(&event->count, 0);
 | |
| 	perf_event_update_userpage(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Holding the top-level event's child_mutex means that any
 | |
|  * descendant process that has inherited this event will block
 | |
|  * in sync_child_event if it goes to exit, thus satisfying the
 | |
|  * task existence requirements of perf_event_enable/disable.
 | |
|  */
 | |
| static void perf_event_for_each_child(struct perf_event *event,
 | |
| 					void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	func(event);
 | |
| 	list_for_each_entry(child, &event->child_list, child_list)
 | |
| 		func(child);
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| }
 | |
| 
 | |
| static void perf_event_for_each(struct perf_event *event,
 | |
| 				  void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *sibling;
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	event = event->group_leader;
 | |
| 
 | |
| 	perf_event_for_each_child(event, func);
 | |
| 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
 | |
| 		perf_event_for_each_child(sibling, func);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| }
 | |
| 
 | |
| static int perf_event_period(struct perf_event *event, u64 __user *arg)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	int ret = 0, active;
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&value, arg, sizeof(value)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!value)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	if (event->attr.freq) {
 | |
| 		if (value > sysctl_perf_event_sample_rate) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		event->attr.sample_freq = value;
 | |
| 	} else {
 | |
| 		event->attr.sample_period = value;
 | |
| 		event->hw.sample_period = value;
 | |
| 	}
 | |
| 
 | |
| 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
 | |
| 	if (active) {
 | |
| 		perf_pmu_disable(ctx->pmu);
 | |
| 		event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 	}
 | |
| 
 | |
| 	local64_set(&event->hw.period_left, 0);
 | |
| 
 | |
| 	if (active) {
 | |
| 		event->pmu->start(event, PERF_EF_RELOAD);
 | |
| 		perf_pmu_enable(ctx->pmu);
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct file_operations perf_fops;
 | |
| 
 | |
| static inline int perf_fget_light(int fd, struct fd *p)
 | |
| {
 | |
| 	struct fd f = fdget(fd);
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	if (f.file->f_op != &perf_fops) {
 | |
| 		fdput(f);
 | |
| 		return -EBADF;
 | |
| 	}
 | |
| 	*p = f;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_event_set_output(struct perf_event *event,
 | |
| 				 struct perf_event *output_event);
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg);
 | |
| 
 | |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	void (*func)(struct perf_event *);
 | |
| 	u32 flags = arg;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case PERF_EVENT_IOC_ENABLE:
 | |
| 		func = perf_event_enable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_DISABLE:
 | |
| 		func = perf_event_disable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_RESET:
 | |
| 		func = perf_event_reset;
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_EVENT_IOC_REFRESH:
 | |
| 		return perf_event_refresh(event, arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_PERIOD:
 | |
| 		return perf_event_period(event, (u64 __user *)arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_ID:
 | |
| 	{
 | |
| 		u64 id = primary_event_id(event);
 | |
| 
 | |
| 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
 | |
| 			return -EFAULT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_OUTPUT:
 | |
| 	{
 | |
| 		int ret;
 | |
| 		if (arg != -1) {
 | |
| 			struct perf_event *output_event;
 | |
| 			struct fd output;
 | |
| 			ret = perf_fget_light(arg, &output);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			output_event = output.file->private_data;
 | |
| 			ret = perf_event_set_output(event, output_event);
 | |
| 			fdput(output);
 | |
| 		} else {
 | |
| 			ret = perf_event_set_output(event, NULL);
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_FILTER:
 | |
| 		return perf_event_set_filter(event, (void __user *)arg);
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & PERF_IOC_FLAG_GROUP)
 | |
| 		perf_event_for_each(event, func);
 | |
| 	else
 | |
| 		perf_event_for_each_child(event, func);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| static long perf_compat_ioctl(struct file *file, unsigned int cmd,
 | |
| 				unsigned long arg)
 | |
| {
 | |
| 	switch (_IOC_NR(cmd)) {
 | |
| 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
 | |
| 	case _IOC_NR(PERF_EVENT_IOC_ID):
 | |
| 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
 | |
| 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
 | |
| 			cmd &= ~IOCSIZE_MASK;
 | |
| 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	return perf_ioctl(file, cmd, arg);
 | |
| }
 | |
| #else
 | |
| # define perf_compat_ioctl NULL
 | |
| #endif
 | |
| 
 | |
| int perf_event_task_enable(void)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
 | |
| 		perf_event_for_each_child(event, perf_event_enable);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_task_disable(void)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
 | |
| 		perf_event_for_each_child(event, perf_event_disable);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_event_index(struct perf_event *event)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return event->pmu->event_idx(event);
 | |
| }
 | |
| 
 | |
| static void calc_timer_values(struct perf_event *event,
 | |
| 				u64 *now,
 | |
| 				u64 *enabled,
 | |
| 				u64 *running)
 | |
| {
 | |
| 	u64 ctx_time;
 | |
| 
 | |
| 	*now = perf_clock();
 | |
| 	ctx_time = event->shadow_ctx_time + *now;
 | |
| 	*enabled = ctx_time - event->tstamp_enabled;
 | |
| 	*running = ctx_time - event->tstamp_running;
 | |
| }
 | |
| 
 | |
| static void perf_event_init_userpage(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_mmap_page *userpg;
 | |
| 	struct ring_buffer *rb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (!rb)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	userpg = rb->user_page;
 | |
| 
 | |
| 	/* Allow new userspace to detect that bit 0 is deprecated */
 | |
| 	userpg->cap_bit0_is_deprecated = 1;
 | |
| 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
 | |
| 
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callers need to ensure there can be no nesting of this function, otherwise
 | |
|  * the seqlock logic goes bad. We can not serialize this because the arch
 | |
|  * code calls this from NMI context.
 | |
|  */
 | |
| void perf_event_update_userpage(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_mmap_page *userpg;
 | |
| 	struct ring_buffer *rb;
 | |
| 	u64 enabled, running, now;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (!rb)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * compute total_time_enabled, total_time_running
 | |
| 	 * based on snapshot values taken when the event
 | |
| 	 * was last scheduled in.
 | |
| 	 *
 | |
| 	 * we cannot simply called update_context_time()
 | |
| 	 * because of locking issue as we can be called in
 | |
| 	 * NMI context
 | |
| 	 */
 | |
| 	calc_timer_values(event, &now, &enabled, &running);
 | |
| 
 | |
| 	userpg = rb->user_page;
 | |
| 	/*
 | |
| 	 * Disable preemption so as to not let the corresponding user-space
 | |
| 	 * spin too long if we get preempted.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	++userpg->lock;
 | |
| 	barrier();
 | |
| 	userpg->index = perf_event_index(event);
 | |
| 	userpg->offset = perf_event_count(event);
 | |
| 	if (userpg->index)
 | |
| 		userpg->offset -= local64_read(&event->hw.prev_count);
 | |
| 
 | |
| 	userpg->time_enabled = enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 
 | |
| 	userpg->time_running = running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 
 | |
| 	arch_perf_update_userpage(userpg, now);
 | |
| 
 | |
| 	barrier();
 | |
| 	++userpg->lock;
 | |
| 	preempt_enable();
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 	struct ring_buffer *rb;
 | |
| 	int ret = VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
 | |
| 		if (vmf->pgoff == 0)
 | |
| 			ret = 0;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (!rb)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
 | |
| 	if (!vmf->page)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	get_page(vmf->page);
 | |
| 	vmf->page->mapping = vma->vm_file->f_mapping;
 | |
| 	vmf->page->index   = vmf->pgoff;
 | |
| 
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ring_buffer_attach(struct perf_event *event,
 | |
| 			       struct ring_buffer *rb)
 | |
| {
 | |
| 	struct ring_buffer *old_rb = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (event->rb) {
 | |
| 		/*
 | |
| 		 * Should be impossible, we set this when removing
 | |
| 		 * event->rb_entry and wait/clear when adding event->rb_entry.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(event->rcu_pending);
 | |
| 
 | |
| 		old_rb = event->rb;
 | |
| 		event->rcu_batches = get_state_synchronize_rcu();
 | |
| 		event->rcu_pending = 1;
 | |
| 
 | |
| 		spin_lock_irqsave(&old_rb->event_lock, flags);
 | |
| 		list_del_rcu(&event->rb_entry);
 | |
| 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (event->rcu_pending && rb) {
 | |
| 		cond_synchronize_rcu(event->rcu_batches);
 | |
| 		event->rcu_pending = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (rb) {
 | |
| 		spin_lock_irqsave(&rb->event_lock, flags);
 | |
| 		list_add_rcu(&event->rb_entry, &rb->event_list);
 | |
| 		spin_unlock_irqrestore(&rb->event_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	rcu_assign_pointer(event->rb, rb);
 | |
| 
 | |
| 	if (old_rb) {
 | |
| 		ring_buffer_put(old_rb);
 | |
| 		/*
 | |
| 		 * Since we detached before setting the new rb, so that we
 | |
| 		 * could attach the new rb, we could have missed a wakeup.
 | |
| 		 * Provide it now.
 | |
| 		 */
 | |
| 		wake_up_all(&event->waitq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ring_buffer_wakeup(struct perf_event *event)
 | |
| {
 | |
| 	struct ring_buffer *rb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (rb) {
 | |
| 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
 | |
| 			wake_up_all(&event->waitq);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void rb_free_rcu(struct rcu_head *rcu_head)
 | |
| {
 | |
| 	struct ring_buffer *rb;
 | |
| 
 | |
| 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
 | |
| 	rb_free(rb);
 | |
| }
 | |
| 
 | |
| static struct ring_buffer *ring_buffer_get(struct perf_event *event)
 | |
| {
 | |
| 	struct ring_buffer *rb;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	rb = rcu_dereference(event->rb);
 | |
| 	if (rb) {
 | |
| 		if (!atomic_inc_not_zero(&rb->refcount))
 | |
| 			rb = NULL;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return rb;
 | |
| }
 | |
| 
 | |
| static void ring_buffer_put(struct ring_buffer *rb)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&rb->refcount))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON_ONCE(!list_empty(&rb->event_list));
 | |
| 
 | |
| 	call_rcu(&rb->rcu_head, rb_free_rcu);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_open(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	atomic_inc(&event->mmap_count);
 | |
| 	atomic_inc(&event->rb->mmap_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A buffer can be mmap()ed multiple times; either directly through the same
 | |
|  * event, or through other events by use of perf_event_set_output().
 | |
|  *
 | |
|  * In order to undo the VM accounting done by perf_mmap() we need to destroy
 | |
|  * the buffer here, where we still have a VM context. This means we need
 | |
|  * to detach all events redirecting to us.
 | |
|  */
 | |
| static void perf_mmap_close(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	struct ring_buffer *rb = ring_buffer_get(event);
 | |
| 	struct user_struct *mmap_user = rb->mmap_user;
 | |
| 	int mmap_locked = rb->mmap_locked;
 | |
| 	unsigned long size = perf_data_size(rb);
 | |
| 
 | |
| 	atomic_dec(&rb->mmap_count);
 | |
| 
 | |
| 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	ring_buffer_attach(event, NULL);
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	/* If there's still other mmap()s of this buffer, we're done. */
 | |
| 	if (atomic_read(&rb->mmap_count))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	/*
 | |
| 	 * No other mmap()s, detach from all other events that might redirect
 | |
| 	 * into the now unreachable buffer. Somewhat complicated by the
 | |
| 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
 | |
| 	 */
 | |
| again:
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
 | |
| 		if (!atomic_long_inc_not_zero(&event->refcount)) {
 | |
| 			/*
 | |
| 			 * This event is en-route to free_event() which will
 | |
| 			 * detach it and remove it from the list.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		mutex_lock(&event->mmap_mutex);
 | |
| 		/*
 | |
| 		 * Check we didn't race with perf_event_set_output() which can
 | |
| 		 * swizzle the rb from under us while we were waiting to
 | |
| 		 * acquire mmap_mutex.
 | |
| 		 *
 | |
| 		 * If we find a different rb; ignore this event, a next
 | |
| 		 * iteration will no longer find it on the list. We have to
 | |
| 		 * still restart the iteration to make sure we're not now
 | |
| 		 * iterating the wrong list.
 | |
| 		 */
 | |
| 		if (event->rb == rb)
 | |
| 			ring_buffer_attach(event, NULL);
 | |
| 
 | |
| 		mutex_unlock(&event->mmap_mutex);
 | |
| 		put_event(event);
 | |
| 
 | |
| 		/*
 | |
| 		 * Restart the iteration; either we're on the wrong list or
 | |
| 		 * destroyed its integrity by doing a deletion.
 | |
| 		 */
 | |
| 		goto again;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * It could be there's still a few 0-ref events on the list; they'll
 | |
| 	 * get cleaned up by free_event() -- they'll also still have their
 | |
| 	 * ref on the rb and will free it whenever they are done with it.
 | |
| 	 *
 | |
| 	 * Aside from that, this buffer is 'fully' detached and unmapped,
 | |
| 	 * undo the VM accounting.
 | |
| 	 */
 | |
| 
 | |
| 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
 | |
| 	vma->vm_mm->pinned_vm -= mmap_locked;
 | |
| 	free_uid(mmap_user);
 | |
| 
 | |
| out_put:
 | |
| 	ring_buffer_put(rb); /* could be last */
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct perf_mmap_vmops = {
 | |
| 	.open		= perf_mmap_open,
 | |
| 	.close		= perf_mmap_close,
 | |
| 	.fault		= perf_mmap_fault,
 | |
| 	.page_mkwrite	= perf_mmap_fault,
 | |
| };
 | |
| 
 | |
| static int perf_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	unsigned long user_locked, user_lock_limit;
 | |
| 	struct user_struct *user = current_user();
 | |
| 	unsigned long locked, lock_limit;
 | |
| 	struct ring_buffer *rb;
 | |
| 	unsigned long vma_size;
 | |
| 	unsigned long nr_pages;
 | |
| 	long user_extra, extra;
 | |
| 	int ret = 0, flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow mmap() of inherited per-task counters. This would
 | |
| 	 * create a performance issue due to all children writing to the
 | |
| 	 * same rb.
 | |
| 	 */
 | |
| 	if (event->cpu == -1 && event->attr.inherit)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_SHARED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vma_size = vma->vm_end - vma->vm_start;
 | |
| 	nr_pages = (vma_size / PAGE_SIZE) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have rb pages ensure they're a power-of-two number, so we
 | |
| 	 * can do bitmasks instead of modulo.
 | |
| 	 */
 | |
| 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma->vm_pgoff != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| again:
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	if (event->rb) {
 | |
| 		if (event->rb->nr_pages != nr_pages) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
 | |
| 			/*
 | |
| 			 * Raced against perf_mmap_close() through
 | |
| 			 * perf_event_set_output(). Try again, hope for better
 | |
| 			 * luck.
 | |
| 			 */
 | |
| 			mutex_unlock(&event->mmap_mutex);
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	user_extra = nr_pages + 1;
 | |
| 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase the limit linearly with more CPUs:
 | |
| 	 */
 | |
| 	user_lock_limit *= num_online_cpus();
 | |
| 
 | |
| 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
 | |
| 
 | |
| 	extra = 0;
 | |
| 	if (user_locked > user_lock_limit)
 | |
| 		extra = user_locked - user_lock_limit;
 | |
| 
 | |
| 	lock_limit = rlimit(RLIMIT_MEMLOCK);
 | |
| 	lock_limit >>= PAGE_SHIFT;
 | |
| 	locked = vma->vm_mm->pinned_vm + extra;
 | |
| 
 | |
| 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
 | |
| 		!capable(CAP_IPC_LOCK)) {
 | |
| 		ret = -EPERM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(event->rb);
 | |
| 
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		flags |= RING_BUFFER_WRITABLE;
 | |
| 
 | |
| 	rb = rb_alloc(nr_pages, 
 | |
| 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
 | |
| 		event->cpu, flags);
 | |
| 
 | |
| 	if (!rb) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&rb->mmap_count, 1);
 | |
| 	rb->mmap_locked = extra;
 | |
| 	rb->mmap_user = get_current_user();
 | |
| 
 | |
| 	atomic_long_add(user_extra, &user->locked_vm);
 | |
| 	vma->vm_mm->pinned_vm += extra;
 | |
| 
 | |
| 	ring_buffer_attach(event, rb);
 | |
| 
 | |
| 	perf_event_init_userpage(event);
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| unlock:
 | |
| 	if (!ret)
 | |
| 		atomic_inc(&event->mmap_count);
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
 | |
| 	 * vma.
 | |
| 	 */
 | |
| 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
 | |
| 	vma->vm_ops = &perf_mmap_vmops;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_fasync(int fd, struct file *filp, int on)
 | |
| {
 | |
| 	struct inode *inode = file_inode(filp);
 | |
| 	struct perf_event *event = filp->private_data;
 | |
| 	int retval;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	retval = fasync_helper(fd, filp, on, &event->fasync);
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations perf_fops = {
 | |
| 	.llseek			= no_llseek,
 | |
| 	.release		= perf_release,
 | |
| 	.read			= perf_read,
 | |
| 	.poll			= perf_poll,
 | |
| 	.unlocked_ioctl		= perf_ioctl,
 | |
| 	.compat_ioctl		= perf_compat_ioctl,
 | |
| 	.mmap			= perf_mmap,
 | |
| 	.fasync			= perf_fasync,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Perf event wakeup
 | |
|  *
 | |
|  * If there's data, ensure we set the poll() state and publish everything
 | |
|  * to user-space before waking everybody up.
 | |
|  */
 | |
| 
 | |
| void perf_event_wakeup(struct perf_event *event)
 | |
| {
 | |
| 	ring_buffer_wakeup(event);
 | |
| 
 | |
| 	if (event->pending_kill) {
 | |
| 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
 | |
| 		event->pending_kill = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_pending_event(struct irq_work *entry)
 | |
| {
 | |
| 	struct perf_event *event = container_of(entry,
 | |
| 			struct perf_event, pending);
 | |
| 
 | |
| 	if (event->pending_disable) {
 | |
| 		event->pending_disable = 0;
 | |
| 		__perf_event_disable(event);
 | |
| 	}
 | |
| 
 | |
| 	if (event->pending_wakeup) {
 | |
| 		event->pending_wakeup = 0;
 | |
| 		perf_event_wakeup(event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We assume there is only KVM supporting the callbacks.
 | |
|  * Later on, we might change it to a list if there is
 | |
|  * another virtualization implementation supporting the callbacks.
 | |
|  */
 | |
| struct perf_guest_info_callbacks *perf_guest_cbs;
 | |
| 
 | |
| int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 | |
| {
 | |
| 	perf_guest_cbs = cbs;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
 | |
| 
 | |
| int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 | |
| {
 | |
| 	perf_guest_cbs = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
 | |
| 
 | |
| static void
 | |
| perf_output_sample_regs(struct perf_output_handle *handle,
 | |
| 			struct pt_regs *regs, u64 mask)
 | |
| {
 | |
| 	int bit;
 | |
| 
 | |
| 	for_each_set_bit(bit, (const unsigned long *) &mask,
 | |
| 			 sizeof(mask) * BITS_PER_BYTE) {
 | |
| 		u64 val;
 | |
| 
 | |
| 		val = perf_reg_value(regs, bit);
 | |
| 		perf_output_put(handle, val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_sample_regs_user(struct perf_regs *regs_user,
 | |
| 				  struct pt_regs *regs)
 | |
| {
 | |
| 	if (!user_mode(regs)) {
 | |
| 		if (current->mm)
 | |
| 			regs = task_pt_regs(current);
 | |
| 		else
 | |
| 			regs = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (regs) {
 | |
| 		regs_user->abi  = perf_reg_abi(current);
 | |
| 		regs_user->regs = regs;
 | |
| 	} else {
 | |
| 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
 | |
| 		regs_user->regs = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_sample_regs_intr(struct perf_regs *regs_intr,
 | |
| 				  struct pt_regs *regs)
 | |
| {
 | |
| 	regs_intr->regs = regs;
 | |
| 	regs_intr->abi  = perf_reg_abi(current);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Get remaining task size from user stack pointer.
 | |
|  *
 | |
|  * It'd be better to take stack vma map and limit this more
 | |
|  * precisly, but there's no way to get it safely under interrupt,
 | |
|  * so using TASK_SIZE as limit.
 | |
|  */
 | |
| static u64 perf_ustack_task_size(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long addr = perf_user_stack_pointer(regs);
 | |
| 
 | |
| 	if (!addr || addr >= TASK_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return TASK_SIZE - addr;
 | |
| }
 | |
| 
 | |
| static u16
 | |
| perf_sample_ustack_size(u16 stack_size, u16 header_size,
 | |
| 			struct pt_regs *regs)
 | |
| {
 | |
| 	u64 task_size;
 | |
| 
 | |
| 	/* No regs, no stack pointer, no dump. */
 | |
| 	if (!regs)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if we fit in with the requested stack size into the:
 | |
| 	 * - TASK_SIZE
 | |
| 	 *   If we don't, we limit the size to the TASK_SIZE.
 | |
| 	 *
 | |
| 	 * - remaining sample size
 | |
| 	 *   If we don't, we customize the stack size to
 | |
| 	 *   fit in to the remaining sample size.
 | |
| 	 */
 | |
| 
 | |
| 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
 | |
| 	stack_size = min(stack_size, (u16) task_size);
 | |
| 
 | |
| 	/* Current header size plus static size and dynamic size. */
 | |
| 	header_size += 2 * sizeof(u64);
 | |
| 
 | |
| 	/* Do we fit in with the current stack dump size? */
 | |
| 	if ((u16) (header_size + stack_size) < header_size) {
 | |
| 		/*
 | |
| 		 * If we overflow the maximum size for the sample,
 | |
| 		 * we customize the stack dump size to fit in.
 | |
| 		 */
 | |
| 		stack_size = USHRT_MAX - header_size - sizeof(u64);
 | |
| 		stack_size = round_up(stack_size, sizeof(u64));
 | |
| 	}
 | |
| 
 | |
| 	return stack_size;
 | |
| }
 | |
| 
 | |
| static void
 | |
| perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
 | |
| 			  struct pt_regs *regs)
 | |
| {
 | |
| 	/* Case of a kernel thread, nothing to dump */
 | |
| 	if (!regs) {
 | |
| 		u64 size = 0;
 | |
| 		perf_output_put(handle, size);
 | |
| 	} else {
 | |
| 		unsigned long sp;
 | |
| 		unsigned int rem;
 | |
| 		u64 dyn_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * We dump:
 | |
| 		 * static size
 | |
| 		 *   - the size requested by user or the best one we can fit
 | |
| 		 *     in to the sample max size
 | |
| 		 * data
 | |
| 		 *   - user stack dump data
 | |
| 		 * dynamic size
 | |
| 		 *   - the actual dumped size
 | |
| 		 */
 | |
| 
 | |
| 		/* Static size. */
 | |
| 		perf_output_put(handle, dump_size);
 | |
| 
 | |
| 		/* Data. */
 | |
| 		sp = perf_user_stack_pointer(regs);
 | |
| 		rem = __output_copy_user(handle, (void *) sp, dump_size);
 | |
| 		dyn_size = dump_size - rem;
 | |
| 
 | |
| 		perf_output_skip(handle, rem);
 | |
| 
 | |
| 		/* Dynamic size. */
 | |
| 		perf_output_put(handle, dyn_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __perf_event_header__init_id(struct perf_event_header *header,
 | |
| 					 struct perf_sample_data *data,
 | |
| 					 struct perf_event *event)
 | |
| {
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 
 | |
| 	data->type = sample_type;
 | |
| 	header->size += event->id_header_size;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID) {
 | |
| 		/* namespace issues */
 | |
| 		data->tid_entry.pid = perf_event_pid(event, current);
 | |
| 		data->tid_entry.tid = perf_event_tid(event, current);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		data->time = perf_clock();
 | |
| 
 | |
| 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
 | |
| 		data->id = primary_event_id(event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		data->stream_id = event->id;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU) {
 | |
| 		data->cpu_entry.cpu	 = raw_smp_processor_id();
 | |
| 		data->cpu_entry.reserved = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_header__init_id(struct perf_event_header *header,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.sample_id_all)
 | |
| 		__perf_event_header__init_id(header, data, event);
 | |
| }
 | |
| 
 | |
| static void __perf_event__output_id_sample(struct perf_output_handle *handle,
 | |
| 					   struct perf_sample_data *data)
 | |
| {
 | |
| 	u64 sample_type = data->type;
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		perf_output_put(handle, data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		perf_output_put(handle, data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		perf_output_put(handle, data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		perf_output_put(handle, data->cpu_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 | |
| 		perf_output_put(handle, data->id);
 | |
| }
 | |
| 
 | |
| void perf_event__output_id_sample(struct perf_event *event,
 | |
| 				  struct perf_output_handle *handle,
 | |
| 				  struct perf_sample_data *sample)
 | |
| {
 | |
| 	if (event->attr.sample_id_all)
 | |
| 		__perf_event__output_id_sample(handle, sample);
 | |
| }
 | |
| 
 | |
| static void perf_output_read_one(struct perf_output_handle *handle,
 | |
| 				 struct perf_event *event,
 | |
| 				 u64 enabled, u64 running)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = perf_event_count(event);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 | |
| 		values[n++] = enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 | |
| 		values[n++] = running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	__output_copy(handle, values, n * sizeof(u64));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
 | |
|  */
 | |
| static void perf_output_read_group(struct perf_output_handle *handle,
 | |
| 			    struct perf_event *event,
 | |
| 			    u64 enabled, u64 running)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *sub;
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[5];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = 1 + leader->nr_siblings;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = enabled;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = running;
 | |
| 
 | |
| 	if (leader != event)
 | |
| 		leader->pmu->read(leader);
 | |
| 
 | |
| 	values[n++] = perf_event_count(leader);
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(leader);
 | |
| 
 | |
| 	__output_copy(handle, values, n * sizeof(u64));
 | |
| 
 | |
| 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
 | |
| 		n = 0;
 | |
| 
 | |
| 		if ((sub != event) &&
 | |
| 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
 | |
| 			sub->pmu->read(sub);
 | |
| 
 | |
| 		values[n++] = perf_event_count(sub);
 | |
| 		if (read_format & PERF_FORMAT_ID)
 | |
| 			values[n++] = primary_event_id(sub);
 | |
| 
 | |
| 		__output_copy(handle, values, n * sizeof(u64));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
 | |
| 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 
 | |
| static void perf_output_read(struct perf_output_handle *handle,
 | |
| 			     struct perf_event *event)
 | |
| {
 | |
| 	u64 enabled = 0, running = 0, now;
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 
 | |
| 	/*
 | |
| 	 * compute total_time_enabled, total_time_running
 | |
| 	 * based on snapshot values taken when the event
 | |
| 	 * was last scheduled in.
 | |
| 	 *
 | |
| 	 * we cannot simply called update_context_time()
 | |
| 	 * because of locking issue as we are called in
 | |
| 	 * NMI context
 | |
| 	 */
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
 | |
| 		calc_timer_values(event, &now, &enabled, &running);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP)
 | |
| 		perf_output_read_group(handle, event, enabled, running);
 | |
| 	else
 | |
| 		perf_output_read_one(handle, event, enabled, running);
 | |
| }
 | |
| 
 | |
| void perf_output_sample(struct perf_output_handle *handle,
 | |
| 			struct perf_event_header *header,
 | |
| 			struct perf_sample_data *data,
 | |
| 			struct perf_event *event)
 | |
| {
 | |
| 	u64 sample_type = data->type;
 | |
| 
 | |
| 	perf_output_put(handle, *header);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		perf_output_put(handle, data->ip);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		perf_output_put(handle, data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		perf_output_put(handle, data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		perf_output_put(handle, data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		perf_output_put(handle, data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		perf_output_put(handle, data->cpu_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		perf_output_put(handle, data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		perf_output_read(handle, event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		if (data->callchain) {
 | |
| 			int size = 1;
 | |
| 
 | |
| 			if (data->callchain)
 | |
| 				size += data->callchain->nr;
 | |
| 
 | |
| 			size *= sizeof(u64);
 | |
| 
 | |
| 			__output_copy(handle, data->callchain, size);
 | |
| 		} else {
 | |
| 			u64 nr = 0;
 | |
| 			perf_output_put(handle, nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		if (data->raw) {
 | |
| 			perf_output_put(handle, data->raw->size);
 | |
| 			__output_copy(handle, data->raw->data,
 | |
| 					   data->raw->size);
 | |
| 		} else {
 | |
| 			struct {
 | |
| 				u32	size;
 | |
| 				u32	data;
 | |
| 			} raw = {
 | |
| 				.size = sizeof(u32),
 | |
| 				.data = 0,
 | |
| 			};
 | |
| 			perf_output_put(handle, raw);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | |
| 		if (data->br_stack) {
 | |
| 			size_t size;
 | |
| 
 | |
| 			size = data->br_stack->nr
 | |
| 			     * sizeof(struct perf_branch_entry);
 | |
| 
 | |
| 			perf_output_put(handle, data->br_stack->nr);
 | |
| 			perf_output_copy(handle, data->br_stack->entries, size);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * we always store at least the value of nr
 | |
| 			 */
 | |
| 			u64 nr = 0;
 | |
| 			perf_output_put(handle, nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_USER) {
 | |
| 		u64 abi = data->regs_user.abi;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there are no regs to dump, notice it through
 | |
| 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
 | |
| 		 */
 | |
| 		perf_output_put(handle, abi);
 | |
| 
 | |
| 		if (abi) {
 | |
| 			u64 mask = event->attr.sample_regs_user;
 | |
| 			perf_output_sample_regs(handle,
 | |
| 						data->regs_user.regs,
 | |
| 						mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STACK_USER) {
 | |
| 		perf_output_sample_ustack(handle,
 | |
| 					  data->stack_user_size,
 | |
| 					  data->regs_user.regs);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_WEIGHT)
 | |
| 		perf_output_put(handle, data->weight);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_DATA_SRC)
 | |
| 		perf_output_put(handle, data->data_src.val);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TRANSACTION)
 | |
| 		perf_output_put(handle, data->txn);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
 | |
| 		u64 abi = data->regs_intr.abi;
 | |
| 		/*
 | |
| 		 * If there are no regs to dump, notice it through
 | |
| 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
 | |
| 		 */
 | |
| 		perf_output_put(handle, abi);
 | |
| 
 | |
| 		if (abi) {
 | |
| 			u64 mask = event->attr.sample_regs_intr;
 | |
| 
 | |
| 			perf_output_sample_regs(handle,
 | |
| 						data->regs_intr.regs,
 | |
| 						mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!event->attr.watermark) {
 | |
| 		int wakeup_events = event->attr.wakeup_events;
 | |
| 
 | |
| 		if (wakeup_events) {
 | |
| 			struct ring_buffer *rb = handle->rb;
 | |
| 			int events = local_inc_return(&rb->events);
 | |
| 
 | |
| 			if (events >= wakeup_events) {
 | |
| 				local_sub(wakeup_events, &rb->events);
 | |
| 				local_inc(&rb->wakeup);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_prepare_sample(struct perf_event_header *header,
 | |
| 			 struct perf_sample_data *data,
 | |
| 			 struct perf_event *event,
 | |
| 			 struct pt_regs *regs)
 | |
| {
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 
 | |
| 	header->type = PERF_RECORD_SAMPLE;
 | |
| 	header->size = sizeof(*header) + event->header_size;
 | |
| 
 | |
| 	header->misc = 0;
 | |
| 	header->misc |= perf_misc_flags(regs);
 | |
| 
 | |
| 	__perf_event_header__init_id(header, data, event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		data->ip = perf_instruction_pointer(regs);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		int size = 1;
 | |
| 
 | |
| 		data->callchain = perf_callchain(event, regs);
 | |
| 
 | |
| 		if (data->callchain)
 | |
| 			size += data->callchain->nr;
 | |
| 
 | |
| 		header->size += size * sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		int size = sizeof(u32);
 | |
| 
 | |
| 		if (data->raw)
 | |
| 			size += data->raw->size;
 | |
| 		else
 | |
| 			size += sizeof(u32);
 | |
| 
 | |
| 		WARN_ON_ONCE(size & (sizeof(u64)-1));
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | |
| 		int size = sizeof(u64); /* nr */
 | |
| 		if (data->br_stack) {
 | |
| 			size += data->br_stack->nr
 | |
| 			      * sizeof(struct perf_branch_entry);
 | |
| 		}
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
 | |
| 		perf_sample_regs_user(&data->regs_user, regs);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_USER) {
 | |
| 		/* regs dump ABI info */
 | |
| 		int size = sizeof(u64);
 | |
| 
 | |
| 		if (data->regs_user.regs) {
 | |
| 			u64 mask = event->attr.sample_regs_user;
 | |
| 			size += hweight64(mask) * sizeof(u64);
 | |
| 		}
 | |
| 
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STACK_USER) {
 | |
| 		/*
 | |
| 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
 | |
| 		 * processed as the last one or have additional check added
 | |
| 		 * in case new sample type is added, because we could eat
 | |
| 		 * up the rest of the sample size.
 | |
| 		 */
 | |
| 		u16 stack_size = event->attr.sample_stack_user;
 | |
| 		u16 size = sizeof(u64);
 | |
| 
 | |
| 		stack_size = perf_sample_ustack_size(stack_size, header->size,
 | |
| 						     data->regs_user.regs);
 | |
| 
 | |
| 		/*
 | |
| 		 * If there is something to dump, add space for the dump
 | |
| 		 * itself and for the field that tells the dynamic size,
 | |
| 		 * which is how many have been actually dumped.
 | |
| 		 */
 | |
| 		if (stack_size)
 | |
| 			size += sizeof(u64) + stack_size;
 | |
| 
 | |
| 		data->stack_user_size = stack_size;
 | |
| 		header->size += size;
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
 | |
| 		/* regs dump ABI info */
 | |
| 		int size = sizeof(u64);
 | |
| 
 | |
| 		perf_sample_regs_intr(&data->regs_intr, regs);
 | |
| 
 | |
| 		if (data->regs_intr.regs) {
 | |
| 			u64 mask = event->attr.sample_regs_intr;
 | |
| 
 | |
| 			size += hweight64(mask) * sizeof(u64);
 | |
| 		}
 | |
| 
 | |
| 		header->size += size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_output(struct perf_event *event,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_event_header header;
 | |
| 
 | |
| 	/* protect the callchain buffers */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	perf_prepare_sample(&header, data, event, regs);
 | |
| 
 | |
| 	if (perf_output_begin(&handle, event, header.size))
 | |
| 		goto exit;
 | |
| 
 | |
| 	perf_output_sample(&handle, &header, data, event);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| 
 | |
| exit:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read event_id
 | |
|  */
 | |
| 
 | |
| struct perf_read_event {
 | |
| 	struct perf_event_header	header;
 | |
| 
 | |
| 	u32				pid;
 | |
| 	u32				tid;
 | |
| };
 | |
| 
 | |
| static void
 | |
| perf_event_read_event(struct perf_event *event,
 | |
| 			struct task_struct *task)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	struct perf_read_event read_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_READ,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(read_event) + event->read_size,
 | |
| 		},
 | |
| 		.pid = perf_event_pid(event, task),
 | |
| 		.tid = perf_event_tid(event, task),
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	perf_event_header__init_id(&read_event.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event, read_event.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, read_event);
 | |
| 	perf_output_read(&handle, event);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
 | |
| 
 | |
| static void
 | |
| perf_event_aux_ctx(struct perf_event_context *ctx,
 | |
| 		   perf_event_aux_output_cb output,
 | |
| 		   void *data)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (event->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 			continue;
 | |
| 		if (!event_filter_match(event))
 | |
| 			continue;
 | |
| 		output(event, data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| perf_event_aux(perf_event_aux_output_cb output, void *data,
 | |
| 	       struct perf_event_context *task_ctx)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct pmu *pmu;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 		if (cpuctx->unique_pmu != pmu)
 | |
| 			goto next;
 | |
| 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
 | |
| 		if (task_ctx)
 | |
| 			goto next;
 | |
| 		ctxn = pmu->task_ctx_nr;
 | |
| 		if (ctxn < 0)
 | |
| 			goto next;
 | |
| 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 | |
| 		if (ctx)
 | |
| 			perf_event_aux_ctx(ctx, output, data);
 | |
| next:
 | |
| 		put_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	}
 | |
| 
 | |
| 	if (task_ctx) {
 | |
| 		preempt_disable();
 | |
| 		perf_event_aux_ctx(task_ctx, output, data);
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task tracking -- fork/exit
 | |
|  *
 | |
|  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
 | |
|  */
 | |
| 
 | |
| struct perf_task_event {
 | |
| 	struct task_struct		*task;
 | |
| 	struct perf_event_context	*task_ctx;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				ppid;
 | |
| 		u32				tid;
 | |
| 		u32				ptid;
 | |
| 		u64				time;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_task_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.comm  || event->attr.mmap ||
 | |
| 	       event->attr.mmap2 || event->attr.mmap_data ||
 | |
| 	       event->attr.task;
 | |
| }
 | |
| 
 | |
| static void perf_event_task_output(struct perf_event *event,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct perf_task_event *task_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data	sample;
 | |
| 	struct task_struct *task = task_event->task;
 | |
| 	int ret, size = task_event->event_id.header.size;
 | |
| 
 | |
| 	if (!perf_event_task_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				task_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	task_event->event_id.pid = perf_event_pid(event, task);
 | |
| 	task_event->event_id.ppid = perf_event_pid(event, current);
 | |
| 
 | |
| 	task_event->event_id.tid = perf_event_tid(event, task);
 | |
| 	task_event->event_id.ptid = perf_event_tid(event, current);
 | |
| 
 | |
| 	perf_output_put(&handle, task_event->event_id);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	task_event->event_id.header.size = size;
 | |
| }
 | |
| 
 | |
| static void perf_event_task(struct task_struct *task,
 | |
| 			      struct perf_event_context *task_ctx,
 | |
| 			      int new)
 | |
| {
 | |
| 	struct perf_task_event task_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events) &&
 | |
| 	    !atomic_read(&nr_mmap_events) &&
 | |
| 	    !atomic_read(&nr_task_events))
 | |
| 		return;
 | |
| 
 | |
| 	task_event = (struct perf_task_event){
 | |
| 		.task	  = task,
 | |
| 		.task_ctx = task_ctx,
 | |
| 		.event_id    = {
 | |
| 			.header = {
 | |
| 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
 | |
| 				.misc = 0,
 | |
| 				.size = sizeof(task_event.event_id),
 | |
| 			},
 | |
| 			/* .pid  */
 | |
| 			/* .ppid */
 | |
| 			/* .tid  */
 | |
| 			/* .ptid */
 | |
| 			.time = perf_clock(),
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_aux(perf_event_task_output,
 | |
| 		       &task_event,
 | |
| 		       task_ctx);
 | |
| }
 | |
| 
 | |
| void perf_event_fork(struct task_struct *task)
 | |
| {
 | |
| 	perf_event_task(task, NULL, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * comm tracking
 | |
|  */
 | |
| 
 | |
| struct perf_comm_event {
 | |
| 	struct task_struct	*task;
 | |
| 	char			*comm;
 | |
| 	int			comm_size;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_comm_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->attr.comm;
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_output(struct perf_event *event,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct perf_comm_event *comm_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int size = comm_event->event_id.header.size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_comm_match(event))
 | |
| 		return;
 | |
| 
 | |
| 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				comm_event->event_id.header.size);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
 | |
| 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
 | |
| 
 | |
| 	perf_output_put(&handle, comm_event->event_id);
 | |
| 	__output_copy(&handle, comm_event->comm,
 | |
| 				   comm_event->comm_size);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	comm_event->event_id.header.size = size;
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_event(struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	char comm[TASK_COMM_LEN];
 | |
| 	unsigned int size;
 | |
| 
 | |
| 	memset(comm, 0, sizeof(comm));
 | |
| 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
 | |
| 	size = ALIGN(strlen(comm)+1, sizeof(u64));
 | |
| 
 | |
| 	comm_event->comm = comm;
 | |
| 	comm_event->comm_size = size;
 | |
| 
 | |
| 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
 | |
| 
 | |
| 	perf_event_aux(perf_event_comm_output,
 | |
| 		       comm_event,
 | |
| 		       NULL);
 | |
| }
 | |
| 
 | |
| void perf_event_comm(struct task_struct *task, bool exec)
 | |
| {
 | |
| 	struct perf_comm_event comm_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events))
 | |
| 		return;
 | |
| 
 | |
| 	comm_event = (struct perf_comm_event){
 | |
| 		.task	= task,
 | |
| 		/* .comm      */
 | |
| 		/* .comm_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_COMM,
 | |
| 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_comm_event(&comm_event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mmap tracking
 | |
|  */
 | |
| 
 | |
| struct perf_mmap_event {
 | |
| 	struct vm_area_struct	*vma;
 | |
| 
 | |
| 	const char		*file_name;
 | |
| 	int			file_size;
 | |
| 	int			maj, min;
 | |
| 	u64			ino;
 | |
| 	u64			ino_generation;
 | |
| 	u32			prot, flags;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 		u64				start;
 | |
| 		u64				len;
 | |
| 		u64				pgoff;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static int perf_event_mmap_match(struct perf_event *event,
 | |
| 				 void *data)
 | |
| {
 | |
| 	struct perf_mmap_event *mmap_event = data;
 | |
| 	struct vm_area_struct *vma = mmap_event->vma;
 | |
| 	int executable = vma->vm_flags & VM_EXEC;
 | |
| 
 | |
| 	return (!executable && event->attr.mmap_data) ||
 | |
| 	       (executable && (event->attr.mmap || event->attr.mmap2));
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_output(struct perf_event *event,
 | |
| 				   void *data)
 | |
| {
 | |
| 	struct perf_mmap_event *mmap_event = data;
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int size = mmap_event->event_id.header.size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!perf_event_mmap_match(event, data))
 | |
| 		return;
 | |
| 
 | |
| 	if (event->attr.mmap2) {
 | |
| 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
 | |
| 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
 | |
| 	}
 | |
| 
 | |
| 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				mmap_event->event_id.header.size);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	mmap_event->event_id.pid = perf_event_pid(event, current);
 | |
| 	mmap_event->event_id.tid = perf_event_tid(event, current);
 | |
| 
 | |
| 	perf_output_put(&handle, mmap_event->event_id);
 | |
| 
 | |
| 	if (event->attr.mmap2) {
 | |
| 		perf_output_put(&handle, mmap_event->maj);
 | |
| 		perf_output_put(&handle, mmap_event->min);
 | |
| 		perf_output_put(&handle, mmap_event->ino);
 | |
| 		perf_output_put(&handle, mmap_event->ino_generation);
 | |
| 		perf_output_put(&handle, mmap_event->prot);
 | |
| 		perf_output_put(&handle, mmap_event->flags);
 | |
| 	}
 | |
| 
 | |
| 	__output_copy(&handle, mmap_event->file_name,
 | |
| 				   mmap_event->file_size);
 | |
| 
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| out:
 | |
| 	mmap_event->event_id.header.size = size;
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	struct vm_area_struct *vma = mmap_event->vma;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	int maj = 0, min = 0;
 | |
| 	u64 ino = 0, gen = 0;
 | |
| 	u32 prot = 0, flags = 0;
 | |
| 	unsigned int size;
 | |
| 	char tmp[16];
 | |
| 	char *buf = NULL;
 | |
| 	char *name;
 | |
| 
 | |
| 	if (file) {
 | |
| 		struct inode *inode;
 | |
| 		dev_t dev;
 | |
| 
 | |
| 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
 | |
| 		if (!buf) {
 | |
| 			name = "//enomem";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * d_path() works from the end of the rb backwards, so we
 | |
| 		 * need to add enough zero bytes after the string to handle
 | |
| 		 * the 64bit alignment we do later.
 | |
| 		 */
 | |
| 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
 | |
| 		if (IS_ERR(name)) {
 | |
| 			name = "//toolong";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 		inode = file_inode(vma->vm_file);
 | |
| 		dev = inode->i_sb->s_dev;
 | |
| 		ino = inode->i_ino;
 | |
| 		gen = inode->i_generation;
 | |
| 		maj = MAJOR(dev);
 | |
| 		min = MINOR(dev);
 | |
| 
 | |
| 		if (vma->vm_flags & VM_READ)
 | |
| 			prot |= PROT_READ;
 | |
| 		if (vma->vm_flags & VM_WRITE)
 | |
| 			prot |= PROT_WRITE;
 | |
| 		if (vma->vm_flags & VM_EXEC)
 | |
| 			prot |= PROT_EXEC;
 | |
| 
 | |
| 		if (vma->vm_flags & VM_MAYSHARE)
 | |
| 			flags = MAP_SHARED;
 | |
| 		else
 | |
| 			flags = MAP_PRIVATE;
 | |
| 
 | |
| 		if (vma->vm_flags & VM_DENYWRITE)
 | |
| 			flags |= MAP_DENYWRITE;
 | |
| 		if (vma->vm_flags & VM_MAYEXEC)
 | |
| 			flags |= MAP_EXECUTABLE;
 | |
| 		if (vma->vm_flags & VM_LOCKED)
 | |
| 			flags |= MAP_LOCKED;
 | |
| 		if (vma->vm_flags & VM_HUGETLB)
 | |
| 			flags |= MAP_HUGETLB;
 | |
| 
 | |
| 		goto got_name;
 | |
| 	} else {
 | |
| 		if (vma->vm_ops && vma->vm_ops->name) {
 | |
| 			name = (char *) vma->vm_ops->name(vma);
 | |
| 			if (name)
 | |
| 				goto cpy_name;
 | |
| 		}
 | |
| 
 | |
| 		name = (char *)arch_vma_name(vma);
 | |
| 		if (name)
 | |
| 			goto cpy_name;
 | |
| 
 | |
| 		if (vma->vm_start <= vma->vm_mm->start_brk &&
 | |
| 				vma->vm_end >= vma->vm_mm->brk) {
 | |
| 			name = "[heap]";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 		if (vma->vm_start <= vma->vm_mm->start_stack &&
 | |
| 				vma->vm_end >= vma->vm_mm->start_stack) {
 | |
| 			name = "[stack]";
 | |
| 			goto cpy_name;
 | |
| 		}
 | |
| 
 | |
| 		name = "//anon";
 | |
| 		goto cpy_name;
 | |
| 	}
 | |
| 
 | |
| cpy_name:
 | |
| 	strlcpy(tmp, name, sizeof(tmp));
 | |
| 	name = tmp;
 | |
| got_name:
 | |
| 	/*
 | |
| 	 * Since our buffer works in 8 byte units we need to align our string
 | |
| 	 * size to a multiple of 8. However, we must guarantee the tail end is
 | |
| 	 * zero'd out to avoid leaking random bits to userspace.
 | |
| 	 */
 | |
| 	size = strlen(name)+1;
 | |
| 	while (!IS_ALIGNED(size, sizeof(u64)))
 | |
| 		name[size++] = '\0';
 | |
| 
 | |
| 	mmap_event->file_name = name;
 | |
| 	mmap_event->file_size = size;
 | |
| 	mmap_event->maj = maj;
 | |
| 	mmap_event->min = min;
 | |
| 	mmap_event->ino = ino;
 | |
| 	mmap_event->ino_generation = gen;
 | |
| 	mmap_event->prot = prot;
 | |
| 	mmap_event->flags = flags;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_EXEC))
 | |
| 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
 | |
| 
 | |
| 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
 | |
| 
 | |
| 	perf_event_aux(perf_event_mmap_output,
 | |
| 		       mmap_event,
 | |
| 		       NULL);
 | |
| 
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| void perf_event_mmap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_mmap_event mmap_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_mmap_events))
 | |
| 		return;
 | |
| 
 | |
| 	mmap_event = (struct perf_mmap_event){
 | |
| 		.vma	= vma,
 | |
| 		/* .file_name */
 | |
| 		/* .file_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_MMAP,
 | |
| 				.misc = PERF_RECORD_MISC_USER,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 			.start  = vma->vm_start,
 | |
| 			.len    = vma->vm_end - vma->vm_start,
 | |
| 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
 | |
| 		},
 | |
| 		/* .maj (attr_mmap2 only) */
 | |
| 		/* .min (attr_mmap2 only) */
 | |
| 		/* .ino (attr_mmap2 only) */
 | |
| 		/* .ino_generation (attr_mmap2 only) */
 | |
| 		/* .prot (attr_mmap2 only) */
 | |
| 		/* .flags (attr_mmap2 only) */
 | |
| 	};
 | |
| 
 | |
| 	perf_event_mmap_event(&mmap_event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IRQ throttle logging
 | |
|  */
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_sample_data sample;
 | |
| 	int ret;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 		u64				time;
 | |
| 		u64				id;
 | |
| 		u64				stream_id;
 | |
| 	} throttle_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_THROTTLE,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(throttle_event),
 | |
| 		},
 | |
| 		.time		= perf_clock(),
 | |
| 		.id		= primary_event_id(event),
 | |
| 		.stream_id	= event->id,
 | |
| 	};
 | |
| 
 | |
| 	if (enable)
 | |
| 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
 | |
| 
 | |
| 	perf_event_header__init_id(&throttle_event.header, &sample, event);
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event,
 | |
| 				throttle_event.header.size);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, throttle_event);
 | |
| 	perf_event__output_id_sample(event, &handle, &sample);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic event overflow handling, sampling.
 | |
|  */
 | |
| 
 | |
| static int __perf_event_overflow(struct perf_event *event,
 | |
| 				   int throttle, struct perf_sample_data *data,
 | |
| 				   struct pt_regs *regs)
 | |
| {
 | |
| 	int events = atomic_read(&event->event_limit);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 seq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Non-sampling counters might still use the PMI to fold short
 | |
| 	 * hardware counters, ignore those.
 | |
| 	 */
 | |
| 	if (unlikely(!is_sampling_event(event)))
 | |
| 		return 0;
 | |
| 
 | |
| 	seq = __this_cpu_read(perf_throttled_seq);
 | |
| 	if (seq != hwc->interrupts_seq) {
 | |
| 		hwc->interrupts_seq = seq;
 | |
| 		hwc->interrupts = 1;
 | |
| 	} else {
 | |
| 		hwc->interrupts++;
 | |
| 		if (unlikely(throttle
 | |
| 			     && hwc->interrupts >= max_samples_per_tick)) {
 | |
| 			__this_cpu_inc(perf_throttled_count);
 | |
| 			hwc->interrupts = MAX_INTERRUPTS;
 | |
| 			perf_log_throttle(event, 0);
 | |
| 			tick_nohz_full_kick();
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (event->attr.freq) {
 | |
| 		u64 now = perf_clock();
 | |
| 		s64 delta = now - hwc->freq_time_stamp;
 | |
| 
 | |
| 		hwc->freq_time_stamp = now;
 | |
| 
 | |
| 		if (delta > 0 && delta < 2*TICK_NSEC)
 | |
| 			perf_adjust_period(event, delta, hwc->last_period, true);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX event_limit might not quite work as expected on inherited
 | |
| 	 * events
 | |
| 	 */
 | |
| 
 | |
| 	event->pending_kill = POLL_IN;
 | |
| 	if (events && atomic_dec_and_test(&event->event_limit)) {
 | |
| 		ret = 1;
 | |
| 		event->pending_kill = POLL_HUP;
 | |
| 		event->pending_disable = 1;
 | |
| 		irq_work_queue(&event->pending);
 | |
| 	}
 | |
| 
 | |
| 	if (event->overflow_handler)
 | |
| 		event->overflow_handler(event, data, regs);
 | |
| 	else
 | |
| 		perf_event_output(event, data, regs);
 | |
| 
 | |
| 	if (event->fasync && event->pending_kill) {
 | |
| 		event->pending_wakeup = 1;
 | |
| 		irq_work_queue(&event->pending);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int perf_event_overflow(struct perf_event *event,
 | |
| 			  struct perf_sample_data *data,
 | |
| 			  struct pt_regs *regs)
 | |
| {
 | |
| 	return __perf_event_overflow(event, 1, data, regs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic software event infrastructure
 | |
|  */
 | |
| 
 | |
| struct swevent_htable {
 | |
| 	struct swevent_hlist		*swevent_hlist;
 | |
| 	struct mutex			hlist_mutex;
 | |
| 	int				hlist_refcount;
 | |
| 
 | |
| 	/* Recursion avoidance in each contexts */
 | |
| 	int				recursion[PERF_NR_CONTEXTS];
 | |
| 
 | |
| 	/* Keeps track of cpu being initialized/exited */
 | |
| 	bool				online;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
 | |
| 
 | |
| /*
 | |
|  * We directly increment event->count and keep a second value in
 | |
|  * event->hw.period_left to count intervals. This period event
 | |
|  * is kept in the range [-sample_period, 0] so that we can use the
 | |
|  * sign as trigger.
 | |
|  */
 | |
| 
 | |
| u64 perf_swevent_set_period(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 period = hwc->last_period;
 | |
| 	u64 nr, offset;
 | |
| 	s64 old, val;
 | |
| 
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| again:
 | |
| 	old = val = local64_read(&hwc->period_left);
 | |
| 	if (val < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	nr = div64_u64(period + val, period);
 | |
| 	offset = nr * period;
 | |
| 	val -= offset;
 | |
| 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
 | |
| 		goto again;
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
 | |
| 				    struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int throttle = 0;
 | |
| 
 | |
| 	if (!overflow)
 | |
| 		overflow = perf_swevent_set_period(event);
 | |
| 
 | |
| 	if (hwc->interrupts == MAX_INTERRUPTS)
 | |
| 		return;
 | |
| 
 | |
| 	for (; overflow; overflow--) {
 | |
| 		if (__perf_event_overflow(event, throttle,
 | |
| 					    data, regs)) {
 | |
| 			/*
 | |
| 			 * We inhibit the overflow from happening when
 | |
| 			 * hwc->interrupts == MAX_INTERRUPTS.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		throttle = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_event(struct perf_event *event, u64 nr,
 | |
| 			       struct perf_sample_data *data,
 | |
| 			       struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	local64_add(nr, &event->count);
 | |
| 
 | |
| 	if (!regs)
 | |
| 		return;
 | |
| 
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
 | |
| 		data->period = nr;
 | |
| 		return perf_swevent_overflow(event, 1, data, regs);
 | |
| 	} else
 | |
| 		data->period = event->hw.last_period;
 | |
| 
 | |
| 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
 | |
| 		return perf_swevent_overflow(event, 1, data, regs);
 | |
| 
 | |
| 	if (local64_add_negative(nr, &hwc->period_left))
 | |
| 		return;
 | |
| 
 | |
| 	perf_swevent_overflow(event, 0, data, regs);
 | |
| }
 | |
| 
 | |
| static int perf_exclude_event(struct perf_event *event,
 | |
| 			      struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (regs) {
 | |
| 		if (event->attr.exclude_user && user_mode(regs))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (event->attr.exclude_kernel && !user_mode(regs))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_swevent_match(struct perf_event *event,
 | |
| 				enum perf_type_id type,
 | |
| 				u32 event_id,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->attr.type != type)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.config != event_id)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (perf_exclude_event(event, regs))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline u64 swevent_hash(u64 type, u32 event_id)
 | |
| {
 | |
| 	u64 val = event_id | (type << 32);
 | |
| 
 | |
| 	return hash_64(val, SWEVENT_HLIST_BITS);
 | |
| }
 | |
| 
 | |
| static inline struct hlist_head *
 | |
| __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
 | |
| {
 | |
| 	u64 hash = swevent_hash(type, event_id);
 | |
| 
 | |
| 	return &hlist->heads[hash];
 | |
| }
 | |
| 
 | |
| /* For the read side: events when they trigger */
 | |
| static inline struct hlist_head *
 | |
| find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
 | |
| {
 | |
| 	struct swevent_hlist *hlist;
 | |
| 
 | |
| 	hlist = rcu_dereference(swhash->swevent_hlist);
 | |
| 	if (!hlist)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __find_swevent_head(hlist, type, event_id);
 | |
| }
 | |
| 
 | |
| /* For the event head insertion and removal in the hlist */
 | |
| static inline struct hlist_head *
 | |
| find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
 | |
| {
 | |
| 	struct swevent_hlist *hlist;
 | |
| 	u32 event_id = event->attr.config;
 | |
| 	u64 type = event->attr.type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Event scheduling is always serialized against hlist allocation
 | |
| 	 * and release. Which makes the protected version suitable here.
 | |
| 	 * The context lock guarantees that.
 | |
| 	 */
 | |
| 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
 | |
| 					  lockdep_is_held(&event->ctx->lock));
 | |
| 	if (!hlist)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __find_swevent_head(hlist, type, event_id);
 | |
| }
 | |
| 
 | |
| static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
 | |
| 				    u64 nr,
 | |
| 				    struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 	struct perf_event *event;
 | |
| 	struct hlist_head *head;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	head = find_swevent_head_rcu(swhash, type, event_id);
 | |
| 	if (!head)
 | |
| 		goto end;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
 | |
| 		if (perf_swevent_match(event, type, event_id, data, regs))
 | |
| 			perf_swevent_event(event, nr, data, regs);
 | |
| 	}
 | |
| end:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| int perf_swevent_get_recursion_context(void)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 
 | |
| 	return get_recursion_context(swhash->recursion);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
 | |
| 
 | |
| inline void perf_swevent_put_recursion_context(int rctx)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 
 | |
| 	put_recursion_context(swhash->recursion, rctx);
 | |
| }
 | |
| 
 | |
| void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 	int rctx;
 | |
| 
 | |
| 	preempt_disable_notrace();
 | |
| 	rctx = perf_swevent_get_recursion_context();
 | |
| 	if (rctx < 0)
 | |
| 		return;
 | |
| 
 | |
| 	perf_sample_data_init(&data, addr, 0);
 | |
| 
 | |
| 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
 | |
| 
 | |
| 	perf_swevent_put_recursion_context(rctx);
 | |
| 	preempt_enable_notrace();
 | |
| }
 | |
| 
 | |
| static void perf_swevent_read(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_swevent_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	struct hlist_head *head;
 | |
| 
 | |
| 	if (is_sampling_event(event)) {
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		perf_swevent_set_period(event);
 | |
| 	}
 | |
| 
 | |
| 	hwc->state = !(flags & PERF_EF_START);
 | |
| 
 | |
| 	head = find_swevent_head(swhash, event);
 | |
| 	if (!head) {
 | |
| 		/*
 | |
| 		 * We can race with cpu hotplug code. Do not
 | |
| 		 * WARN if the cpu just got unplugged.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(swhash->online);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	hlist_add_head_rcu(&event->hlist_entry, head);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	hlist_del_rcu(&event->hlist_entry);
 | |
| }
 | |
| 
 | |
| static void perf_swevent_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	event->hw.state = 0;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	event->hw.state = PERF_HES_STOPPED;
 | |
| }
 | |
| 
 | |
| /* Deref the hlist from the update side */
 | |
| static inline struct swevent_hlist *
 | |
| swevent_hlist_deref(struct swevent_htable *swhash)
 | |
| {
 | |
| 	return rcu_dereference_protected(swhash->swevent_hlist,
 | |
| 					 lockdep_is_held(&swhash->hlist_mutex));
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_release(struct swevent_htable *swhash)
 | |
| {
 | |
| 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
 | |
| 
 | |
| 	if (!hlist)
 | |
| 		return;
 | |
| 
 | |
| 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
 | |
| 	kfree_rcu(hlist, rcu_head);
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	if (!--swhash->hlist_refcount)
 | |
| 		swevent_hlist_release(swhash);
 | |
| 
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_put(struct perf_event *event)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		swevent_hlist_put_cpu(event, cpu);
 | |
| }
 | |
| 
 | |
| static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
 | |
| 		struct swevent_hlist *hlist;
 | |
| 
 | |
| 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
 | |
| 		if (!hlist) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto exit;
 | |
| 		}
 | |
| 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
 | |
| 	}
 | |
| 	swhash->hlist_refcount++;
 | |
| exit:
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int swevent_hlist_get(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 	int cpu, failed_cpu;
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		err = swevent_hlist_get_cpu(event, cpu);
 | |
| 		if (err) {
 | |
| 			failed_cpu = cpu;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (cpu == failed_cpu)
 | |
| 			break;
 | |
| 		swevent_hlist_put_cpu(event, cpu);
 | |
| 	}
 | |
| 
 | |
| 	put_online_cpus();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
 | |
| 
 | |
| static void sw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	u64 event_id = event->attr.config;
 | |
| 
 | |
| 	WARN_ON(event->parent);
 | |
| 
 | |
| 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
 | |
| 	swevent_hlist_put(event);
 | |
| }
 | |
| 
 | |
| static int perf_swevent_init(struct perf_event *event)
 | |
| {
 | |
| 	u64 event_id = event->attr.config;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for software events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	switch (event_id) {
 | |
| 	case PERF_COUNT_SW_CPU_CLOCK:
 | |
| 	case PERF_COUNT_SW_TASK_CLOCK:
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (event_id >= PERF_COUNT_SW_MAX)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = swevent_hlist_get(event);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
 | |
| 		event->destroy = sw_perf_event_destroy;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_swevent = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= perf_swevent_init,
 | |
| 	.add		= perf_swevent_add,
 | |
| 	.del		= perf_swevent_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_EVENT_TRACING
 | |
| 
 | |
| static int perf_tp_filter_match(struct perf_event *event,
 | |
| 				struct perf_sample_data *data)
 | |
| {
 | |
| 	void *record = data->raw->data;
 | |
| 
 | |
| 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_tp_event_match(struct perf_event *event,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * All tracepoints are from kernel-space.
 | |
| 	 */
 | |
| 	if (event->attr.exclude_kernel)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!perf_tp_filter_match(event, data))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
 | |
| 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
 | |
| 		   struct task_struct *task)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	struct perf_raw_record raw = {
 | |
| 		.size = entry_size,
 | |
| 		.data = record,
 | |
| 	};
 | |
| 
 | |
| 	perf_sample_data_init(&data, addr, 0);
 | |
| 	data.raw = &raw;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
 | |
| 		if (perf_tp_event_match(event, &data, regs))
 | |
| 			perf_swevent_event(event, count, &data, regs);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we got specified a target task, also iterate its context and
 | |
| 	 * deliver this event there too.
 | |
| 	 */
 | |
| 	if (task && task != current) {
 | |
| 		struct perf_event_context *ctx;
 | |
| 		struct trace_entry *entry = record;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
 | |
| 		if (!ctx)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
 | |
| 				continue;
 | |
| 			if (event->attr.config != entry->type)
 | |
| 				continue;
 | |
| 			if (perf_tp_event_match(event, &data, regs))
 | |
| 				perf_swevent_event(event, count, &data, regs);
 | |
| 		}
 | |
| unlock:
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	perf_swevent_put_recursion_context(rctx);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_tp_event);
 | |
| 
 | |
| static void tp_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	perf_trace_destroy(event);
 | |
| }
 | |
| 
 | |
| static int perf_tp_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for tracepoint events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	err = perf_trace_init(event);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	event->destroy = tp_perf_event_destroy;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_tracepoint = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= perf_tp_event_init,
 | |
| 	.add		= perf_trace_add,
 | |
| 	.del		= perf_trace_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| };
 | |
| 
 | |
| static inline void perf_tp_register(void)
 | |
| {
 | |
| 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
 | |
| }
 | |
| 
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg)
 | |
| {
 | |
| 	char *filter_str;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	filter_str = strndup_user(arg, PAGE_SIZE);
 | |
| 	if (IS_ERR(filter_str))
 | |
| 		return PTR_ERR(filter_str);
 | |
| 
 | |
| 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
 | |
| 
 | |
| 	kfree(filter_str);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event)
 | |
| {
 | |
| 	ftrace_profile_free_filter(event);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void perf_tp_register(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg)
 | |
| {
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_EVENT_TRACING */
 | |
| 
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| void perf_bp_event(struct perf_event *bp, void *data)
 | |
| {
 | |
| 	struct perf_sample_data sample;
 | |
| 	struct pt_regs *regs = data;
 | |
| 
 | |
| 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
 | |
| 
 | |
| 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
 | |
| 		perf_swevent_event(bp, 1, &sample, regs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * hrtimer based swevent callback
 | |
|  */
 | |
| 
 | |
| static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
 | |
| {
 | |
| 	enum hrtimer_restart ret = HRTIMER_RESTART;
 | |
| 	struct perf_sample_data data;
 | |
| 	struct pt_regs *regs;
 | |
| 	struct perf_event *event;
 | |
| 	u64 period;
 | |
| 
 | |
| 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return HRTIMER_NORESTART;
 | |
| 
 | |
| 	event->pmu->read(event);
 | |
| 
 | |
| 	perf_sample_data_init(&data, 0, event->hw.last_period);
 | |
| 	regs = get_irq_regs();
 | |
| 
 | |
| 	if (regs && !perf_exclude_event(event, regs)) {
 | |
| 		if (!(event->attr.exclude_idle && is_idle_task(current)))
 | |
| 			if (__perf_event_overflow(event, 1, &data, regs))
 | |
| 				ret = HRTIMER_NORESTART;
 | |
| 	}
 | |
| 
 | |
| 	period = max_t(u64, 10000, event->hw.sample_period);
 | |
| 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_start_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 period;
 | |
| 
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	period = local64_read(&hwc->period_left);
 | |
| 	if (period) {
 | |
| 		if (period < 0)
 | |
| 			period = 10000;
 | |
| 
 | |
| 		local64_set(&hwc->period_left, 0);
 | |
| 	} else {
 | |
| 		period = max_t(u64, 10000, hwc->sample_period);
 | |
| 	}
 | |
| 	__hrtimer_start_range_ns(&hwc->hrtimer,
 | |
| 				ns_to_ktime(period), 0,
 | |
| 				HRTIMER_MODE_REL_PINNED, 0);
 | |
| }
 | |
| 
 | |
| static void perf_swevent_cancel_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (is_sampling_event(event)) {
 | |
| 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
 | |
| 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
 | |
| 
 | |
| 		hrtimer_cancel(&hwc->hrtimer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_init_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (!is_sampling_event(event))
 | |
| 		return;
 | |
| 
 | |
| 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	hwc->hrtimer.function = perf_swevent_hrtimer;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since hrtimers have a fixed rate, we can do a static freq->period
 | |
| 	 * mapping and avoid the whole period adjust feedback stuff.
 | |
| 	 */
 | |
| 	if (event->attr.freq) {
 | |
| 		long freq = event->attr.sample_freq;
 | |
| 
 | |
| 		event->attr.sample_period = NSEC_PER_SEC / freq;
 | |
| 		hwc->sample_period = event->attr.sample_period;
 | |
| 		local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		event->attr.freq = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Software event: cpu wall time clock
 | |
|  */
 | |
| 
 | |
| static void cpu_clock_event_update(struct perf_event *event)
 | |
| {
 | |
| 	s64 prev;
 | |
| 	u64 now;
 | |
| 
 | |
| 	now = local_clock();
 | |
| 	prev = local64_xchg(&event->hw.prev_count, now);
 | |
| 	local64_add(now - prev, &event->count);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	local64_set(&event->hw.prev_count, local_clock());
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	cpu_clock_event_update(event);
 | |
| }
 | |
| 
 | |
| static int cpu_clock_event_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	if (flags & PERF_EF_START)
 | |
| 		cpu_clock_event_start(event, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	cpu_clock_event_stop(event, flags);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_read(struct perf_event *event)
 | |
| {
 | |
| 	cpu_clock_event_update(event);
 | |
| }
 | |
| 
 | |
| static int cpu_clock_event_init(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for software events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	perf_swevent_init_hrtimer(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_cpu_clock = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= cpu_clock_event_init,
 | |
| 	.add		= cpu_clock_event_add,
 | |
| 	.del		= cpu_clock_event_del,
 | |
| 	.start		= cpu_clock_event_start,
 | |
| 	.stop		= cpu_clock_event_stop,
 | |
| 	.read		= cpu_clock_event_read,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Software event: task time clock
 | |
|  */
 | |
| 
 | |
| static void task_clock_event_update(struct perf_event *event, u64 now)
 | |
| {
 | |
| 	u64 prev;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	prev = local64_xchg(&event->hw.prev_count, now);
 | |
| 	delta = now - prev;
 | |
| 	local64_add(delta, &event->count);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	local64_set(&event->hw.prev_count, event->ctx->time);
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	task_clock_event_update(event, event->ctx->time);
 | |
| }
 | |
| 
 | |
| static int task_clock_event_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	if (flags & PERF_EF_START)
 | |
| 		task_clock_event_start(event, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void task_clock_event_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	task_clock_event_stop(event, PERF_EF_UPDATE);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_read(struct perf_event *event)
 | |
| {
 | |
| 	u64 now = perf_clock();
 | |
| 	u64 delta = now - event->ctx->timestamp;
 | |
| 	u64 time = event->ctx->time + delta;
 | |
| 
 | |
| 	task_clock_event_update(event, time);
 | |
| }
 | |
| 
 | |
| static int task_clock_event_init(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * no branch sampling for software events
 | |
| 	 */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	perf_swevent_init_hrtimer(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_task_clock = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= task_clock_event_init,
 | |
| 	.add		= task_clock_event_add,
 | |
| 	.del		= task_clock_event_del,
 | |
| 	.start		= task_clock_event_start,
 | |
| 	.stop		= task_clock_event_stop,
 | |
| 	.read		= task_clock_event_read,
 | |
| };
 | |
| 
 | |
| static void perf_pmu_nop_void(struct pmu *pmu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_pmu_nop_int(struct pmu *pmu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_pmu_start_txn(struct pmu *pmu)
 | |
| {
 | |
| 	perf_pmu_disable(pmu);
 | |
| }
 | |
| 
 | |
| static int perf_pmu_commit_txn(struct pmu *pmu)
 | |
| {
 | |
| 	perf_pmu_enable(pmu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_pmu_cancel_txn(struct pmu *pmu)
 | |
| {
 | |
| 	perf_pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| static int perf_event_idx_default(struct perf_event *event)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensures all contexts with the same task_ctx_nr have the same
 | |
|  * pmu_cpu_context too.
 | |
|  */
 | |
| static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	if (ctxn < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		if (pmu->task_ctx_nr == ctxn)
 | |
| 			return pmu->pmu_cpu_context;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 
 | |
| 		if (cpuctx->unique_pmu == old_pmu)
 | |
| 			cpuctx->unique_pmu = pmu;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_pmu_context(struct pmu *pmu)
 | |
| {
 | |
| 	struct pmu *i;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	/*
 | |
| 	 * Like a real lame refcount.
 | |
| 	 */
 | |
| 	list_for_each_entry(i, &pmus, entry) {
 | |
| 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
 | |
| 			update_pmu_context(i, pmu);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_percpu(pmu->pmu_cpu_context);
 | |
| out:
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| }
 | |
| static struct idr pmu_idr;
 | |
| 
 | |
| static ssize_t
 | |
| type_show(struct device *dev, struct device_attribute *attr, char *page)
 | |
| {
 | |
| 	struct pmu *pmu = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
 | |
| }
 | |
| static DEVICE_ATTR_RO(type);
 | |
| 
 | |
| static ssize_t
 | |
| perf_event_mux_interval_ms_show(struct device *dev,
 | |
| 				struct device_attribute *attr,
 | |
| 				char *page)
 | |
| {
 | |
| 	struct pmu *pmu = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| perf_event_mux_interval_ms_store(struct device *dev,
 | |
| 				 struct device_attribute *attr,
 | |
| 				 const char *buf, size_t count)
 | |
| {
 | |
| 	struct pmu *pmu = dev_get_drvdata(dev);
 | |
| 	int timer, cpu, ret;
 | |
| 
 | |
| 	ret = kstrtoint(buf, 0, &timer);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (timer < 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* same value, noting to do */
 | |
| 	if (timer == pmu->hrtimer_interval_ms)
 | |
| 		return count;
 | |
| 
 | |
| 	pmu->hrtimer_interval_ms = timer;
 | |
| 
 | |
| 	/* update all cpuctx for this PMU */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct perf_cpu_context *cpuctx;
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 | |
| 
 | |
| 		if (hrtimer_active(&cpuctx->hrtimer))
 | |
| 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
 | |
| 
 | |
| static struct attribute *pmu_dev_attrs[] = {
 | |
| 	&dev_attr_type.attr,
 | |
| 	&dev_attr_perf_event_mux_interval_ms.attr,
 | |
| 	NULL,
 | |
| };
 | |
| ATTRIBUTE_GROUPS(pmu_dev);
 | |
| 
 | |
| static int pmu_bus_running;
 | |
| static struct bus_type pmu_bus = {
 | |
| 	.name		= "event_source",
 | |
| 	.dev_groups	= pmu_dev_groups,
 | |
| };
 | |
| 
 | |
| static void pmu_dev_release(struct device *dev)
 | |
| {
 | |
| 	kfree(dev);
 | |
| }
 | |
| 
 | |
| static int pmu_dev_alloc(struct pmu *pmu)
 | |
| {
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
 | |
| 	if (!pmu->dev)
 | |
| 		goto out;
 | |
| 
 | |
| 	pmu->dev->groups = pmu->attr_groups;
 | |
| 	device_initialize(pmu->dev);
 | |
| 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
 | |
| 	if (ret)
 | |
| 		goto free_dev;
 | |
| 
 | |
| 	dev_set_drvdata(pmu->dev, pmu);
 | |
| 	pmu->dev->bus = &pmu_bus;
 | |
| 	pmu->dev->release = pmu_dev_release;
 | |
| 	ret = device_add(pmu->dev);
 | |
| 	if (ret)
 | |
| 		goto free_dev;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| free_dev:
 | |
| 	put_device(pmu->dev);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static struct lock_class_key cpuctx_mutex;
 | |
| static struct lock_class_key cpuctx_lock;
 | |
| 
 | |
| int perf_pmu_register(struct pmu *pmu, const char *name, int type)
 | |
| {
 | |
| 	int cpu, ret;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	ret = -ENOMEM;
 | |
| 	pmu->pmu_disable_count = alloc_percpu(int);
 | |
| 	if (!pmu->pmu_disable_count)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	pmu->type = -1;
 | |
| 	if (!name)
 | |
| 		goto skip_type;
 | |
| 	pmu->name = name;
 | |
| 
 | |
| 	if (type < 0) {
 | |
| 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
 | |
| 		if (type < 0) {
 | |
| 			ret = type;
 | |
| 			goto free_pdc;
 | |
| 		}
 | |
| 	}
 | |
| 	pmu->type = type;
 | |
| 
 | |
| 	if (pmu_bus_running) {
 | |
| 		ret = pmu_dev_alloc(pmu);
 | |
| 		if (ret)
 | |
| 			goto free_idr;
 | |
| 	}
 | |
| 
 | |
| skip_type:
 | |
| 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
 | |
| 	if (pmu->pmu_cpu_context)
 | |
| 		goto got_cpu_context;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
 | |
| 	if (!pmu->pmu_cpu_context)
 | |
| 		goto free_dev;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		__perf_event_init_context(&cpuctx->ctx);
 | |
| 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
 | |
| 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
 | |
| 		cpuctx->ctx.type = cpu_context;
 | |
| 		cpuctx->ctx.pmu = pmu;
 | |
| 
 | |
| 		__perf_cpu_hrtimer_init(cpuctx, cpu);
 | |
| 
 | |
| 		INIT_LIST_HEAD(&cpuctx->rotation_list);
 | |
| 		cpuctx->unique_pmu = pmu;
 | |
| 	}
 | |
| 
 | |
| got_cpu_context:
 | |
| 	if (!pmu->start_txn) {
 | |
| 		if (pmu->pmu_enable) {
 | |
| 			/*
 | |
| 			 * If we have pmu_enable/pmu_disable calls, install
 | |
| 			 * transaction stubs that use that to try and batch
 | |
| 			 * hardware accesses.
 | |
| 			 */
 | |
| 			pmu->start_txn  = perf_pmu_start_txn;
 | |
| 			pmu->commit_txn = perf_pmu_commit_txn;
 | |
| 			pmu->cancel_txn = perf_pmu_cancel_txn;
 | |
| 		} else {
 | |
| 			pmu->start_txn  = perf_pmu_nop_void;
 | |
| 			pmu->commit_txn = perf_pmu_nop_int;
 | |
| 			pmu->cancel_txn = perf_pmu_nop_void;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->pmu_enable) {
 | |
| 		pmu->pmu_enable  = perf_pmu_nop_void;
 | |
| 		pmu->pmu_disable = perf_pmu_nop_void;
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->event_idx)
 | |
| 		pmu->event_idx = perf_event_idx_default;
 | |
| 
 | |
| 	list_add_rcu(&pmu->entry, &pmus);
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| free_dev:
 | |
| 	device_del(pmu->dev);
 | |
| 	put_device(pmu->dev);
 | |
| 
 | |
| free_idr:
 | |
| 	if (pmu->type >= PERF_TYPE_MAX)
 | |
| 		idr_remove(&pmu_idr, pmu->type);
 | |
| 
 | |
| free_pdc:
 | |
| 	free_percpu(pmu->pmu_disable_count);
 | |
| 	goto unlock;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_pmu_register);
 | |
| 
 | |
| void perf_pmu_unregister(struct pmu *pmu)
 | |
| {
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	list_del_rcu(&pmu->entry);
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We dereference the pmu list under both SRCU and regular RCU, so
 | |
| 	 * synchronize against both of those.
 | |
| 	 */
 | |
| 	synchronize_srcu(&pmus_srcu);
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	free_percpu(pmu->pmu_disable_count);
 | |
| 	if (pmu->type >= PERF_TYPE_MAX)
 | |
| 		idr_remove(&pmu_idr, pmu->type);
 | |
| 	device_del(pmu->dev);
 | |
| 	put_device(pmu->dev);
 | |
| 	free_pmu_context(pmu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_pmu_unregister);
 | |
| 
 | |
| struct pmu *perf_init_event(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu *pmu = NULL;
 | |
| 	int idx;
 | |
| 	int ret;
 | |
| 
 | |
| 	idx = srcu_read_lock(&pmus_srcu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pmu = idr_find(&pmu_idr, event->attr.type);
 | |
| 	rcu_read_unlock();
 | |
| 	if (pmu) {
 | |
| 		if (!try_module_get(pmu->module)) {
 | |
| 			pmu = ERR_PTR(-ENODEV);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 		event->pmu = pmu;
 | |
| 		ret = pmu->event_init(event);
 | |
| 		if (ret)
 | |
| 			pmu = ERR_PTR(ret);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		if (!try_module_get(pmu->module)) {
 | |
| 			pmu = ERR_PTR(-ENODEV);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 		event->pmu = pmu;
 | |
| 		ret = pmu->event_init(event);
 | |
| 		if (!ret)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (ret != -ENOENT) {
 | |
| 			pmu = ERR_PTR(ret);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| 	pmu = ERR_PTR(-ENOENT);
 | |
| unlock:
 | |
| 	srcu_read_unlock(&pmus_srcu, idx);
 | |
| 
 | |
| 	return pmu;
 | |
| }
 | |
| 
 | |
| static void account_event_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (has_branch_stack(event)) {
 | |
| 		if (!(event->attach_state & PERF_ATTACH_TASK))
 | |
| 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
 | |
| 	}
 | |
| 	if (is_cgroup_event(event))
 | |
| 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
 | |
| }
 | |
| 
 | |
| static void account_event(struct perf_event *event)
 | |
| {
 | |
| 	if (event->parent)
 | |
| 		return;
 | |
| 
 | |
| 	if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 		static_key_slow_inc(&perf_sched_events.key);
 | |
| 	if (event->attr.mmap || event->attr.mmap_data)
 | |
| 		atomic_inc(&nr_mmap_events);
 | |
| 	if (event->attr.comm)
 | |
| 		atomic_inc(&nr_comm_events);
 | |
| 	if (event->attr.task)
 | |
| 		atomic_inc(&nr_task_events);
 | |
| 	if (event->attr.freq) {
 | |
| 		if (atomic_inc_return(&nr_freq_events) == 1)
 | |
| 			tick_nohz_full_kick_all();
 | |
| 	}
 | |
| 	if (has_branch_stack(event))
 | |
| 		static_key_slow_inc(&perf_sched_events.key);
 | |
| 	if (is_cgroup_event(event))
 | |
| 		static_key_slow_inc(&perf_sched_events.key);
 | |
| 
 | |
| 	account_event_cpu(event, event->cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize a event structure
 | |
|  */
 | |
| static struct perf_event *
 | |
| perf_event_alloc(struct perf_event_attr *attr, int cpu,
 | |
| 		 struct task_struct *task,
 | |
| 		 struct perf_event *group_leader,
 | |
| 		 struct perf_event *parent_event,
 | |
| 		 perf_overflow_handler_t overflow_handler,
 | |
| 		 void *context)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	long err = -EINVAL;
 | |
| 
 | |
| 	if ((unsigned)cpu >= nr_cpu_ids) {
 | |
| 		if (!task || cpu != -1)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	event = kzalloc(sizeof(*event), GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Single events are their own group leaders, with an
 | |
| 	 * empty sibling list:
 | |
| 	 */
 | |
| 	if (!group_leader)
 | |
| 		group_leader = event;
 | |
| 
 | |
| 	mutex_init(&event->child_mutex);
 | |
| 	INIT_LIST_HEAD(&event->child_list);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&event->group_entry);
 | |
| 	INIT_LIST_HEAD(&event->event_entry);
 | |
| 	INIT_LIST_HEAD(&event->sibling_list);
 | |
| 	INIT_LIST_HEAD(&event->rb_entry);
 | |
| 	INIT_LIST_HEAD(&event->active_entry);
 | |
| 	INIT_HLIST_NODE(&event->hlist_entry);
 | |
| 
 | |
| 
 | |
| 	init_waitqueue_head(&event->waitq);
 | |
| 	init_irq_work(&event->pending, perf_pending_event);
 | |
| 
 | |
| 	mutex_init(&event->mmap_mutex);
 | |
| 
 | |
| 	atomic_long_set(&event->refcount, 1);
 | |
| 	event->cpu		= cpu;
 | |
| 	event->attr		= *attr;
 | |
| 	event->group_leader	= group_leader;
 | |
| 	event->pmu		= NULL;
 | |
| 	event->oncpu		= -1;
 | |
| 
 | |
| 	event->parent		= parent_event;
 | |
| 
 | |
| 	event->ns		= get_pid_ns(task_active_pid_ns(current));
 | |
| 	event->id		= atomic64_inc_return(&perf_event_id);
 | |
| 
 | |
| 	event->state		= PERF_EVENT_STATE_INACTIVE;
 | |
| 
 | |
| 	if (task) {
 | |
| 		event->attach_state = PERF_ATTACH_TASK;
 | |
| 
 | |
| 		if (attr->type == PERF_TYPE_TRACEPOINT)
 | |
| 			event->hw.tp_target = task;
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| 		/*
 | |
| 		 * hw_breakpoint is a bit difficult here..
 | |
| 		 */
 | |
| 		else if (attr->type == PERF_TYPE_BREAKPOINT)
 | |
| 			event->hw.bp_target = task;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (!overflow_handler && parent_event) {
 | |
| 		overflow_handler = parent_event->overflow_handler;
 | |
| 		context = parent_event->overflow_handler_context;
 | |
| 	}
 | |
| 
 | |
| 	event->overflow_handler	= overflow_handler;
 | |
| 	event->overflow_handler_context = context;
 | |
| 
 | |
| 	perf_event__state_init(event);
 | |
| 
 | |
| 	pmu = NULL;
 | |
| 
 | |
| 	hwc = &event->hw;
 | |
| 	hwc->sample_period = attr->sample_period;
 | |
| 	if (attr->freq && attr->sample_freq)
 | |
| 		hwc->sample_period = 1;
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| 	local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 
 | |
| 	/*
 | |
| 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
 | |
| 	 */
 | |
| 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
 | |
| 		goto err_ns;
 | |
| 
 | |
| 	pmu = perf_init_event(event);
 | |
| 	if (!pmu)
 | |
| 		goto err_ns;
 | |
| 	else if (IS_ERR(pmu)) {
 | |
| 		err = PTR_ERR(pmu);
 | |
| 		goto err_ns;
 | |
| 	}
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 			err = get_callchain_buffers();
 | |
| 			if (err)
 | |
| 				goto err_pmu;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return event;
 | |
| 
 | |
| err_pmu:
 | |
| 	if (event->destroy)
 | |
| 		event->destroy(event);
 | |
| 	module_put(pmu->module);
 | |
| err_ns:
 | |
| 	if (event->ns)
 | |
| 		put_pid_ns(event->ns);
 | |
| 	kfree(event);
 | |
| 
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static int perf_copy_attr(struct perf_event_attr __user *uattr,
 | |
| 			  struct perf_event_attr *attr)
 | |
| {
 | |
| 	u32 size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * zero the full structure, so that a short copy will be nice.
 | |
| 	 */
 | |
| 	memset(attr, 0, sizeof(*attr));
 | |
| 
 | |
| 	ret = get_user(size, &uattr->size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (size > PAGE_SIZE)	/* silly large */
 | |
| 		goto err_size;
 | |
| 
 | |
| 	if (!size)		/* abi compat */
 | |
| 		size = PERF_ATTR_SIZE_VER0;
 | |
| 
 | |
| 	if (size < PERF_ATTR_SIZE_VER0)
 | |
| 		goto err_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're handed a bigger struct than we know of,
 | |
| 	 * ensure all the unknown bits are 0 - i.e. new
 | |
| 	 * user-space does not rely on any kernel feature
 | |
| 	 * extensions we dont know about yet.
 | |
| 	 */
 | |
| 	if (size > sizeof(*attr)) {
 | |
| 		unsigned char __user *addr;
 | |
| 		unsigned char __user *end;
 | |
| 		unsigned char val;
 | |
| 
 | |
| 		addr = (void __user *)uattr + sizeof(*attr);
 | |
| 		end  = (void __user *)uattr + size;
 | |
| 
 | |
| 		for (; addr < end; addr++) {
 | |
| 			ret = get_user(val, addr);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			if (val)
 | |
| 				goto err_size;
 | |
| 		}
 | |
| 		size = sizeof(*attr);
 | |
| 	}
 | |
| 
 | |
| 	ret = copy_from_user(attr, uattr, size);
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (attr->__reserved_1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | |
| 		u64 mask = attr->branch_sample_type;
 | |
| 
 | |
| 		/* only using defined bits */
 | |
| 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* at least one branch bit must be set */
 | |
| 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* propagate priv level, when not set for branch */
 | |
| 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
 | |
| 
 | |
| 			/* exclude_kernel checked on syscall entry */
 | |
| 			if (!attr->exclude_kernel)
 | |
| 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
 | |
| 
 | |
| 			if (!attr->exclude_user)
 | |
| 				mask |= PERF_SAMPLE_BRANCH_USER;
 | |
| 
 | |
| 			if (!attr->exclude_hv)
 | |
| 				mask |= PERF_SAMPLE_BRANCH_HV;
 | |
| 			/*
 | |
| 			 * adjust user setting (for HW filter setup)
 | |
| 			 */
 | |
| 			attr->branch_sample_type = mask;
 | |
| 		}
 | |
| 		/* privileged levels capture (kernel, hv): check permissions */
 | |
| 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
 | |
| 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
 | |
| 			return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
 | |
| 		ret = perf_reg_validate(attr->sample_regs_user);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
 | |
| 		if (!arch_perf_have_user_stack_dump())
 | |
| 			return -ENOSYS;
 | |
| 
 | |
| 		/*
 | |
| 		 * We have __u32 type for the size, but so far
 | |
| 		 * we can only use __u16 as maximum due to the
 | |
| 		 * __u16 sample size limit.
 | |
| 		 */
 | |
| 		if (attr->sample_stack_user >= USHRT_MAX)
 | |
| 			ret = -EINVAL;
 | |
| 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
 | |
| 			ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
 | |
| 		ret = perf_reg_validate(attr->sample_regs_intr);
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| err_size:
 | |
| 	put_user(sizeof(*attr), &uattr->size);
 | |
| 	ret = -E2BIG;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static int
 | |
| perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
 | |
| {
 | |
| 	struct ring_buffer *rb = NULL;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (!output_event)
 | |
| 		goto set;
 | |
| 
 | |
| 	/* don't allow circular references */
 | |
| 	if (event == output_event)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow cross-cpu buffers
 | |
| 	 */
 | |
| 	if (output_event->cpu != event->cpu)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If its not a per-cpu rb, it must be the same task.
 | |
| 	 */
 | |
| 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
 | |
| 		goto out;
 | |
| 
 | |
| set:
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	/* Can't redirect output if we've got an active mmap() */
 | |
| 	if (atomic_read(&event->mmap_count))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (output_event) {
 | |
| 		/* get the rb we want to redirect to */
 | |
| 		rb = ring_buffer_get(output_event);
 | |
| 		if (!rb)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	ring_buffer_attach(event, rb);
 | |
| 
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_perf_event_open - open a performance event, associate it to a task/cpu
 | |
|  *
 | |
|  * @attr_uptr:	event_id type attributes for monitoring/sampling
 | |
|  * @pid:		target pid
 | |
|  * @cpu:		target cpu
 | |
|  * @group_fd:		group leader event fd
 | |
|  */
 | |
| SYSCALL_DEFINE5(perf_event_open,
 | |
| 		struct perf_event_attr __user *, attr_uptr,
 | |
| 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
 | |
| {
 | |
| 	struct perf_event *group_leader = NULL, *output_event = NULL;
 | |
| 	struct perf_event *event, *sibling;
 | |
| 	struct perf_event_attr attr;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct file *event_file = NULL;
 | |
| 	struct fd group = {NULL, 0};
 | |
| 	struct task_struct *task = NULL;
 | |
| 	struct pmu *pmu;
 | |
| 	int event_fd;
 | |
| 	int move_group = 0;
 | |
| 	int err;
 | |
| 	int f_flags = O_RDWR;
 | |
| 
 | |
| 	/* for future expandability... */
 | |
| 	if (flags & ~PERF_FLAG_ALL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = perf_copy_attr(attr_uptr, &attr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!attr.exclude_kernel) {
 | |
| 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
 | |
| 			return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (attr.freq) {
 | |
| 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		if (attr.sample_period & (1ULL << 63))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In cgroup mode, the pid argument is used to pass the fd
 | |
| 	 * opened to the cgroup directory in cgroupfs. The cpu argument
 | |
| 	 * designates the cpu on which to monitor threads from that
 | |
| 	 * cgroup.
 | |
| 	 */
 | |
| 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & PERF_FLAG_FD_CLOEXEC)
 | |
| 		f_flags |= O_CLOEXEC;
 | |
| 
 | |
| 	event_fd = get_unused_fd_flags(f_flags);
 | |
| 	if (event_fd < 0)
 | |
| 		return event_fd;
 | |
| 
 | |
| 	if (group_fd != -1) {
 | |
| 		err = perf_fget_light(group_fd, &group);
 | |
| 		if (err)
 | |
| 			goto err_fd;
 | |
| 		group_leader = group.file->private_data;
 | |
| 		if (flags & PERF_FLAG_FD_OUTPUT)
 | |
| 			output_event = group_leader;
 | |
| 		if (flags & PERF_FLAG_FD_NO_GROUP)
 | |
| 			group_leader = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
 | |
| 		task = find_lively_task_by_vpid(pid);
 | |
| 		if (IS_ERR(task)) {
 | |
| 			err = PTR_ERR(task);
 | |
| 			goto err_group_fd;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (task && group_leader &&
 | |
| 	    group_leader->attr.inherit != attr.inherit) {
 | |
| 		err = -EINVAL;
 | |
| 		goto err_task;
 | |
| 	}
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 
 | |
| 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
 | |
| 				 NULL, NULL);
 | |
| 	if (IS_ERR(event)) {
 | |
| 		err = PTR_ERR(event);
 | |
| 		goto err_cpus;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & PERF_FLAG_PID_CGROUP) {
 | |
| 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
 | |
| 		if (err) {
 | |
| 			__free_event(event);
 | |
| 			goto err_cpus;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (is_sampling_event(event)) {
 | |
| 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
 | |
| 			err = -ENOTSUPP;
 | |
| 			goto err_alloc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	account_event(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case software events and allow them to be part of
 | |
| 	 * any hardware group.
 | |
| 	 */
 | |
| 	pmu = event->pmu;
 | |
| 
 | |
| 	if (group_leader &&
 | |
| 	    (is_software_event(event) != is_software_event(group_leader))) {
 | |
| 		if (is_software_event(event)) {
 | |
| 			/*
 | |
| 			 * If event and group_leader are not both a software
 | |
| 			 * event, and event is, then group leader is not.
 | |
| 			 *
 | |
| 			 * Allow the addition of software events to !software
 | |
| 			 * groups, this is safe because software events never
 | |
| 			 * fail to schedule.
 | |
| 			 */
 | |
| 			pmu = group_leader->pmu;
 | |
| 		} else if (is_software_event(group_leader) &&
 | |
| 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
 | |
| 			/*
 | |
| 			 * In case the group is a pure software group, and we
 | |
| 			 * try to add a hardware event, move the whole group to
 | |
| 			 * the hardware context.
 | |
| 			 */
 | |
| 			move_group = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target context (task or percpu):
 | |
| 	 */
 | |
| 	ctx = find_get_context(pmu, task, event->cpu);
 | |
| 	if (IS_ERR(ctx)) {
 | |
| 		err = PTR_ERR(ctx);
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	if (task) {
 | |
| 		put_task_struct(task);
 | |
| 		task = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Look up the group leader (we will attach this event to it):
 | |
| 	 */
 | |
| 	if (group_leader) {
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not allow a recursive hierarchy (this new sibling
 | |
| 		 * becoming part of another group-sibling):
 | |
| 		 */
 | |
| 		if (group_leader->group_leader != group_leader)
 | |
| 			goto err_context;
 | |
| 		/*
 | |
| 		 * Do not allow to attach to a group in a different
 | |
| 		 * task or CPU context:
 | |
| 		 */
 | |
| 		if (move_group) {
 | |
| 			if (group_leader->ctx->type != ctx->type)
 | |
| 				goto err_context;
 | |
| 		} else {
 | |
| 			if (group_leader->ctx != ctx)
 | |
| 				goto err_context;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Only a group leader can be exclusive or pinned
 | |
| 		 */
 | |
| 		if (attr.exclusive || attr.pinned)
 | |
| 			goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	if (output_event) {
 | |
| 		err = perf_event_set_output(event, output_event);
 | |
| 		if (err)
 | |
| 			goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
 | |
| 					f_flags);
 | |
| 	if (IS_ERR(event_file)) {
 | |
| 		err = PTR_ERR(event_file);
 | |
| 		goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	if (move_group) {
 | |
| 		struct perf_event_context *gctx = group_leader->ctx;
 | |
| 
 | |
| 		mutex_lock(&gctx->mutex);
 | |
| 		perf_remove_from_context(group_leader, false);
 | |
| 
 | |
| 		/*
 | |
| 		 * Removing from the context ends up with disabled
 | |
| 		 * event. What we want here is event in the initial
 | |
| 		 * startup state, ready to be add into new context.
 | |
| 		 */
 | |
| 		perf_event__state_init(group_leader);
 | |
| 		list_for_each_entry(sibling, &group_leader->sibling_list,
 | |
| 				    group_entry) {
 | |
| 			perf_remove_from_context(sibling, false);
 | |
| 			perf_event__state_init(sibling);
 | |
| 			put_ctx(gctx);
 | |
| 		}
 | |
| 		mutex_unlock(&gctx->mutex);
 | |
| 		put_ctx(gctx);
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 
 | |
| 	if (move_group) {
 | |
| 		synchronize_rcu();
 | |
| 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
 | |
| 		get_ctx(ctx);
 | |
| 		list_for_each_entry(sibling, &group_leader->sibling_list,
 | |
| 				    group_entry) {
 | |
| 			perf_install_in_context(ctx, sibling, sibling->cpu);
 | |
| 			get_ctx(ctx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	perf_install_in_context(ctx, event, event->cpu);
 | |
| 	perf_unpin_context(ctx);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	event->owner = current;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_add_tail(&event->owner_entry, ¤t->perf_event_list);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Precalculate sample_data sizes
 | |
| 	 */
 | |
| 	perf_event__header_size(event);
 | |
| 	perf_event__id_header_size(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop the reference on the group_event after placing the
 | |
| 	 * new event on the sibling_list. This ensures destruction
 | |
| 	 * of the group leader will find the pointer to itself in
 | |
| 	 * perf_group_detach().
 | |
| 	 */
 | |
| 	fdput(group);
 | |
| 	fd_install(event_fd, event_file);
 | |
| 	return event_fd;
 | |
| 
 | |
| err_context:
 | |
| 	perf_unpin_context(ctx);
 | |
| 	put_ctx(ctx);
 | |
| err_alloc:
 | |
| 	free_event(event);
 | |
| err_cpus:
 | |
| 	put_online_cpus();
 | |
| err_task:
 | |
| 	if (task)
 | |
| 		put_task_struct(task);
 | |
| err_group_fd:
 | |
| 	fdput(group);
 | |
| err_fd:
 | |
| 	put_unused_fd(event_fd);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * perf_event_create_kernel_counter
 | |
|  *
 | |
|  * @attr: attributes of the counter to create
 | |
|  * @cpu: cpu in which the counter is bound
 | |
|  * @task: task to profile (NULL for percpu)
 | |
|  */
 | |
| struct perf_event *
 | |
| perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
 | |
| 				 struct task_struct *task,
 | |
| 				 perf_overflow_handler_t overflow_handler,
 | |
| 				 void *context)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target context (task or percpu):
 | |
| 	 */
 | |
| 
 | |
| 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
 | |
| 				 overflow_handler, context);
 | |
| 	if (IS_ERR(event)) {
 | |
| 		err = PTR_ERR(event);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark owner so we could distinguish it from user events. */
 | |
| 	event->owner = EVENT_OWNER_KERNEL;
 | |
| 
 | |
| 	account_event(event);
 | |
| 
 | |
| 	ctx = find_get_context(event->pmu, task, cpu);
 | |
| 	if (IS_ERR(ctx)) {
 | |
| 		err = PTR_ERR(ctx);
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	perf_install_in_context(ctx, event, cpu);
 | |
| 	perf_unpin_context(ctx);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	return event;
 | |
| 
 | |
| err_free:
 | |
| 	free_event(event);
 | |
| err:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
 | |
| 
 | |
| void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
 | |
| {
 | |
| 	struct perf_event_context *src_ctx;
 | |
| 	struct perf_event_context *dst_ctx;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	LIST_HEAD(events);
 | |
| 
 | |
| 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
 | |
| 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
 | |
| 
 | |
| 	mutex_lock(&src_ctx->mutex);
 | |
| 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
 | |
| 				 event_entry) {
 | |
| 		perf_remove_from_context(event, false);
 | |
| 		unaccount_event_cpu(event, src_cpu);
 | |
| 		put_ctx(src_ctx);
 | |
| 		list_add(&event->migrate_entry, &events);
 | |
| 	}
 | |
| 	mutex_unlock(&src_ctx->mutex);
 | |
| 
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	mutex_lock(&dst_ctx->mutex);
 | |
| 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
 | |
| 		list_del(&event->migrate_entry);
 | |
| 		if (event->state >= PERF_EVENT_STATE_OFF)
 | |
| 			event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 		account_event_cpu(event, dst_cpu);
 | |
| 		perf_install_in_context(dst_ctx, event, dst_cpu);
 | |
| 		get_ctx(dst_ctx);
 | |
| 	}
 | |
| 	mutex_unlock(&dst_ctx->mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
 | |
| 
 | |
| static void sync_child_event(struct perf_event *child_event,
 | |
| 			       struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *parent_event = child_event->parent;
 | |
| 	u64 child_val;
 | |
| 
 | |
| 	if (child_event->attr.inherit_stat)
 | |
| 		perf_event_read_event(child_event, child);
 | |
| 
 | |
| 	child_val = perf_event_count(child_event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add back the child's count to the parent's count:
 | |
| 	 */
 | |
| 	atomic64_add(child_val, &parent_event->child_count);
 | |
| 	atomic64_add(child_event->total_time_enabled,
 | |
| 		     &parent_event->child_total_time_enabled);
 | |
| 	atomic64_add(child_event->total_time_running,
 | |
| 		     &parent_event->child_total_time_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove this event from the parent's list
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	list_del_init(&child_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure user/parent get notified, that we just
 | |
| 	 * lost one event.
 | |
| 	 */
 | |
| 	perf_event_wakeup(parent_event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Release the parent event, if this was the last
 | |
| 	 * reference to it.
 | |
| 	 */
 | |
| 	put_event(parent_event);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __perf_event_exit_task(struct perf_event *child_event,
 | |
| 			 struct perf_event_context *child_ctx,
 | |
| 			 struct task_struct *child)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not destroy the 'original' grouping; because of the context
 | |
| 	 * switch optimization the original events could've ended up in a
 | |
| 	 * random child task.
 | |
| 	 *
 | |
| 	 * If we were to destroy the original group, all group related
 | |
| 	 * operations would cease to function properly after this random
 | |
| 	 * child dies.
 | |
| 	 *
 | |
| 	 * Do destroy all inherited groups, we don't care about those
 | |
| 	 * and being thorough is better.
 | |
| 	 */
 | |
| 	perf_remove_from_context(child_event, !!child_event->parent);
 | |
| 
 | |
| 	/*
 | |
| 	 * It can happen that the parent exits first, and has events
 | |
| 	 * that are still around due to the child reference. These
 | |
| 	 * events need to be zapped.
 | |
| 	 */
 | |
| 	if (child_event->parent) {
 | |
| 		sync_child_event(child_event, child);
 | |
| 		free_event(child_event);
 | |
| 	} else {
 | |
| 		child_event->state = PERF_EVENT_STATE_EXIT;
 | |
| 		perf_event_wakeup(child_event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
 | |
| {
 | |
| 	struct perf_event *child_event, *next;
 | |
| 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (likely(!child->perf_event_ctxp[ctxn])) {
 | |
| 		perf_event_task(child, NULL, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	/*
 | |
| 	 * We can't reschedule here because interrupts are disabled,
 | |
| 	 * and either child is current or it is a task that can't be
 | |
| 	 * scheduled, so we are now safe from rescheduling changing
 | |
| 	 * our context.
 | |
| 	 */
 | |
| 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the context lock here so that if find_get_context is
 | |
| 	 * reading child->perf_event_ctxp, we wait until it has
 | |
| 	 * incremented the context's refcount before we do put_ctx below.
 | |
| 	 */
 | |
| 	raw_spin_lock(&child_ctx->lock);
 | |
| 	task_ctx_sched_out(child_ctx);
 | |
| 	child->perf_event_ctxp[ctxn] = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this context is a clone; unclone it so it can't get
 | |
| 	 * swapped to another process while we're removing all
 | |
| 	 * the events from it.
 | |
| 	 */
 | |
| 	clone_ctx = unclone_ctx(child_ctx);
 | |
| 	update_context_time(child_ctx);
 | |
| 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
 | |
| 
 | |
| 	if (clone_ctx)
 | |
| 		put_ctx(clone_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Report the task dead after unscheduling the events so that we
 | |
| 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
 | |
| 	 * get a few PERF_RECORD_READ events.
 | |
| 	 */
 | |
| 	perf_event_task(child, child_ctx, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can recurse on the same lock type through:
 | |
| 	 *
 | |
| 	 *   __perf_event_exit_task()
 | |
| 	 *     sync_child_event()
 | |
| 	 *       put_event()
 | |
| 	 *         mutex_lock(&ctx->mutex)
 | |
| 	 *
 | |
| 	 * But since its the parent context it won't be the same instance.
 | |
| 	 */
 | |
| 	mutex_lock(&child_ctx->mutex);
 | |
| 
 | |
| 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
 | |
| 		__perf_event_exit_task(child_event, child_ctx, child);
 | |
| 
 | |
| 	mutex_unlock(&child_ctx->mutex);
 | |
| 
 | |
| 	put_ctx(child_ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a child task exits, feed back event values to parent events.
 | |
|  */
 | |
| void perf_event_exit_task(struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	mutex_lock(&child->perf_event_mutex);
 | |
| 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
 | |
| 				 owner_entry) {
 | |
| 		list_del_init(&event->owner_entry);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure the list deletion is visible before we clear
 | |
| 		 * the owner, closes a race against perf_release() where
 | |
| 		 * we need to serialize on the owner->perf_event_mutex.
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 		event->owner = NULL;
 | |
| 	}
 | |
| 	mutex_unlock(&child->perf_event_mutex);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		perf_event_exit_task_context(child, ctxn);
 | |
| }
 | |
| 
 | |
| static void perf_free_event(struct perf_event *event,
 | |
| 			    struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *parent = event->parent;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!parent))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&parent->child_mutex);
 | |
| 	list_del_init(&event->child_list);
 | |
| 	mutex_unlock(&parent->child_mutex);
 | |
| 
 | |
| 	put_event(parent);
 | |
| 
 | |
| 	perf_group_detach(event);
 | |
| 	list_del_event(event, ctx);
 | |
| 	free_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free an unexposed, unused context as created by inheritance by
 | |
|  * perf_event_init_task below, used by fork() in case of fail.
 | |
|  */
 | |
| void perf_event_free_task(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = task->perf_event_ctxp[ctxn];
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| again:
 | |
| 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
 | |
| 				group_entry)
 | |
| 			perf_free_event(event, ctx);
 | |
| 
 | |
| 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
 | |
| 				group_entry)
 | |
| 			perf_free_event(event, ctx);
 | |
| 
 | |
| 		if (!list_empty(&ctx->pinned_groups) ||
 | |
| 				!list_empty(&ctx->flexible_groups))
 | |
| 			goto again;
 | |
| 
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 		put_ctx(ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_delayed_put(struct task_struct *task)
 | |
| {
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * inherit a event from parent task to child task:
 | |
|  */
 | |
| static struct perf_event *
 | |
| inherit_event(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event *group_leader,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	enum perf_event_active_state parent_state = parent_event->state;
 | |
| 	struct perf_event *child_event;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Instead of creating recursive hierarchies of events,
 | |
| 	 * we link inherited events back to the original parent,
 | |
| 	 * which has a filp for sure, which we use as the reference
 | |
| 	 * count:
 | |
| 	 */
 | |
| 	if (parent_event->parent)
 | |
| 		parent_event = parent_event->parent;
 | |
| 
 | |
| 	child_event = perf_event_alloc(&parent_event->attr,
 | |
| 					   parent_event->cpu,
 | |
| 					   child,
 | |
| 					   group_leader, parent_event,
 | |
| 				           NULL, NULL);
 | |
| 	if (IS_ERR(child_event))
 | |
| 		return child_event;
 | |
| 
 | |
| 	if (is_orphaned_event(parent_event) ||
 | |
| 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
 | |
| 		free_event(child_event);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	get_ctx(child_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make the child state follow the state of the parent event,
 | |
| 	 * not its attr.disabled bit.  We hold the parent's mutex,
 | |
| 	 * so we won't race with perf_event_{en, dis}able_family.
 | |
| 	 */
 | |
| 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		child_event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	else
 | |
| 		child_event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| 	if (parent_event->attr.freq) {
 | |
| 		u64 sample_period = parent_event->hw.sample_period;
 | |
| 		struct hw_perf_event *hwc = &child_event->hw;
 | |
| 
 | |
| 		hwc->sample_period = sample_period;
 | |
| 		hwc->last_period   = sample_period;
 | |
| 
 | |
| 		local64_set(&hwc->period_left, sample_period);
 | |
| 	}
 | |
| 
 | |
| 	child_event->ctx = child_ctx;
 | |
| 	child_event->overflow_handler = parent_event->overflow_handler;
 | |
| 	child_event->overflow_handler_context
 | |
| 		= parent_event->overflow_handler_context;
 | |
| 
 | |
| 	/*
 | |
| 	 * Precalculate sample_data sizes
 | |
| 	 */
 | |
| 	perf_event__header_size(child_event);
 | |
| 	perf_event__id_header_size(child_event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link it up in the child's context:
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
 | |
| 	add_event_to_ctx(child_event, child_ctx);
 | |
| 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link this into the parent event's child list
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	list_add_tail(&child_event->child_list, &parent_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	return child_event;
 | |
| }
 | |
| 
 | |
| static int inherit_group(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	struct perf_event *leader;
 | |
| 	struct perf_event *sub;
 | |
| 	struct perf_event *child_ctr;
 | |
| 
 | |
| 	leader = inherit_event(parent_event, parent, parent_ctx,
 | |
| 				 child, NULL, child_ctx);
 | |
| 	if (IS_ERR(leader))
 | |
| 		return PTR_ERR(leader);
 | |
| 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
 | |
| 		child_ctr = inherit_event(sub, parent, parent_ctx,
 | |
| 					    child, leader, child_ctx);
 | |
| 		if (IS_ERR(child_ctr))
 | |
| 			return PTR_ERR(child_ctr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| inherit_task_group(struct perf_event *event, struct task_struct *parent,
 | |
| 		   struct perf_event_context *parent_ctx,
 | |
| 		   struct task_struct *child, int ctxn,
 | |
| 		   int *inherited_all)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct perf_event_context *child_ctx;
 | |
| 
 | |
| 	if (!event->attr.inherit) {
 | |
| 		*inherited_all = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	child_ctx = child->perf_event_ctxp[ctxn];
 | |
| 	if (!child_ctx) {
 | |
| 		/*
 | |
| 		 * This is executed from the parent task context, so
 | |
| 		 * inherit events that have been marked for cloning.
 | |
| 		 * First allocate and initialize a context for the
 | |
| 		 * child.
 | |
| 		 */
 | |
| 
 | |
| 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
 | |
| 		if (!child_ctx)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		child->perf_event_ctxp[ctxn] = child_ctx;
 | |
| 	}
 | |
| 
 | |
| 	ret = inherit_group(event, parent, parent_ctx,
 | |
| 			    child, child_ctx);
 | |
| 
 | |
| 	if (ret)
 | |
| 		*inherited_all = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in task_struct
 | |
|  */
 | |
| static int perf_event_init_context(struct task_struct *child, int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *child_ctx, *parent_ctx;
 | |
| 	struct perf_event_context *cloned_ctx;
 | |
| 	struct perf_event *event;
 | |
| 	struct task_struct *parent = current;
 | |
| 	int inherited_all = 1;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (likely(!parent->perf_event_ctxp[ctxn]))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the parent's context is a clone, pin it so it won't get
 | |
| 	 * swapped under us.
 | |
| 	 */
 | |
| 	parent_ctx = perf_pin_task_context(parent, ctxn);
 | |
| 	if (!parent_ctx)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to check if parent_ctx != NULL here; since we saw
 | |
| 	 * it non-NULL earlier, the only reason for it to become NULL
 | |
| 	 * is if we exit, and since we're currently in the middle of
 | |
| 	 * a fork we can't be exiting at the same time.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the parent list. No need to lock the child - not PID
 | |
| 	 * hashed yet and not running, so nobody can access it.
 | |
| 	 */
 | |
| 	mutex_lock(&parent_ctx->mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We dont have to disable NMIs - we are only looking at
 | |
| 	 * the list, not manipulating it:
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
 | |
| 		ret = inherit_task_group(event, parent, parent_ctx,
 | |
| 					 child, ctxn, &inherited_all);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
 | |
| 	 * to allocations, but we need to prevent rotation because
 | |
| 	 * rotate_ctx() will change the list from interrupt context.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
 | |
| 	parent_ctx->rotate_disable = 1;
 | |
| 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
 | |
| 
 | |
| 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
 | |
| 		ret = inherit_task_group(event, parent, parent_ctx,
 | |
| 					 child, ctxn, &inherited_all);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
 | |
| 	parent_ctx->rotate_disable = 0;
 | |
| 
 | |
| 	child_ctx = child->perf_event_ctxp[ctxn];
 | |
| 
 | |
| 	if (child_ctx && inherited_all) {
 | |
| 		/*
 | |
| 		 * Mark the child context as a clone of the parent
 | |
| 		 * context, or of whatever the parent is a clone of.
 | |
| 		 *
 | |
| 		 * Note that if the parent is a clone, the holding of
 | |
| 		 * parent_ctx->lock avoids it from being uncloned.
 | |
| 		 */
 | |
| 		cloned_ctx = parent_ctx->parent_ctx;
 | |
| 		if (cloned_ctx) {
 | |
| 			child_ctx->parent_ctx = cloned_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->parent_gen;
 | |
| 		} else {
 | |
| 			child_ctx->parent_ctx = parent_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->generation;
 | |
| 		}
 | |
| 		get_ctx(child_ctx->parent_ctx);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
 | |
| 	mutex_unlock(&parent_ctx->mutex);
 | |
| 
 | |
| 	perf_unpin_context(parent_ctx);
 | |
| 	put_ctx(parent_ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in task_struct
 | |
|  */
 | |
| int perf_event_init_task(struct task_struct *child)
 | |
| {
 | |
| 	int ctxn, ret;
 | |
| 
 | |
| 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
 | |
| 	mutex_init(&child->perf_event_mutex);
 | |
| 	INIT_LIST_HEAD(&child->perf_event_list);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ret = perf_event_init_context(child, ctxn);
 | |
| 		if (ret) {
 | |
| 			perf_event_free_task(child);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init perf_event_init_all_cpus(void)
 | |
| {
 | |
| 	struct swevent_htable *swhash;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		swhash = &per_cpu(swevent_htable, cpu);
 | |
| 		mutex_init(&swhash->hlist_mutex);
 | |
| 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_init_cpu(int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 	swhash->online = true;
 | |
| 	if (swhash->hlist_refcount > 0) {
 | |
| 		struct swevent_hlist *hlist;
 | |
| 
 | |
| 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
 | |
| 		WARN_ON(!hlist);
 | |
| 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
 | |
| 	}
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| }
 | |
| 
 | |
| #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
 | |
| static void perf_pmu_rotate_stop(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	list_del_init(&cpuctx->rotation_list);
 | |
| }
 | |
| 
 | |
| static void __perf_event_exit_context(void *__info)
 | |
| {
 | |
| 	struct remove_event re = { .detach_group = true };
 | |
| 	struct perf_event_context *ctx = __info;
 | |
| 
 | |
| 	perf_pmu_rotate_stop(ctx->pmu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
 | |
| 		__perf_remove_from_context(&re);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_cpu_context(int cpu)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct pmu *pmu;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&pmus_srcu);
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
 | |
| 
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 	}
 | |
| 	srcu_read_unlock(&pmus_srcu, idx);
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_cpu(int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	perf_event_exit_cpu_context(cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 	swhash->online = false;
 | |
| 	swevent_hlist_release(swhash);
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| }
 | |
| #else
 | |
| static inline void perf_event_exit_cpu(int cpu) { }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		perf_event_exit_cpu(cpu);
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run the perf reboot notifier at the very last possible moment so that
 | |
|  * the generic watchdog code runs as long as possible.
 | |
|  */
 | |
| static struct notifier_block perf_reboot_notifier = {
 | |
| 	.notifier_call = perf_reboot,
 | |
| 	.priority = INT_MIN,
 | |
| };
 | |
| 
 | |
| static int
 | |
| perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_DOWN_FAILED:
 | |
| 		perf_event_init_cpu(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 		perf_event_exit_cpu(cpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| void __init perf_event_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	idr_init(&pmu_idr);
 | |
| 
 | |
| 	perf_event_init_all_cpus();
 | |
| 	init_srcu_struct(&pmus_srcu);
 | |
| 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
 | |
| 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
 | |
| 	perf_pmu_register(&perf_task_clock, NULL, -1);
 | |
| 	perf_tp_register();
 | |
| 	perf_cpu_notifier(perf_cpu_notify);
 | |
| 	register_reboot_notifier(&perf_reboot_notifier);
 | |
| 
 | |
| 	ret = init_hw_breakpoint();
 | |
| 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
 | |
| 
 | |
| 	/* do not patch jump label more than once per second */
 | |
| 	jump_label_rate_limit(&perf_sched_events, HZ);
 | |
| 
 | |
| 	/*
 | |
| 	 * Build time assertion that we keep the data_head at the intended
 | |
| 	 * location.  IOW, validation we got the __reserved[] size right.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
 | |
| 		     != 1024);
 | |
| }
 | |
| 
 | |
| static int __init perf_event_sysfs_init(void)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 
 | |
| 	ret = bus_register(&pmu_bus);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		if (!pmu->name || pmu->type < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = pmu_dev_alloc(pmu);
 | |
| 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
 | |
| 	}
 | |
| 	pmu_bus_running = 1;
 | |
| 	ret = 0;
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| device_initcall(perf_event_sysfs_init);
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_PERF
 | |
| static struct cgroup_subsys_state *
 | |
| perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
 | |
| {
 | |
| 	struct perf_cgroup *jc;
 | |
| 
 | |
| 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
 | |
| 	if (!jc)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	jc->info = alloc_percpu(struct perf_cgroup_info);
 | |
| 	if (!jc->info) {
 | |
| 		kfree(jc);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	return &jc->css;
 | |
| }
 | |
| 
 | |
| static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
 | |
| {
 | |
| 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
 | |
| 
 | |
| 	free_percpu(jc->info);
 | |
| 	kfree(jc);
 | |
| }
 | |
| 
 | |
| static int __perf_cgroup_move(void *info)
 | |
| {
 | |
| 	struct task_struct *task = info;
 | |
| 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_cgroup_attach(struct cgroup_subsys_state *css,
 | |
| 			       struct cgroup_taskset *tset)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	cgroup_taskset_for_each(task, tset)
 | |
| 		task_function_call(task, __perf_cgroup_move, task);
 | |
| }
 | |
| 
 | |
| static void perf_cgroup_exit(struct cgroup_subsys_state *css,
 | |
| 			     struct cgroup_subsys_state *old_css,
 | |
| 			     struct task_struct *task)
 | |
| {
 | |
| 	/*
 | |
| 	 * cgroup_exit() is called in the copy_process() failure path.
 | |
| 	 * Ignore this case since the task hasn't ran yet, this avoids
 | |
| 	 * trying to poke a half freed task state from generic code.
 | |
| 	 */
 | |
| 	if (!(task->flags & PF_EXITING))
 | |
| 		return;
 | |
| 
 | |
| 	task_function_call(task, __perf_cgroup_move, task);
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys perf_event_cgrp_subsys = {
 | |
| 	.css_alloc	= perf_cgroup_css_alloc,
 | |
| 	.css_free	= perf_cgroup_css_free,
 | |
| 	.exit		= perf_cgroup_exit,
 | |
| 	.attach		= perf_cgroup_attach,
 | |
| };
 | |
| #endif /* CONFIG_CGROUP_PERF */
 |