We don't need custom NUMA_BUILD anymore, since we have handy IS_ENABLED(). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2646 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2646 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/mm/vmalloc.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1993  Linus Torvalds
 | 
						|
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | 
						|
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 | 
						|
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
 | 
						|
 *  Numa awareness, Christoph Lameter, SGI, June 2005
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/proc_fs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/debugobjects.h>
 | 
						|
#include <linux/kallsyms.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/rbtree.h>
 | 
						|
#include <linux/radix-tree.h>
 | 
						|
#include <linux/rcupdate.h>
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <linux/kmemleak.h>
 | 
						|
#include <linux/atomic.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/shmparam.h>
 | 
						|
 | 
						|
/*** Page table manipulation functions ***/
 | 
						|
 | 
						|
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
 | 
						|
{
 | 
						|
	pte_t *pte;
 | 
						|
 | 
						|
	pte = pte_offset_kernel(pmd, addr);
 | 
						|
	do {
 | 
						|
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 | 
						|
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 | 
						|
	} while (pte++, addr += PAGE_SIZE, addr != end);
 | 
						|
}
 | 
						|
 | 
						|
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
 | 
						|
{
 | 
						|
	pmd_t *pmd;
 | 
						|
	unsigned long next;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, addr);
 | 
						|
	do {
 | 
						|
		next = pmd_addr_end(addr, end);
 | 
						|
		if (pmd_none_or_clear_bad(pmd))
 | 
						|
			continue;
 | 
						|
		vunmap_pte_range(pmd, addr, next);
 | 
						|
	} while (pmd++, addr = next, addr != end);
 | 
						|
}
 | 
						|
 | 
						|
static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 | 
						|
{
 | 
						|
	pud_t *pud;
 | 
						|
	unsigned long next;
 | 
						|
 | 
						|
	pud = pud_offset(pgd, addr);
 | 
						|
	do {
 | 
						|
		next = pud_addr_end(addr, end);
 | 
						|
		if (pud_none_or_clear_bad(pud))
 | 
						|
			continue;
 | 
						|
		vunmap_pmd_range(pud, addr, next);
 | 
						|
	} while (pud++, addr = next, addr != end);
 | 
						|
}
 | 
						|
 | 
						|
static void vunmap_page_range(unsigned long addr, unsigned long end)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	unsigned long next;
 | 
						|
 | 
						|
	BUG_ON(addr >= end);
 | 
						|
	pgd = pgd_offset_k(addr);
 | 
						|
	do {
 | 
						|
		next = pgd_addr_end(addr, end);
 | 
						|
		if (pgd_none_or_clear_bad(pgd))
 | 
						|
			continue;
 | 
						|
		vunmap_pud_range(pgd, addr, next);
 | 
						|
	} while (pgd++, addr = next, addr != end);
 | 
						|
}
 | 
						|
 | 
						|
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 | 
						|
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 | 
						|
{
 | 
						|
	pte_t *pte;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * nr is a running index into the array which helps higher level
 | 
						|
	 * callers keep track of where we're up to.
 | 
						|
	 */
 | 
						|
 | 
						|
	pte = pte_alloc_kernel(pmd, addr);
 | 
						|
	if (!pte)
 | 
						|
		return -ENOMEM;
 | 
						|
	do {
 | 
						|
		struct page *page = pages[*nr];
 | 
						|
 | 
						|
		if (WARN_ON(!pte_none(*pte)))
 | 
						|
			return -EBUSY;
 | 
						|
		if (WARN_ON(!page))
 | 
						|
			return -ENOMEM;
 | 
						|
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 | 
						|
		(*nr)++;
 | 
						|
	} while (pte++, addr += PAGE_SIZE, addr != end);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 | 
						|
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 | 
						|
{
 | 
						|
	pmd_t *pmd;
 | 
						|
	unsigned long next;
 | 
						|
 | 
						|
	pmd = pmd_alloc(&init_mm, pud, addr);
 | 
						|
	if (!pmd)
 | 
						|
		return -ENOMEM;
 | 
						|
	do {
 | 
						|
		next = pmd_addr_end(addr, end);
 | 
						|
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 | 
						|
			return -ENOMEM;
 | 
						|
	} while (pmd++, addr = next, addr != end);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 | 
						|
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 | 
						|
{
 | 
						|
	pud_t *pud;
 | 
						|
	unsigned long next;
 | 
						|
 | 
						|
	pud = pud_alloc(&init_mm, pgd, addr);
 | 
						|
	if (!pud)
 | 
						|
		return -ENOMEM;
 | 
						|
	do {
 | 
						|
		next = pud_addr_end(addr, end);
 | 
						|
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 | 
						|
			return -ENOMEM;
 | 
						|
	} while (pud++, addr = next, addr != end);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 | 
						|
 * will have pfns corresponding to the "pages" array.
 | 
						|
 *
 | 
						|
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 | 
						|
 */
 | 
						|
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 | 
						|
				   pgprot_t prot, struct page **pages)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	unsigned long next;
 | 
						|
	unsigned long addr = start;
 | 
						|
	int err = 0;
 | 
						|
	int nr = 0;
 | 
						|
 | 
						|
	BUG_ON(addr >= end);
 | 
						|
	pgd = pgd_offset_k(addr);
 | 
						|
	do {
 | 
						|
		next = pgd_addr_end(addr, end);
 | 
						|
		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
	} while (pgd++, addr = next, addr != end);
 | 
						|
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
 | 
						|
static int vmap_page_range(unsigned long start, unsigned long end,
 | 
						|
			   pgprot_t prot, struct page **pages)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = vmap_page_range_noflush(start, end, prot, pages);
 | 
						|
	flush_cache_vmap(start, end);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int is_vmalloc_or_module_addr(const void *x)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * ARM, x86-64 and sparc64 put modules in a special place,
 | 
						|
	 * and fall back on vmalloc() if that fails. Others
 | 
						|
	 * just put it in the vmalloc space.
 | 
						|
	 */
 | 
						|
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 | 
						|
	unsigned long addr = (unsigned long)x;
 | 
						|
	if (addr >= MODULES_VADDR && addr < MODULES_END)
 | 
						|
		return 1;
 | 
						|
#endif
 | 
						|
	return is_vmalloc_addr(x);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Walk a vmap address to the struct page it maps.
 | 
						|
 */
 | 
						|
struct page *vmalloc_to_page(const void *vmalloc_addr)
 | 
						|
{
 | 
						|
	unsigned long addr = (unsigned long) vmalloc_addr;
 | 
						|
	struct page *page = NULL;
 | 
						|
	pgd_t *pgd = pgd_offset_k(addr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 | 
						|
	 * architectures that do not vmalloc module space
 | 
						|
	 */
 | 
						|
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 | 
						|
 | 
						|
	if (!pgd_none(*pgd)) {
 | 
						|
		pud_t *pud = pud_offset(pgd, addr);
 | 
						|
		if (!pud_none(*pud)) {
 | 
						|
			pmd_t *pmd = pmd_offset(pud, addr);
 | 
						|
			if (!pmd_none(*pmd)) {
 | 
						|
				pte_t *ptep, pte;
 | 
						|
 | 
						|
				ptep = pte_offset_map(pmd, addr);
 | 
						|
				pte = *ptep;
 | 
						|
				if (pte_present(pte))
 | 
						|
					page = pte_page(pte);
 | 
						|
				pte_unmap(ptep);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc_to_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Map a vmalloc()-space virtual address to the physical page frame number.
 | 
						|
 */
 | 
						|
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 | 
						|
{
 | 
						|
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc_to_pfn);
 | 
						|
 | 
						|
 | 
						|
/*** Global kva allocator ***/
 | 
						|
 | 
						|
#define VM_LAZY_FREE	0x01
 | 
						|
#define VM_LAZY_FREEING	0x02
 | 
						|
#define VM_VM_AREA	0x04
 | 
						|
 | 
						|
struct vmap_area {
 | 
						|
	unsigned long va_start;
 | 
						|
	unsigned long va_end;
 | 
						|
	unsigned long flags;
 | 
						|
	struct rb_node rb_node;		/* address sorted rbtree */
 | 
						|
	struct list_head list;		/* address sorted list */
 | 
						|
	struct list_head purge_list;	/* "lazy purge" list */
 | 
						|
	struct vm_struct *vm;
 | 
						|
	struct rcu_head rcu_head;
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_SPINLOCK(vmap_area_lock);
 | 
						|
static LIST_HEAD(vmap_area_list);
 | 
						|
static struct rb_root vmap_area_root = RB_ROOT;
 | 
						|
 | 
						|
/* The vmap cache globals are protected by vmap_area_lock */
 | 
						|
static struct rb_node *free_vmap_cache;
 | 
						|
static unsigned long cached_hole_size;
 | 
						|
static unsigned long cached_vstart;
 | 
						|
static unsigned long cached_align;
 | 
						|
 | 
						|
static unsigned long vmap_area_pcpu_hole;
 | 
						|
 | 
						|
static struct vmap_area *__find_vmap_area(unsigned long addr)
 | 
						|
{
 | 
						|
	struct rb_node *n = vmap_area_root.rb_node;
 | 
						|
 | 
						|
	while (n) {
 | 
						|
		struct vmap_area *va;
 | 
						|
 | 
						|
		va = rb_entry(n, struct vmap_area, rb_node);
 | 
						|
		if (addr < va->va_start)
 | 
						|
			n = n->rb_left;
 | 
						|
		else if (addr > va->va_start)
 | 
						|
			n = n->rb_right;
 | 
						|
		else
 | 
						|
			return va;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void __insert_vmap_area(struct vmap_area *va)
 | 
						|
{
 | 
						|
	struct rb_node **p = &vmap_area_root.rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct rb_node *tmp;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		struct vmap_area *tmp_va;
 | 
						|
 | 
						|
		parent = *p;
 | 
						|
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 | 
						|
		if (va->va_start < tmp_va->va_end)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else if (va->va_end > tmp_va->va_start)
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		else
 | 
						|
			BUG();
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&va->rb_node, parent, p);
 | 
						|
	rb_insert_color(&va->rb_node, &vmap_area_root);
 | 
						|
 | 
						|
	/* address-sort this list so it is usable like the vmlist */
 | 
						|
	tmp = rb_prev(&va->rb_node);
 | 
						|
	if (tmp) {
 | 
						|
		struct vmap_area *prev;
 | 
						|
		prev = rb_entry(tmp, struct vmap_area, rb_node);
 | 
						|
		list_add_rcu(&va->list, &prev->list);
 | 
						|
	} else
 | 
						|
		list_add_rcu(&va->list, &vmap_area_list);
 | 
						|
}
 | 
						|
 | 
						|
static void purge_vmap_area_lazy(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a region of KVA of the specified size and alignment, within the
 | 
						|
 * vstart and vend.
 | 
						|
 */
 | 
						|
static struct vmap_area *alloc_vmap_area(unsigned long size,
 | 
						|
				unsigned long align,
 | 
						|
				unsigned long vstart, unsigned long vend,
 | 
						|
				int node, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct vmap_area *va;
 | 
						|
	struct rb_node *n;
 | 
						|
	unsigned long addr;
 | 
						|
	int purged = 0;
 | 
						|
	struct vmap_area *first;
 | 
						|
 | 
						|
	BUG_ON(!size);
 | 
						|
	BUG_ON(size & ~PAGE_MASK);
 | 
						|
	BUG_ON(!is_power_of_2(align));
 | 
						|
 | 
						|
	va = kmalloc_node(sizeof(struct vmap_area),
 | 
						|
			gfp_mask & GFP_RECLAIM_MASK, node);
 | 
						|
	if (unlikely(!va))
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
retry:
 | 
						|
	spin_lock(&vmap_area_lock);
 | 
						|
	/*
 | 
						|
	 * Invalidate cache if we have more permissive parameters.
 | 
						|
	 * cached_hole_size notes the largest hole noticed _below_
 | 
						|
	 * the vmap_area cached in free_vmap_cache: if size fits
 | 
						|
	 * into that hole, we want to scan from vstart to reuse
 | 
						|
	 * the hole instead of allocating above free_vmap_cache.
 | 
						|
	 * Note that __free_vmap_area may update free_vmap_cache
 | 
						|
	 * without updating cached_hole_size or cached_align.
 | 
						|
	 */
 | 
						|
	if (!free_vmap_cache ||
 | 
						|
			size < cached_hole_size ||
 | 
						|
			vstart < cached_vstart ||
 | 
						|
			align < cached_align) {
 | 
						|
nocache:
 | 
						|
		cached_hole_size = 0;
 | 
						|
		free_vmap_cache = NULL;
 | 
						|
	}
 | 
						|
	/* record if we encounter less permissive parameters */
 | 
						|
	cached_vstart = vstart;
 | 
						|
	cached_align = align;
 | 
						|
 | 
						|
	/* find starting point for our search */
 | 
						|
	if (free_vmap_cache) {
 | 
						|
		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 | 
						|
		addr = ALIGN(first->va_end, align);
 | 
						|
		if (addr < vstart)
 | 
						|
			goto nocache;
 | 
						|
		if (addr + size - 1 < addr)
 | 
						|
			goto overflow;
 | 
						|
 | 
						|
	} else {
 | 
						|
		addr = ALIGN(vstart, align);
 | 
						|
		if (addr + size - 1 < addr)
 | 
						|
			goto overflow;
 | 
						|
 | 
						|
		n = vmap_area_root.rb_node;
 | 
						|
		first = NULL;
 | 
						|
 | 
						|
		while (n) {
 | 
						|
			struct vmap_area *tmp;
 | 
						|
			tmp = rb_entry(n, struct vmap_area, rb_node);
 | 
						|
			if (tmp->va_end >= addr) {
 | 
						|
				first = tmp;
 | 
						|
				if (tmp->va_start <= addr)
 | 
						|
					break;
 | 
						|
				n = n->rb_left;
 | 
						|
			} else
 | 
						|
				n = n->rb_right;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!first)
 | 
						|
			goto found;
 | 
						|
	}
 | 
						|
 | 
						|
	/* from the starting point, walk areas until a suitable hole is found */
 | 
						|
	while (addr + size > first->va_start && addr + size <= vend) {
 | 
						|
		if (addr + cached_hole_size < first->va_start)
 | 
						|
			cached_hole_size = first->va_start - addr;
 | 
						|
		addr = ALIGN(first->va_end, align);
 | 
						|
		if (addr + size - 1 < addr)
 | 
						|
			goto overflow;
 | 
						|
 | 
						|
		if (list_is_last(&first->list, &vmap_area_list))
 | 
						|
			goto found;
 | 
						|
 | 
						|
		first = list_entry(first->list.next,
 | 
						|
				struct vmap_area, list);
 | 
						|
	}
 | 
						|
 | 
						|
found:
 | 
						|
	if (addr + size > vend)
 | 
						|
		goto overflow;
 | 
						|
 | 
						|
	va->va_start = addr;
 | 
						|
	va->va_end = addr + size;
 | 
						|
	va->flags = 0;
 | 
						|
	__insert_vmap_area(va);
 | 
						|
	free_vmap_cache = &va->rb_node;
 | 
						|
	spin_unlock(&vmap_area_lock);
 | 
						|
 | 
						|
	BUG_ON(va->va_start & (align-1));
 | 
						|
	BUG_ON(va->va_start < vstart);
 | 
						|
	BUG_ON(va->va_end > vend);
 | 
						|
 | 
						|
	return va;
 | 
						|
 | 
						|
overflow:
 | 
						|
	spin_unlock(&vmap_area_lock);
 | 
						|
	if (!purged) {
 | 
						|
		purge_vmap_area_lazy();
 | 
						|
		purged = 1;
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
	if (printk_ratelimit())
 | 
						|
		printk(KERN_WARNING
 | 
						|
			"vmap allocation for size %lu failed: "
 | 
						|
			"use vmalloc=<size> to increase size.\n", size);
 | 
						|
	kfree(va);
 | 
						|
	return ERR_PTR(-EBUSY);
 | 
						|
}
 | 
						|
 | 
						|
static void __free_vmap_area(struct vmap_area *va)
 | 
						|
{
 | 
						|
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 | 
						|
 | 
						|
	if (free_vmap_cache) {
 | 
						|
		if (va->va_end < cached_vstart) {
 | 
						|
			free_vmap_cache = NULL;
 | 
						|
		} else {
 | 
						|
			struct vmap_area *cache;
 | 
						|
			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 | 
						|
			if (va->va_start <= cache->va_start) {
 | 
						|
				free_vmap_cache = rb_prev(&va->rb_node);
 | 
						|
				/*
 | 
						|
				 * We don't try to update cached_hole_size or
 | 
						|
				 * cached_align, but it won't go very wrong.
 | 
						|
				 */
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rb_erase(&va->rb_node, &vmap_area_root);
 | 
						|
	RB_CLEAR_NODE(&va->rb_node);
 | 
						|
	list_del_rcu(&va->list);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Track the highest possible candidate for pcpu area
 | 
						|
	 * allocation.  Areas outside of vmalloc area can be returned
 | 
						|
	 * here too, consider only end addresses which fall inside
 | 
						|
	 * vmalloc area proper.
 | 
						|
	 */
 | 
						|
	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 | 
						|
		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 | 
						|
 | 
						|
	kfree_rcu(va, rcu_head);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free a region of KVA allocated by alloc_vmap_area
 | 
						|
 */
 | 
						|
static void free_vmap_area(struct vmap_area *va)
 | 
						|
{
 | 
						|
	spin_lock(&vmap_area_lock);
 | 
						|
	__free_vmap_area(va);
 | 
						|
	spin_unlock(&vmap_area_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear the pagetable entries of a given vmap_area
 | 
						|
 */
 | 
						|
static void unmap_vmap_area(struct vmap_area *va)
 | 
						|
{
 | 
						|
	vunmap_page_range(va->va_start, va->va_end);
 | 
						|
}
 | 
						|
 | 
						|
static void vmap_debug_free_range(unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Unmap page tables and force a TLB flush immediately if
 | 
						|
	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 | 
						|
	 * bugs similarly to those in linear kernel virtual address
 | 
						|
	 * space after a page has been freed.
 | 
						|
	 *
 | 
						|
	 * All the lazy freeing logic is still retained, in order to
 | 
						|
	 * minimise intrusiveness of this debugging feature.
 | 
						|
	 *
 | 
						|
	 * This is going to be *slow* (linear kernel virtual address
 | 
						|
	 * debugging doesn't do a broadcast TLB flush so it is a lot
 | 
						|
	 * faster).
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_DEBUG_PAGEALLOC
 | 
						|
	vunmap_page_range(start, end);
 | 
						|
	flush_tlb_kernel_range(start, end);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 | 
						|
 * before attempting to purge with a TLB flush.
 | 
						|
 *
 | 
						|
 * There is a tradeoff here: a larger number will cover more kernel page tables
 | 
						|
 * and take slightly longer to purge, but it will linearly reduce the number of
 | 
						|
 * global TLB flushes that must be performed. It would seem natural to scale
 | 
						|
 * this number up linearly with the number of CPUs (because vmapping activity
 | 
						|
 * could also scale linearly with the number of CPUs), however it is likely
 | 
						|
 * that in practice, workloads might be constrained in other ways that mean
 | 
						|
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 | 
						|
 * conservative and not introduce a big latency on huge systems, so go with
 | 
						|
 * a less aggressive log scale. It will still be an improvement over the old
 | 
						|
 * code, and it will be simple to change the scale factor if we find that it
 | 
						|
 * becomes a problem on bigger systems.
 | 
						|
 */
 | 
						|
static unsigned long lazy_max_pages(void)
 | 
						|
{
 | 
						|
	unsigned int log;
 | 
						|
 | 
						|
	log = fls(num_online_cpus());
 | 
						|
 | 
						|
	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 | 
						|
 | 
						|
/* for per-CPU blocks */
 | 
						|
static void purge_fragmented_blocks_allcpus(void);
 | 
						|
 | 
						|
/*
 | 
						|
 * called before a call to iounmap() if the caller wants vm_area_struct's
 | 
						|
 * immediately freed.
 | 
						|
 */
 | 
						|
void set_iounmap_nonlazy(void)
 | 
						|
{
 | 
						|
	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Purges all lazily-freed vmap areas.
 | 
						|
 *
 | 
						|
 * If sync is 0 then don't purge if there is already a purge in progress.
 | 
						|
 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 | 
						|
 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 | 
						|
 * their own TLB flushing).
 | 
						|
 * Returns with *start = min(*start, lowest purged address)
 | 
						|
 *              *end = max(*end, highest purged address)
 | 
						|
 */
 | 
						|
static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 | 
						|
					int sync, int force_flush)
 | 
						|
{
 | 
						|
	static DEFINE_SPINLOCK(purge_lock);
 | 
						|
	LIST_HEAD(valist);
 | 
						|
	struct vmap_area *va;
 | 
						|
	struct vmap_area *n_va;
 | 
						|
	int nr = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 | 
						|
	 * should not expect such behaviour. This just simplifies locking for
 | 
						|
	 * the case that isn't actually used at the moment anyway.
 | 
						|
	 */
 | 
						|
	if (!sync && !force_flush) {
 | 
						|
		if (!spin_trylock(&purge_lock))
 | 
						|
			return;
 | 
						|
	} else
 | 
						|
		spin_lock(&purge_lock);
 | 
						|
 | 
						|
	if (sync)
 | 
						|
		purge_fragmented_blocks_allcpus();
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
 | 
						|
		if (va->flags & VM_LAZY_FREE) {
 | 
						|
			if (va->va_start < *start)
 | 
						|
				*start = va->va_start;
 | 
						|
			if (va->va_end > *end)
 | 
						|
				*end = va->va_end;
 | 
						|
			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 | 
						|
			list_add_tail(&va->purge_list, &valist);
 | 
						|
			va->flags |= VM_LAZY_FREEING;
 | 
						|
			va->flags &= ~VM_LAZY_FREE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	if (nr)
 | 
						|
		atomic_sub(nr, &vmap_lazy_nr);
 | 
						|
 | 
						|
	if (nr || force_flush)
 | 
						|
		flush_tlb_kernel_range(*start, *end);
 | 
						|
 | 
						|
	if (nr) {
 | 
						|
		spin_lock(&vmap_area_lock);
 | 
						|
		list_for_each_entry_safe(va, n_va, &valist, purge_list)
 | 
						|
			__free_vmap_area(va);
 | 
						|
		spin_unlock(&vmap_area_lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&purge_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 | 
						|
 * is already purging.
 | 
						|
 */
 | 
						|
static void try_purge_vmap_area_lazy(void)
 | 
						|
{
 | 
						|
	unsigned long start = ULONG_MAX, end = 0;
 | 
						|
 | 
						|
	__purge_vmap_area_lazy(&start, &end, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Kick off a purge of the outstanding lazy areas.
 | 
						|
 */
 | 
						|
static void purge_vmap_area_lazy(void)
 | 
						|
{
 | 
						|
	unsigned long start = ULONG_MAX, end = 0;
 | 
						|
 | 
						|
	__purge_vmap_area_lazy(&start, &end, 1, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free a vmap area, caller ensuring that the area has been unmapped
 | 
						|
 * and flush_cache_vunmap had been called for the correct range
 | 
						|
 * previously.
 | 
						|
 */
 | 
						|
static void free_vmap_area_noflush(struct vmap_area *va)
 | 
						|
{
 | 
						|
	va->flags |= VM_LAZY_FREE;
 | 
						|
	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 | 
						|
	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 | 
						|
		try_purge_vmap_area_lazy();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 | 
						|
 * called for the correct range previously.
 | 
						|
 */
 | 
						|
static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 | 
						|
{
 | 
						|
	unmap_vmap_area(va);
 | 
						|
	free_vmap_area_noflush(va);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free and unmap a vmap area
 | 
						|
 */
 | 
						|
static void free_unmap_vmap_area(struct vmap_area *va)
 | 
						|
{
 | 
						|
	flush_cache_vunmap(va->va_start, va->va_end);
 | 
						|
	free_unmap_vmap_area_noflush(va);
 | 
						|
}
 | 
						|
 | 
						|
static struct vmap_area *find_vmap_area(unsigned long addr)
 | 
						|
{
 | 
						|
	struct vmap_area *va;
 | 
						|
 | 
						|
	spin_lock(&vmap_area_lock);
 | 
						|
	va = __find_vmap_area(addr);
 | 
						|
	spin_unlock(&vmap_area_lock);
 | 
						|
 | 
						|
	return va;
 | 
						|
}
 | 
						|
 | 
						|
static void free_unmap_vmap_area_addr(unsigned long addr)
 | 
						|
{
 | 
						|
	struct vmap_area *va;
 | 
						|
 | 
						|
	va = find_vmap_area(addr);
 | 
						|
	BUG_ON(!va);
 | 
						|
	free_unmap_vmap_area(va);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*** Per cpu kva allocator ***/
 | 
						|
 | 
						|
/*
 | 
						|
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 | 
						|
 * room for at least 16 percpu vmap blocks per CPU.
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 | 
						|
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 | 
						|
 * instead (we just need a rough idea)
 | 
						|
 */
 | 
						|
#if BITS_PER_LONG == 32
 | 
						|
#define VMALLOC_SPACE		(128UL*1024*1024)
 | 
						|
#else
 | 
						|
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
 | 
						|
#endif
 | 
						|
 | 
						|
#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 | 
						|
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 | 
						|
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 | 
						|
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 | 
						|
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 | 
						|
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 | 
						|
#define VMAP_BBMAP_BITS		\
 | 
						|
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 | 
						|
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 | 
						|
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 | 
						|
 | 
						|
#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 | 
						|
 | 
						|
static bool vmap_initialized __read_mostly = false;
 | 
						|
 | 
						|
struct vmap_block_queue {
 | 
						|
	spinlock_t lock;
 | 
						|
	struct list_head free;
 | 
						|
};
 | 
						|
 | 
						|
struct vmap_block {
 | 
						|
	spinlock_t lock;
 | 
						|
	struct vmap_area *va;
 | 
						|
	struct vmap_block_queue *vbq;
 | 
						|
	unsigned long free, dirty;
 | 
						|
	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 | 
						|
	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 | 
						|
	struct list_head free_list;
 | 
						|
	struct rcu_head rcu_head;
 | 
						|
	struct list_head purge;
 | 
						|
};
 | 
						|
 | 
						|
/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 | 
						|
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 | 
						|
 | 
						|
/*
 | 
						|
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 | 
						|
 * in the free path. Could get rid of this if we change the API to return a
 | 
						|
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 | 
						|
 */
 | 
						|
static DEFINE_SPINLOCK(vmap_block_tree_lock);
 | 
						|
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 | 
						|
 | 
						|
/*
 | 
						|
 * We should probably have a fallback mechanism to allocate virtual memory
 | 
						|
 * out of partially filled vmap blocks. However vmap block sizing should be
 | 
						|
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 | 
						|
 * big problem.
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned long addr_to_vb_idx(unsigned long addr)
 | 
						|
{
 | 
						|
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 | 
						|
	addr /= VMAP_BLOCK_SIZE;
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct vmap_block_queue *vbq;
 | 
						|
	struct vmap_block *vb;
 | 
						|
	struct vmap_area *va;
 | 
						|
	unsigned long vb_idx;
 | 
						|
	int node, err;
 | 
						|
 | 
						|
	node = numa_node_id();
 | 
						|
 | 
						|
	vb = kmalloc_node(sizeof(struct vmap_block),
 | 
						|
			gfp_mask & GFP_RECLAIM_MASK, node);
 | 
						|
	if (unlikely(!vb))
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 | 
						|
					VMALLOC_START, VMALLOC_END,
 | 
						|
					node, gfp_mask);
 | 
						|
	if (IS_ERR(va)) {
 | 
						|
		kfree(vb);
 | 
						|
		return ERR_CAST(va);
 | 
						|
	}
 | 
						|
 | 
						|
	err = radix_tree_preload(gfp_mask);
 | 
						|
	if (unlikely(err)) {
 | 
						|
		kfree(vb);
 | 
						|
		free_vmap_area(va);
 | 
						|
		return ERR_PTR(err);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_init(&vb->lock);
 | 
						|
	vb->va = va;
 | 
						|
	vb->free = VMAP_BBMAP_BITS;
 | 
						|
	vb->dirty = 0;
 | 
						|
	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 | 
						|
	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 | 
						|
	INIT_LIST_HEAD(&vb->free_list);
 | 
						|
 | 
						|
	vb_idx = addr_to_vb_idx(va->va_start);
 | 
						|
	spin_lock(&vmap_block_tree_lock);
 | 
						|
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 | 
						|
	spin_unlock(&vmap_block_tree_lock);
 | 
						|
	BUG_ON(err);
 | 
						|
	radix_tree_preload_end();
 | 
						|
 | 
						|
	vbq = &get_cpu_var(vmap_block_queue);
 | 
						|
	vb->vbq = vbq;
 | 
						|
	spin_lock(&vbq->lock);
 | 
						|
	list_add_rcu(&vb->free_list, &vbq->free);
 | 
						|
	spin_unlock(&vbq->lock);
 | 
						|
	put_cpu_var(vmap_block_queue);
 | 
						|
 | 
						|
	return vb;
 | 
						|
}
 | 
						|
 | 
						|
static void free_vmap_block(struct vmap_block *vb)
 | 
						|
{
 | 
						|
	struct vmap_block *tmp;
 | 
						|
	unsigned long vb_idx;
 | 
						|
 | 
						|
	vb_idx = addr_to_vb_idx(vb->va->va_start);
 | 
						|
	spin_lock(&vmap_block_tree_lock);
 | 
						|
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 | 
						|
	spin_unlock(&vmap_block_tree_lock);
 | 
						|
	BUG_ON(tmp != vb);
 | 
						|
 | 
						|
	free_vmap_area_noflush(vb->va);
 | 
						|
	kfree_rcu(vb, rcu_head);
 | 
						|
}
 | 
						|
 | 
						|
static void purge_fragmented_blocks(int cpu)
 | 
						|
{
 | 
						|
	LIST_HEAD(purge);
 | 
						|
	struct vmap_block *vb;
 | 
						|
	struct vmap_block *n_vb;
 | 
						|
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | 
						|
 | 
						|
		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 | 
						|
			continue;
 | 
						|
 | 
						|
		spin_lock(&vb->lock);
 | 
						|
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 | 
						|
			vb->free = 0; /* prevent further allocs after releasing lock */
 | 
						|
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 | 
						|
			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 | 
						|
			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 | 
						|
			spin_lock(&vbq->lock);
 | 
						|
			list_del_rcu(&vb->free_list);
 | 
						|
			spin_unlock(&vbq->lock);
 | 
						|
			spin_unlock(&vb->lock);
 | 
						|
			list_add_tail(&vb->purge, &purge);
 | 
						|
		} else
 | 
						|
			spin_unlock(&vb->lock);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 | 
						|
		list_del(&vb->purge);
 | 
						|
		free_vmap_block(vb);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void purge_fragmented_blocks_thiscpu(void)
 | 
						|
{
 | 
						|
	purge_fragmented_blocks(smp_processor_id());
 | 
						|
}
 | 
						|
 | 
						|
static void purge_fragmented_blocks_allcpus(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu)
 | 
						|
		purge_fragmented_blocks(cpu);
 | 
						|
}
 | 
						|
 | 
						|
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct vmap_block_queue *vbq;
 | 
						|
	struct vmap_block *vb;
 | 
						|
	unsigned long addr = 0;
 | 
						|
	unsigned int order;
 | 
						|
	int purge = 0;
 | 
						|
 | 
						|
	BUG_ON(size & ~PAGE_MASK);
 | 
						|
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | 
						|
	if (WARN_ON(size == 0)) {
 | 
						|
		/*
 | 
						|
		 * Allocating 0 bytes isn't what caller wants since
 | 
						|
		 * get_order(0) returns funny result. Just warn and terminate
 | 
						|
		 * early.
 | 
						|
		 */
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	order = get_order(size);
 | 
						|
 | 
						|
again:
 | 
						|
	rcu_read_lock();
 | 
						|
	vbq = &get_cpu_var(vmap_block_queue);
 | 
						|
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | 
						|
		int i;
 | 
						|
 | 
						|
		spin_lock(&vb->lock);
 | 
						|
		if (vb->free < 1UL << order)
 | 
						|
			goto next;
 | 
						|
 | 
						|
		i = bitmap_find_free_region(vb->alloc_map,
 | 
						|
						VMAP_BBMAP_BITS, order);
 | 
						|
 | 
						|
		if (i < 0) {
 | 
						|
			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 | 
						|
				/* fragmented and no outstanding allocations */
 | 
						|
				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 | 
						|
				purge = 1;
 | 
						|
			}
 | 
						|
			goto next;
 | 
						|
		}
 | 
						|
		addr = vb->va->va_start + (i << PAGE_SHIFT);
 | 
						|
		BUG_ON(addr_to_vb_idx(addr) !=
 | 
						|
				addr_to_vb_idx(vb->va->va_start));
 | 
						|
		vb->free -= 1UL << order;
 | 
						|
		if (vb->free == 0) {
 | 
						|
			spin_lock(&vbq->lock);
 | 
						|
			list_del_rcu(&vb->free_list);
 | 
						|
			spin_unlock(&vbq->lock);
 | 
						|
		}
 | 
						|
		spin_unlock(&vb->lock);
 | 
						|
		break;
 | 
						|
next:
 | 
						|
		spin_unlock(&vb->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	if (purge)
 | 
						|
		purge_fragmented_blocks_thiscpu();
 | 
						|
 | 
						|
	put_cpu_var(vmap_block_queue);
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	if (!addr) {
 | 
						|
		vb = new_vmap_block(gfp_mask);
 | 
						|
		if (IS_ERR(vb))
 | 
						|
			return vb;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
 | 
						|
	return (void *)addr;
 | 
						|
}
 | 
						|
 | 
						|
static void vb_free(const void *addr, unsigned long size)
 | 
						|
{
 | 
						|
	unsigned long offset;
 | 
						|
	unsigned long vb_idx;
 | 
						|
	unsigned int order;
 | 
						|
	struct vmap_block *vb;
 | 
						|
 | 
						|
	BUG_ON(size & ~PAGE_MASK);
 | 
						|
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | 
						|
 | 
						|
	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 | 
						|
 | 
						|
	order = get_order(size);
 | 
						|
 | 
						|
	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 | 
						|
 | 
						|
	vb_idx = addr_to_vb_idx((unsigned long)addr);
 | 
						|
	rcu_read_lock();
 | 
						|
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 | 
						|
	rcu_read_unlock();
 | 
						|
	BUG_ON(!vb);
 | 
						|
 | 
						|
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 | 
						|
 | 
						|
	spin_lock(&vb->lock);
 | 
						|
	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 | 
						|
 | 
						|
	vb->dirty += 1UL << order;
 | 
						|
	if (vb->dirty == VMAP_BBMAP_BITS) {
 | 
						|
		BUG_ON(vb->free);
 | 
						|
		spin_unlock(&vb->lock);
 | 
						|
		free_vmap_block(vb);
 | 
						|
	} else
 | 
						|
		spin_unlock(&vb->lock);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 | 
						|
 *
 | 
						|
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 | 
						|
 * to amortize TLB flushing overheads. What this means is that any page you
 | 
						|
 * have now, may, in a former life, have been mapped into kernel virtual
 | 
						|
 * address by the vmap layer and so there might be some CPUs with TLB entries
 | 
						|
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 | 
						|
 *
 | 
						|
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 | 
						|
 * be sure that none of the pages we have control over will have any aliases
 | 
						|
 * from the vmap layer.
 | 
						|
 */
 | 
						|
void vm_unmap_aliases(void)
 | 
						|
{
 | 
						|
	unsigned long start = ULONG_MAX, end = 0;
 | 
						|
	int cpu;
 | 
						|
	int flush = 0;
 | 
						|
 | 
						|
	if (unlikely(!vmap_initialized))
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_possible_cpu(cpu) {
 | 
						|
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | 
						|
		struct vmap_block *vb;
 | 
						|
 | 
						|
		rcu_read_lock();
 | 
						|
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | 
						|
			int i;
 | 
						|
 | 
						|
			spin_lock(&vb->lock);
 | 
						|
			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
 | 
						|
			while (i < VMAP_BBMAP_BITS) {
 | 
						|
				unsigned long s, e;
 | 
						|
				int j;
 | 
						|
				j = find_next_zero_bit(vb->dirty_map,
 | 
						|
					VMAP_BBMAP_BITS, i);
 | 
						|
 | 
						|
				s = vb->va->va_start + (i << PAGE_SHIFT);
 | 
						|
				e = vb->va->va_start + (j << PAGE_SHIFT);
 | 
						|
				flush = 1;
 | 
						|
 | 
						|
				if (s < start)
 | 
						|
					start = s;
 | 
						|
				if (e > end)
 | 
						|
					end = e;
 | 
						|
 | 
						|
				i = j;
 | 
						|
				i = find_next_bit(vb->dirty_map,
 | 
						|
							VMAP_BBMAP_BITS, i);
 | 
						|
			}
 | 
						|
			spin_unlock(&vb->lock);
 | 
						|
		}
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
 | 
						|
	__purge_vmap_area_lazy(&start, &end, 1, flush);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 | 
						|
 | 
						|
/**
 | 
						|
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 | 
						|
 * @mem: the pointer returned by vm_map_ram
 | 
						|
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 | 
						|
 */
 | 
						|
void vm_unmap_ram(const void *mem, unsigned int count)
 | 
						|
{
 | 
						|
	unsigned long size = count << PAGE_SHIFT;
 | 
						|
	unsigned long addr = (unsigned long)mem;
 | 
						|
 | 
						|
	BUG_ON(!addr);
 | 
						|
	BUG_ON(addr < VMALLOC_START);
 | 
						|
	BUG_ON(addr > VMALLOC_END);
 | 
						|
	BUG_ON(addr & (PAGE_SIZE-1));
 | 
						|
 | 
						|
	debug_check_no_locks_freed(mem, size);
 | 
						|
	vmap_debug_free_range(addr, addr+size);
 | 
						|
 | 
						|
	if (likely(count <= VMAP_MAX_ALLOC))
 | 
						|
		vb_free(mem, size);
 | 
						|
	else
 | 
						|
		free_unmap_vmap_area_addr(addr);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vm_unmap_ram);
 | 
						|
 | 
						|
/**
 | 
						|
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 | 
						|
 * @pages: an array of pointers to the pages to be mapped
 | 
						|
 * @count: number of pages
 | 
						|
 * @node: prefer to allocate data structures on this node
 | 
						|
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
 | 
						|
 *
 | 
						|
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
 | 
						|
 */
 | 
						|
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 | 
						|
{
 | 
						|
	unsigned long size = count << PAGE_SHIFT;
 | 
						|
	unsigned long addr;
 | 
						|
	void *mem;
 | 
						|
 | 
						|
	if (likely(count <= VMAP_MAX_ALLOC)) {
 | 
						|
		mem = vb_alloc(size, GFP_KERNEL);
 | 
						|
		if (IS_ERR(mem))
 | 
						|
			return NULL;
 | 
						|
		addr = (unsigned long)mem;
 | 
						|
	} else {
 | 
						|
		struct vmap_area *va;
 | 
						|
		va = alloc_vmap_area(size, PAGE_SIZE,
 | 
						|
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
 | 
						|
		if (IS_ERR(va))
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		addr = va->va_start;
 | 
						|
		mem = (void *)addr;
 | 
						|
	}
 | 
						|
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
 | 
						|
		vm_unmap_ram(mem, count);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return mem;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vm_map_ram);
 | 
						|
 | 
						|
/**
 | 
						|
 * vm_area_add_early - add vmap area early during boot
 | 
						|
 * @vm: vm_struct to add
 | 
						|
 *
 | 
						|
 * This function is used to add fixed kernel vm area to vmlist before
 | 
						|
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 | 
						|
 * should contain proper values and the other fields should be zero.
 | 
						|
 *
 | 
						|
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 | 
						|
 */
 | 
						|
void __init vm_area_add_early(struct vm_struct *vm)
 | 
						|
{
 | 
						|
	struct vm_struct *tmp, **p;
 | 
						|
 | 
						|
	BUG_ON(vmap_initialized);
 | 
						|
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
 | 
						|
		if (tmp->addr >= vm->addr) {
 | 
						|
			BUG_ON(tmp->addr < vm->addr + vm->size);
 | 
						|
			break;
 | 
						|
		} else
 | 
						|
			BUG_ON(tmp->addr + tmp->size > vm->addr);
 | 
						|
	}
 | 
						|
	vm->next = *p;
 | 
						|
	*p = vm;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * vm_area_register_early - register vmap area early during boot
 | 
						|
 * @vm: vm_struct to register
 | 
						|
 * @align: requested alignment
 | 
						|
 *
 | 
						|
 * This function is used to register kernel vm area before
 | 
						|
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 | 
						|
 * proper values on entry and other fields should be zero.  On return,
 | 
						|
 * vm->addr contains the allocated address.
 | 
						|
 *
 | 
						|
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 | 
						|
 */
 | 
						|
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
 | 
						|
{
 | 
						|
	static size_t vm_init_off __initdata;
 | 
						|
	unsigned long addr;
 | 
						|
 | 
						|
	addr = ALIGN(VMALLOC_START + vm_init_off, align);
 | 
						|
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
 | 
						|
 | 
						|
	vm->addr = (void *)addr;
 | 
						|
 | 
						|
	vm_area_add_early(vm);
 | 
						|
}
 | 
						|
 | 
						|
void __init vmalloc_init(void)
 | 
						|
{
 | 
						|
	struct vmap_area *va;
 | 
						|
	struct vm_struct *tmp;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for_each_possible_cpu(i) {
 | 
						|
		struct vmap_block_queue *vbq;
 | 
						|
 | 
						|
		vbq = &per_cpu(vmap_block_queue, i);
 | 
						|
		spin_lock_init(&vbq->lock);
 | 
						|
		INIT_LIST_HEAD(&vbq->free);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Import existing vmlist entries. */
 | 
						|
	for (tmp = vmlist; tmp; tmp = tmp->next) {
 | 
						|
		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
 | 
						|
		va->flags = VM_VM_AREA;
 | 
						|
		va->va_start = (unsigned long)tmp->addr;
 | 
						|
		va->va_end = va->va_start + tmp->size;
 | 
						|
		va->vm = tmp;
 | 
						|
		__insert_vmap_area(va);
 | 
						|
	}
 | 
						|
 | 
						|
	vmap_area_pcpu_hole = VMALLOC_END;
 | 
						|
 | 
						|
	vmap_initialized = true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 | 
						|
 * @addr: start of the VM area to map
 | 
						|
 * @size: size of the VM area to map
 | 
						|
 * @prot: page protection flags to use
 | 
						|
 * @pages: pages to map
 | 
						|
 *
 | 
						|
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 | 
						|
 * specify should have been allocated using get_vm_area() and its
 | 
						|
 * friends.
 | 
						|
 *
 | 
						|
 * NOTE:
 | 
						|
 * This function does NOT do any cache flushing.  The caller is
 | 
						|
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 | 
						|
 * before calling this function.
 | 
						|
 *
 | 
						|
 * RETURNS:
 | 
						|
 * The number of pages mapped on success, -errno on failure.
 | 
						|
 */
 | 
						|
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
 | 
						|
			     pgprot_t prot, struct page **pages)
 | 
						|
{
 | 
						|
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * unmap_kernel_range_noflush - unmap kernel VM area
 | 
						|
 * @addr: start of the VM area to unmap
 | 
						|
 * @size: size of the VM area to unmap
 | 
						|
 *
 | 
						|
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 | 
						|
 * specify should have been allocated using get_vm_area() and its
 | 
						|
 * friends.
 | 
						|
 *
 | 
						|
 * NOTE:
 | 
						|
 * This function does NOT do any cache flushing.  The caller is
 | 
						|
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 | 
						|
 * before calling this function and flush_tlb_kernel_range() after.
 | 
						|
 */
 | 
						|
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
 | 
						|
{
 | 
						|
	vunmap_page_range(addr, addr + size);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
 | 
						|
 | 
						|
/**
 | 
						|
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 | 
						|
 * @addr: start of the VM area to unmap
 | 
						|
 * @size: size of the VM area to unmap
 | 
						|
 *
 | 
						|
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 | 
						|
 * the unmapping and tlb after.
 | 
						|
 */
 | 
						|
void unmap_kernel_range(unsigned long addr, unsigned long size)
 | 
						|
{
 | 
						|
	unsigned long end = addr + size;
 | 
						|
 | 
						|
	flush_cache_vunmap(addr, end);
 | 
						|
	vunmap_page_range(addr, end);
 | 
						|
	flush_tlb_kernel_range(addr, end);
 | 
						|
}
 | 
						|
 | 
						|
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
 | 
						|
{
 | 
						|
	unsigned long addr = (unsigned long)area->addr;
 | 
						|
	unsigned long end = addr + area->size - PAGE_SIZE;
 | 
						|
	int err;
 | 
						|
 | 
						|
	err = vmap_page_range(addr, end, prot, *pages);
 | 
						|
	if (err > 0) {
 | 
						|
		*pages += err;
 | 
						|
		err = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(map_vm_area);
 | 
						|
 | 
						|
/*** Old vmalloc interfaces ***/
 | 
						|
DEFINE_RWLOCK(vmlist_lock);
 | 
						|
struct vm_struct *vmlist;
 | 
						|
 | 
						|
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
 | 
						|
			      unsigned long flags, const void *caller)
 | 
						|
{
 | 
						|
	vm->flags = flags;
 | 
						|
	vm->addr = (void *)va->va_start;
 | 
						|
	vm->size = va->va_end - va->va_start;
 | 
						|
	vm->caller = caller;
 | 
						|
	va->vm = vm;
 | 
						|
	va->flags |= VM_VM_AREA;
 | 
						|
}
 | 
						|
 | 
						|
static void insert_vmalloc_vmlist(struct vm_struct *vm)
 | 
						|
{
 | 
						|
	struct vm_struct *tmp, **p;
 | 
						|
 | 
						|
	vm->flags &= ~VM_UNLIST;
 | 
						|
	write_lock(&vmlist_lock);
 | 
						|
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
 | 
						|
		if (tmp->addr >= vm->addr)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	vm->next = *p;
 | 
						|
	*p = vm;
 | 
						|
	write_unlock(&vmlist_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
 | 
						|
			      unsigned long flags, const void *caller)
 | 
						|
{
 | 
						|
	setup_vmalloc_vm(vm, va, flags, caller);
 | 
						|
	insert_vmalloc_vmlist(vm);
 | 
						|
}
 | 
						|
 | 
						|
static struct vm_struct *__get_vm_area_node(unsigned long size,
 | 
						|
		unsigned long align, unsigned long flags, unsigned long start,
 | 
						|
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
 | 
						|
{
 | 
						|
	struct vmap_area *va;
 | 
						|
	struct vm_struct *area;
 | 
						|
 | 
						|
	BUG_ON(in_interrupt());
 | 
						|
	if (flags & VM_IOREMAP) {
 | 
						|
		int bit = fls(size);
 | 
						|
 | 
						|
		if (bit > IOREMAP_MAX_ORDER)
 | 
						|
			bit = IOREMAP_MAX_ORDER;
 | 
						|
		else if (bit < PAGE_SHIFT)
 | 
						|
			bit = PAGE_SHIFT;
 | 
						|
 | 
						|
		align = 1ul << bit;
 | 
						|
	}
 | 
						|
 | 
						|
	size = PAGE_ALIGN(size);
 | 
						|
	if (unlikely(!size))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
 | 
						|
	if (unlikely(!area))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We always allocate a guard page.
 | 
						|
	 */
 | 
						|
	size += PAGE_SIZE;
 | 
						|
 | 
						|
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
 | 
						|
	if (IS_ERR(va)) {
 | 
						|
		kfree(area);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When this function is called from __vmalloc_node_range,
 | 
						|
	 * we do not add vm_struct to vmlist here to avoid
 | 
						|
	 * accessing uninitialized members of vm_struct such as
 | 
						|
	 * pages and nr_pages fields. They will be set later.
 | 
						|
	 * To distinguish it from others, we use a VM_UNLIST flag.
 | 
						|
	 */
 | 
						|
	if (flags & VM_UNLIST)
 | 
						|
		setup_vmalloc_vm(area, va, flags, caller);
 | 
						|
	else
 | 
						|
		insert_vmalloc_vm(area, va, flags, caller);
 | 
						|
 | 
						|
	return area;
 | 
						|
}
 | 
						|
 | 
						|
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
 | 
						|
				unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
 | 
						|
						__builtin_return_address(0));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__get_vm_area);
 | 
						|
 | 
						|
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
 | 
						|
				       unsigned long start, unsigned long end,
 | 
						|
				       const void *caller)
 | 
						|
{
 | 
						|
	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
 | 
						|
				  caller);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	get_vm_area  -  reserve a contiguous kernel virtual area
 | 
						|
 *	@size:		size of the area
 | 
						|
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 | 
						|
 *
 | 
						|
 *	Search an area of @size in the kernel virtual mapping area,
 | 
						|
 *	and reserved it for out purposes.  Returns the area descriptor
 | 
						|
 *	on success or %NULL on failure.
 | 
						|
 */
 | 
						|
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
 | 
						|
{
 | 
						|
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 | 
						|
				-1, GFP_KERNEL, __builtin_return_address(0));
 | 
						|
}
 | 
						|
 | 
						|
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
 | 
						|
				const void *caller)
 | 
						|
{
 | 
						|
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
 | 
						|
						-1, GFP_KERNEL, caller);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	find_vm_area  -  find a continuous kernel virtual area
 | 
						|
 *	@addr:		base address
 | 
						|
 *
 | 
						|
 *	Search for the kernel VM area starting at @addr, and return it.
 | 
						|
 *	It is up to the caller to do all required locking to keep the returned
 | 
						|
 *	pointer valid.
 | 
						|
 */
 | 
						|
struct vm_struct *find_vm_area(const void *addr)
 | 
						|
{
 | 
						|
	struct vmap_area *va;
 | 
						|
 | 
						|
	va = find_vmap_area((unsigned long)addr);
 | 
						|
	if (va && va->flags & VM_VM_AREA)
 | 
						|
		return va->vm;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	remove_vm_area  -  find and remove a continuous kernel virtual area
 | 
						|
 *	@addr:		base address
 | 
						|
 *
 | 
						|
 *	Search for the kernel VM area starting at @addr, and remove it.
 | 
						|
 *	This function returns the found VM area, but using it is NOT safe
 | 
						|
 *	on SMP machines, except for its size or flags.
 | 
						|
 */
 | 
						|
struct vm_struct *remove_vm_area(const void *addr)
 | 
						|
{
 | 
						|
	struct vmap_area *va;
 | 
						|
 | 
						|
	va = find_vmap_area((unsigned long)addr);
 | 
						|
	if (va && va->flags & VM_VM_AREA) {
 | 
						|
		struct vm_struct *vm = va->vm;
 | 
						|
 | 
						|
		if (!(vm->flags & VM_UNLIST)) {
 | 
						|
			struct vm_struct *tmp, **p;
 | 
						|
			/*
 | 
						|
			 * remove from list and disallow access to
 | 
						|
			 * this vm_struct before unmap. (address range
 | 
						|
			 * confliction is maintained by vmap.)
 | 
						|
			 */
 | 
						|
			write_lock(&vmlist_lock);
 | 
						|
			for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
 | 
						|
				;
 | 
						|
			*p = tmp->next;
 | 
						|
			write_unlock(&vmlist_lock);
 | 
						|
		}
 | 
						|
 | 
						|
		vmap_debug_free_range(va->va_start, va->va_end);
 | 
						|
		free_unmap_vmap_area(va);
 | 
						|
		vm->size -= PAGE_SIZE;
 | 
						|
 | 
						|
		return vm;
 | 
						|
	}
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void __vunmap(const void *addr, int deallocate_pages)
 | 
						|
{
 | 
						|
	struct vm_struct *area;
 | 
						|
 | 
						|
	if (!addr)
 | 
						|
		return;
 | 
						|
 | 
						|
	if ((PAGE_SIZE-1) & (unsigned long)addr) {
 | 
						|
		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	area = remove_vm_area(addr);
 | 
						|
	if (unlikely(!area)) {
 | 
						|
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
 | 
						|
				addr);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	debug_check_no_locks_freed(addr, area->size);
 | 
						|
	debug_check_no_obj_freed(addr, area->size);
 | 
						|
 | 
						|
	if (deallocate_pages) {
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < area->nr_pages; i++) {
 | 
						|
			struct page *page = area->pages[i];
 | 
						|
 | 
						|
			BUG_ON(!page);
 | 
						|
			__free_page(page);
 | 
						|
		}
 | 
						|
 | 
						|
		if (area->flags & VM_VPAGES)
 | 
						|
			vfree(area->pages);
 | 
						|
		else
 | 
						|
			kfree(area->pages);
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(area);
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	vfree  -  release memory allocated by vmalloc()
 | 
						|
 *	@addr:		memory base address
 | 
						|
 *
 | 
						|
 *	Free the virtually continuous memory area starting at @addr, as
 | 
						|
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 | 
						|
 *	NULL, no operation is performed.
 | 
						|
 *
 | 
						|
 *	Must not be called in interrupt context.
 | 
						|
 */
 | 
						|
void vfree(const void *addr)
 | 
						|
{
 | 
						|
	BUG_ON(in_interrupt());
 | 
						|
 | 
						|
	kmemleak_free(addr);
 | 
						|
 | 
						|
	__vunmap(addr, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vfree);
 | 
						|
 | 
						|
/**
 | 
						|
 *	vunmap  -  release virtual mapping obtained by vmap()
 | 
						|
 *	@addr:		memory base address
 | 
						|
 *
 | 
						|
 *	Free the virtually contiguous memory area starting at @addr,
 | 
						|
 *	which was created from the page array passed to vmap().
 | 
						|
 *
 | 
						|
 *	Must not be called in interrupt context.
 | 
						|
 */
 | 
						|
void vunmap(const void *addr)
 | 
						|
{
 | 
						|
	BUG_ON(in_interrupt());
 | 
						|
	might_sleep();
 | 
						|
	__vunmap(addr, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vunmap);
 | 
						|
 | 
						|
/**
 | 
						|
 *	vmap  -  map an array of pages into virtually contiguous space
 | 
						|
 *	@pages:		array of page pointers
 | 
						|
 *	@count:		number of pages to map
 | 
						|
 *	@flags:		vm_area->flags
 | 
						|
 *	@prot:		page protection for the mapping
 | 
						|
 *
 | 
						|
 *	Maps @count pages from @pages into contiguous kernel virtual
 | 
						|
 *	space.
 | 
						|
 */
 | 
						|
void *vmap(struct page **pages, unsigned int count,
 | 
						|
		unsigned long flags, pgprot_t prot)
 | 
						|
{
 | 
						|
	struct vm_struct *area;
 | 
						|
 | 
						|
	might_sleep();
 | 
						|
 | 
						|
	if (count > totalram_pages)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
 | 
						|
					__builtin_return_address(0));
 | 
						|
	if (!area)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (map_vm_area(area, prot, &pages)) {
 | 
						|
		vunmap(area->addr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return area->addr;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmap);
 | 
						|
 | 
						|
static void *__vmalloc_node(unsigned long size, unsigned long align,
 | 
						|
			    gfp_t gfp_mask, pgprot_t prot,
 | 
						|
			    int node, const void *caller);
 | 
						|
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
 | 
						|
				 pgprot_t prot, int node, const void *caller)
 | 
						|
{
 | 
						|
	const int order = 0;
 | 
						|
	struct page **pages;
 | 
						|
	unsigned int nr_pages, array_size, i;
 | 
						|
	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 | 
						|
 | 
						|
	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
 | 
						|
	array_size = (nr_pages * sizeof(struct page *));
 | 
						|
 | 
						|
	area->nr_pages = nr_pages;
 | 
						|
	/* Please note that the recursion is strictly bounded. */
 | 
						|
	if (array_size > PAGE_SIZE) {
 | 
						|
		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
 | 
						|
				PAGE_KERNEL, node, caller);
 | 
						|
		area->flags |= VM_VPAGES;
 | 
						|
	} else {
 | 
						|
		pages = kmalloc_node(array_size, nested_gfp, node);
 | 
						|
	}
 | 
						|
	area->pages = pages;
 | 
						|
	area->caller = caller;
 | 
						|
	if (!area->pages) {
 | 
						|
		remove_vm_area(area->addr);
 | 
						|
		kfree(area);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < area->nr_pages; i++) {
 | 
						|
		struct page *page;
 | 
						|
		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
 | 
						|
 | 
						|
		if (node < 0)
 | 
						|
			page = alloc_page(tmp_mask);
 | 
						|
		else
 | 
						|
			page = alloc_pages_node(node, tmp_mask, order);
 | 
						|
 | 
						|
		if (unlikely(!page)) {
 | 
						|
			/* Successfully allocated i pages, free them in __vunmap() */
 | 
						|
			area->nr_pages = i;
 | 
						|
			goto fail;
 | 
						|
		}
 | 
						|
		area->pages[i] = page;
 | 
						|
	}
 | 
						|
 | 
						|
	if (map_vm_area(area, prot, &pages))
 | 
						|
		goto fail;
 | 
						|
	return area->addr;
 | 
						|
 | 
						|
fail:
 | 
						|
	warn_alloc_failed(gfp_mask, order,
 | 
						|
			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
 | 
						|
			  (area->nr_pages*PAGE_SIZE), area->size);
 | 
						|
	vfree(area->addr);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	__vmalloc_node_range  -  allocate virtually contiguous memory
 | 
						|
 *	@size:		allocation size
 | 
						|
 *	@align:		desired alignment
 | 
						|
 *	@start:		vm area range start
 | 
						|
 *	@end:		vm area range end
 | 
						|
 *	@gfp_mask:	flags for the page level allocator
 | 
						|
 *	@prot:		protection mask for the allocated pages
 | 
						|
 *	@node:		node to use for allocation or -1
 | 
						|
 *	@caller:	caller's return address
 | 
						|
 *
 | 
						|
 *	Allocate enough pages to cover @size from the page level
 | 
						|
 *	allocator with @gfp_mask flags.  Map them into contiguous
 | 
						|
 *	kernel virtual space, using a pagetable protection of @prot.
 | 
						|
 */
 | 
						|
void *__vmalloc_node_range(unsigned long size, unsigned long align,
 | 
						|
			unsigned long start, unsigned long end, gfp_t gfp_mask,
 | 
						|
			pgprot_t prot, int node, const void *caller)
 | 
						|
{
 | 
						|
	struct vm_struct *area;
 | 
						|
	void *addr;
 | 
						|
	unsigned long real_size = size;
 | 
						|
 | 
						|
	size = PAGE_ALIGN(size);
 | 
						|
	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
 | 
						|
				  start, end, node, gfp_mask, caller);
 | 
						|
	if (!area)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
 | 
						|
	if (!addr)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * In this function, newly allocated vm_struct is not added
 | 
						|
	 * to vmlist at __get_vm_area_node(). so, it is added here.
 | 
						|
	 */
 | 
						|
	insert_vmalloc_vmlist(area);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A ref_count = 3 is needed because the vm_struct and vmap_area
 | 
						|
	 * structures allocated in the __get_vm_area_node() function contain
 | 
						|
	 * references to the virtual address of the vmalloc'ed block.
 | 
						|
	 */
 | 
						|
	kmemleak_alloc(addr, real_size, 3, gfp_mask);
 | 
						|
 | 
						|
	return addr;
 | 
						|
 | 
						|
fail:
 | 
						|
	warn_alloc_failed(gfp_mask, 0,
 | 
						|
			  "vmalloc: allocation failure: %lu bytes\n",
 | 
						|
			  real_size);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	__vmalloc_node  -  allocate virtually contiguous memory
 | 
						|
 *	@size:		allocation size
 | 
						|
 *	@align:		desired alignment
 | 
						|
 *	@gfp_mask:	flags for the page level allocator
 | 
						|
 *	@prot:		protection mask for the allocated pages
 | 
						|
 *	@node:		node to use for allocation or -1
 | 
						|
 *	@caller:	caller's return address
 | 
						|
 *
 | 
						|
 *	Allocate enough pages to cover @size from the page level
 | 
						|
 *	allocator with @gfp_mask flags.  Map them into contiguous
 | 
						|
 *	kernel virtual space, using a pagetable protection of @prot.
 | 
						|
 */
 | 
						|
static void *__vmalloc_node(unsigned long size, unsigned long align,
 | 
						|
			    gfp_t gfp_mask, pgprot_t prot,
 | 
						|
			    int node, const void *caller)
 | 
						|
{
 | 
						|
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
 | 
						|
				gfp_mask, prot, node, caller);
 | 
						|
}
 | 
						|
 | 
						|
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 | 
						|
{
 | 
						|
	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
 | 
						|
				__builtin_return_address(0));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__vmalloc);
 | 
						|
 | 
						|
static inline void *__vmalloc_node_flags(unsigned long size,
 | 
						|
					int node, gfp_t flags)
 | 
						|
{
 | 
						|
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
 | 
						|
					node, __builtin_return_address(0));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	vmalloc  -  allocate virtually contiguous memory
 | 
						|
 *	@size:		allocation size
 | 
						|
 *	Allocate enough pages to cover @size from the page level
 | 
						|
 *	allocator and map them into contiguous kernel virtual space.
 | 
						|
 *
 | 
						|
 *	For tight control over page level allocator and protection flags
 | 
						|
 *	use __vmalloc() instead.
 | 
						|
 */
 | 
						|
void *vmalloc(unsigned long size)
 | 
						|
{
 | 
						|
	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc);
 | 
						|
 | 
						|
/**
 | 
						|
 *	vzalloc - allocate virtually contiguous memory with zero fill
 | 
						|
 *	@size:	allocation size
 | 
						|
 *	Allocate enough pages to cover @size from the page level
 | 
						|
 *	allocator and map them into contiguous kernel virtual space.
 | 
						|
 *	The memory allocated is set to zero.
 | 
						|
 *
 | 
						|
 *	For tight control over page level allocator and protection flags
 | 
						|
 *	use __vmalloc() instead.
 | 
						|
 */
 | 
						|
void *vzalloc(unsigned long size)
 | 
						|
{
 | 
						|
	return __vmalloc_node_flags(size, -1,
 | 
						|
				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vzalloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 | 
						|
 * @size: allocation size
 | 
						|
 *
 | 
						|
 * The resulting memory area is zeroed so it can be mapped to userspace
 | 
						|
 * without leaking data.
 | 
						|
 */
 | 
						|
void *vmalloc_user(unsigned long size)
 | 
						|
{
 | 
						|
	struct vm_struct *area;
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	ret = __vmalloc_node(size, SHMLBA,
 | 
						|
			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 | 
						|
			     PAGE_KERNEL, -1, __builtin_return_address(0));
 | 
						|
	if (ret) {
 | 
						|
		area = find_vm_area(ret);
 | 
						|
		area->flags |= VM_USERMAP;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc_user);
 | 
						|
 | 
						|
/**
 | 
						|
 *	vmalloc_node  -  allocate memory on a specific node
 | 
						|
 *	@size:		allocation size
 | 
						|
 *	@node:		numa node
 | 
						|
 *
 | 
						|
 *	Allocate enough pages to cover @size from the page level
 | 
						|
 *	allocator and map them into contiguous kernel virtual space.
 | 
						|
 *
 | 
						|
 *	For tight control over page level allocator and protection flags
 | 
						|
 *	use __vmalloc() instead.
 | 
						|
 */
 | 
						|
void *vmalloc_node(unsigned long size, int node)
 | 
						|
{
 | 
						|
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
 | 
						|
					node, __builtin_return_address(0));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc_node);
 | 
						|
 | 
						|
/**
 | 
						|
 * vzalloc_node - allocate memory on a specific node with zero fill
 | 
						|
 * @size:	allocation size
 | 
						|
 * @node:	numa node
 | 
						|
 *
 | 
						|
 * Allocate enough pages to cover @size from the page level
 | 
						|
 * allocator and map them into contiguous kernel virtual space.
 | 
						|
 * The memory allocated is set to zero.
 | 
						|
 *
 | 
						|
 * For tight control over page level allocator and protection flags
 | 
						|
 * use __vmalloc_node() instead.
 | 
						|
 */
 | 
						|
void *vzalloc_node(unsigned long size, int node)
 | 
						|
{
 | 
						|
	return __vmalloc_node_flags(size, node,
 | 
						|
			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vzalloc_node);
 | 
						|
 | 
						|
#ifndef PAGE_KERNEL_EXEC
 | 
						|
# define PAGE_KERNEL_EXEC PAGE_KERNEL
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 | 
						|
 *	@size:		allocation size
 | 
						|
 *
 | 
						|
 *	Kernel-internal function to allocate enough pages to cover @size
 | 
						|
 *	the page level allocator and map them into contiguous and
 | 
						|
 *	executable kernel virtual space.
 | 
						|
 *
 | 
						|
 *	For tight control over page level allocator and protection flags
 | 
						|
 *	use __vmalloc() instead.
 | 
						|
 */
 | 
						|
 | 
						|
void *vmalloc_exec(unsigned long size)
 | 
						|
{
 | 
						|
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
 | 
						|
			      -1, __builtin_return_address(0));
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
 | 
						|
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
 | 
						|
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
 | 
						|
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
 | 
						|
#else
 | 
						|
#define GFP_VMALLOC32 GFP_KERNEL
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 | 
						|
 *	@size:		allocation size
 | 
						|
 *
 | 
						|
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 | 
						|
 *	page level allocator and map them into contiguous kernel virtual space.
 | 
						|
 */
 | 
						|
void *vmalloc_32(unsigned long size)
 | 
						|
{
 | 
						|
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
 | 
						|
			      -1, __builtin_return_address(0));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc_32);
 | 
						|
 | 
						|
/**
 | 
						|
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 | 
						|
 *	@size:		allocation size
 | 
						|
 *
 | 
						|
 * The resulting memory area is 32bit addressable and zeroed so it can be
 | 
						|
 * mapped to userspace without leaking data.
 | 
						|
 */
 | 
						|
void *vmalloc_32_user(unsigned long size)
 | 
						|
{
 | 
						|
	struct vm_struct *area;
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
 | 
						|
			     -1, __builtin_return_address(0));
 | 
						|
	if (ret) {
 | 
						|
		area = find_vm_area(ret);
 | 
						|
		area->flags |= VM_USERMAP;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmalloc_32_user);
 | 
						|
 | 
						|
/*
 | 
						|
 * small helper routine , copy contents to buf from addr.
 | 
						|
 * If the page is not present, fill zero.
 | 
						|
 */
 | 
						|
 | 
						|
static int aligned_vread(char *buf, char *addr, unsigned long count)
 | 
						|
{
 | 
						|
	struct page *p;
 | 
						|
	int copied = 0;
 | 
						|
 | 
						|
	while (count) {
 | 
						|
		unsigned long offset, length;
 | 
						|
 | 
						|
		offset = (unsigned long)addr & ~PAGE_MASK;
 | 
						|
		length = PAGE_SIZE - offset;
 | 
						|
		if (length > count)
 | 
						|
			length = count;
 | 
						|
		p = vmalloc_to_page(addr);
 | 
						|
		/*
 | 
						|
		 * To do safe access to this _mapped_ area, we need
 | 
						|
		 * lock. But adding lock here means that we need to add
 | 
						|
		 * overhead of vmalloc()/vfree() calles for this _debug_
 | 
						|
		 * interface, rarely used. Instead of that, we'll use
 | 
						|
		 * kmap() and get small overhead in this access function.
 | 
						|
		 */
 | 
						|
		if (p) {
 | 
						|
			/*
 | 
						|
			 * we can expect USER0 is not used (see vread/vwrite's
 | 
						|
			 * function description)
 | 
						|
			 */
 | 
						|
			void *map = kmap_atomic(p);
 | 
						|
			memcpy(buf, map + offset, length);
 | 
						|
			kunmap_atomic(map);
 | 
						|
		} else
 | 
						|
			memset(buf, 0, length);
 | 
						|
 | 
						|
		addr += length;
 | 
						|
		buf += length;
 | 
						|
		copied += length;
 | 
						|
		count -= length;
 | 
						|
	}
 | 
						|
	return copied;
 | 
						|
}
 | 
						|
 | 
						|
static int aligned_vwrite(char *buf, char *addr, unsigned long count)
 | 
						|
{
 | 
						|
	struct page *p;
 | 
						|
	int copied = 0;
 | 
						|
 | 
						|
	while (count) {
 | 
						|
		unsigned long offset, length;
 | 
						|
 | 
						|
		offset = (unsigned long)addr & ~PAGE_MASK;
 | 
						|
		length = PAGE_SIZE - offset;
 | 
						|
		if (length > count)
 | 
						|
			length = count;
 | 
						|
		p = vmalloc_to_page(addr);
 | 
						|
		/*
 | 
						|
		 * To do safe access to this _mapped_ area, we need
 | 
						|
		 * lock. But adding lock here means that we need to add
 | 
						|
		 * overhead of vmalloc()/vfree() calles for this _debug_
 | 
						|
		 * interface, rarely used. Instead of that, we'll use
 | 
						|
		 * kmap() and get small overhead in this access function.
 | 
						|
		 */
 | 
						|
		if (p) {
 | 
						|
			/*
 | 
						|
			 * we can expect USER0 is not used (see vread/vwrite's
 | 
						|
			 * function description)
 | 
						|
			 */
 | 
						|
			void *map = kmap_atomic(p);
 | 
						|
			memcpy(map + offset, buf, length);
 | 
						|
			kunmap_atomic(map);
 | 
						|
		}
 | 
						|
		addr += length;
 | 
						|
		buf += length;
 | 
						|
		copied += length;
 | 
						|
		count -= length;
 | 
						|
	}
 | 
						|
	return copied;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	vread() -  read vmalloc area in a safe way.
 | 
						|
 *	@buf:		buffer for reading data
 | 
						|
 *	@addr:		vm address.
 | 
						|
 *	@count:		number of bytes to be read.
 | 
						|
 *
 | 
						|
 *	Returns # of bytes which addr and buf should be increased.
 | 
						|
 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 | 
						|
 *	includes any intersect with alive vmalloc area.
 | 
						|
 *
 | 
						|
 *	This function checks that addr is a valid vmalloc'ed area, and
 | 
						|
 *	copy data from that area to a given buffer. If the given memory range
 | 
						|
 *	of [addr...addr+count) includes some valid address, data is copied to
 | 
						|
 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 | 
						|
 *	IOREMAP area is treated as memory hole and no copy is done.
 | 
						|
 *
 | 
						|
 *	If [addr...addr+count) doesn't includes any intersects with alive
 | 
						|
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
 | 
						|
 *
 | 
						|
 *	Note: In usual ops, vread() is never necessary because the caller
 | 
						|
 *	should know vmalloc() area is valid and can use memcpy().
 | 
						|
 *	This is for routines which have to access vmalloc area without
 | 
						|
 *	any informaion, as /dev/kmem.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
long vread(char *buf, char *addr, unsigned long count)
 | 
						|
{
 | 
						|
	struct vm_struct *tmp;
 | 
						|
	char *vaddr, *buf_start = buf;
 | 
						|
	unsigned long buflen = count;
 | 
						|
	unsigned long n;
 | 
						|
 | 
						|
	/* Don't allow overflow */
 | 
						|
	if ((unsigned long) addr + count < count)
 | 
						|
		count = -(unsigned long) addr;
 | 
						|
 | 
						|
	read_lock(&vmlist_lock);
 | 
						|
	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
 | 
						|
		vaddr = (char *) tmp->addr;
 | 
						|
		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 | 
						|
			continue;
 | 
						|
		while (addr < vaddr) {
 | 
						|
			if (count == 0)
 | 
						|
				goto finished;
 | 
						|
			*buf = '\0';
 | 
						|
			buf++;
 | 
						|
			addr++;
 | 
						|
			count--;
 | 
						|
		}
 | 
						|
		n = vaddr + tmp->size - PAGE_SIZE - addr;
 | 
						|
		if (n > count)
 | 
						|
			n = count;
 | 
						|
		if (!(tmp->flags & VM_IOREMAP))
 | 
						|
			aligned_vread(buf, addr, n);
 | 
						|
		else /* IOREMAP area is treated as memory hole */
 | 
						|
			memset(buf, 0, n);
 | 
						|
		buf += n;
 | 
						|
		addr += n;
 | 
						|
		count -= n;
 | 
						|
	}
 | 
						|
finished:
 | 
						|
	read_unlock(&vmlist_lock);
 | 
						|
 | 
						|
	if (buf == buf_start)
 | 
						|
		return 0;
 | 
						|
	/* zero-fill memory holes */
 | 
						|
	if (buf != buf_start + buflen)
 | 
						|
		memset(buf, 0, buflen - (buf - buf_start));
 | 
						|
 | 
						|
	return buflen;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	vwrite() -  write vmalloc area in a safe way.
 | 
						|
 *	@buf:		buffer for source data
 | 
						|
 *	@addr:		vm address.
 | 
						|
 *	@count:		number of bytes to be read.
 | 
						|
 *
 | 
						|
 *	Returns # of bytes which addr and buf should be incresed.
 | 
						|
 *	(same number to @count).
 | 
						|
 *	If [addr...addr+count) doesn't includes any intersect with valid
 | 
						|
 *	vmalloc area, returns 0.
 | 
						|
 *
 | 
						|
 *	This function checks that addr is a valid vmalloc'ed area, and
 | 
						|
 *	copy data from a buffer to the given addr. If specified range of
 | 
						|
 *	[addr...addr+count) includes some valid address, data is copied from
 | 
						|
 *	proper area of @buf. If there are memory holes, no copy to hole.
 | 
						|
 *	IOREMAP area is treated as memory hole and no copy is done.
 | 
						|
 *
 | 
						|
 *	If [addr...addr+count) doesn't includes any intersects with alive
 | 
						|
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
 | 
						|
 *
 | 
						|
 *	Note: In usual ops, vwrite() is never necessary because the caller
 | 
						|
 *	should know vmalloc() area is valid and can use memcpy().
 | 
						|
 *	This is for routines which have to access vmalloc area without
 | 
						|
 *	any informaion, as /dev/kmem.
 | 
						|
 */
 | 
						|
 | 
						|
long vwrite(char *buf, char *addr, unsigned long count)
 | 
						|
{
 | 
						|
	struct vm_struct *tmp;
 | 
						|
	char *vaddr;
 | 
						|
	unsigned long n, buflen;
 | 
						|
	int copied = 0;
 | 
						|
 | 
						|
	/* Don't allow overflow */
 | 
						|
	if ((unsigned long) addr + count < count)
 | 
						|
		count = -(unsigned long) addr;
 | 
						|
	buflen = count;
 | 
						|
 | 
						|
	read_lock(&vmlist_lock);
 | 
						|
	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
 | 
						|
		vaddr = (char *) tmp->addr;
 | 
						|
		if (addr >= vaddr + tmp->size - PAGE_SIZE)
 | 
						|
			continue;
 | 
						|
		while (addr < vaddr) {
 | 
						|
			if (count == 0)
 | 
						|
				goto finished;
 | 
						|
			buf++;
 | 
						|
			addr++;
 | 
						|
			count--;
 | 
						|
		}
 | 
						|
		n = vaddr + tmp->size - PAGE_SIZE - addr;
 | 
						|
		if (n > count)
 | 
						|
			n = count;
 | 
						|
		if (!(tmp->flags & VM_IOREMAP)) {
 | 
						|
			aligned_vwrite(buf, addr, n);
 | 
						|
			copied++;
 | 
						|
		}
 | 
						|
		buf += n;
 | 
						|
		addr += n;
 | 
						|
		count -= n;
 | 
						|
	}
 | 
						|
finished:
 | 
						|
	read_unlock(&vmlist_lock);
 | 
						|
	if (!copied)
 | 
						|
		return 0;
 | 
						|
	return buflen;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 | 
						|
 *	@vma:		vma to cover (map full range of vma)
 | 
						|
 *	@addr:		vmalloc memory
 | 
						|
 *	@pgoff:		number of pages into addr before first page to map
 | 
						|
 *
 | 
						|
 *	Returns:	0 for success, -Exxx on failure
 | 
						|
 *
 | 
						|
 *	This function checks that addr is a valid vmalloc'ed area, and
 | 
						|
 *	that it is big enough to cover the vma. Will return failure if
 | 
						|
 *	that criteria isn't met.
 | 
						|
 *
 | 
						|
 *	Similar to remap_pfn_range() (see mm/memory.c)
 | 
						|
 */
 | 
						|
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
 | 
						|
						unsigned long pgoff)
 | 
						|
{
 | 
						|
	struct vm_struct *area;
 | 
						|
	unsigned long uaddr = vma->vm_start;
 | 
						|
	unsigned long usize = vma->vm_end - vma->vm_start;
 | 
						|
 | 
						|
	if ((PAGE_SIZE-1) & (unsigned long)addr)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	area = find_vm_area(addr);
 | 
						|
	if (!area)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!(area->flags & VM_USERMAP))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	addr += pgoff << PAGE_SHIFT;
 | 
						|
	do {
 | 
						|
		struct page *page = vmalloc_to_page(addr);
 | 
						|
		int ret;
 | 
						|
 | 
						|
		ret = vm_insert_page(vma, uaddr, page);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		uaddr += PAGE_SIZE;
 | 
						|
		addr += PAGE_SIZE;
 | 
						|
		usize -= PAGE_SIZE;
 | 
						|
	} while (usize > 0);
 | 
						|
 | 
						|
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(remap_vmalloc_range);
 | 
						|
 | 
						|
/*
 | 
						|
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 | 
						|
 * have one.
 | 
						|
 */
 | 
						|
void  __attribute__((weak)) vmalloc_sync_all(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
 | 
						|
{
 | 
						|
	pte_t ***p = data;
 | 
						|
 | 
						|
	if (p) {
 | 
						|
		*(*p) = pte;
 | 
						|
		(*p)++;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 *	alloc_vm_area - allocate a range of kernel address space
 | 
						|
 *	@size:		size of the area
 | 
						|
 *	@ptes:		returns the PTEs for the address space
 | 
						|
 *
 | 
						|
 *	Returns:	NULL on failure, vm_struct on success
 | 
						|
 *
 | 
						|
 *	This function reserves a range of kernel address space, and
 | 
						|
 *	allocates pagetables to map that range.  No actual mappings
 | 
						|
 *	are created.
 | 
						|
 *
 | 
						|
 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 | 
						|
 *	allocated for the VM area are returned.
 | 
						|
 */
 | 
						|
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 | 
						|
{
 | 
						|
	struct vm_struct *area;
 | 
						|
 | 
						|
	area = get_vm_area_caller(size, VM_IOREMAP,
 | 
						|
				__builtin_return_address(0));
 | 
						|
	if (area == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This ensures that page tables are constructed for this region
 | 
						|
	 * of kernel virtual address space and mapped into init_mm.
 | 
						|
	 */
 | 
						|
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
 | 
						|
				size, f, ptes ? &ptes : NULL)) {
 | 
						|
		free_vm_area(area);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return area;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(alloc_vm_area);
 | 
						|
 | 
						|
void free_vm_area(struct vm_struct *area)
 | 
						|
{
 | 
						|
	struct vm_struct *ret;
 | 
						|
	ret = remove_vm_area(area->addr);
 | 
						|
	BUG_ON(ret != area);
 | 
						|
	kfree(area);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(free_vm_area);
 | 
						|
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
static struct vmap_area *node_to_va(struct rb_node *n)
 | 
						|
{
 | 
						|
	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 | 
						|
 * @end: target address
 | 
						|
 * @pnext: out arg for the next vmap_area
 | 
						|
 * @pprev: out arg for the previous vmap_area
 | 
						|
 *
 | 
						|
 * Returns: %true if either or both of next and prev are found,
 | 
						|
 *	    %false if no vmap_area exists
 | 
						|
 *
 | 
						|
 * Find vmap_areas end addresses of which enclose @end.  ie. if not
 | 
						|
 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 | 
						|
 */
 | 
						|
static bool pvm_find_next_prev(unsigned long end,
 | 
						|
			       struct vmap_area **pnext,
 | 
						|
			       struct vmap_area **pprev)
 | 
						|
{
 | 
						|
	struct rb_node *n = vmap_area_root.rb_node;
 | 
						|
	struct vmap_area *va = NULL;
 | 
						|
 | 
						|
	while (n) {
 | 
						|
		va = rb_entry(n, struct vmap_area, rb_node);
 | 
						|
		if (end < va->va_end)
 | 
						|
			n = n->rb_left;
 | 
						|
		else if (end > va->va_end)
 | 
						|
			n = n->rb_right;
 | 
						|
		else
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!va)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (va->va_end > end) {
 | 
						|
		*pnext = va;
 | 
						|
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
 | 
						|
	} else {
 | 
						|
		*pprev = va;
 | 
						|
		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
 | 
						|
	}
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pvm_determine_end - find the highest aligned address between two vmap_areas
 | 
						|
 * @pnext: in/out arg for the next vmap_area
 | 
						|
 * @pprev: in/out arg for the previous vmap_area
 | 
						|
 * @align: alignment
 | 
						|
 *
 | 
						|
 * Returns: determined end address
 | 
						|
 *
 | 
						|
 * Find the highest aligned address between *@pnext and *@pprev below
 | 
						|
 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 | 
						|
 * down address is between the end addresses of the two vmap_areas.
 | 
						|
 *
 | 
						|
 * Please note that the address returned by this function may fall
 | 
						|
 * inside *@pnext vmap_area.  The caller is responsible for checking
 | 
						|
 * that.
 | 
						|
 */
 | 
						|
static unsigned long pvm_determine_end(struct vmap_area **pnext,
 | 
						|
				       struct vmap_area **pprev,
 | 
						|
				       unsigned long align)
 | 
						|
{
 | 
						|
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | 
						|
	unsigned long addr;
 | 
						|
 | 
						|
	if (*pnext)
 | 
						|
		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
 | 
						|
	else
 | 
						|
		addr = vmalloc_end;
 | 
						|
 | 
						|
	while (*pprev && (*pprev)->va_end > addr) {
 | 
						|
		*pnext = *pprev;
 | 
						|
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
 | 
						|
	}
 | 
						|
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 | 
						|
 * @offsets: array containing offset of each area
 | 
						|
 * @sizes: array containing size of each area
 | 
						|
 * @nr_vms: the number of areas to allocate
 | 
						|
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 | 
						|
 *
 | 
						|
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 | 
						|
 *	    vm_structs on success, %NULL on failure
 | 
						|
 *
 | 
						|
 * Percpu allocator wants to use congruent vm areas so that it can
 | 
						|
 * maintain the offsets among percpu areas.  This function allocates
 | 
						|
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 | 
						|
 * be scattered pretty far, distance between two areas easily going up
 | 
						|
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 | 
						|
 * areas are allocated from top.
 | 
						|
 *
 | 
						|
 * Despite its complicated look, this allocator is rather simple.  It
 | 
						|
 * does everything top-down and scans areas from the end looking for
 | 
						|
 * matching slot.  While scanning, if any of the areas overlaps with
 | 
						|
 * existing vmap_area, the base address is pulled down to fit the
 | 
						|
 * area.  Scanning is repeated till all the areas fit and then all
 | 
						|
 * necessary data structres are inserted and the result is returned.
 | 
						|
 */
 | 
						|
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
 | 
						|
				     const size_t *sizes, int nr_vms,
 | 
						|
				     size_t align)
 | 
						|
{
 | 
						|
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
 | 
						|
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | 
						|
	struct vmap_area **vas, *prev, *next;
 | 
						|
	struct vm_struct **vms;
 | 
						|
	int area, area2, last_area, term_area;
 | 
						|
	unsigned long base, start, end, last_end;
 | 
						|
	bool purged = false;
 | 
						|
 | 
						|
	/* verify parameters and allocate data structures */
 | 
						|
	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
 | 
						|
	for (last_area = 0, area = 0; area < nr_vms; area++) {
 | 
						|
		start = offsets[area];
 | 
						|
		end = start + sizes[area];
 | 
						|
 | 
						|
		/* is everything aligned properly? */
 | 
						|
		BUG_ON(!IS_ALIGNED(offsets[area], align));
 | 
						|
		BUG_ON(!IS_ALIGNED(sizes[area], align));
 | 
						|
 | 
						|
		/* detect the area with the highest address */
 | 
						|
		if (start > offsets[last_area])
 | 
						|
			last_area = area;
 | 
						|
 | 
						|
		for (area2 = 0; area2 < nr_vms; area2++) {
 | 
						|
			unsigned long start2 = offsets[area2];
 | 
						|
			unsigned long end2 = start2 + sizes[area2];
 | 
						|
 | 
						|
			if (area2 == area)
 | 
						|
				continue;
 | 
						|
 | 
						|
			BUG_ON(start2 >= start && start2 < end);
 | 
						|
			BUG_ON(end2 <= end && end2 > start);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	last_end = offsets[last_area] + sizes[last_area];
 | 
						|
 | 
						|
	if (vmalloc_end - vmalloc_start < last_end) {
 | 
						|
		WARN_ON(true);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
 | 
						|
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
 | 
						|
	if (!vas || !vms)
 | 
						|
		goto err_free2;
 | 
						|
 | 
						|
	for (area = 0; area < nr_vms; area++) {
 | 
						|
		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
 | 
						|
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
 | 
						|
		if (!vas[area] || !vms[area])
 | 
						|
			goto err_free;
 | 
						|
	}
 | 
						|
retry:
 | 
						|
	spin_lock(&vmap_area_lock);
 | 
						|
 | 
						|
	/* start scanning - we scan from the top, begin with the last area */
 | 
						|
	area = term_area = last_area;
 | 
						|
	start = offsets[area];
 | 
						|
	end = start + sizes[area];
 | 
						|
 | 
						|
	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
 | 
						|
		base = vmalloc_end - last_end;
 | 
						|
		goto found;
 | 
						|
	}
 | 
						|
	base = pvm_determine_end(&next, &prev, align) - end;
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		BUG_ON(next && next->va_end <= base + end);
 | 
						|
		BUG_ON(prev && prev->va_end > base + end);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * base might have underflowed, add last_end before
 | 
						|
		 * comparing.
 | 
						|
		 */
 | 
						|
		if (base + last_end < vmalloc_start + last_end) {
 | 
						|
			spin_unlock(&vmap_area_lock);
 | 
						|
			if (!purged) {
 | 
						|
				purge_vmap_area_lazy();
 | 
						|
				purged = true;
 | 
						|
				goto retry;
 | 
						|
			}
 | 
						|
			goto err_free;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If next overlaps, move base downwards so that it's
 | 
						|
		 * right below next and then recheck.
 | 
						|
		 */
 | 
						|
		if (next && next->va_start < base + end) {
 | 
						|
			base = pvm_determine_end(&next, &prev, align) - end;
 | 
						|
			term_area = area;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If prev overlaps, shift down next and prev and move
 | 
						|
		 * base so that it's right below new next and then
 | 
						|
		 * recheck.
 | 
						|
		 */
 | 
						|
		if (prev && prev->va_end > base + start)  {
 | 
						|
			next = prev;
 | 
						|
			prev = node_to_va(rb_prev(&next->rb_node));
 | 
						|
			base = pvm_determine_end(&next, &prev, align) - end;
 | 
						|
			term_area = area;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * This area fits, move on to the previous one.  If
 | 
						|
		 * the previous one is the terminal one, we're done.
 | 
						|
		 */
 | 
						|
		area = (area + nr_vms - 1) % nr_vms;
 | 
						|
		if (area == term_area)
 | 
						|
			break;
 | 
						|
		start = offsets[area];
 | 
						|
		end = start + sizes[area];
 | 
						|
		pvm_find_next_prev(base + end, &next, &prev);
 | 
						|
	}
 | 
						|
found:
 | 
						|
	/* we've found a fitting base, insert all va's */
 | 
						|
	for (area = 0; area < nr_vms; area++) {
 | 
						|
		struct vmap_area *va = vas[area];
 | 
						|
 | 
						|
		va->va_start = base + offsets[area];
 | 
						|
		va->va_end = va->va_start + sizes[area];
 | 
						|
		__insert_vmap_area(va);
 | 
						|
	}
 | 
						|
 | 
						|
	vmap_area_pcpu_hole = base + offsets[last_area];
 | 
						|
 | 
						|
	spin_unlock(&vmap_area_lock);
 | 
						|
 | 
						|
	/* insert all vm's */
 | 
						|
	for (area = 0; area < nr_vms; area++)
 | 
						|
		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
 | 
						|
				  pcpu_get_vm_areas);
 | 
						|
 | 
						|
	kfree(vas);
 | 
						|
	return vms;
 | 
						|
 | 
						|
err_free:
 | 
						|
	for (area = 0; area < nr_vms; area++) {
 | 
						|
		kfree(vas[area]);
 | 
						|
		kfree(vms[area]);
 | 
						|
	}
 | 
						|
err_free2:
 | 
						|
	kfree(vas);
 | 
						|
	kfree(vms);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 | 
						|
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 | 
						|
 * @nr_vms: the number of allocated areas
 | 
						|
 *
 | 
						|
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 | 
						|
 */
 | 
						|
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < nr_vms; i++)
 | 
						|
		free_vm_area(vms[i]);
 | 
						|
	kfree(vms);
 | 
						|
}
 | 
						|
#endif	/* CONFIG_SMP */
 | 
						|
 | 
						|
#ifdef CONFIG_PROC_FS
 | 
						|
static void *s_start(struct seq_file *m, loff_t *pos)
 | 
						|
	__acquires(&vmlist_lock)
 | 
						|
{
 | 
						|
	loff_t n = *pos;
 | 
						|
	struct vm_struct *v;
 | 
						|
 | 
						|
	read_lock(&vmlist_lock);
 | 
						|
	v = vmlist;
 | 
						|
	while (n > 0 && v) {
 | 
						|
		n--;
 | 
						|
		v = v->next;
 | 
						|
	}
 | 
						|
	if (!n)
 | 
						|
		return v;
 | 
						|
 | 
						|
	return NULL;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
 | 
						|
{
 | 
						|
	struct vm_struct *v = p;
 | 
						|
 | 
						|
	++*pos;
 | 
						|
	return v->next;
 | 
						|
}
 | 
						|
 | 
						|
static void s_stop(struct seq_file *m, void *p)
 | 
						|
	__releases(&vmlist_lock)
 | 
						|
{
 | 
						|
	read_unlock(&vmlist_lock);
 | 
						|
}
 | 
						|
 | 
						|
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
 | 
						|
{
 | 
						|
	if (IS_ENABLED(CONFIG_NUMA)) {
 | 
						|
		unsigned int nr, *counters = m->private;
 | 
						|
 | 
						|
		if (!counters)
 | 
						|
			return;
 | 
						|
 | 
						|
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
 | 
						|
 | 
						|
		for (nr = 0; nr < v->nr_pages; nr++)
 | 
						|
			counters[page_to_nid(v->pages[nr])]++;
 | 
						|
 | 
						|
		for_each_node_state(nr, N_HIGH_MEMORY)
 | 
						|
			if (counters[nr])
 | 
						|
				seq_printf(m, " N%u=%u", nr, counters[nr]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int s_show(struct seq_file *m, void *p)
 | 
						|
{
 | 
						|
	struct vm_struct *v = p;
 | 
						|
 | 
						|
	seq_printf(m, "0x%pK-0x%pK %7ld",
 | 
						|
		v->addr, v->addr + v->size, v->size);
 | 
						|
 | 
						|
	if (v->caller)
 | 
						|
		seq_printf(m, " %pS", v->caller);
 | 
						|
 | 
						|
	if (v->nr_pages)
 | 
						|
		seq_printf(m, " pages=%d", v->nr_pages);
 | 
						|
 | 
						|
	if (v->phys_addr)
 | 
						|
		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
 | 
						|
 | 
						|
	if (v->flags & VM_IOREMAP)
 | 
						|
		seq_printf(m, " ioremap");
 | 
						|
 | 
						|
	if (v->flags & VM_ALLOC)
 | 
						|
		seq_printf(m, " vmalloc");
 | 
						|
 | 
						|
	if (v->flags & VM_MAP)
 | 
						|
		seq_printf(m, " vmap");
 | 
						|
 | 
						|
	if (v->flags & VM_USERMAP)
 | 
						|
		seq_printf(m, " user");
 | 
						|
 | 
						|
	if (v->flags & VM_VPAGES)
 | 
						|
		seq_printf(m, " vpages");
 | 
						|
 | 
						|
	show_numa_info(m, v);
 | 
						|
	seq_putc(m, '\n');
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct seq_operations vmalloc_op = {
 | 
						|
	.start = s_start,
 | 
						|
	.next = s_next,
 | 
						|
	.stop = s_stop,
 | 
						|
	.show = s_show,
 | 
						|
};
 | 
						|
 | 
						|
static int vmalloc_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	unsigned int *ptr = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_NUMA)) {
 | 
						|
		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
 | 
						|
		if (ptr == NULL)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
	ret = seq_open(file, &vmalloc_op);
 | 
						|
	if (!ret) {
 | 
						|
		struct seq_file *m = file->private_data;
 | 
						|
		m->private = ptr;
 | 
						|
	} else
 | 
						|
		kfree(ptr);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations proc_vmalloc_operations = {
 | 
						|
	.open		= vmalloc_open,
 | 
						|
	.read		= seq_read,
 | 
						|
	.llseek		= seq_lseek,
 | 
						|
	.release	= seq_release_private,
 | 
						|
};
 | 
						|
 | 
						|
static int __init proc_vmalloc_init(void)
 | 
						|
{
 | 
						|
	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
module_init(proc_vmalloc_init);
 | 
						|
#endif
 | 
						|
 |