Sync up with Linus' tree to be able to apply Cesar's patch against newer version of the code. Signed-off-by: Jiri Kosina <jkosina@suse.cz>
		
			
				
	
	
		
			387 lines
		
	
	
	
		
			9.1 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			387 lines
		
	
	
	
		
			9.1 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/kmem.h>
 | 
						|
 | 
						|
/**
 | 
						|
 * kstrdup - allocate space for and copy an existing string
 | 
						|
 * @s: the string to duplicate
 | 
						|
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | 
						|
 */
 | 
						|
char *kstrdup(const char *s, gfp_t gfp)
 | 
						|
{
 | 
						|
	size_t len;
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	if (!s)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	len = strlen(s) + 1;
 | 
						|
	buf = kmalloc_track_caller(len, gfp);
 | 
						|
	if (buf)
 | 
						|
		memcpy(buf, s, len);
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kstrdup);
 | 
						|
 | 
						|
/**
 | 
						|
 * kstrndup - allocate space for and copy an existing string
 | 
						|
 * @s: the string to duplicate
 | 
						|
 * @max: read at most @max chars from @s
 | 
						|
 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | 
						|
 */
 | 
						|
char *kstrndup(const char *s, size_t max, gfp_t gfp)
 | 
						|
{
 | 
						|
	size_t len;
 | 
						|
	char *buf;
 | 
						|
 | 
						|
	if (!s)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	len = strnlen(s, max);
 | 
						|
	buf = kmalloc_track_caller(len+1, gfp);
 | 
						|
	if (buf) {
 | 
						|
		memcpy(buf, s, len);
 | 
						|
		buf[len] = '\0';
 | 
						|
	}
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kstrndup);
 | 
						|
 | 
						|
/**
 | 
						|
 * kmemdup - duplicate region of memory
 | 
						|
 *
 | 
						|
 * @src: memory region to duplicate
 | 
						|
 * @len: memory region length
 | 
						|
 * @gfp: GFP mask to use
 | 
						|
 */
 | 
						|
void *kmemdup(const void *src, size_t len, gfp_t gfp)
 | 
						|
{
 | 
						|
	void *p;
 | 
						|
 | 
						|
	p = kmalloc_track_caller(len, gfp);
 | 
						|
	if (p)
 | 
						|
		memcpy(p, src, len);
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kmemdup);
 | 
						|
 | 
						|
/**
 | 
						|
 * memdup_user - duplicate memory region from user space
 | 
						|
 *
 | 
						|
 * @src: source address in user space
 | 
						|
 * @len: number of bytes to copy
 | 
						|
 *
 | 
						|
 * Returns an ERR_PTR() on failure.
 | 
						|
 */
 | 
						|
void *memdup_user(const void __user *src, size_t len)
 | 
						|
{
 | 
						|
	void *p;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 | 
						|
	 * cause pagefault, which makes it pointless to use GFP_NOFS
 | 
						|
	 * or GFP_ATOMIC.
 | 
						|
	 */
 | 
						|
	p = kmalloc_track_caller(len, GFP_KERNEL);
 | 
						|
	if (!p)
 | 
						|
		return ERR_PTR(-ENOMEM);
 | 
						|
 | 
						|
	if (copy_from_user(p, src, len)) {
 | 
						|
		kfree(p);
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
	}
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(memdup_user);
 | 
						|
 | 
						|
static __always_inline void *__do_krealloc(const void *p, size_t new_size,
 | 
						|
					   gfp_t flags)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
	size_t ks = 0;
 | 
						|
 | 
						|
	if (p)
 | 
						|
		ks = ksize(p);
 | 
						|
 | 
						|
	if (ks >= new_size)
 | 
						|
		return (void *)p;
 | 
						|
 | 
						|
	ret = kmalloc_track_caller(new_size, flags);
 | 
						|
	if (ret && p)
 | 
						|
		memcpy(ret, p, ks);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __krealloc - like krealloc() but don't free @p.
 | 
						|
 * @p: object to reallocate memory for.
 | 
						|
 * @new_size: how many bytes of memory are required.
 | 
						|
 * @flags: the type of memory to allocate.
 | 
						|
 *
 | 
						|
 * This function is like krealloc() except it never frees the originally
 | 
						|
 * allocated buffer. Use this if you don't want to free the buffer immediately
 | 
						|
 * like, for example, with RCU.
 | 
						|
 */
 | 
						|
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
 | 
						|
{
 | 
						|
	if (unlikely(!new_size))
 | 
						|
		return ZERO_SIZE_PTR;
 | 
						|
 | 
						|
	return __do_krealloc(p, new_size, flags);
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__krealloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * krealloc - reallocate memory. The contents will remain unchanged.
 | 
						|
 * @p: object to reallocate memory for.
 | 
						|
 * @new_size: how many bytes of memory are required.
 | 
						|
 * @flags: the type of memory to allocate.
 | 
						|
 *
 | 
						|
 * The contents of the object pointed to are preserved up to the
 | 
						|
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 | 
						|
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 | 
						|
 * %NULL pointer, the object pointed to is freed.
 | 
						|
 */
 | 
						|
void *krealloc(const void *p, size_t new_size, gfp_t flags)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	if (unlikely(!new_size)) {
 | 
						|
		kfree(p);
 | 
						|
		return ZERO_SIZE_PTR;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = __do_krealloc(p, new_size, flags);
 | 
						|
	if (ret && p != ret)
 | 
						|
		kfree(p);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(krealloc);
 | 
						|
 | 
						|
/**
 | 
						|
 * kzfree - like kfree but zero memory
 | 
						|
 * @p: object to free memory of
 | 
						|
 *
 | 
						|
 * The memory of the object @p points to is zeroed before freed.
 | 
						|
 * If @p is %NULL, kzfree() does nothing.
 | 
						|
 *
 | 
						|
 * Note: this function zeroes the whole allocated buffer which can be a good
 | 
						|
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 | 
						|
 * careful when using this function in performance sensitive code.
 | 
						|
 */
 | 
						|
void kzfree(const void *p)
 | 
						|
{
 | 
						|
	size_t ks;
 | 
						|
	void *mem = (void *)p;
 | 
						|
 | 
						|
	if (unlikely(ZERO_OR_NULL_PTR(mem)))
 | 
						|
		return;
 | 
						|
	ks = ksize(mem);
 | 
						|
	memset(mem, 0, ks);
 | 
						|
	kfree(mem);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kzfree);
 | 
						|
 | 
						|
/*
 | 
						|
 * strndup_user - duplicate an existing string from user space
 | 
						|
 * @s: The string to duplicate
 | 
						|
 * @n: Maximum number of bytes to copy, including the trailing NUL.
 | 
						|
 */
 | 
						|
char *strndup_user(const char __user *s, long n)
 | 
						|
{
 | 
						|
	char *p;
 | 
						|
	long length;
 | 
						|
 | 
						|
	length = strnlen_user(s, n);
 | 
						|
 | 
						|
	if (!length)
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
 | 
						|
	if (length > n)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	p = memdup_user(s, length);
 | 
						|
 | 
						|
	if (IS_ERR(p))
 | 
						|
		return p;
 | 
						|
 | 
						|
	p[length - 1] = '\0';
 | 
						|
 | 
						|
	return p;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(strndup_user);
 | 
						|
 | 
						|
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 | 
						|
		struct vm_area_struct *prev, struct rb_node *rb_parent)
 | 
						|
{
 | 
						|
	struct vm_area_struct *next;
 | 
						|
 | 
						|
	vma->vm_prev = prev;
 | 
						|
	if (prev) {
 | 
						|
		next = prev->vm_next;
 | 
						|
		prev->vm_next = vma;
 | 
						|
	} else {
 | 
						|
		mm->mmap = vma;
 | 
						|
		if (rb_parent)
 | 
						|
			next = rb_entry(rb_parent,
 | 
						|
					struct vm_area_struct, vm_rb);
 | 
						|
		else
 | 
						|
			next = NULL;
 | 
						|
	}
 | 
						|
	vma->vm_next = next;
 | 
						|
	if (next)
 | 
						|
		next->vm_prev = vma;
 | 
						|
}
 | 
						|
 | 
						|
/* Check if the vma is being used as a stack by this task */
 | 
						|
static int vm_is_stack_for_task(struct task_struct *t,
 | 
						|
				struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if the vma is being used as a stack.
 | 
						|
 * If is_group is non-zero, check in the entire thread group or else
 | 
						|
 * just check in the current task. Returns the pid of the task that
 | 
						|
 * the vma is stack for.
 | 
						|
 */
 | 
						|
pid_t vm_is_stack(struct task_struct *task,
 | 
						|
		  struct vm_area_struct *vma, int in_group)
 | 
						|
{
 | 
						|
	pid_t ret = 0;
 | 
						|
 | 
						|
	if (vm_is_stack_for_task(task, vma))
 | 
						|
		return task->pid;
 | 
						|
 | 
						|
	if (in_group) {
 | 
						|
		struct task_struct *t;
 | 
						|
		rcu_read_lock();
 | 
						|
		if (!pid_alive(task))
 | 
						|
			goto done;
 | 
						|
 | 
						|
		t = task;
 | 
						|
		do {
 | 
						|
			if (vm_is_stack_for_task(t, vma)) {
 | 
						|
				ret = t->pid;
 | 
						|
				goto done;
 | 
						|
			}
 | 
						|
		} while_each_thread(task, t);
 | 
						|
done:
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 | 
						|
void arch_pick_mmap_layout(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	mm->mmap_base = TASK_UNMAPPED_BASE;
 | 
						|
	mm->get_unmapped_area = arch_get_unmapped_area;
 | 
						|
	mm->unmap_area = arch_unmap_area;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 | 
						|
 * back to the regular GUP.
 | 
						|
 * If the architecture not support this function, simply return with no
 | 
						|
 * page pinned
 | 
						|
 */
 | 
						|
int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
 | 
						|
				 int nr_pages, int write, struct page **pages)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__get_user_pages_fast);
 | 
						|
 | 
						|
/**
 | 
						|
 * get_user_pages_fast() - pin user pages in memory
 | 
						|
 * @start:	starting user address
 | 
						|
 * @nr_pages:	number of pages from start to pin
 | 
						|
 * @write:	whether pages will be written to
 | 
						|
 * @pages:	array that receives pointers to the pages pinned.
 | 
						|
 *		Should be at least nr_pages long.
 | 
						|
 *
 | 
						|
 * Returns number of pages pinned. This may be fewer than the number
 | 
						|
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 | 
						|
 * were pinned, returns -errno.
 | 
						|
 *
 | 
						|
 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 | 
						|
 * operating on current and current->mm, with force=0 and vma=NULL. However
 | 
						|
 * unlike get_user_pages, it must be called without mmap_sem held.
 | 
						|
 *
 | 
						|
 * get_user_pages_fast may take mmap_sem and page table locks, so no
 | 
						|
 * assumptions can be made about lack of locking. get_user_pages_fast is to be
 | 
						|
 * implemented in a way that is advantageous (vs get_user_pages()) when the
 | 
						|
 * user memory area is already faulted in and present in ptes. However if the
 | 
						|
 * pages have to be faulted in, it may turn out to be slightly slower so
 | 
						|
 * callers need to carefully consider what to use. On many architectures,
 | 
						|
 * get_user_pages_fast simply falls back to get_user_pages.
 | 
						|
 */
 | 
						|
int __attribute__((weak)) get_user_pages_fast(unsigned long start,
 | 
						|
				int nr_pages, int write, struct page **pages)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	down_read(&mm->mmap_sem);
 | 
						|
	ret = get_user_pages(current, mm, start, nr_pages,
 | 
						|
					write, 0, pages, NULL);
 | 
						|
	up_read(&mm->mmap_sem);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_user_pages_fast);
 | 
						|
 | 
						|
unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 | 
						|
	unsigned long len, unsigned long prot,
 | 
						|
	unsigned long flag, unsigned long pgoff)
 | 
						|
{
 | 
						|
	unsigned long ret;
 | 
						|
	struct mm_struct *mm = current->mm;
 | 
						|
 | 
						|
	ret = security_mmap_file(file, prot, flag);
 | 
						|
	if (!ret) {
 | 
						|
		down_write(&mm->mmap_sem);
 | 
						|
		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff);
 | 
						|
		up_write(&mm->mmap_sem);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long vm_mmap(struct file *file, unsigned long addr,
 | 
						|
	unsigned long len, unsigned long prot,
 | 
						|
	unsigned long flag, unsigned long offset)
 | 
						|
{
 | 
						|
	if (unlikely(offset + PAGE_ALIGN(len) < offset))
 | 
						|
		return -EINVAL;
 | 
						|
	if (unlikely(offset & ~PAGE_MASK))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vm_mmap);
 | 
						|
 | 
						|
/* Tracepoints definitions. */
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kfree);
 | 
						|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
 |