There is nothing modular in these files, and no reason to drag in all the 357 headers that module.h brings with it, since it just slows down compiles. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
		
			
				
	
	
		
			226 lines
		
	
	
	
		
			5.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			226 lines
		
	
	
	
		
			5.9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Virtual Memory Map support
 | 
						|
 *
 | 
						|
 * (C) 2007 sgi. Christoph Lameter.
 | 
						|
 *
 | 
						|
 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
 | 
						|
 * virt_to_page, page_address() to be implemented as a base offset
 | 
						|
 * calculation without memory access.
 | 
						|
 *
 | 
						|
 * However, virtual mappings need a page table and TLBs. Many Linux
 | 
						|
 * architectures already map their physical space using 1-1 mappings
 | 
						|
 * via TLBs. For those arches the virtual memory map is essentially
 | 
						|
 * for free if we use the same page size as the 1-1 mappings. In that
 | 
						|
 * case the overhead consists of a few additional pages that are
 | 
						|
 * allocated to create a view of memory for vmemmap.
 | 
						|
 *
 | 
						|
 * The architecture is expected to provide a vmemmap_populate() function
 | 
						|
 * to instantiate the mapping.
 | 
						|
 */
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/mmzone.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <asm/dma.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a block of memory to be used to back the virtual memory map
 | 
						|
 * or to back the page tables that are used to create the mapping.
 | 
						|
 * Uses the main allocators if they are available, else bootmem.
 | 
						|
 */
 | 
						|
 | 
						|
static void * __init_refok __earlyonly_bootmem_alloc(int node,
 | 
						|
				unsigned long size,
 | 
						|
				unsigned long align,
 | 
						|
				unsigned long goal)
 | 
						|
{
 | 
						|
	return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
 | 
						|
}
 | 
						|
 | 
						|
static void *vmemmap_buf;
 | 
						|
static void *vmemmap_buf_end;
 | 
						|
 | 
						|
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 | 
						|
{
 | 
						|
	/* If the main allocator is up use that, fallback to bootmem. */
 | 
						|
	if (slab_is_available()) {
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		if (node_state(node, N_HIGH_MEMORY))
 | 
						|
			page = alloc_pages_node(node,
 | 
						|
				GFP_KERNEL | __GFP_ZERO, get_order(size));
 | 
						|
		else
 | 
						|
			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
 | 
						|
				get_order(size));
 | 
						|
		if (page)
 | 
						|
			return page_address(page);
 | 
						|
		return NULL;
 | 
						|
	} else
 | 
						|
		return __earlyonly_bootmem_alloc(node, size, size,
 | 
						|
				__pa(MAX_DMA_ADDRESS));
 | 
						|
}
 | 
						|
 | 
						|
/* need to make sure size is all the same during early stage */
 | 
						|
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	if (!vmemmap_buf)
 | 
						|
		return vmemmap_alloc_block(size, node);
 | 
						|
 | 
						|
	/* take the from buf */
 | 
						|
	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
 | 
						|
	if (ptr + size > vmemmap_buf_end)
 | 
						|
		return vmemmap_alloc_block(size, node);
 | 
						|
 | 
						|
	vmemmap_buf = ptr + size;
 | 
						|
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
void __meminit vmemmap_verify(pte_t *pte, int node,
 | 
						|
				unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	unsigned long pfn = pte_pfn(*pte);
 | 
						|
	int actual_node = early_pfn_to_nid(pfn);
 | 
						|
 | 
						|
	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
 | 
						|
		printk(KERN_WARNING "[%lx-%lx] potential offnode "
 | 
						|
			"page_structs\n", start, end - 1);
 | 
						|
}
 | 
						|
 | 
						|
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
 | 
						|
{
 | 
						|
	pte_t *pte = pte_offset_kernel(pmd, addr);
 | 
						|
	if (pte_none(*pte)) {
 | 
						|
		pte_t entry;
 | 
						|
		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
 | 
						|
		if (!p)
 | 
						|
			return NULL;
 | 
						|
		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
 | 
						|
		set_pte_at(&init_mm, addr, pte, entry);
 | 
						|
	}
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
 | 
						|
{
 | 
						|
	pmd_t *pmd = pmd_offset(pud, addr);
 | 
						|
	if (pmd_none(*pmd)) {
 | 
						|
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
 | 
						|
		if (!p)
 | 
						|
			return NULL;
 | 
						|
		pmd_populate_kernel(&init_mm, pmd, p);
 | 
						|
	}
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
 | 
						|
{
 | 
						|
	pud_t *pud = pud_offset(pgd, addr);
 | 
						|
	if (pud_none(*pud)) {
 | 
						|
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
 | 
						|
		if (!p)
 | 
						|
			return NULL;
 | 
						|
		pud_populate(&init_mm, pud, p);
 | 
						|
	}
 | 
						|
	return pud;
 | 
						|
}
 | 
						|
 | 
						|
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
 | 
						|
{
 | 
						|
	pgd_t *pgd = pgd_offset_k(addr);
 | 
						|
	if (pgd_none(*pgd)) {
 | 
						|
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
 | 
						|
		if (!p)
 | 
						|
			return NULL;
 | 
						|
		pgd_populate(&init_mm, pgd, p);
 | 
						|
	}
 | 
						|
	return pgd;
 | 
						|
}
 | 
						|
 | 
						|
int __meminit vmemmap_populate_basepages(struct page *start_page,
 | 
						|
						unsigned long size, int node)
 | 
						|
{
 | 
						|
	unsigned long addr = (unsigned long)start_page;
 | 
						|
	unsigned long end = (unsigned long)(start_page + size);
 | 
						|
	pgd_t *pgd;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
	pte_t *pte;
 | 
						|
 | 
						|
	for (; addr < end; addr += PAGE_SIZE) {
 | 
						|
		pgd = vmemmap_pgd_populate(addr, node);
 | 
						|
		if (!pgd)
 | 
						|
			return -ENOMEM;
 | 
						|
		pud = vmemmap_pud_populate(pgd, addr, node);
 | 
						|
		if (!pud)
 | 
						|
			return -ENOMEM;
 | 
						|
		pmd = vmemmap_pmd_populate(pud, addr, node);
 | 
						|
		if (!pmd)
 | 
						|
			return -ENOMEM;
 | 
						|
		pte = vmemmap_pte_populate(pmd, addr, node);
 | 
						|
		if (!pte)
 | 
						|
			return -ENOMEM;
 | 
						|
		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
 | 
						|
{
 | 
						|
	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
 | 
						|
	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
 | 
						|
	if (error)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return map;
 | 
						|
}
 | 
						|
 | 
						|
void __init sparse_mem_maps_populate_node(struct page **map_map,
 | 
						|
					  unsigned long pnum_begin,
 | 
						|
					  unsigned long pnum_end,
 | 
						|
					  unsigned long map_count, int nodeid)
 | 
						|
{
 | 
						|
	unsigned long pnum;
 | 
						|
	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
 | 
						|
	void *vmemmap_buf_start;
 | 
						|
 | 
						|
	size = ALIGN(size, PMD_SIZE);
 | 
						|
	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
 | 
						|
			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
 | 
						|
 | 
						|
	if (vmemmap_buf_start) {
 | 
						|
		vmemmap_buf = vmemmap_buf_start;
 | 
						|
		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
 | 
						|
	}
 | 
						|
 | 
						|
	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | 
						|
		struct mem_section *ms;
 | 
						|
 | 
						|
		if (!present_section_nr(pnum))
 | 
						|
			continue;
 | 
						|
 | 
						|
		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
 | 
						|
		if (map_map[pnum])
 | 
						|
			continue;
 | 
						|
		ms = __nr_to_section(pnum);
 | 
						|
		printk(KERN_ERR "%s: sparsemem memory map backing failed "
 | 
						|
			"some memory will not be available.\n", __func__);
 | 
						|
		ms->section_mem_map = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (vmemmap_buf_start) {
 | 
						|
		/* need to free left buf */
 | 
						|
		free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
 | 
						|
		vmemmap_buf = NULL;
 | 
						|
		vmemmap_buf_end = NULL;
 | 
						|
	}
 | 
						|
}
 |