 6e51f9cbfa
			
		
	
	
	6e51f9cbfa
	
	
	
		
			
			The cond_read_node() should free the given node on error path as it's not linked to p->cond_list yet. This is done via cond_node_destroy() but it's not called when next_entry() fails before the expr loop. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Paul Moore <pmoore@redhat.com>
		
			
				
	
	
		
			643 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			643 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Authors: Karl MacMillan <kmacmillan@tresys.com>
 | |
|  *	    Frank Mayer <mayerf@tresys.com>
 | |
|  *
 | |
|  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
 | |
|  *	This program is free software; you can redistribute it and/or modify
 | |
|  *	it under the terms of the GNU General Public License as published by
 | |
|  *	the Free Software Foundation, version 2.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "security.h"
 | |
| #include "conditional.h"
 | |
| 
 | |
| /*
 | |
|  * cond_evaluate_expr evaluates a conditional expr
 | |
|  * in reverse polish notation. It returns true (1), false (0),
 | |
|  * or undefined (-1). Undefined occurs when the expression
 | |
|  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
 | |
|  */
 | |
| static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
 | |
| {
 | |
| 
 | |
| 	struct cond_expr *cur;
 | |
| 	int s[COND_EXPR_MAXDEPTH];
 | |
| 	int sp = -1;
 | |
| 
 | |
| 	for (cur = expr; cur; cur = cur->next) {
 | |
| 		switch (cur->expr_type) {
 | |
| 		case COND_BOOL:
 | |
| 			if (sp == (COND_EXPR_MAXDEPTH - 1))
 | |
| 				return -1;
 | |
| 			sp++;
 | |
| 			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
 | |
| 			break;
 | |
| 		case COND_NOT:
 | |
| 			if (sp < 0)
 | |
| 				return -1;
 | |
| 			s[sp] = !s[sp];
 | |
| 			break;
 | |
| 		case COND_OR:
 | |
| 			if (sp < 1)
 | |
| 				return -1;
 | |
| 			sp--;
 | |
| 			s[sp] |= s[sp + 1];
 | |
| 			break;
 | |
| 		case COND_AND:
 | |
| 			if (sp < 1)
 | |
| 				return -1;
 | |
| 			sp--;
 | |
| 			s[sp] &= s[sp + 1];
 | |
| 			break;
 | |
| 		case COND_XOR:
 | |
| 			if (sp < 1)
 | |
| 				return -1;
 | |
| 			sp--;
 | |
| 			s[sp] ^= s[sp + 1];
 | |
| 			break;
 | |
| 		case COND_EQ:
 | |
| 			if (sp < 1)
 | |
| 				return -1;
 | |
| 			sp--;
 | |
| 			s[sp] = (s[sp] == s[sp + 1]);
 | |
| 			break;
 | |
| 		case COND_NEQ:
 | |
| 			if (sp < 1)
 | |
| 				return -1;
 | |
| 			sp--;
 | |
| 			s[sp] = (s[sp] != s[sp + 1]);
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	return s[0];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * evaluate_cond_node evaluates the conditional stored in
 | |
|  * a struct cond_node and if the result is different than the
 | |
|  * current state of the node it sets the rules in the true/false
 | |
|  * list appropriately. If the result of the expression is undefined
 | |
|  * all of the rules are disabled for safety.
 | |
|  */
 | |
| int evaluate_cond_node(struct policydb *p, struct cond_node *node)
 | |
| {
 | |
| 	int new_state;
 | |
| 	struct cond_av_list *cur;
 | |
| 
 | |
| 	new_state = cond_evaluate_expr(p, node->expr);
 | |
| 	if (new_state != node->cur_state) {
 | |
| 		node->cur_state = new_state;
 | |
| 		if (new_state == -1)
 | |
| 			printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
 | |
| 		/* turn the rules on or off */
 | |
| 		for (cur = node->true_list; cur; cur = cur->next) {
 | |
| 			if (new_state <= 0)
 | |
| 				cur->node->key.specified &= ~AVTAB_ENABLED;
 | |
| 			else
 | |
| 				cur->node->key.specified |= AVTAB_ENABLED;
 | |
| 		}
 | |
| 
 | |
| 		for (cur = node->false_list; cur; cur = cur->next) {
 | |
| 			/* -1 or 1 */
 | |
| 			if (new_state)
 | |
| 				cur->node->key.specified &= ~AVTAB_ENABLED;
 | |
| 			else
 | |
| 				cur->node->key.specified |= AVTAB_ENABLED;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cond_policydb_init(struct policydb *p)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	p->bool_val_to_struct = NULL;
 | |
| 	p->cond_list = NULL;
 | |
| 
 | |
| 	rc = avtab_init(&p->te_cond_avtab);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cond_av_list_destroy(struct cond_av_list *list)
 | |
| {
 | |
| 	struct cond_av_list *cur, *next;
 | |
| 	for (cur = list; cur; cur = next) {
 | |
| 		next = cur->next;
 | |
| 		/* the avtab_ptr_t node is destroy by the avtab */
 | |
| 		kfree(cur);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cond_node_destroy(struct cond_node *node)
 | |
| {
 | |
| 	struct cond_expr *cur_expr, *next_expr;
 | |
| 
 | |
| 	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
 | |
| 		next_expr = cur_expr->next;
 | |
| 		kfree(cur_expr);
 | |
| 	}
 | |
| 	cond_av_list_destroy(node->true_list);
 | |
| 	cond_av_list_destroy(node->false_list);
 | |
| 	kfree(node);
 | |
| }
 | |
| 
 | |
| static void cond_list_destroy(struct cond_node *list)
 | |
| {
 | |
| 	struct cond_node *next, *cur;
 | |
| 
 | |
| 	if (list == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	for (cur = list; cur; cur = next) {
 | |
| 		next = cur->next;
 | |
| 		cond_node_destroy(cur);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void cond_policydb_destroy(struct policydb *p)
 | |
| {
 | |
| 	kfree(p->bool_val_to_struct);
 | |
| 	avtab_destroy(&p->te_cond_avtab);
 | |
| 	cond_list_destroy(p->cond_list);
 | |
| }
 | |
| 
 | |
| int cond_init_bool_indexes(struct policydb *p)
 | |
| {
 | |
| 	kfree(p->bool_val_to_struct);
 | |
| 	p->bool_val_to_struct =
 | |
| 		kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
 | |
| 	if (!p->bool_val_to_struct)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cond_destroy_bool(void *key, void *datum, void *p)
 | |
| {
 | |
| 	kfree(key);
 | |
| 	kfree(datum);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cond_index_bool(void *key, void *datum, void *datap)
 | |
| {
 | |
| 	struct policydb *p;
 | |
| 	struct cond_bool_datum *booldatum;
 | |
| 	struct flex_array *fa;
 | |
| 
 | |
| 	booldatum = datum;
 | |
| 	p = datap;
 | |
| 
 | |
| 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	fa = p->sym_val_to_name[SYM_BOOLS];
 | |
| 	if (flex_array_put_ptr(fa, booldatum->value - 1, key,
 | |
| 			       GFP_KERNEL | __GFP_ZERO))
 | |
| 		BUG();
 | |
| 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bool_isvalid(struct cond_bool_datum *b)
 | |
| {
 | |
| 	if (!(b->state == 0 || b->state == 1))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
 | |
| {
 | |
| 	char *key = NULL;
 | |
| 	struct cond_bool_datum *booldatum;
 | |
| 	__le32 buf[3];
 | |
| 	u32 len;
 | |
| 	int rc;
 | |
| 
 | |
| 	booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
 | |
| 	if (!booldatum)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = next_entry(buf, fp, sizeof buf);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 
 | |
| 	booldatum->value = le32_to_cpu(buf[0]);
 | |
| 	booldatum->state = le32_to_cpu(buf[1]);
 | |
| 
 | |
| 	rc = -EINVAL;
 | |
| 	if (!bool_isvalid(booldatum))
 | |
| 		goto err;
 | |
| 
 | |
| 	len = le32_to_cpu(buf[2]);
 | |
| 
 | |
| 	rc = -ENOMEM;
 | |
| 	key = kmalloc(len + 1, GFP_KERNEL);
 | |
| 	if (!key)
 | |
| 		goto err;
 | |
| 	rc = next_entry(key, fp, len);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 	key[len] = '\0';
 | |
| 	rc = hashtab_insert(h, key, booldatum);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	cond_destroy_bool(key, booldatum, NULL);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| struct cond_insertf_data {
 | |
| 	struct policydb *p;
 | |
| 	struct cond_av_list *other;
 | |
| 	struct cond_av_list *head;
 | |
| 	struct cond_av_list *tail;
 | |
| };
 | |
| 
 | |
| static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
 | |
| {
 | |
| 	struct cond_insertf_data *data = ptr;
 | |
| 	struct policydb *p = data->p;
 | |
| 	struct cond_av_list *other = data->other, *list, *cur;
 | |
| 	struct avtab_node *node_ptr;
 | |
| 	u8 found;
 | |
| 	int rc = -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * For type rules we have to make certain there aren't any
 | |
| 	 * conflicting rules by searching the te_avtab and the
 | |
| 	 * cond_te_avtab.
 | |
| 	 */
 | |
| 	if (k->specified & AVTAB_TYPE) {
 | |
| 		if (avtab_search(&p->te_avtab, k)) {
 | |
| 			printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
 | |
| 			goto err;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If we are reading the false list other will be a pointer to
 | |
| 		 * the true list. We can have duplicate entries if there is only
 | |
| 		 * 1 other entry and it is in our true list.
 | |
| 		 *
 | |
| 		 * If we are reading the true list (other == NULL) there shouldn't
 | |
| 		 * be any other entries.
 | |
| 		 */
 | |
| 		if (other) {
 | |
| 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
 | |
| 			if (node_ptr) {
 | |
| 				if (avtab_search_node_next(node_ptr, k->specified)) {
 | |
| 					printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
 | |
| 					goto err;
 | |
| 				}
 | |
| 				found = 0;
 | |
| 				for (cur = other; cur; cur = cur->next) {
 | |
| 					if (cur->node == node_ptr) {
 | |
| 						found = 1;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				if (!found) {
 | |
| 					printk(KERN_ERR "SELinux: conflicting type rules.\n");
 | |
| 					goto err;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (avtab_search(&p->te_cond_avtab, k)) {
 | |
| 				printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
 | |
| 				goto err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
 | |
| 	if (!node_ptr) {
 | |
| 		printk(KERN_ERR "SELinux: could not insert rule.\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
 | |
| 	if (!list) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	list->node = node_ptr;
 | |
| 	if (!data->head)
 | |
| 		data->head = list;
 | |
| 	else
 | |
| 		data->tail->next = list;
 | |
| 	data->tail = list;
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	cond_av_list_destroy(data->head);
 | |
| 	data->head = NULL;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
 | |
| {
 | |
| 	int i, rc;
 | |
| 	__le32 buf[1];
 | |
| 	u32 len;
 | |
| 	struct cond_insertf_data data;
 | |
| 
 | |
| 	*ret_list = NULL;
 | |
| 
 | |
| 	len = 0;
 | |
| 	rc = next_entry(buf, fp, sizeof(u32));
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	len = le32_to_cpu(buf[0]);
 | |
| 	if (len == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	data.p = p;
 | |
| 	data.other = other;
 | |
| 	data.head = NULL;
 | |
| 	data.tail = NULL;
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
 | |
| 				     &data);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	*ret_list = data.head;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
 | |
| {
 | |
| 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
 | |
| 		printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (expr->bool > p->p_bools.nprim) {
 | |
| 		printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
 | |
| {
 | |
| 	__le32 buf[2];
 | |
| 	u32 len, i;
 | |
| 	int rc;
 | |
| 	struct cond_expr *expr = NULL, *last = NULL;
 | |
| 
 | |
| 	rc = next_entry(buf, fp, sizeof(u32) * 2);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 
 | |
| 	node->cur_state = le32_to_cpu(buf[0]);
 | |
| 
 | |
| 	/* expr */
 | |
| 	len = le32_to_cpu(buf[1]);
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		rc = next_entry(buf, fp, sizeof(u32) * 2);
 | |
| 		if (rc)
 | |
| 			goto err;
 | |
| 
 | |
| 		rc = -ENOMEM;
 | |
| 		expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
 | |
| 		if (!expr)
 | |
| 			goto err;
 | |
| 
 | |
| 		expr->expr_type = le32_to_cpu(buf[0]);
 | |
| 		expr->bool = le32_to_cpu(buf[1]);
 | |
| 
 | |
| 		if (!expr_isvalid(p, expr)) {
 | |
| 			rc = -EINVAL;
 | |
| 			kfree(expr);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		if (i == 0)
 | |
| 			node->expr = expr;
 | |
| 		else
 | |
| 			last->next = expr;
 | |
| 		last = expr;
 | |
| 	}
 | |
| 
 | |
| 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 	return 0;
 | |
| err:
 | |
| 	cond_node_destroy(node);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int cond_read_list(struct policydb *p, void *fp)
 | |
| {
 | |
| 	struct cond_node *node, *last = NULL;
 | |
| 	__le32 buf[1];
 | |
| 	u32 i, len;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = next_entry(buf, fp, sizeof buf);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	len = le32_to_cpu(buf[0]);
 | |
| 
 | |
| 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
 | |
| 	if (rc)
 | |
| 		goto err;
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		rc = -ENOMEM;
 | |
| 		node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
 | |
| 		if (!node)
 | |
| 			goto err;
 | |
| 
 | |
| 		rc = cond_read_node(p, node, fp);
 | |
| 		if (rc)
 | |
| 			goto err;
 | |
| 
 | |
| 		if (i == 0)
 | |
| 			p->cond_list = node;
 | |
| 		else
 | |
| 			last->next = node;
 | |
| 		last = node;
 | |
| 	}
 | |
| 	return 0;
 | |
| err:
 | |
| 	cond_list_destroy(p->cond_list);
 | |
| 	p->cond_list = NULL;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int cond_write_bool(void *vkey, void *datum, void *ptr)
 | |
| {
 | |
| 	char *key = vkey;
 | |
| 	struct cond_bool_datum *booldatum = datum;
 | |
| 	struct policy_data *pd = ptr;
 | |
| 	void *fp = pd->fp;
 | |
| 	__le32 buf[3];
 | |
| 	u32 len;
 | |
| 	int rc;
 | |
| 
 | |
| 	len = strlen(key);
 | |
| 	buf[0] = cpu_to_le32(booldatum->value);
 | |
| 	buf[1] = cpu_to_le32(booldatum->state);
 | |
| 	buf[2] = cpu_to_le32(len);
 | |
| 	rc = put_entry(buf, sizeof(u32), 3, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	rc = put_entry(key, 1, len, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cond_write_cond_av_list doesn't write out the av_list nodes.
 | |
|  * Instead it writes out the key/value pairs from the avtab. This
 | |
|  * is necessary because there is no way to uniquely identifying rules
 | |
|  * in the avtab so it is not possible to associate individual rules
 | |
|  * in the avtab with a conditional without saving them as part of
 | |
|  * the conditional. This means that the avtab with the conditional
 | |
|  * rules will not be saved but will be rebuilt on policy load.
 | |
|  */
 | |
| static int cond_write_av_list(struct policydb *p,
 | |
| 			      struct cond_av_list *list, struct policy_file *fp)
 | |
| {
 | |
| 	__le32 buf[1];
 | |
| 	struct cond_av_list *cur_list;
 | |
| 	u32 len;
 | |
| 	int rc;
 | |
| 
 | |
| 	len = 0;
 | |
| 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
 | |
| 		len++;
 | |
| 
 | |
| 	buf[0] = cpu_to_le32(len);
 | |
| 	rc = put_entry(buf, sizeof(u32), 1, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
 | |
| 		rc = avtab_write_item(p, cur_list->node, fp);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cond_write_node(struct policydb *p, struct cond_node *node,
 | |
| 		    struct policy_file *fp)
 | |
| {
 | |
| 	struct cond_expr *cur_expr;
 | |
| 	__le32 buf[2];
 | |
| 	int rc;
 | |
| 	u32 len = 0;
 | |
| 
 | |
| 	buf[0] = cpu_to_le32(node->cur_state);
 | |
| 	rc = put_entry(buf, sizeof(u32), 1, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
 | |
| 		len++;
 | |
| 
 | |
| 	buf[0] = cpu_to_le32(len);
 | |
| 	rc = put_entry(buf, sizeof(u32), 1, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
 | |
| 		buf[0] = cpu_to_le32(cur_expr->expr_type);
 | |
| 		buf[1] = cpu_to_le32(cur_expr->bool);
 | |
| 		rc = put_entry(buf, sizeof(u32), 2, fp);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	rc = cond_write_av_list(p, node->true_list, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	rc = cond_write_av_list(p, node->false_list, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
 | |
| {
 | |
| 	struct cond_node *cur;
 | |
| 	u32 len;
 | |
| 	__le32 buf[1];
 | |
| 	int rc;
 | |
| 
 | |
| 	len = 0;
 | |
| 	for (cur = list; cur != NULL; cur = cur->next)
 | |
| 		len++;
 | |
| 	buf[0] = cpu_to_le32(len);
 | |
| 	rc = put_entry(buf, sizeof(u32), 1, fp);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	for (cur = list; cur != NULL; cur = cur->next) {
 | |
| 		rc = cond_write_node(p, cur, fp);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| /* Determine whether additional permissions are granted by the conditional
 | |
|  * av table, and if so, add them to the result
 | |
|  */
 | |
| void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd)
 | |
| {
 | |
| 	struct avtab_node *node;
 | |
| 
 | |
| 	if (!ctab || !key || !avd)
 | |
| 		return;
 | |
| 
 | |
| 	for (node = avtab_search_node(ctab, key); node;
 | |
| 				node = avtab_search_node_next(node, key->specified)) {
 | |
| 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
 | |
| 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
 | |
| 			avd->allowed |= node->datum.data;
 | |
| 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
 | |
| 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
 | |
| 			/* Since a '0' in an auditdeny mask represents a
 | |
| 			 * permission we do NOT want to audit (dontaudit), we use
 | |
| 			 * the '&' operand to ensure that all '0's in the mask
 | |
| 			 * are retained (much unlike the allow and auditallow cases).
 | |
| 			 */
 | |
| 			avd->auditdeny &= node->datum.data;
 | |
| 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
 | |
| 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
 | |
| 			avd->auditallow |= node->datum.data;
 | |
| 	}
 | |
| 	return;
 | |
| }
 |