 26ad0b8358
			
		
	
	
	26ad0b8358
	
	
	
		
			
			Fix typo where mask is used rather than key.
Fixes: 74ed7ab9264("openvswitch: Add support for unique flow IDs.")
Reported-by: Joe Stringer <joestringer@nicira.com>
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Acked-by: Joe Stringer <joestringer@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			2301 lines
		
	
	
	
		
			62 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2301 lines
		
	
	
	
		
			62 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2007-2014 Nicira, Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of version 2 of the GNU General Public
 | |
|  * License as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 | |
|  * 02110-1301, USA
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include "flow.h"
 | |
| #include "datapath.h"
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <net/llc_pdu.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/llc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/ipv6.h>
 | |
| #include <linux/sctp.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/icmp.h>
 | |
| #include <linux/icmpv6.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <net/geneve.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/ndisc.h>
 | |
| #include <net/mpls.h>
 | |
| 
 | |
| #include "flow_netlink.h"
 | |
| #include "vport-vxlan.h"
 | |
| 
 | |
| struct ovs_len_tbl {
 | |
| 	int len;
 | |
| 	const struct ovs_len_tbl *next;
 | |
| };
 | |
| 
 | |
| #define OVS_ATTR_NESTED -1
 | |
| 
 | |
| static void update_range(struct sw_flow_match *match,
 | |
| 			 size_t offset, size_t size, bool is_mask)
 | |
| {
 | |
| 	struct sw_flow_key_range *range;
 | |
| 	size_t start = rounddown(offset, sizeof(long));
 | |
| 	size_t end = roundup(offset + size, sizeof(long));
 | |
| 
 | |
| 	if (!is_mask)
 | |
| 		range = &match->range;
 | |
| 	else
 | |
| 		range = &match->mask->range;
 | |
| 
 | |
| 	if (range->start == range->end) {
 | |
| 		range->start = start;
 | |
| 		range->end = end;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (range->start > start)
 | |
| 		range->start = start;
 | |
| 
 | |
| 	if (range->end < end)
 | |
| 		range->end = end;
 | |
| }
 | |
| 
 | |
| #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 | |
| 	do { \
 | |
| 		update_range(match, offsetof(struct sw_flow_key, field),    \
 | |
| 			     sizeof((match)->key->field), is_mask);	    \
 | |
| 		if (is_mask)						    \
 | |
| 			(match)->mask->key.field = value;		    \
 | |
| 		else							    \
 | |
| 			(match)->key->field = value;		            \
 | |
| 	} while (0)
 | |
| 
 | |
| #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 | |
| 	do {								    \
 | |
| 		update_range(match, offset, len, is_mask);		    \
 | |
| 		if (is_mask)						    \
 | |
| 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 | |
| 			       len);					   \
 | |
| 		else							    \
 | |
| 			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 | |
| 	} while (0)
 | |
| 
 | |
| #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 | |
| 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 | |
| 				  value_p, len, is_mask)
 | |
| 
 | |
| #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 | |
| 	do {								    \
 | |
| 		update_range(match, offsetof(struct sw_flow_key, field),    \
 | |
| 			     sizeof((match)->key->field), is_mask);	    \
 | |
| 		if (is_mask)						    \
 | |
| 			memset((u8 *)&(match)->mask->key.field, value,      \
 | |
| 			       sizeof((match)->mask->key.field));	    \
 | |
| 		else							    \
 | |
| 			memset((u8 *)&(match)->key->field, value,           \
 | |
| 			       sizeof((match)->key->field));                \
 | |
| 	} while (0)
 | |
| 
 | |
| static bool match_validate(const struct sw_flow_match *match,
 | |
| 			   u64 key_attrs, u64 mask_attrs, bool log)
 | |
| {
 | |
| 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
 | |
| 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 | |
| 
 | |
| 	/* The following mask attributes allowed only if they
 | |
| 	 * pass the validation tests. */
 | |
| 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 | |
| 			| (1 << OVS_KEY_ATTR_IPV6)
 | |
| 			| (1 << OVS_KEY_ATTR_TCP)
 | |
| 			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 | |
| 			| (1 << OVS_KEY_ATTR_UDP)
 | |
| 			| (1 << OVS_KEY_ATTR_SCTP)
 | |
| 			| (1 << OVS_KEY_ATTR_ICMP)
 | |
| 			| (1 << OVS_KEY_ATTR_ICMPV6)
 | |
| 			| (1 << OVS_KEY_ATTR_ARP)
 | |
| 			| (1 << OVS_KEY_ATTR_ND)
 | |
| 			| (1 << OVS_KEY_ATTR_MPLS));
 | |
| 
 | |
| 	/* Always allowed mask fields. */
 | |
| 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 | |
| 		       | (1 << OVS_KEY_ATTR_IN_PORT)
 | |
| 		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 | |
| 
 | |
| 	/* Check key attributes. */
 | |
| 	if (match->key->eth.type == htons(ETH_P_ARP)
 | |
| 			|| match->key->eth.type == htons(ETH_P_RARP)) {
 | |
| 		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 | |
| 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 | |
| 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 | |
| 	}
 | |
| 
 | |
| 	if (eth_p_mpls(match->key->eth.type)) {
 | |
| 		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 | |
| 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 | |
| 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 | |
| 	}
 | |
| 
 | |
| 	if (match->key->eth.type == htons(ETH_P_IP)) {
 | |
| 		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 | |
| 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 | |
| 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 | |
| 
 | |
| 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 			if (match->key->ip.proto == IPPROTO_UDP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_SCTP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_TCP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_ICMP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 | |
| 		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 | |
| 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 | |
| 
 | |
| 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 			if (match->key->ip.proto == IPPROTO_UDP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_SCTP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_TCP) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 | |
| 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 | |
| 				if (match->mask && (match->mask->key.ip.proto == 0xff))
 | |
| 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 | |
| 
 | |
| 				if (match->key->tp.src ==
 | |
| 						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 | |
| 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 | |
| 					key_expected |= 1 << OVS_KEY_ATTR_ND;
 | |
| 					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 | |
| 						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((key_attrs & key_expected) != key_expected) {
 | |
| 		/* Key attributes check failed. */
 | |
| 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 | |
| 			  (unsigned long long)key_attrs,
 | |
| 			  (unsigned long long)key_expected);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if ((mask_attrs & mask_allowed) != mask_attrs) {
 | |
| 		/* Mask attributes check failed. */
 | |
| 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 | |
| 			  (unsigned long long)mask_attrs,
 | |
| 			  (unsigned long long)mask_allowed);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| size_t ovs_tun_key_attr_size(void)
 | |
| {
 | |
| 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 | |
| 	 * updating this function.
 | |
| 	 */
 | |
| 	return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
 | |
| 		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
 | |
| 		+ nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
 | |
| 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 | |
| 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 | |
| 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 | |
| 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 | |
| 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 | |
| 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 | |
| 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
 | |
| 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 | |
| 		 */
 | |
| 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 | |
| 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 | |
| }
 | |
| 
 | |
| size_t ovs_key_attr_size(void)
 | |
| {
 | |
| 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 | |
| 	 * updating this function.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);
 | |
| 
 | |
| 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 | |
| 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 | |
| 		  + ovs_tun_key_attr_size()
 | |
| 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 | |
| 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 | |
| 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 | |
| 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 | |
| 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 | |
| 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 | |
| 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 | |
| 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 | |
| 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 | |
| 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 | |
| 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 | |
| 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 | |
| }
 | |
| 
 | |
| static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 | |
| 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_NESTED },
 | |
| 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED },
 | |
| };
 | |
| 
 | |
| /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 | |
| static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 | |
| 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 | |
| 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 | |
| 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 | |
| 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 | |
| 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 | |
| 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 | |
| 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 | |
| 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 | |
| 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 | |
| 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 | |
| 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 | |
| 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 | |
| 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 | |
| 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 | |
| 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 | |
| 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 | |
| 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 | |
| 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 | |
| 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 | |
| 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 | |
| 				     .next = ovs_tunnel_key_lens, },
 | |
| 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
 | |
| };
 | |
| 
 | |
| static bool is_all_zero(const u8 *fp, size_t size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!fp)
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		if (fp[i])
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int __parse_flow_nlattrs(const struct nlattr *attr,
 | |
| 				const struct nlattr *a[],
 | |
| 				u64 *attrsp, bool log, bool nz)
 | |
| {
 | |
| 	const struct nlattr *nla;
 | |
| 	u64 attrs;
 | |
| 	int rem;
 | |
| 
 | |
| 	attrs = *attrsp;
 | |
| 	nla_for_each_nested(nla, attr, rem) {
 | |
| 		u16 type = nla_type(nla);
 | |
| 		int expected_len;
 | |
| 
 | |
| 		if (type > OVS_KEY_ATTR_MAX) {
 | |
| 			OVS_NLERR(log, "Key type %d is out of range max %d",
 | |
| 				  type, OVS_KEY_ATTR_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (attrs & (1 << type)) {
 | |
| 			OVS_NLERR(log, "Duplicate key (type %d).", type);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		expected_len = ovs_key_lens[type].len;
 | |
| 		if (nla_len(nla) != expected_len && expected_len != OVS_ATTR_NESTED) {
 | |
| 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 | |
| 				  type, nla_len(nla), expected_len);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
 | |
| 			attrs |= 1 << type;
 | |
| 			a[type] = nla;
 | |
| 		}
 | |
| 	}
 | |
| 	if (rem) {
 | |
| 		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*attrsp = attrs;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 | |
| 				   const struct nlattr *a[], u64 *attrsp,
 | |
| 				   bool log)
 | |
| {
 | |
| 	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 | |
| }
 | |
| 
 | |
| static int parse_flow_nlattrs(const struct nlattr *attr,
 | |
| 			      const struct nlattr *a[], u64 *attrsp,
 | |
| 			      bool log)
 | |
| {
 | |
| 	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 | |
| }
 | |
| 
 | |
| static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 | |
| 				     struct sw_flow_match *match, bool is_mask,
 | |
| 				     bool log)
 | |
| {
 | |
| 	unsigned long opt_key_offset;
 | |
| 
 | |
| 	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 | |
| 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 | |
| 			  nla_len(a), sizeof(match->key->tun_opts));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (nla_len(a) % 4 != 0) {
 | |
| 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 | |
| 			  nla_len(a));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* We need to record the length of the options passed
 | |
| 	 * down, otherwise packets with the same format but
 | |
| 	 * additional options will be silently matched.
 | |
| 	 */
 | |
| 	if (!is_mask) {
 | |
| 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 | |
| 				false);
 | |
| 	} else {
 | |
| 		/* This is somewhat unusual because it looks at
 | |
| 		 * both the key and mask while parsing the
 | |
| 		 * attributes (and by extension assumes the key
 | |
| 		 * is parsed first). Normally, we would verify
 | |
| 		 * that each is the correct length and that the
 | |
| 		 * attributes line up in the validate function.
 | |
| 		 * However, that is difficult because this is
 | |
| 		 * variable length and we won't have the
 | |
| 		 * information later.
 | |
| 		 */
 | |
| 		if (match->key->tun_opts_len != nla_len(a)) {
 | |
| 			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 | |
| 				  match->key->tun_opts_len, nla_len(a));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 | |
| 	}
 | |
| 
 | |
| 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 | |
| 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 | |
| 				  nla_len(a), is_mask);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct nla_policy vxlan_opt_policy[OVS_VXLAN_EXT_MAX + 1] = {
 | |
| 	[OVS_VXLAN_EXT_GBP]	= { .type = NLA_U32 },
 | |
| };
 | |
| 
 | |
| static int vxlan_tun_opt_from_nlattr(const struct nlattr *a,
 | |
| 				     struct sw_flow_match *match, bool is_mask,
 | |
| 				     bool log)
 | |
| {
 | |
| 	struct nlattr *tb[OVS_VXLAN_EXT_MAX+1];
 | |
| 	unsigned long opt_key_offset;
 | |
| 	struct ovs_vxlan_opts opts;
 | |
| 	int err;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 | |
| 
 | |
| 	err = nla_parse_nested(tb, OVS_VXLAN_EXT_MAX, a, vxlan_opt_policy);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	memset(&opts, 0, sizeof(opts));
 | |
| 
 | |
| 	if (tb[OVS_VXLAN_EXT_GBP])
 | |
| 		opts.gbp = nla_get_u32(tb[OVS_VXLAN_EXT_GBP]);
 | |
| 
 | |
| 	if (!is_mask)
 | |
| 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 | |
| 	else
 | |
| 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 | |
| 
 | |
| 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 | |
| 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 | |
| 				  is_mask);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ipv4_tun_from_nlattr(const struct nlattr *attr,
 | |
| 				struct sw_flow_match *match, bool is_mask,
 | |
| 				bool log)
 | |
| {
 | |
| 	struct nlattr *a;
 | |
| 	int rem;
 | |
| 	bool ttl = false;
 | |
| 	__be16 tun_flags = 0;
 | |
| 	int opts_type = 0;
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 		int err;
 | |
| 
 | |
| 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 | |
| 			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 | |
| 				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (ovs_tunnel_key_lens[type].len != nla_len(a) &&
 | |
| 		    ovs_tunnel_key_lens[type].len != OVS_ATTR_NESTED) {
 | |
| 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 | |
| 				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case OVS_TUNNEL_KEY_ATTR_ID:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 | |
| 					nla_get_be64(a), is_mask);
 | |
| 			tun_flags |= TUNNEL_KEY;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
 | |
| 					nla_get_be32(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
 | |
| 					nla_get_be32(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TOS:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
 | |
| 					nla_get_u8(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TTL:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
 | |
| 					nla_get_u8(a), is_mask);
 | |
| 			ttl = true;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 | |
| 			tun_flags |= TUNNEL_DONT_FRAGMENT;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_CSUM:
 | |
| 			tun_flags |= TUNNEL_CSUM;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 | |
| 					nla_get_be16(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 | |
| 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 | |
| 					nla_get_be16(a), is_mask);
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_OAM:
 | |
| 			tun_flags |= TUNNEL_OAM;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 | |
| 			if (opts_type) {
 | |
| 				OVS_NLERR(log, "Multiple metadata blocks provided");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			tun_flags |= TUNNEL_GENEVE_OPT;
 | |
| 			opts_type = type;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 | |
| 			if (opts_type) {
 | |
| 				OVS_NLERR(log, "Multiple metadata blocks provided");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 
 | |
| 			tun_flags |= TUNNEL_VXLAN_OPT;
 | |
| 			opts_type = type;
 | |
| 			break;
 | |
| 		default:
 | |
| 			OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
 | |
| 				  type);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 | |
| 
 | |
| 	if (rem > 0) {
 | |
| 		OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
 | |
| 			  rem);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_mask) {
 | |
| 		if (!match->key->tun_key.ipv4_dst) {
 | |
| 			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!ttl) {
 | |
| 			OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return opts_type;
 | |
| }
 | |
| 
 | |
| static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 | |
| 			       const void *tun_opts, int swkey_tun_opts_len)
 | |
| {
 | |
| 	const struct ovs_vxlan_opts *opts = tun_opts;
 | |
| 	struct nlattr *nla;
 | |
| 
 | |
| 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 | |
| 	if (!nla)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	nla_nest_end(skb, nla);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
 | |
| 				const struct ovs_key_ipv4_tunnel *output,
 | |
| 				const void *tun_opts, int swkey_tun_opts_len)
 | |
| {
 | |
| 	if (output->tun_flags & TUNNEL_KEY &&
 | |
| 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->ipv4_src &&
 | |
| 	    nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->ipv4_dst &&
 | |
| 	    nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->ipv4_tos &&
 | |
| 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
 | |
| 		return -EMSGSIZE;
 | |
| 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 | |
| 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 | |
| 		return -EMSGSIZE;
 | |
| 	if ((output->tun_flags & TUNNEL_CSUM) &&
 | |
| 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->tp_src &&
 | |
| 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (output->tp_dst &&
 | |
| 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 | |
| 		return -EMSGSIZE;
 | |
| 	if ((output->tun_flags & TUNNEL_OAM) &&
 | |
| 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 | |
| 		return -EMSGSIZE;
 | |
| 	if (tun_opts) {
 | |
| 		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 | |
| 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 | |
| 			    swkey_tun_opts_len, tun_opts))
 | |
| 			return -EMSGSIZE;
 | |
| 		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 | |
| 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 | |
| 			return -EMSGSIZE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ipv4_tun_to_nlattr(struct sk_buff *skb,
 | |
| 			      const struct ovs_key_ipv4_tunnel *output,
 | |
| 			      const void *tun_opts, int swkey_tun_opts_len)
 | |
| {
 | |
| 	struct nlattr *nla;
 | |
| 	int err;
 | |
| 
 | |
| 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
 | |
| 	if (!nla)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	nla_nest_end(skb, nla);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
 | |
| 				  const struct ovs_tunnel_info *egress_tun_info)
 | |
| {
 | |
| 	return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
 | |
| 				    egress_tun_info->options,
 | |
| 				    egress_tun_info->options_len);
 | |
| }
 | |
| 
 | |
| static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs,
 | |
| 				 const struct nlattr **a, bool is_mask,
 | |
| 				 bool log)
 | |
| {
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
 | |
| 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
 | |
| 	}
 | |
| 
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
 | |
| 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
 | |
| 	}
 | |
| 
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
 | |
| 		SW_FLOW_KEY_PUT(match, phy.priority,
 | |
| 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
 | |
| 	}
 | |
| 
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
 | |
| 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
 | |
| 
 | |
| 		if (is_mask) {
 | |
| 			in_port = 0xffffffff; /* Always exact match in_port. */
 | |
| 		} else if (in_port >= DP_MAX_PORTS) {
 | |
| 			OVS_NLERR(log, "Port %d exceeds max allowable %d",
 | |
| 				  in_port, DP_MAX_PORTS);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
 | |
| 	} else if (!is_mask) {
 | |
| 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
 | |
| 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
 | |
| 	}
 | |
| 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
 | |
| 		if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
 | |
| 					 is_mask, log) < 0)
 | |
| 			return -EINVAL;
 | |
| 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
 | |
| 				const struct nlattr **a, bool is_mask,
 | |
| 				bool log)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
 | |
| 		const struct ovs_key_ethernet *eth_key;
 | |
| 
 | |
| 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, eth.src,
 | |
| 				eth_key->eth_src, ETH_ALEN, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, eth.dst,
 | |
| 				eth_key->eth_dst, ETH_ALEN, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
 | |
| 		__be16 tci;
 | |
| 
 | |
| 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 | |
| 		if (!(tci & htons(VLAN_TAG_PRESENT))) {
 | |
| 			if (is_mask)
 | |
| 				OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
 | |
| 			else
 | |
| 				OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
 | |
| 
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
 | |
| 		__be16 eth_type;
 | |
| 
 | |
| 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 | |
| 		if (is_mask) {
 | |
| 			/* Always exact match EtherType. */
 | |
| 			eth_type = htons(0xffff);
 | |
| 		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
 | |
| 			OVS_NLERR(log, "EtherType %x is less than min %x",
 | |
| 				  ntohs(eth_type), ETH_P_802_3_MIN);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 | |
| 	} else if (!is_mask) {
 | |
| 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
 | |
| 		const struct ovs_key_ipv4 *ipv4_key;
 | |
| 
 | |
| 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
 | |
| 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
 | |
| 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
 | |
| 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		SW_FLOW_KEY_PUT(match, ip.proto,
 | |
| 				ipv4_key->ipv4_proto, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.tos,
 | |
| 				ipv4_key->ipv4_tos, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.ttl,
 | |
| 				ipv4_key->ipv4_ttl, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.frag,
 | |
| 				ipv4_key->ipv4_frag, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 | |
| 				ipv4_key->ipv4_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 | |
| 				ipv4_key->ipv4_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
 | |
| 		const struct ovs_key_ipv6 *ipv6_key;
 | |
| 
 | |
| 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
 | |
| 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
 | |
| 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
 | |
| 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
 | |
| 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
 | |
| 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, ipv6.label,
 | |
| 				ipv6_key->ipv6_label, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.proto,
 | |
| 				ipv6_key->ipv6_proto, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.tos,
 | |
| 				ipv6_key->ipv6_tclass, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.ttl,
 | |
| 				ipv6_key->ipv6_hlimit, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.frag,
 | |
| 				ipv6_key->ipv6_frag, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
 | |
| 				ipv6_key->ipv6_src,
 | |
| 				sizeof(match->key->ipv6.addr.src),
 | |
| 				is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
 | |
| 				ipv6_key->ipv6_dst,
 | |
| 				sizeof(match->key->ipv6.addr.dst),
 | |
| 				is_mask);
 | |
| 
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
 | |
| 		const struct ovs_key_arp *arp_key;
 | |
| 
 | |
| 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
 | |
| 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
 | |
| 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
 | |
| 				  arp_key->arp_op);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
 | |
| 				arp_key->arp_sip, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
 | |
| 			arp_key->arp_tip, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, ip.proto,
 | |
| 				ntohs(arp_key->arp_op), is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
 | |
| 				arp_key->arp_sha, ETH_ALEN, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
 | |
| 				arp_key->arp_tha, ETH_ALEN, is_mask);
 | |
| 
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
 | |
| 		const struct ovs_key_mpls *mpls_key;
 | |
| 
 | |
| 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
 | |
| 		SW_FLOW_KEY_PUT(match, mpls.top_lse,
 | |
| 				mpls_key->mpls_lse, is_mask);
 | |
| 
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
 | |
| 	 }
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
 | |
| 		const struct ovs_key_tcp *tcp_key;
 | |
| 
 | |
| 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
 | |
| 		SW_FLOW_KEY_PUT(match, tp.flags,
 | |
| 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
 | |
| 				is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
 | |
| 		const struct ovs_key_udp *udp_key;
 | |
| 
 | |
| 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
 | |
| 		const struct ovs_key_sctp *sctp_key;
 | |
| 
 | |
| 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
 | |
| 		const struct ovs_key_icmp *icmp_key;
 | |
| 
 | |
| 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src,
 | |
| 				htons(icmp_key->icmp_type), is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst,
 | |
| 				htons(icmp_key->icmp_code), is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
 | |
| 		const struct ovs_key_icmpv6 *icmpv6_key;
 | |
| 
 | |
| 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.src,
 | |
| 				htons(icmpv6_key->icmpv6_type), is_mask);
 | |
| 		SW_FLOW_KEY_PUT(match, tp.dst,
 | |
| 				htons(icmpv6_key->icmpv6_code), is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
 | |
| 		const struct ovs_key_nd *nd_key;
 | |
| 
 | |
| 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
 | |
| 			nd_key->nd_target,
 | |
| 			sizeof(match->key->ipv6.nd.target),
 | |
| 			is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
 | |
| 			nd_key->nd_sll, ETH_ALEN, is_mask);
 | |
| 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
 | |
| 				nd_key->nd_tll, ETH_ALEN, is_mask);
 | |
| 		attrs &= ~(1 << OVS_KEY_ATTR_ND);
 | |
| 	}
 | |
| 
 | |
| 	if (attrs != 0) {
 | |
| 		OVS_NLERR(log, "Unknown key attributes %llx",
 | |
| 			  (unsigned long long)attrs);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nlattr_set(struct nlattr *attr, u8 val,
 | |
| 		       const struct ovs_len_tbl *tbl)
 | |
| {
 | |
| 	struct nlattr *nla;
 | |
| 	int rem;
 | |
| 
 | |
| 	/* The nlattr stream should already have been validated */
 | |
| 	nla_for_each_nested(nla, attr, rem) {
 | |
| 		if (tbl && tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
 | |
| 			nlattr_set(nla, val, tbl[nla_type(nla)].next);
 | |
| 		else
 | |
| 			memset(nla_data(nla), val, nla_len(nla));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mask_set_nlattr(struct nlattr *attr, u8 val)
 | |
| {
 | |
| 	nlattr_set(attr, val, ovs_key_lens);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ovs_nla_get_match - parses Netlink attributes into a flow key and
 | |
|  * mask. In case the 'mask' is NULL, the flow is treated as exact match
 | |
|  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 | |
|  * does not include any don't care bit.
 | |
|  * @match: receives the extracted flow match information.
 | |
|  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 | |
|  * sequence. The fields should of the packet that triggered the creation
 | |
|  * of this flow.
 | |
|  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 | |
|  * attribute specifies the mask field of the wildcarded flow.
 | |
|  * @log: Boolean to allow kernel error logging.  Normally true, but when
 | |
|  * probing for feature compatibility this should be passed in as false to
 | |
|  * suppress unnecessary error logging.
 | |
|  */
 | |
| int ovs_nla_get_match(struct sw_flow_match *match,
 | |
| 		      const struct nlattr *nla_key,
 | |
| 		      const struct nlattr *nla_mask,
 | |
| 		      bool log)
 | |
| {
 | |
| 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 | |
| 	const struct nlattr *encap;
 | |
| 	struct nlattr *newmask = NULL;
 | |
| 	u64 key_attrs = 0;
 | |
| 	u64 mask_attrs = 0;
 | |
| 	bool encap_valid = false;
 | |
| 	int err;
 | |
| 
 | |
| 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 | |
| 	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 | |
| 	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
 | |
| 		__be16 tci;
 | |
| 
 | |
| 		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 | |
| 		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
 | |
| 			OVS_NLERR(log, "Invalid Vlan frame.");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 | |
| 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 | |
| 		encap = a[OVS_KEY_ATTR_ENCAP];
 | |
| 		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 | |
| 		encap_valid = true;
 | |
| 
 | |
| 		if (tci & htons(VLAN_TAG_PRESENT)) {
 | |
| 			err = parse_flow_nlattrs(encap, a, &key_attrs, log);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		} else if (!tci) {
 | |
| 			/* Corner case for truncated 802.1Q header. */
 | |
| 			if (nla_len(encap)) {
 | |
| 				OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
 | |
| 			return  -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (match->mask) {
 | |
| 		if (!nla_mask) {
 | |
| 			/* Create an exact match mask. We need to set to 0xff
 | |
| 			 * all the 'match->mask' fields that have been touched
 | |
| 			 * in 'match->key'. We cannot simply memset
 | |
| 			 * 'match->mask', because padding bytes and fields not
 | |
| 			 * specified in 'match->key' should be left to 0.
 | |
| 			 * Instead, we use a stream of netlink attributes,
 | |
| 			 * copied from 'key' and set to 0xff.
 | |
| 			 * ovs_key_from_nlattrs() will take care of filling
 | |
| 			 * 'match->mask' appropriately.
 | |
| 			 */
 | |
| 			newmask = kmemdup(nla_key,
 | |
| 					  nla_total_size(nla_len(nla_key)),
 | |
| 					  GFP_KERNEL);
 | |
| 			if (!newmask)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			mask_set_nlattr(newmask, 0xff);
 | |
| 
 | |
| 			/* The userspace does not send tunnel attributes that
 | |
| 			 * are 0, but we should not wildcard them nonetheless.
 | |
| 			 */
 | |
| 			if (match->key->tun_key.ipv4_dst)
 | |
| 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
 | |
| 							 0xff, true);
 | |
| 
 | |
| 			nla_mask = newmask;
 | |
| 		}
 | |
| 
 | |
| 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
 | |
| 		if (err)
 | |
| 			goto free_newmask;
 | |
| 
 | |
| 		/* Always match on tci. */
 | |
| 		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
 | |
| 
 | |
| 		if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
 | |
| 			__be16 eth_type = 0;
 | |
| 			__be16 tci = 0;
 | |
| 
 | |
| 			if (!encap_valid) {
 | |
| 				OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
 | |
| 				err = -EINVAL;
 | |
| 				goto free_newmask;
 | |
| 			}
 | |
| 
 | |
| 			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
 | |
| 			if (a[OVS_KEY_ATTR_ETHERTYPE])
 | |
| 				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 | |
| 
 | |
| 			if (eth_type == htons(0xffff)) {
 | |
| 				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
 | |
| 				encap = a[OVS_KEY_ATTR_ENCAP];
 | |
| 				err = parse_flow_mask_nlattrs(encap, a,
 | |
| 							      &mask_attrs, log);
 | |
| 				if (err)
 | |
| 					goto free_newmask;
 | |
| 			} else {
 | |
| 				OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
 | |
| 					  ntohs(eth_type));
 | |
| 				err = -EINVAL;
 | |
| 				goto free_newmask;
 | |
| 			}
 | |
| 
 | |
| 			if (a[OVS_KEY_ATTR_VLAN])
 | |
| 				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 | |
| 
 | |
| 			if (!(tci & htons(VLAN_TAG_PRESENT))) {
 | |
| 				OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
 | |
| 					  ntohs(tci));
 | |
| 				err = -EINVAL;
 | |
| 				goto free_newmask;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
 | |
| 		if (err)
 | |
| 			goto free_newmask;
 | |
| 	}
 | |
| 
 | |
| 	if (!match_validate(match, key_attrs, mask_attrs, log))
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| free_newmask:
 | |
| 	kfree(newmask);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static size_t get_ufid_len(const struct nlattr *attr, bool log)
 | |
| {
 | |
| 	size_t len;
 | |
| 
 | |
| 	if (!attr)
 | |
| 		return 0;
 | |
| 
 | |
| 	len = nla_len(attr);
 | |
| 	if (len < 1 || len > MAX_UFID_LENGTH) {
 | |
| 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
 | |
| 			  nla_len(attr), MAX_UFID_LENGTH);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
 | |
|  * or false otherwise.
 | |
|  */
 | |
| bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
 | |
| 		      bool log)
 | |
| {
 | |
| 	sfid->ufid_len = get_ufid_len(attr, log);
 | |
| 	if (sfid->ufid_len)
 | |
| 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
 | |
| 
 | |
| 	return sfid->ufid_len;
 | |
| }
 | |
| 
 | |
| int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
 | |
| 			   const struct sw_flow_key *key, bool log)
 | |
| {
 | |
| 	struct sw_flow_key *new_key;
 | |
| 
 | |
| 	if (ovs_nla_get_ufid(sfid, ufid, log))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If UFID was not provided, use unmasked key. */
 | |
| 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
 | |
| 	if (!new_key)
 | |
| 		return -ENOMEM;
 | |
| 	memcpy(new_key, key, sizeof(*key));
 | |
| 	sfid->unmasked_key = new_key;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
 | |
| {
 | |
| 	return attr ? nla_get_u32(attr) : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
 | |
|  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
 | |
|  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 | |
|  * sequence.
 | |
|  * @log: Boolean to allow kernel error logging.  Normally true, but when
 | |
|  * probing for feature compatibility this should be passed in as false to
 | |
|  * suppress unnecessary error logging.
 | |
|  *
 | |
|  * This parses a series of Netlink attributes that form a flow key, which must
 | |
|  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 | |
|  * get the metadata, that is, the parts of the flow key that cannot be
 | |
|  * extracted from the packet itself.
 | |
|  */
 | |
| 
 | |
| int ovs_nla_get_flow_metadata(const struct nlattr *attr,
 | |
| 			      struct sw_flow_key *key,
 | |
| 			      bool log)
 | |
| {
 | |
| 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 | |
| 	struct sw_flow_match match;
 | |
| 	u64 attrs = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	err = parse_flow_nlattrs(attr, a, &attrs, log);
 | |
| 	if (err)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(&match, 0, sizeof(match));
 | |
| 	match.key = key;
 | |
| 
 | |
| 	key->phy.in_port = DP_MAX_PORTS;
 | |
| 
 | |
| 	return metadata_from_nlattrs(&match, &attrs, a, false, log);
 | |
| }
 | |
| 
 | |
| static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
 | |
| 			     const struct sw_flow_key *output, bool is_mask,
 | |
| 			     struct sk_buff *skb)
 | |
| {
 | |
| 	struct ovs_key_ethernet *eth_key;
 | |
| 	struct nlattr *nla, *encap;
 | |
| 
 | |
| 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if ((swkey->tun_key.ipv4_dst || is_mask)) {
 | |
| 		const void *opts = NULL;
 | |
| 
 | |
| 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
 | |
| 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
 | |
| 
 | |
| 		if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
 | |
| 				       swkey->tun_opts_len))
 | |
| 			goto nla_put_failure;
 | |
| 	}
 | |
| 
 | |
| 	if (swkey->phy.in_port == DP_MAX_PORTS) {
 | |
| 		if (is_mask && (output->phy.in_port == 0xffff))
 | |
| 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
 | |
| 				goto nla_put_failure;
 | |
| 	} else {
 | |
| 		u16 upper_u16;
 | |
| 		upper_u16 = !is_mask ? 0 : 0xffff;
 | |
| 
 | |
| 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
 | |
| 				(upper_u16 << 16) | output->phy.in_port))
 | |
| 			goto nla_put_failure;
 | |
| 	}
 | |
| 
 | |
| 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
 | |
| 	if (!nla)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	eth_key = nla_data(nla);
 | |
| 	ether_addr_copy(eth_key->eth_src, output->eth.src);
 | |
| 	ether_addr_copy(eth_key->eth_dst, output->eth.dst);
 | |
| 
 | |
| 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
 | |
| 		__be16 eth_type;
 | |
| 		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
 | |
| 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
 | |
| 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
 | |
| 			goto nla_put_failure;
 | |
| 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
 | |
| 		if (!swkey->eth.tci)
 | |
| 			goto unencap;
 | |
| 	} else
 | |
| 		encap = NULL;
 | |
| 
 | |
| 	if (swkey->eth.type == htons(ETH_P_802_2)) {
 | |
| 		/*
 | |
| 		 * Ethertype 802.2 is represented in the netlink with omitted
 | |
| 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
 | |
| 		 * 0xffff in the mask attribute.  Ethertype can also
 | |
| 		 * be wildcarded.
 | |
| 		 */
 | |
| 		if (is_mask && output->eth.type)
 | |
| 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
 | |
| 						output->eth.type))
 | |
| 				goto nla_put_failure;
 | |
| 		goto unencap;
 | |
| 	}
 | |
| 
 | |
| 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (swkey->eth.type == htons(ETH_P_IP)) {
 | |
| 		struct ovs_key_ipv4 *ipv4_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		ipv4_key = nla_data(nla);
 | |
| 		ipv4_key->ipv4_src = output->ipv4.addr.src;
 | |
| 		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
 | |
| 		ipv4_key->ipv4_proto = output->ip.proto;
 | |
| 		ipv4_key->ipv4_tos = output->ip.tos;
 | |
| 		ipv4_key->ipv4_ttl = output->ip.ttl;
 | |
| 		ipv4_key->ipv4_frag = output->ip.frag;
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
 | |
| 		struct ovs_key_ipv6 *ipv6_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		ipv6_key = nla_data(nla);
 | |
| 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
 | |
| 				sizeof(ipv6_key->ipv6_src));
 | |
| 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
 | |
| 				sizeof(ipv6_key->ipv6_dst));
 | |
| 		ipv6_key->ipv6_label = output->ipv6.label;
 | |
| 		ipv6_key->ipv6_proto = output->ip.proto;
 | |
| 		ipv6_key->ipv6_tclass = output->ip.tos;
 | |
| 		ipv6_key->ipv6_hlimit = output->ip.ttl;
 | |
| 		ipv6_key->ipv6_frag = output->ip.frag;
 | |
| 	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
 | |
| 		   swkey->eth.type == htons(ETH_P_RARP)) {
 | |
| 		struct ovs_key_arp *arp_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		arp_key = nla_data(nla);
 | |
| 		memset(arp_key, 0, sizeof(struct ovs_key_arp));
 | |
| 		arp_key->arp_sip = output->ipv4.addr.src;
 | |
| 		arp_key->arp_tip = output->ipv4.addr.dst;
 | |
| 		arp_key->arp_op = htons(output->ip.proto);
 | |
| 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
 | |
| 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
 | |
| 	} else if (eth_p_mpls(swkey->eth.type)) {
 | |
| 		struct ovs_key_mpls *mpls_key;
 | |
| 
 | |
| 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
 | |
| 		if (!nla)
 | |
| 			goto nla_put_failure;
 | |
| 		mpls_key = nla_data(nla);
 | |
| 		mpls_key->mpls_lse = output->mpls.top_lse;
 | |
| 	}
 | |
| 
 | |
| 	if ((swkey->eth.type == htons(ETH_P_IP) ||
 | |
| 	     swkey->eth.type == htons(ETH_P_IPV6)) &&
 | |
| 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
 | |
| 
 | |
| 		if (swkey->ip.proto == IPPROTO_TCP) {
 | |
| 			struct ovs_key_tcp *tcp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			tcp_key = nla_data(nla);
 | |
| 			tcp_key->tcp_src = output->tp.src;
 | |
| 			tcp_key->tcp_dst = output->tp.dst;
 | |
| 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
 | |
| 					 output->tp.flags))
 | |
| 				goto nla_put_failure;
 | |
| 		} else if (swkey->ip.proto == IPPROTO_UDP) {
 | |
| 			struct ovs_key_udp *udp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			udp_key = nla_data(nla);
 | |
| 			udp_key->udp_src = output->tp.src;
 | |
| 			udp_key->udp_dst = output->tp.dst;
 | |
| 		} else if (swkey->ip.proto == IPPROTO_SCTP) {
 | |
| 			struct ovs_key_sctp *sctp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			sctp_key = nla_data(nla);
 | |
| 			sctp_key->sctp_src = output->tp.src;
 | |
| 			sctp_key->sctp_dst = output->tp.dst;
 | |
| 		} else if (swkey->eth.type == htons(ETH_P_IP) &&
 | |
| 			   swkey->ip.proto == IPPROTO_ICMP) {
 | |
| 			struct ovs_key_icmp *icmp_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			icmp_key = nla_data(nla);
 | |
| 			icmp_key->icmp_type = ntohs(output->tp.src);
 | |
| 			icmp_key->icmp_code = ntohs(output->tp.dst);
 | |
| 		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
 | |
| 			   swkey->ip.proto == IPPROTO_ICMPV6) {
 | |
| 			struct ovs_key_icmpv6 *icmpv6_key;
 | |
| 
 | |
| 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
 | |
| 						sizeof(*icmpv6_key));
 | |
| 			if (!nla)
 | |
| 				goto nla_put_failure;
 | |
| 			icmpv6_key = nla_data(nla);
 | |
| 			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
 | |
| 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
 | |
| 
 | |
| 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 | |
| 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
 | |
| 				struct ovs_key_nd *nd_key;
 | |
| 
 | |
| 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
 | |
| 				if (!nla)
 | |
| 					goto nla_put_failure;
 | |
| 				nd_key = nla_data(nla);
 | |
| 				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
 | |
| 							sizeof(nd_key->nd_target));
 | |
| 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
 | |
| 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unencap:
 | |
| 	if (encap)
 | |
| 		nla_nest_end(skb, encap);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -EMSGSIZE;
 | |
| }
 | |
| 
 | |
| int ovs_nla_put_key(const struct sw_flow_key *swkey,
 | |
| 		    const struct sw_flow_key *output, int attr, bool is_mask,
 | |
| 		    struct sk_buff *skb)
 | |
| {
 | |
| 	int err;
 | |
| 	struct nlattr *nla;
 | |
| 
 | |
| 	nla = nla_nest_start(skb, attr);
 | |
| 	if (!nla)
 | |
| 		return -EMSGSIZE;
 | |
| 	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	nla_nest_end(skb, nla);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called with ovs_mutex or RCU read lock. */
 | |
| int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
 | |
| {
 | |
| 	if (ovs_identifier_is_ufid(&flow->id))
 | |
| 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
 | |
| 			       flow->id.ufid);
 | |
| 
 | |
| 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
 | |
| 			       OVS_FLOW_ATTR_KEY, false, skb);
 | |
| }
 | |
| 
 | |
| /* Called with ovs_mutex or RCU read lock. */
 | |
| int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
 | |
| {
 | |
| 	return ovs_nla_put_key(&flow->key, &flow->key,
 | |
| 				OVS_FLOW_ATTR_KEY, false, skb);
 | |
| }
 | |
| 
 | |
| /* Called with ovs_mutex or RCU read lock. */
 | |
| int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
 | |
| {
 | |
| 	return ovs_nla_put_key(&flow->key, &flow->mask->key,
 | |
| 				OVS_FLOW_ATTR_MASK, true, skb);
 | |
| }
 | |
| 
 | |
| #define MAX_ACTIONS_BUFSIZE	(32 * 1024)
 | |
| 
 | |
| static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
 | |
| {
 | |
| 	struct sw_flow_actions *sfa;
 | |
| 
 | |
| 	if (size > MAX_ACTIONS_BUFSIZE) {
 | |
| 		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
 | |
| 	if (!sfa)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	sfa->actions_len = 0;
 | |
| 	return sfa;
 | |
| }
 | |
| 
 | |
| /* Schedules 'sf_acts' to be freed after the next RCU grace period.
 | |
|  * The caller must hold rcu_read_lock for this to be sensible. */
 | |
| void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
 | |
| {
 | |
| 	kfree_rcu(sf_acts, rcu);
 | |
| }
 | |
| 
 | |
| static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
 | |
| 				       int attr_len, bool log)
 | |
| {
 | |
| 
 | |
| 	struct sw_flow_actions *acts;
 | |
| 	int new_acts_size;
 | |
| 	int req_size = NLA_ALIGN(attr_len);
 | |
| 	int next_offset = offsetof(struct sw_flow_actions, actions) +
 | |
| 					(*sfa)->actions_len;
 | |
| 
 | |
| 	if (req_size <= (ksize(*sfa) - next_offset))
 | |
| 		goto out;
 | |
| 
 | |
| 	new_acts_size = ksize(*sfa) * 2;
 | |
| 
 | |
| 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
 | |
| 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
 | |
| 			return ERR_PTR(-EMSGSIZE);
 | |
| 		new_acts_size = MAX_ACTIONS_BUFSIZE;
 | |
| 	}
 | |
| 
 | |
| 	acts = nla_alloc_flow_actions(new_acts_size, log);
 | |
| 	if (IS_ERR(acts))
 | |
| 		return (void *)acts;
 | |
| 
 | |
| 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
 | |
| 	acts->actions_len = (*sfa)->actions_len;
 | |
| 	kfree(*sfa);
 | |
| 	*sfa = acts;
 | |
| 
 | |
| out:
 | |
| 	(*sfa)->actions_len += req_size;
 | |
| 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
 | |
| }
 | |
| 
 | |
| static struct nlattr *__add_action(struct sw_flow_actions **sfa,
 | |
| 				   int attrtype, void *data, int len, bool log)
 | |
| {
 | |
| 	struct nlattr *a;
 | |
| 
 | |
| 	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
 | |
| 	if (IS_ERR(a))
 | |
| 		return a;
 | |
| 
 | |
| 	a->nla_type = attrtype;
 | |
| 	a->nla_len = nla_attr_size(len);
 | |
| 
 | |
| 	if (data)
 | |
| 		memcpy(nla_data(a), data, len);
 | |
| 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
 | |
| 
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| static int add_action(struct sw_flow_actions **sfa, int attrtype,
 | |
| 		      void *data, int len, bool log)
 | |
| {
 | |
| 	struct nlattr *a;
 | |
| 
 | |
| 	a = __add_action(sfa, attrtype, data, len, log);
 | |
| 
 | |
| 	return PTR_ERR_OR_ZERO(a);
 | |
| }
 | |
| 
 | |
| static inline int add_nested_action_start(struct sw_flow_actions **sfa,
 | |
| 					  int attrtype, bool log)
 | |
| {
 | |
| 	int used = (*sfa)->actions_len;
 | |
| 	int err;
 | |
| 
 | |
| 	err = add_action(sfa, attrtype, NULL, 0, log);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return used;
 | |
| }
 | |
| 
 | |
| static inline void add_nested_action_end(struct sw_flow_actions *sfa,
 | |
| 					 int st_offset)
 | |
| {
 | |
| 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
 | |
| 							       st_offset);
 | |
| 
 | |
| 	a->nla_len = sfa->actions_len - st_offset;
 | |
| }
 | |
| 
 | |
| static int __ovs_nla_copy_actions(const struct nlattr *attr,
 | |
| 				  const struct sw_flow_key *key,
 | |
| 				  int depth, struct sw_flow_actions **sfa,
 | |
| 				  __be16 eth_type, __be16 vlan_tci, bool log);
 | |
| 
 | |
| static int validate_and_copy_sample(const struct nlattr *attr,
 | |
| 				    const struct sw_flow_key *key, int depth,
 | |
| 				    struct sw_flow_actions **sfa,
 | |
| 				    __be16 eth_type, __be16 vlan_tci, bool log)
 | |
| {
 | |
| 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
 | |
| 	const struct nlattr *probability, *actions;
 | |
| 	const struct nlattr *a;
 | |
| 	int rem, start, err, st_acts;
 | |
| 
 | |
| 	memset(attrs, 0, sizeof(attrs));
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
 | |
| 			return -EINVAL;
 | |
| 		attrs[type] = a;
 | |
| 	}
 | |
| 	if (rem)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
 | |
| 	if (!probability || nla_len(probability) != sizeof(u32))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
 | |
| 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* validation done, copy sample action. */
 | |
| 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
 | |
| 	if (start < 0)
 | |
| 		return start;
 | |
| 	err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
 | |
| 			 nla_data(probability), sizeof(u32), log);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
 | |
| 	if (st_acts < 0)
 | |
| 		return st_acts;
 | |
| 
 | |
| 	err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
 | |
| 				     eth_type, vlan_tci, log);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	add_nested_action_end(*sfa, st_acts);
 | |
| 	add_nested_action_end(*sfa, start);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void ovs_match_init(struct sw_flow_match *match,
 | |
| 		    struct sw_flow_key *key,
 | |
| 		    struct sw_flow_mask *mask)
 | |
| {
 | |
| 	memset(match, 0, sizeof(*match));
 | |
| 	match->key = key;
 | |
| 	match->mask = mask;
 | |
| 
 | |
| 	memset(key, 0, sizeof(*key));
 | |
| 
 | |
| 	if (mask) {
 | |
| 		memset(&mask->key, 0, sizeof(mask->key));
 | |
| 		mask->range.start = mask->range.end = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int validate_geneve_opts(struct sw_flow_key *key)
 | |
| {
 | |
| 	struct geneve_opt *option;
 | |
| 	int opts_len = key->tun_opts_len;
 | |
| 	bool crit_opt = false;
 | |
| 
 | |
| 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
 | |
| 	while (opts_len > 0) {
 | |
| 		int len;
 | |
| 
 | |
| 		if (opts_len < sizeof(*option))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		len = sizeof(*option) + option->length * 4;
 | |
| 		if (len > opts_len)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
 | |
| 
 | |
| 		option = (struct geneve_opt *)((u8 *)option + len);
 | |
| 		opts_len -= len;
 | |
| 	};
 | |
| 
 | |
| 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int validate_and_copy_set_tun(const struct nlattr *attr,
 | |
| 				     struct sw_flow_actions **sfa, bool log)
 | |
| {
 | |
| 	struct sw_flow_match match;
 | |
| 	struct sw_flow_key key;
 | |
| 	struct ovs_tunnel_info *tun_info;
 | |
| 	struct nlattr *a;
 | |
| 	int err = 0, start, opts_type;
 | |
| 
 | |
| 	ovs_match_init(&match, &key, NULL);
 | |
| 	opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
 | |
| 	if (opts_type < 0)
 | |
| 		return opts_type;
 | |
| 
 | |
| 	if (key.tun_opts_len) {
 | |
| 		switch (opts_type) {
 | |
| 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 | |
| 			err = validate_geneve_opts(&key);
 | |
| 			if (err < 0)
 | |
| 				return err;
 | |
| 			break;
 | |
| 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 | |
| 			break;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
 | |
| 	if (start < 0)
 | |
| 		return start;
 | |
| 
 | |
| 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
 | |
| 			 sizeof(*tun_info) + key.tun_opts_len, log);
 | |
| 	if (IS_ERR(a))
 | |
| 		return PTR_ERR(a);
 | |
| 
 | |
| 	tun_info = nla_data(a);
 | |
| 	tun_info->tunnel = key.tun_key;
 | |
| 	tun_info->options_len = key.tun_opts_len;
 | |
| 
 | |
| 	if (tun_info->options_len) {
 | |
| 		/* We need to store the options in the action itself since
 | |
| 		 * everything else will go away after flow setup. We can append
 | |
| 		 * it to tun_info and then point there.
 | |
| 		 */
 | |
| 		memcpy((tun_info + 1),
 | |
| 		       TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len);
 | |
| 		tun_info->options = (tun_info + 1);
 | |
| 	} else {
 | |
| 		tun_info->options = NULL;
 | |
| 	}
 | |
| 
 | |
| 	add_nested_action_end(*sfa, start);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Return false if there are any non-masked bits set.
 | |
|  * Mask follows data immediately, before any netlink padding.
 | |
|  */
 | |
| static bool validate_masked(u8 *data, int len)
 | |
| {
 | |
| 	u8 *mask = data + len;
 | |
| 
 | |
| 	while (len--)
 | |
| 		if (*data++ & ~*mask++)
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int validate_set(const struct nlattr *a,
 | |
| 			const struct sw_flow_key *flow_key,
 | |
| 			struct sw_flow_actions **sfa,
 | |
| 			bool *skip_copy, __be16 eth_type, bool masked, bool log)
 | |
| {
 | |
| 	const struct nlattr *ovs_key = nla_data(a);
 | |
| 	int key_type = nla_type(ovs_key);
 | |
| 	size_t key_len;
 | |
| 
 | |
| 	/* There can be only one key in a action */
 | |
| 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	key_len = nla_len(ovs_key);
 | |
| 	if (masked)
 | |
| 		key_len /= 2;
 | |
| 
 | |
| 	if (key_type > OVS_KEY_ATTR_MAX ||
 | |
| 	    (ovs_key_lens[key_type].len != key_len &&
 | |
| 	     ovs_key_lens[key_type].len != OVS_ATTR_NESTED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (masked && !validate_masked(nla_data(ovs_key), key_len))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (key_type) {
 | |
| 	const struct ovs_key_ipv4 *ipv4_key;
 | |
| 	const struct ovs_key_ipv6 *ipv6_key;
 | |
| 	int err;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_PRIORITY:
 | |
| 	case OVS_KEY_ATTR_SKB_MARK:
 | |
| 	case OVS_KEY_ATTR_ETHERNET:
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_TUNNEL:
 | |
| 		if (eth_p_mpls(eth_type))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (masked)
 | |
| 			return -EINVAL; /* Masked tunnel set not supported. */
 | |
| 
 | |
| 		*skip_copy = true;
 | |
| 		err = validate_and_copy_set_tun(a, sfa, log);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_IPV4:
 | |
| 		if (eth_type != htons(ETH_P_IP))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		ipv4_key = nla_data(ovs_key);
 | |
| 
 | |
| 		if (masked) {
 | |
| 			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
 | |
| 
 | |
| 			/* Non-writeable fields. */
 | |
| 			if (mask->ipv4_proto || mask->ipv4_frag)
 | |
| 				return -EINVAL;
 | |
| 		} else {
 | |
| 			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_IPV6:
 | |
| 		if (eth_type != htons(ETH_P_IPV6))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		ipv6_key = nla_data(ovs_key);
 | |
| 
 | |
| 		if (masked) {
 | |
| 			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
 | |
| 
 | |
| 			/* Non-writeable fields. */
 | |
| 			if (mask->ipv6_proto || mask->ipv6_frag)
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/* Invalid bits in the flow label mask? */
 | |
| 			if (ntohl(mask->ipv6_label) & 0xFFF00000)
 | |
| 				return -EINVAL;
 | |
| 		} else {
 | |
| 			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_TCP:
 | |
| 		if ((eth_type != htons(ETH_P_IP) &&
 | |
| 		     eth_type != htons(ETH_P_IPV6)) ||
 | |
| 		    flow_key->ip.proto != IPPROTO_TCP)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_UDP:
 | |
| 		if ((eth_type != htons(ETH_P_IP) &&
 | |
| 		     eth_type != htons(ETH_P_IPV6)) ||
 | |
| 		    flow_key->ip.proto != IPPROTO_UDP)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_MPLS:
 | |
| 		if (!eth_p_mpls(eth_type))
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 
 | |
| 	case OVS_KEY_ATTR_SCTP:
 | |
| 		if ((eth_type != htons(ETH_P_IP) &&
 | |
| 		     eth_type != htons(ETH_P_IPV6)) ||
 | |
| 		    flow_key->ip.proto != IPPROTO_SCTP)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Convert non-masked non-tunnel set actions to masked set actions. */
 | |
| 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
 | |
| 		int start, len = key_len * 2;
 | |
| 		struct nlattr *at;
 | |
| 
 | |
| 		*skip_copy = true;
 | |
| 
 | |
| 		start = add_nested_action_start(sfa,
 | |
| 						OVS_ACTION_ATTR_SET_TO_MASKED,
 | |
| 						log);
 | |
| 		if (start < 0)
 | |
| 			return start;
 | |
| 
 | |
| 		at = __add_action(sfa, key_type, NULL, len, log);
 | |
| 		if (IS_ERR(at))
 | |
| 			return PTR_ERR(at);
 | |
| 
 | |
| 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
 | |
| 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
 | |
| 		/* Clear non-writeable bits from otherwise writeable fields. */
 | |
| 		if (key_type == OVS_KEY_ATTR_IPV6) {
 | |
| 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
 | |
| 
 | |
| 			mask->ipv6_label &= htonl(0x000FFFFF);
 | |
| 		}
 | |
| 		add_nested_action_end(*sfa, start);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int validate_userspace(const struct nlattr *attr)
 | |
| {
 | |
| 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
 | |
| 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
 | |
| 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
 | |
| 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
 | |
| 	};
 | |
| 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
 | |
| 	int error;
 | |
| 
 | |
| 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
 | |
| 				 attr, userspace_policy);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (!a[OVS_USERSPACE_ATTR_PID] ||
 | |
| 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_action(const struct nlattr *from,
 | |
| 		       struct sw_flow_actions **sfa, bool log)
 | |
| {
 | |
| 	int totlen = NLA_ALIGN(from->nla_len);
 | |
| 	struct nlattr *to;
 | |
| 
 | |
| 	to = reserve_sfa_size(sfa, from->nla_len, log);
 | |
| 	if (IS_ERR(to))
 | |
| 		return PTR_ERR(to);
 | |
| 
 | |
| 	memcpy(to, from, totlen);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __ovs_nla_copy_actions(const struct nlattr *attr,
 | |
| 				  const struct sw_flow_key *key,
 | |
| 				  int depth, struct sw_flow_actions **sfa,
 | |
| 				  __be16 eth_type, __be16 vlan_tci, bool log)
 | |
| {
 | |
| 	const struct nlattr *a;
 | |
| 	int rem, err;
 | |
| 
 | |
| 	if (depth >= SAMPLE_ACTION_DEPTH)
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		/* Expected argument lengths, (u32)-1 for variable length. */
 | |
| 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
 | |
| 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
 | |
| 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
 | |
| 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
 | |
| 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
 | |
| 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
 | |
| 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
 | |
| 			[OVS_ACTION_ATTR_POP_VLAN] = 0,
 | |
| 			[OVS_ACTION_ATTR_SET] = (u32)-1,
 | |
| 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
 | |
| 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
 | |
| 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
 | |
| 		};
 | |
| 		const struct ovs_action_push_vlan *vlan;
 | |
| 		int type = nla_type(a);
 | |
| 		bool skip_copy;
 | |
| 
 | |
| 		if (type > OVS_ACTION_ATTR_MAX ||
 | |
| 		    (action_lens[type] != nla_len(a) &&
 | |
| 		     action_lens[type] != (u32)-1))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		skip_copy = false;
 | |
| 		switch (type) {
 | |
| 		case OVS_ACTION_ATTR_UNSPEC:
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_USERSPACE:
 | |
| 			err = validate_userspace(a);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_OUTPUT:
 | |
| 			if (nla_get_u32(a) >= DP_MAX_PORTS)
 | |
| 				return -EINVAL;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_HASH: {
 | |
| 			const struct ovs_action_hash *act_hash = nla_data(a);
 | |
| 
 | |
| 			switch (act_hash->hash_alg) {
 | |
| 			case OVS_HASH_ALG_L4:
 | |
| 				break;
 | |
| 			default:
 | |
| 				return  -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_POP_VLAN:
 | |
| 			vlan_tci = htons(0);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PUSH_VLAN:
 | |
| 			vlan = nla_data(a);
 | |
| 			if (vlan->vlan_tpid != htons(ETH_P_8021Q))
 | |
| 				return -EINVAL;
 | |
| 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
 | |
| 				return -EINVAL;
 | |
| 			vlan_tci = vlan->vlan_tci;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_RECIRC:
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_PUSH_MPLS: {
 | |
| 			const struct ovs_action_push_mpls *mpls = nla_data(a);
 | |
| 
 | |
| 			if (!eth_p_mpls(mpls->mpls_ethertype))
 | |
| 				return -EINVAL;
 | |
| 			/* Prohibit push MPLS other than to a white list
 | |
| 			 * for packets that have a known tag order.
 | |
| 			 */
 | |
| 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
 | |
| 			    (eth_type != htons(ETH_P_IP) &&
 | |
| 			     eth_type != htons(ETH_P_IPV6) &&
 | |
| 			     eth_type != htons(ETH_P_ARP) &&
 | |
| 			     eth_type != htons(ETH_P_RARP) &&
 | |
| 			     !eth_p_mpls(eth_type)))
 | |
| 				return -EINVAL;
 | |
| 			eth_type = mpls->mpls_ethertype;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_POP_MPLS:
 | |
| 			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
 | |
| 			    !eth_p_mpls(eth_type))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/* Disallow subsequent L2.5+ set and mpls_pop actions
 | |
| 			 * as there is no check here to ensure that the new
 | |
| 			 * eth_type is valid and thus set actions could
 | |
| 			 * write off the end of the packet or otherwise
 | |
| 			 * corrupt it.
 | |
| 			 *
 | |
| 			 * Support for these actions is planned using packet
 | |
| 			 * recirculation.
 | |
| 			 */
 | |
| 			eth_type = htons(0);
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SET:
 | |
| 			err = validate_set(a, key, sfa,
 | |
| 					   &skip_copy, eth_type, false, log);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SET_MASKED:
 | |
| 			err = validate_set(a, key, sfa,
 | |
| 					   &skip_copy, eth_type, true, log);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SAMPLE:
 | |
| 			err = validate_and_copy_sample(a, key, depth, sfa,
 | |
| 						       eth_type, vlan_tci, log);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			skip_copy = true;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			OVS_NLERR(log, "Unknown Action type %d", type);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (!skip_copy) {
 | |
| 			err = copy_action(a, sfa, log);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rem > 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* 'key' must be the masked key. */
 | |
| int ovs_nla_copy_actions(const struct nlattr *attr,
 | |
| 			 const struct sw_flow_key *key,
 | |
| 			 struct sw_flow_actions **sfa, bool log)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
 | |
| 	if (IS_ERR(*sfa))
 | |
| 		return PTR_ERR(*sfa);
 | |
| 
 | |
| 	err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
 | |
| 				     key->eth.tci, log);
 | |
| 	if (err)
 | |
| 		kfree(*sfa);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct nlattr *a;
 | |
| 	struct nlattr *start;
 | |
| 	int err = 0, rem;
 | |
| 
 | |
| 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
 | |
| 	if (!start)
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	nla_for_each_nested(a, attr, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 		struct nlattr *st_sample;
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case OVS_SAMPLE_ATTR_PROBABILITY:
 | |
| 			if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
 | |
| 				    sizeof(u32), nla_data(a)))
 | |
| 				return -EMSGSIZE;
 | |
| 			break;
 | |
| 		case OVS_SAMPLE_ATTR_ACTIONS:
 | |
| 			st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
 | |
| 			if (!st_sample)
 | |
| 				return -EMSGSIZE;
 | |
| 			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			nla_nest_end(skb, st_sample);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nla_nest_end(skb, start);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct nlattr *ovs_key = nla_data(a);
 | |
| 	int key_type = nla_type(ovs_key);
 | |
| 	struct nlattr *start;
 | |
| 	int err;
 | |
| 
 | |
| 	switch (key_type) {
 | |
| 	case OVS_KEY_ATTR_TUNNEL_INFO: {
 | |
| 		struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
 | |
| 
 | |
| 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
 | |
| 		if (!start)
 | |
| 			return -EMSGSIZE;
 | |
| 
 | |
| 		err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
 | |
| 					 tun_info->options_len ?
 | |
| 						tun_info->options : NULL,
 | |
| 					 tun_info->options_len);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		nla_nest_end(skb, start);
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
 | |
| 			return -EMSGSIZE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int masked_set_action_to_set_action_attr(const struct nlattr *a,
 | |
| 						struct sk_buff *skb)
 | |
| {
 | |
| 	const struct nlattr *ovs_key = nla_data(a);
 | |
| 	size_t key_len = nla_len(ovs_key) / 2;
 | |
| 
 | |
| 	/* Revert the conversion we did from a non-masked set action to
 | |
| 	 * masked set action.
 | |
| 	 */
 | |
| 	if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a) - key_len, ovs_key))
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
 | |
| {
 | |
| 	const struct nlattr *a;
 | |
| 	int rem, err;
 | |
| 
 | |
| 	nla_for_each_attr(a, attr, len, rem) {
 | |
| 		int type = nla_type(a);
 | |
| 
 | |
| 		switch (type) {
 | |
| 		case OVS_ACTION_ATTR_SET:
 | |
| 			err = set_action_to_attr(a, skb);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SET_TO_MASKED:
 | |
| 			err = masked_set_action_to_set_action_attr(a, skb);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 
 | |
| 		case OVS_ACTION_ATTR_SAMPLE:
 | |
| 			err = sample_action_to_attr(a, skb);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (nla_put(skb, type, nla_len(a), nla_data(a)))
 | |
| 				return -EMSGSIZE;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |