412 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
	
		
			11 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Squashfs - a compressed read only filesystem for Linux
 | 
						|
 *
 | 
						|
 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
 | 
						|
 * Phillip Lougher <phillip@lougher.demon.co.uk>
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2,
 | 
						|
 * or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * cache.c
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
 | 
						|
 * recently accessed data Squashfs uses two small metadata and fragment caches.
 | 
						|
 *
 | 
						|
 * This file implements a generic cache implementation used for both caches,
 | 
						|
 * plus functions layered ontop of the generic cache implementation to
 | 
						|
 * access the metadata and fragment caches.
 | 
						|
 *
 | 
						|
 * To avoid out of memory and fragmentation isssues with vmalloc the cache
 | 
						|
 * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
 | 
						|
 *
 | 
						|
 * It should be noted that the cache is not used for file datablocks, these
 | 
						|
 * are decompressed and cached in the page-cache in the normal way.  The
 | 
						|
 * cache is only used to temporarily cache fragment and metadata blocks
 | 
						|
 * which have been read as as a result of a metadata (i.e. inode or
 | 
						|
 * directory) or fragment access.  Because metadata and fragments are packed
 | 
						|
 * together into blocks (to gain greater compression) the read of a particular
 | 
						|
 * piece of metadata or fragment will retrieve other metadata/fragments which
 | 
						|
 * have been packed with it, these because of locality-of-reference may be read
 | 
						|
 * in the near future. Temporarily caching them ensures they are available for
 | 
						|
 * near future access without requiring an additional read and decompress.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/vfs.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/zlib.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
 | 
						|
#include "squashfs_fs.h"
 | 
						|
#include "squashfs_fs_sb.h"
 | 
						|
#include "squashfs_fs_i.h"
 | 
						|
#include "squashfs.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Look-up block in cache, and increment usage count.  If not in cache, read
 | 
						|
 * and decompress it from disk.
 | 
						|
 */
 | 
						|
struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
 | 
						|
	struct squashfs_cache *cache, u64 block, int length)
 | 
						|
{
 | 
						|
	int i, n;
 | 
						|
	struct squashfs_cache_entry *entry;
 | 
						|
 | 
						|
	spin_lock(&cache->lock);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		for (i = 0; i < cache->entries; i++)
 | 
						|
			if (cache->entry[i].block == block)
 | 
						|
				break;
 | 
						|
 | 
						|
		if (i == cache->entries) {
 | 
						|
			/*
 | 
						|
			 * Block not in cache, if all cache entries are used
 | 
						|
			 * go to sleep waiting for one to become available.
 | 
						|
			 */
 | 
						|
			if (cache->unused == 0) {
 | 
						|
				cache->num_waiters++;
 | 
						|
				spin_unlock(&cache->lock);
 | 
						|
				wait_event(cache->wait_queue, cache->unused);
 | 
						|
				spin_lock(&cache->lock);
 | 
						|
				cache->num_waiters--;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * At least one unused cache entry.  A simple
 | 
						|
			 * round-robin strategy is used to choose the entry to
 | 
						|
			 * be evicted from the cache.
 | 
						|
			 */
 | 
						|
			i = cache->next_blk;
 | 
						|
			for (n = 0; n < cache->entries; n++) {
 | 
						|
				if (cache->entry[i].refcount == 0)
 | 
						|
					break;
 | 
						|
				i = (i + 1) % cache->entries;
 | 
						|
			}
 | 
						|
 | 
						|
			cache->next_blk = (i + 1) % cache->entries;
 | 
						|
			entry = &cache->entry[i];
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Initialise choosen cache entry, and fill it in from
 | 
						|
			 * disk.
 | 
						|
			 */
 | 
						|
			cache->unused--;
 | 
						|
			entry->block = block;
 | 
						|
			entry->refcount = 1;
 | 
						|
			entry->pending = 1;
 | 
						|
			entry->num_waiters = 0;
 | 
						|
			entry->error = 0;
 | 
						|
			spin_unlock(&cache->lock);
 | 
						|
 | 
						|
			entry->length = squashfs_read_data(sb, entry->data,
 | 
						|
				block, length, &entry->next_index,
 | 
						|
				cache->block_size);
 | 
						|
 | 
						|
			spin_lock(&cache->lock);
 | 
						|
 | 
						|
			if (entry->length < 0)
 | 
						|
				entry->error = entry->length;
 | 
						|
 | 
						|
			entry->pending = 0;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * While filling this entry one or more other processes
 | 
						|
			 * have looked it up in the cache, and have slept
 | 
						|
			 * waiting for it to become available.
 | 
						|
			 */
 | 
						|
			if (entry->num_waiters) {
 | 
						|
				spin_unlock(&cache->lock);
 | 
						|
				wake_up_all(&entry->wait_queue);
 | 
						|
			} else
 | 
						|
				spin_unlock(&cache->lock);
 | 
						|
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Block already in cache.  Increment refcount so it doesn't
 | 
						|
		 * get reused until we're finished with it, if it was
 | 
						|
		 * previously unused there's one less cache entry available
 | 
						|
		 * for reuse.
 | 
						|
		 */
 | 
						|
		entry = &cache->entry[i];
 | 
						|
		if (entry->refcount == 0)
 | 
						|
			cache->unused--;
 | 
						|
		entry->refcount++;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If the entry is currently being filled in by another process
 | 
						|
		 * go to sleep waiting for it to become available.
 | 
						|
		 */
 | 
						|
		if (entry->pending) {
 | 
						|
			entry->num_waiters++;
 | 
						|
			spin_unlock(&cache->lock);
 | 
						|
			wait_event(entry->wait_queue, !entry->pending);
 | 
						|
		} else
 | 
						|
			spin_unlock(&cache->lock);
 | 
						|
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
 | 
						|
		cache->name, i, entry->block, entry->refcount, entry->error);
 | 
						|
 | 
						|
	if (entry->error)
 | 
						|
		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
 | 
						|
							block);
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Release cache entry, once usage count is zero it can be reused.
 | 
						|
 */
 | 
						|
void squashfs_cache_put(struct squashfs_cache_entry *entry)
 | 
						|
{
 | 
						|
	struct squashfs_cache *cache = entry->cache;
 | 
						|
 | 
						|
	spin_lock(&cache->lock);
 | 
						|
	entry->refcount--;
 | 
						|
	if (entry->refcount == 0) {
 | 
						|
		cache->unused++;
 | 
						|
		/*
 | 
						|
		 * If there's any processes waiting for a block to become
 | 
						|
		 * available, wake one up.
 | 
						|
		 */
 | 
						|
		if (cache->num_waiters) {
 | 
						|
			spin_unlock(&cache->lock);
 | 
						|
			wake_up(&cache->wait_queue);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock(&cache->lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Delete cache reclaiming all kmalloced buffers.
 | 
						|
 */
 | 
						|
void squashfs_cache_delete(struct squashfs_cache *cache)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	if (cache == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	for (i = 0; i < cache->entries; i++) {
 | 
						|
		if (cache->entry[i].data) {
 | 
						|
			for (j = 0; j < cache->pages; j++)
 | 
						|
				kfree(cache->entry[i].data[j]);
 | 
						|
			kfree(cache->entry[i].data);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(cache->entry);
 | 
						|
	kfree(cache);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialise cache allocating the specified number of entries, each of
 | 
						|
 * size block_size.  To avoid vmalloc fragmentation issues each entry
 | 
						|
 * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
 | 
						|
 */
 | 
						|
struct squashfs_cache *squashfs_cache_init(char *name, int entries,
 | 
						|
	int block_size)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
 | 
						|
 | 
						|
	if (cache == NULL) {
 | 
						|
		ERROR("Failed to allocate %s cache\n", name);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
 | 
						|
	if (cache->entry == NULL) {
 | 
						|
		ERROR("Failed to allocate %s cache\n", name);
 | 
						|
		goto cleanup;
 | 
						|
	}
 | 
						|
 | 
						|
	cache->next_blk = 0;
 | 
						|
	cache->unused = entries;
 | 
						|
	cache->entries = entries;
 | 
						|
	cache->block_size = block_size;
 | 
						|
	cache->pages = block_size >> PAGE_CACHE_SHIFT;
 | 
						|
	cache->name = name;
 | 
						|
	cache->num_waiters = 0;
 | 
						|
	spin_lock_init(&cache->lock);
 | 
						|
	init_waitqueue_head(&cache->wait_queue);
 | 
						|
 | 
						|
	for (i = 0; i < entries; i++) {
 | 
						|
		struct squashfs_cache_entry *entry = &cache->entry[i];
 | 
						|
 | 
						|
		init_waitqueue_head(&cache->entry[i].wait_queue);
 | 
						|
		entry->cache = cache;
 | 
						|
		entry->block = SQUASHFS_INVALID_BLK;
 | 
						|
		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
 | 
						|
		if (entry->data == NULL) {
 | 
						|
			ERROR("Failed to allocate %s cache entry\n", name);
 | 
						|
			goto cleanup;
 | 
						|
		}
 | 
						|
 | 
						|
		for (j = 0; j < cache->pages; j++) {
 | 
						|
			entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
 | 
						|
			if (entry->data[j] == NULL) {
 | 
						|
				ERROR("Failed to allocate %s buffer\n", name);
 | 
						|
				goto cleanup;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return cache;
 | 
						|
 | 
						|
cleanup:
 | 
						|
	squashfs_cache_delete(cache);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy upto length bytes from cache entry to buffer starting at offset bytes
 | 
						|
 * into the cache entry.  If there's not length bytes then copy the number of
 | 
						|
 * bytes available.  In all cases return the number of bytes copied.
 | 
						|
 */
 | 
						|
int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
 | 
						|
		int offset, int length)
 | 
						|
{
 | 
						|
	int remaining = length;
 | 
						|
 | 
						|
	if (length == 0)
 | 
						|
		return 0;
 | 
						|
	else if (buffer == NULL)
 | 
						|
		return min(length, entry->length - offset);
 | 
						|
 | 
						|
	while (offset < entry->length) {
 | 
						|
		void *buff = entry->data[offset / PAGE_CACHE_SIZE]
 | 
						|
				+ (offset % PAGE_CACHE_SIZE);
 | 
						|
		int bytes = min_t(int, entry->length - offset,
 | 
						|
				PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
 | 
						|
 | 
						|
		if (bytes >= remaining) {
 | 
						|
			memcpy(buffer, buff, remaining);
 | 
						|
			remaining = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		memcpy(buffer, buff, bytes);
 | 
						|
		buffer += bytes;
 | 
						|
		remaining -= bytes;
 | 
						|
		offset += bytes;
 | 
						|
	}
 | 
						|
 | 
						|
	return length - remaining;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Read length bytes from metadata position <block, offset> (block is the
 | 
						|
 * start of the compressed block on disk, and offset is the offset into
 | 
						|
 * the block once decompressed).  Data is packed into consecutive blocks,
 | 
						|
 * and length bytes may require reading more than one block.
 | 
						|
 */
 | 
						|
int squashfs_read_metadata(struct super_block *sb, void *buffer,
 | 
						|
		u64 *block, int *offset, int length)
 | 
						|
{
 | 
						|
	struct squashfs_sb_info *msblk = sb->s_fs_info;
 | 
						|
	int bytes, copied = length;
 | 
						|
	struct squashfs_cache_entry *entry;
 | 
						|
 | 
						|
	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
 | 
						|
 | 
						|
	while (length) {
 | 
						|
		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
 | 
						|
		if (entry->error)
 | 
						|
			return entry->error;
 | 
						|
		else if (*offset >= entry->length)
 | 
						|
			return -EIO;
 | 
						|
 | 
						|
		bytes = squashfs_copy_data(buffer, entry, *offset, length);
 | 
						|
		if (buffer)
 | 
						|
			buffer += bytes;
 | 
						|
		length -= bytes;
 | 
						|
		*offset += bytes;
 | 
						|
 | 
						|
		if (*offset == entry->length) {
 | 
						|
			*block = entry->next_index;
 | 
						|
			*offset = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		squashfs_cache_put(entry);
 | 
						|
	}
 | 
						|
 | 
						|
	return copied;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Look-up in the fragmment cache the fragment located at <start_block> in the
 | 
						|
 * filesystem.  If necessary read and decompress it from disk.
 | 
						|
 */
 | 
						|
struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
 | 
						|
				u64 start_block, int length)
 | 
						|
{
 | 
						|
	struct squashfs_sb_info *msblk = sb->s_fs_info;
 | 
						|
 | 
						|
	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
 | 
						|
		length);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Read and decompress the datablock located at <start_block> in the
 | 
						|
 * filesystem.  The cache is used here to avoid duplicating locking and
 | 
						|
 * read/decompress code.
 | 
						|
 */
 | 
						|
struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
 | 
						|
				u64 start_block, int length)
 | 
						|
{
 | 
						|
	struct squashfs_sb_info *msblk = sb->s_fs_info;
 | 
						|
 | 
						|
	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Read a filesystem table (uncompressed sequence of bytes) from disk
 | 
						|
 */
 | 
						|
int squashfs_read_table(struct super_block *sb, void *buffer, u64 block,
 | 
						|
	int length)
 | 
						|
{
 | 
						|
	int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 | 
						|
	int i, res;
 | 
						|
	void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
 | 
						|
	if (data == NULL)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
 | 
						|
		data[i] = buffer;
 | 
						|
	res = squashfs_read_data(sb, data, block, length |
 | 
						|
		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length);
 | 
						|
	kfree(data);
 | 
						|
	return res;
 | 
						|
}
 |